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Abstract 

High-dimensional data are becoming increasingly common in nearly all areas of science. 

Developing approaches to analyze these data and understand their meaning is a pressing issue.  

This is particularly true for single-cell RNA-seq (scRNA-seq), a technique that simultaneously 

measures the expression of tens of thousands of genes in thousands to millions of single cells.  

The emerging consensus for analysis workflows significantly reduces the dimensionality of the 

dataset before performing downstream analysis, such as assignment of cell types.  One problem 

with this approach is that dimensionality reduction can introduce substantial distortion into the 

data; consider the familiar example of trying to represent the three-dimensional earth as a two-

dimensional map.  It is currently unclear if such distortion affects analysis of scRNA-seq data.  

Here, we introduce a straightforward approach to quantifying this distortion by comparing the 

local neighborhoods of points before and after dimensionality reduction.  We found that popular 

techniques like t-SNE and UMAP introduce substantial distortion even for relatively simple 

simulated data sets.  For scRNA-seq data, we found the distortion in local neighborhoods was 

often greater than 95% in the representations typically used for downstream analyses.  This level 

of distortion can introduce errors into cell type identification, pseudotime ordering, and other 

analyses.  We found that principal component analysis can generate accurate embeddings, but 

only when using dimensionalities that are much higher than typically used in scRNA-seq 

analysis.  Our work suggests the need for a new generation of dimensional reduction algorithms 

that can accurately embed high dimensional data in its true latent dimension.	  
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Introduction 

Technological advances over the past century have enabled collection and analysis of 

data sets of unprecedented size and complexity.  In geology, a modern assay might report the 

concentrations for over fifty elements from a single sample (Horrocks et al. 2019). In 

climatology, measurements of sea surface temperature and the strength of zonal winds can be 

obtained simultaneously from hundreds of different sensors at any given point in time (Chalupka 

et al. 2016). In cell and molecular biology, sequencing technologies have scaled up the 

throughput and resolution of genome data in populations (Lemmon and Lemmon 2013; Ozsolak 

and Milos 2011) and gene expression levels in single cells (Lake et al. 2018; Stegle et al. 2015), 

into many thousands of dimensions in the case of single cell RNA-seq (scRNA-seq).  Future 

technologies will doubtlessly expand the numbers of dimensions detected in complex systems by 

orders of magnitude. 

While such datasets promise to provide greater insight into the problems being studied, 

high-dimensional data are also more difficult to analyze.  The computational complexity of many 

data analysis algorithms scales exponentially with the dimensionality of the dataset, statistical 

inference often becomes difficult as dimensionality increases, and algorithms that work in lower 

dimensions become intractable in higher-dimensional spaces (Indyk and Motwani 1998; 

Friedman 1997).  This is often referred to as the “curse of dimensionality”. The aim of 

dimensionality reduction is to reduce the scale of the problem while retaining as much of the 

relevant information as possible–ideally all of it. It has become an indispensable tool for the 

rapidly growing number of scRNA-seq studies. 

Dimensionality reduction has a long history (Pearson 1901; Hotelling 1933).  Principal 

Component Analysis (PCA) is perhaps the oldest and most common linear approach, but many 
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alternative approaches to linear dimensionality reduction exist as well, such as Non-negative 

Matrix Factorization (NMF) and Independent Component Analysis (ICA) (Pearson 1901; 

Cichocki and Phan 2009).  These algorithms are useful in a broad class of problems.  However, 

linear approaches may be insufficient when the data display significant nonlinear characteristics 

(DeMers and Cottrell 1993).  In such situations, one often adopts a “manifold” assumption, 

which posits that the data can be modeled as smoothly varying local neighborhoods of dimension 

significantly lower than the ambient space (Moon et al. 2018).  A large number of Nonlinear 

Dimensionality Reduction (NDR) techniques have been developed to approximate these 

manifolds (Tenenbaum et al. 2000; Kruskal 1964; Knyazev 1998; Roweis and Saul 2000), 

including popular visualization methods like t-distributed Stochastic Neighbor Embedding (t-

SNE) (Laurens van der Maaten et al. 2008) and Uniform Manifold Approximation and Projection 

(UMAP) (McInnes et al. 2018					).  Collectively, the use of NDR techniques is often referred to 

as “manifold learning” (Moon et al. 2018). 

In all dimensionality reduction techniques, one specifies the dimension of the resulting 

representation of the data.  For example, if we use t-SNE to reduce the dimension of scRNA-seq 

data, we tell the algorithm the number of dimensions that we want in the end.  Unfortunately, the 

appropriate (or latent) dimensionality needed to correctly represent any given data set is 

generally not known a priori.  A natural choice for visualization purposes is to choose two 

dimensions, since that kind of representation is easy to reproduce in the format of a figure.  In the 

analysis of scRNA-seq data, two dimensions are sometimes used not just for visualization but 

also for downstream analyses ranging from cell type clustering (Fig. 1a) to “pseudotime” 

ordering (Trapnell et al. 2014a).  Currently, it is unclear just how much character of the original 

data is being lost in the reduction of data on the order of 20,000 dimensions, typical for scRNA-
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seq in many species, to two dimensions.  Even when more dimensions are employed to represent 

the data, the amount of information preserved in the dimensionality reduction step is not obvious.   

In order to understand the issues that might be introduced through dimensionality 

reduction, consider the familiar problem of making a 2-D map of the entire surface of the Earth.  

Doing this requires “slicing” the earth along some axis to unfold it into a map; this is commonly 

done in a line through the Pacific, since few landmasses are disrupted by this cut.  Then, the 

mapmaker must either increase the relative size of landmasses near the poles or slice the map 

again to project the globe into two dimensions.  Regardless of technique, the globe cannot be 

represented in two dimensions without slicing and distorting the map in some way, which has 

led, for instance, to popular criticisms of the Mercator Projection.  While distortion of distance 

and area are of course important, perhaps more concerning is the fact that the discontinuous 

slices mentioned above take points that are nearby (e.g., two points in the Pacific) and place 

them on opposite sides of the map.  This means that the local neighborhoods of many of the 

points on the globe are completely different between the Earth itself and the 2-D representation. 

 With this observation in mind, it becomes apparent that there is no guarantee that high 

dimensional data sets, such as those associated with single cell genomics, can be represented in 

two dimensions without introducing analogous discontinuous slices into the data.  Even 

techniques that attempt to objectively find a lower-dimensional representation using more than 

two dimensions, such as the common “scree” (or “elbow”) plot technique in PCA to choose the 

directions that capture most of the variation in the data (Cattell 1966), could also suffer from 

similar problems.  Yet, little analysis has been done to elucidate the extent to which NDR 

techniques introduce discontinuities into reduced-dimensional representations. 
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 We approached this problem by applying a simple metric, inspired by the above 

metaphor of the globe, to quantify the extent to which any given dimensionality reduction 

technique discontinuously slices or folds the data in some way.  This metric is based on 

comparing the local neighborhood of a point in the original data with the local neighborhood of 

that same point in the reduced-dimensional space using the Jaccard distance (Levandowsky and 

Winter 1971).  We first applied this approach to the simple problem of embedding points on the 

surface of a hypersphere (which is a straightforward generalization of the sphere to more than 

three dimensions) into the appropriate latent dimension from a higher-dimensional space.  We 

found that many popular techniques, such as t-SNE and UMAP, not only introduced 

discontinuous slices into the data when trying to embed hyperspheres into two dimensions, but 

also when trying to embed into the correct latent dimension.  Indeed, we failed to identify an 

NDR technique currently in widespread use for analysis or visualization of scRNA-seq data that 

could successfully embed hyperspheres above approximately 10 dimensions. We found similar 

results with other types of simulated data sets that are typically used to represent scRNA-seq 

data; none of the popular NDR techniques could successfully embed any of these data sets, even 

in the known latent dimension. 

 We then used our metric to analyze how dimensionality reduction affects analysis of 

scRNA-seq data.  While nearly every published analysis of scRNA-seq data uses a unique set of 

steps and parameters, common approaches entail several steps of dimensionality reduction. In the 

first step, a set of “Highly Variable Genes” (HVGs) are selected from the data set, usually by 

identifying those genes whose variance in the data set is higher than would be expected based on 

the average expression level of that gene (Luecken and Theis 2019; Andrews et al. 2021). While 

there are some rough guidelines available in the literature, the choice of the number of HVGs to 
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use for downstream analysis is ultimately arbitrary (Luecken and Theis 2019; Andrews et al. 

2021). The HVGs are then used as input to PCA in order to represent the data in a lower-

dimensional space. The number of principal components chosen for this step is also arbitrary but 

is often based on visual inspection of a scree plot.  Finally, the data are visualized in 2 or 3 

dimensions using NDR tools, most often t-SNE or UMAP (Laurens van der Maaten et al. 2008; 

McInnes et al. 2018					).  In reviewing the literature, one finds that some groups perform further 

quantitative analysis on the higher-dimensional PCA representation of the data (Siebert et al. 

2019; Cao et al. 2019; Davie et al. 2018), while others perform analysis on the 2 or 3 

dimensional embeddings given by UMAP or t-SNE (Rosenberg et al. 2018; Jean-Baptiste et al. 

2019; Taylor et al. 2019). 

Using our AJD metric, we found that each of these steps introduces tremendous distortion 

into the data. Specifically, commonly used pipelines disrupt 90-99% of the local neighborhoods 

in the data prior to performing further quantitative analysis.  Like our findings on simulated data, 

even when embedding into higher dimensions, NDR techniques generally introduced substantial 

discontinuity into the data. While PCA can find embeddings with relatively low levels of 

distortion, this can generally only be achieved at much higher dimensionalities than are typically 

used.  Interestingly, it has been suggested that the PCA step “de-noises” the data by finding 

“true” directions of variance and ignoring directions of variance that correspond to “noise” 

(Wagner et al. 2019).  We performed an extensive analysis of the effect of PCA on simulated 

datasets and found that PCA could not successfully remove noise in local neighborhoods unless 

the levels of noise were extremely small.  

Overall, our findings demonstrate that, regardless of the linear or non-linear technique 

used to reduce dimensionality, most of the local structure of high-dimensional data is lost when 
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compressed into the number of dimensions typically used for scRNA-seq analysis. Indeed, our 

results indicate that any analysis based on lower-dimensional representations of the data can 

introduce substantial bias into interpretations of the results.  Furthermore, we show that the 

distortion introduced by NDR techniques applied to existing scRNA-seq datasets can 

significantly alter the results of downstream analyses like cell type clustering and pseudotime 

ordering.  Our findings suggest straightforward guidelines for evaluating the quality of a lower-

dimensional representation of scRNA-seq data.  Nevertheless, new NDR techniques are needed 

that can reliably produce true topological embeddings, or, at least, closer approximations than 

current techniques can produce.  We expect that the metric and approach introduced here will be 

helpful in evaluating and developing more effective approaches to the problem of manifold 

learning and analysis of scRNA-seq or other high-dimensional data. 

Results 

Quantifying discontinuities introduced by dimensionality reduction 

 The goal of NDR is to learn a representation of a data set that has fewer features, but still 

retains the bulk of the information contained in the data.  The extent to which the representations 

created by dimensionality reduction techniques preserve information is often illustrated with toy 

datasets such as the swiss roll (Fig. 1b).  This example tests the ability of NDR techniques to 

represent the three-dimensional swiss roll data set in two dimensions while preserving the local 

structure of the original dataset (as can be seen here by the preservation of the “rainbow” pattern 

in the t-SNE representation).  Most NDR techniques perform well on this task because a swiss 

roll is just a “rolled up” two-dimensional plane – a relatively simple transformation of a plane 

into a three-dimensional object.  However, many objects, like the sphere in Fig. 1c, cannot be 
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represented in 2-D without introducing significant distortion in local neighborhoods.  This results 

in a notable scattering of the rainbow pattern (Fig. 1c). 

 Mathematically, a mapping from a high dimension to a lower dimension that (locally) 

preserves the structure of the data is called an embedding: technically, this a bijective map that is 

continuous in both directions (also called a homeomorphism).  For topological spaces, a key 

mathematical property of an embedding is that it is continuous, and a consequence of that 

continuity is that local neighborhoods (e.g., the rainbow pattern in Fig. 1c) are preserved.  For a 

swiss roll, NDR techniques like t-SNE can usually find an embedding, or something close to one.  

For a sphere, however, NDR finds a representation of the data in two dimensions that is not, 

strictly speaking, an embedding. 

It is clear from the simple example in Fig. 1c that a major problem with trying to embed a 

sphere in 2-D is that this is impossible to do without introducing discontinuities into the resulting 

representation.  In the context of experimental scRNA-seq data, this means that the local 

structure of the data may be lost in the dimensionality reduction, and errors (possibly large 

errors) could be introduced into any analysis that happens downstream of dimensionality 

reduction.  This is particularly problematic because we do not know a priori what the true 

dimension of a particular scRNA-seq data set might be.  Previous work on quantifying distortion 

in NDR has focused on the notion of Euclidean distance between the position of a point in the 

original space and its embedded position or the distances between points (McInnes et al. 2018					; 

Zhang and Zha 2004), without considering the change in relative position between the point and 

its neighbors.  However, quantifying the extent of the loss of structure caused by NDR requires 

consideration of neighborhoods within the data, not just changes in the positions of individual 

points.  For example, a 2-D representation of the swiss roll might be stretched out, greatly 
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distorting the pointwise distances, while still maintaining the rainbow structure depicted in Fig. 

1c and thus providing a true embedding.  This suggests the need to develop alternative 

approaches to quantifying distortion in NDR, particularly focused on characterizing 

discontinuities that may be introduced by dimensionality reduction techniques. 

For any point in the swiss roll, the neighborhood of other points that are nearest to it are 

roughly the same in three dimensions and in the t-SNE representation in two dimensions (Fig. 

1b).  The two-dimensional representation of the sphere, on the other hand, gives noticeably 

different sets of nearest neighbors to many points (Fig. 1c).  We thus developed a straightforward 

metric based on quantifying how similar the sets of neighbors are around each point between the 

original, high-dimensional data in the ambient space, and the low-dimensional representation.  

First, we find the k-nearest neighbors for each point in the original data.  We call this set A (see 

Fig. 1d).  Next, we find the k-nearest neighbors of that same point in the lower-dimensional 

space.  We call this set B.  We compare these two sets using a measure of dissimilarity called the 

Jaccard distance (Fig. 1e).  Calculating the Jaccard distance involves computing the size (or 

cardinality) of the symmetric difference between A and B: the symmetric difference is just the 

set of points that are in A or B, but not both.  This is equivalent to subtracting the number of 

points in the intersection between A and B from the number of points in the union (Fig. 1e).  The 

Jaccard distance is the ratio of the size of this symmetric difference to the total number of points 

in A and B together (i.e. the number of points in the union between A and B).   

If A and B are identical sets, meaning the neighbors of the point in the high-dimensional 

data and the low-dimensional representation are the same, then the Jaccard distance is 0.  If A 

and B are completely different sets (i.e., the neighbors around this point completely change) then 

the Jaccard distance is 1. It is easy to show that, for a true topological embedding the Jaccard 
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distance will be zero for every point in the dataset (Supplemental Info); in other words, in a true 

embedding all local information is preserved.  To characterize the global “distance” of any low-

dimensional representation from this ideal, we first compute the Jaccard distance for all the 

points in the data set and then average these values.  We refer to this quantity as the Average 

Jaccard Distance (AJD), and it gives a value of 0 for a true embedding, 1 for a representation that 

retains none of the information about the local structure of the data for any point in the data set, 

and an intermediate value for a representation that retains part of the information. 

 

Fig.  1.  Measuring distortion in dimensionality reduction (A)  A schematic of some scRNA-
seq workflows.  The gene expression data are stored as a matrix, with each row corresponding to 
a cell, and each column correspond to a gene (after correcting for UMI swapping).  The data 
undergo dimensionality reduction, and analysis is performed on the lower-dimensional 
representation of the data.  (B)  The “swiss roll” data set.  t-SNE can reduce the data into two 
dimensions without altering the local structure of the data.  (C)  A sphere data set.  t-SNE is 
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unable to represent the 3-dimensional object in 2 dimensions without disrupting the local 
structure of the data.  (D)  The Jaccard Distance is a method for quantifying the disruption in 
local neighborhoods pictured in . (E) An illustration of how NDR distorts local neighborhoods.  
The red points are the k-nearest neighbors of a single point in the 3-dimensional space.  The blue 
points are the k-nearest neighbors of the same point in the t-SNE-generated 2-dimensional 
representation.  The violet points are the intersection between the red points and the blue points. 
Thus the number of neighbors that that are not preserved as result of the embedding can be   
 

Testing on Synthetic Data 

To test the usefulness of the AJD, we first applied the metric to a problem where we 

know a priori the appropriate embedding dimension for the data set.  Specifically, we created 

synthetic data for hyperspheres of varying dimension.  A hypersphere is a manifold that 

represents a straightforward generalization of the standard 3-dimensional sphere to higher 

numbers of dimensions; it is just a collection of points in some n-dimensional space that are all 

the same distance from a central point (that distance is the radius of the sphere).  In two 

dimensions this is a circle, in three dimensions a sphere, and in higher dimensions a hypersphere.  

We used a simple algorithm to sample uniformly from the surface of a hypersphere in n 

dimensions; for simplicity we used the origin of the space as the central point, and we set the 

radius of the hypersphere to 1 (see Methods).  It is mathematically impossible to embed an n-

dimensional sphere generated this way in less than n dimensions, so we called n the “latent 

dimension” of the data.  To see if NDR techniques could generate a true embedding of the data 

into n dimensions, we first embedded our hyperspheres into a 100-dimensional ambient space.  

To demonstrate how we did this, take the case of a 20-dimensional hypersphere.  If we sample 

points from that hypersphere, each one of those points is characterized by a vector of 20 

numbers.  We can trivially embed those points into a 100-dimensional space by just adding 80 

zeroes to the end of those vectors (see Methods and Supporting Info). 
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We used the approach above to generate synthetic 100-dimensional datasets with 1000 

points sampled from hyperspheres of known latent dimension.  We then used multiple NDR 

techniques to embed this dataset into each lower dimension from 1 to 100.  We hypothesized that 

the AJD would be zero for every dimension above the latent dimensionality n of the manifold 

that we had generated.  Surprisingly, however, we found that the AJD did not reach 0 for 

hyperspheres with n ≥ 10 for any NDR technique that we tried when we used a neighborhood 

size of k = 20 (see Fig. 2a).  In the case of the popular technique t-SNE, for instance, the 

embeddings it produced generally had AJDs of greater than 0.75, regardless of both the latent 

dimension of the hypersphere and the embedding dimension used for the t-SNE algorithm.  

Other techniques, such as Isomap and Spectral Embedding (DeMers and Cottrell 1993; 

Tenenbaum et al. 2000) exhibited clear minima in the AJD at the appropriate latent dimension, 

but still produced embeddings with significant distortion.  Changing the size of the neighborhood 

between 10 and 100 points did not significantly alter these findings (Supplemental Figure 2).  

This result is particularly striking because we know that it is possible to embed a 20-dimensional 

hypersphere into a 20-dimensional space without any distortion at all (corresponding to an AJD 

of 0).  Indeed, for the case of this synthetic dataset there is a trivial mapping that results in a true 

embedding and an AJD of zero in the latent dimension, but none of the commonly used 

techniques that we tested successfully recovered it. 

Of course, while a hypersphere is a very classic form of smooth manifold, such structures 

certainly do not represent a good approximation for the structure of scRNA-seq data. We thus 

considered several other types of simulated data where we could define the latent dimensionality 

unambiguously. The first example was sampling from a simple multivariate Gaussian, which is 

sometimes used as a model for scRNA-seq data (Zappia et al. 2017; Papadopoulos et al. 2019). 
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Not surprisingly, NDR techniques showed similar performance for a 20-dimensional Gaussian 

and a 20-dimensional hypersphere (Fig. 2C). We also used the popular “Splatter” package to 

simulate scRNA-seq data (Zappia et al. 2017); this approach simulates the existence of multiple 

“cell types” and more accurately attempts to replicate the structure of scRNA-seq data. We used 

Splatter to simulate a scenario with 5 cell types and 20 different genes, and again trivially 

embedded the simulated data in a 100-dimensional space. As in the case of the more simplified 

manifolds discussed above, none of the NDR techniques we tried, including the popular t-SNE 

and UMAP tools, could successfully embed the data, even in the known latent dimension (Fig. 

2C).  

We hypothesized that the results described above may have been because the datasets 

were too small, and that an increased sample size might allow the algorithms to find a proper 

embedding.  Although increasing the sample size created a more pronounced local minimum at 

the latent dimension for some techniques (Fig. 2b), the AJD at the latent dimension never 

dropped below a certain level:  this minimum was (essentially) invariant to increases in sample 

size of points on the sphere up to 5000 points (Figs. 2D). In the case of MDS, increasing sample 

size resulted in more distorted representations at the latent dimension.  Many recent scRNA-seq 

studies have been able to capture data for 10s of thousands to millions of cells, so it might be that 

NDR techniques can successfully embed data sets once the number of points approaches that 

size. Given the computational costs of NDR with large sample sizes, we only tested PCA and 

UMAP for these large sample sizes. Interestingly, while PCA can recover the 20-dimensional 

embedding for these hypersphere data sets without any distortion regardless of sample size, 

massive increases in the number of points only modestly improved UMAP performance. 

Although in theory UMAP might be able to obtain a distortion-free embedding with truly  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2022. ; https://doi.org/10.1101/689851doi: bioRxiv preprint 

https://doi.org/10.1101/689851
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
Cooley et al. 2021 

 

 

Fig.  2.  Distortion in simulated data (A) The Average Jaccard Distance (AJD) for points 
randomly sampled from the surface of hyperspheres of varying dimension embedded in 
dimensions 1-100.  We found that the best AJD is lowest when the latent dimensionality of the 
manifold is lowest, but these NDR techniques uniformly fail to find low-distortion embeddings.  
(B) The effect of sample size on Average Jaccard Distance.  Although the shape of the curve 
more clearly indicates the latent dimensionality of the manifold, the distortion in local structure 
(AJD) does not improve with increased sample size.  (C) AJD for varying high-dimensional 
geometries.  Three simulated 20-Dimensional datasets, hyperspheres, multivariate gaussians, and 
virtual scRNAseq data simulated by the Splatter package, are each embedded into spaces of 
dimension varying from 2-100.  The AJD is calculated for each embedding.   (D) AJD vs. 
Sample size.  The Average Jaccard Distance as the sample size increases from 100-5000 points.  
The distortion created by the embedding is mostly independent of sample size.  (The latent 
dimension of these datasets was 20, and the ambient dimension of these datasets was 100.) (E) 
Large Sample Sizes.  Datasets are sampled from a 20-dimensional hypersphere and embedded in 
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spaces of varying dimension.  Increase the size of the sample does not alleviate the distortion 
introduced by dimensionality reduction. 
 

massive data sets (say, 10s of millions of points), the method is too slow to be used at such 

sample sizes, indicating that UMAP cannot generate low-distortion embeddings in practice. 

Again, these simulated datasets represent what should be a relatively trivial problem for manifold 

learning. The fact that no nonlinear dimensionality reduction technique could find even this 

simple mapping raises questions about the accuracy of the approximate “embeddings” generated 

by NDR and the effects that distortion might have on the analysis of scRNA-seq and other high-

dimensional data. 

Measuring Distortion in scRNA-seq Studies 

Our work on synthetic data suggests that NDR techniques cannot learn distortion-free 

embeddings of data even when the manifolds in question are relatively simple. It is thus unclear 

how much distortion common pipelines introduce into lower-dimensional representations of the 

data. To address this question, we identified a large set of state-of-the-art scRNA-seq studies 

(Siebert et al. 2019; Cao et al. 2019) and analyzed the effect of NDR on the analysis of these 

data.  First, we looked at a study of Hydra cells by Siebert et al.2019; we focused on this data set 

because it was relatively large (~24,000 cells) and captures the range of transcriptional variation 

present across all cell types in a complex animal. We then considered how much distortion was 

introduced into the 2-D t-SNE and UMAP representations of the data, following a typical 

dimensionality reduction workflow. Specifically, we first selected 5000 HVGs for all the cells in 

the data set using standard tools in the popular python-based scRNA-seq analysis package 

Scanpy (Wolf et al. 2018), and then reduced the dimensionality of this subset with PCA using 45 

principal components (the number of PCs was selected by visual inspection of a scree plot). We 
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then reduced the data down to 2 dimensions using both t-SNE and UMAP. We found that both 

tools introduced massive levels of distortion into the data, with AJD values of around 0.9 (Fig. 

3A). To determine how NDR tools would perform on smaller, more focused datasets, we 

selected one of the largest cell type clusters defined in the study (1,778 cells), an endodermal 

epithelial stem cell, and performed the same analysis on this subset of cells as we had for the 

entire dataset. While UMAP was able to find a lower-distortion embedding for this smaller 

dataset, t-SNE had worse performance, and both techniques had AJD values over 0.75 (Figs. 3A 

and B). This result suggests that, while 2-D visualizations of scRNA-seq datasets can be helpful 

for summarizing the data, they generally generate local neighborhoods that are almost completely 

distinct from those present in the original data. It is important to note that many recent studies 

perform their downstream analyses like cell type clustering on the t-SNE or UMAP 

representation of the data (Rosenberg et al. 2018; Jean-Baptiste et al. 2019; Taylor et al. 2019; 

Zhong et al. 2018); such an approach likely involves analysis of data with extremely distorted 

local neighborhoods, which may strongly impact the results (as discussed below). 

 Many analyses focus on the PCA representation of the data, however, rather than the 2-D 

t-SNE or UMAP representation (Siebert et al. 2019; Cao et al. 2019; Davie et al. 2018). To 

understand the level of distortion in those cases, we used PCA to embed the hydra data from the 

original 5000 HVG dimensions into 1-100 PCA dimensions, which is the range typically 

considered in most scRNA-seq analyses (Luecken and Theis 2019; Andrews et al. 2021). For the 

entire dataset, the AJD never dropped below 0.85, suggesting that significant distortion is 

retained by PCA in the range of dimensions typically used for analysis (Fig. 3C). Restriction of 

the dataset to the single endothelial cell type cluster actually allowed PCA to find significantly 

lower-distortion embeddings (Fig. 3D), although even in this case the AJD for PCA never  
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Fig.  3.  Distortion introduced by dimensionality reduction in scRNA-seq.  (A) The entire 
dataset from Siebert et al. was subjected to a typical dimensionality reduction pipeline. First, the 
5000 most highly varying genes (HVGs) were selected. We then performed PCA down to the 
“elbow” dimension based on the scree plot, and used both t-SNE and UMAP to project the data 
down to 2-D. The AJD was then calculated between each of these embeddings and the raw data.  
(B) As in panel A, but for the largest cell-type cluster identified in the Siebert et al. study.  A 
total of 31 dimensions were used for PCA based on the scree plot, and UMAP and t-SNE were 
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used to generate 2-D projections. Note that t-SNE introduces more distortion for this smaller 
dataset, while UMAP performs better on this single cluster compared to the entire dataset. (C) 
Here, we used PCA to embed the raw data that was initially reduced to 100- Dimensions from 
the entire hydra data set into dimensions from 1-100, a typical range used in scRNA-seq studies. 
Note that the AJD does not drop below 0.8 in this range. (D) As in panel C, but for the largest 
cluster identified by Siebert et al. On this smaller, more focused data set, PCA can find a lower 
distortion embedding below 100 dimensions, but the distortion is still relatively high at 0.4. (D) 
Average Jaccard Distances vs. neighborhood size (i.e., k)	for the hydra data set. Here, the data 
was reduced to 45 dimensions using PCA, and the PCA curve represents the AJD of this PCA 
embedding as a function of neighborhood size. The PCA embedding was then used to generate 
2-D UMAP and t-SNE projections. In all cases, the AJD only approaches 0 when the 
neighborhood size includes almost the entire dataset, indicating that distortion from 
dimensionality reduction is highly non-local. (F) Average Jaccard Distance vs. Embedding 
Dimension for a number of recent invertebrate scRNA -Seq studies. The entire data set from 
each study was used to generate this figure; see refs. (Siebert et al. 2019; Rosenberg et al. 2018; 
Cao et al. 2019; Davie et al. 2018; Taylor et al. 2019; Zhong et al. 2018; Farrell et al. 2018					; 
Jean-Baptiste et al. 2019) for the relevant data sets. The solid line represents the UMAP 
embedding, and the dashed line represents the PCA embedding. Note that here we used a larger 
range of embedding dimensions, from 1 to 1000. While PCA can generate low-distortion 
embeddings for these data sets, it requires more than the typical number of dimensions to do so. 
Even in higher dimensions, however, UMAP fails to find a low-distortion embedding. (G) 
Average Jaccard Distance vs. Embedding Dimension for UMAP and PCA applied to Vertebrate 
scRNA-seq studies. As in panel F, PCA can generate a low-distortion embedding given enough 
dimensions, but UMAP cannot. 
 

dropped below 0.35. These findings indicate that, depending on the complexity of the data set in 

question, using PCA to reduce the dimensionality of the data introduces significant distortion, 

particularly in the range of dimensions that are most often used for scRNA-seq analysis. 

 One key parameter of our AJD analysis is the value of k used to set the size of the 

neighborhood that is compared between the original data and the embedding. The results from 

Figs. 3A-D were all obtained for k = 20, which is a relatively local perspective on the 

neighborhoods involved. This raises the question of whether the distortion introduced by both 

PCA and NDR methods is simply a permutation of highly local neighborhoods, or whether the 

distortion is more global in nature. To test this, we considered changing the value of k for the 
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hydra data set from relatively local neighborhoods (say, k = 5-20) to values of k that essentially 

include the entire dataset (Fig. 3E). For this analysis, we generated 2-D embeddings for t-SNE  

and UMAP (since these techniques are primarily used for visualization) and used 45 dimensions 

for the PCA embedding based on inspection of the scree plot.  As one can see from Fig. 3E, 

much of the distortion due to dimensionality reduction is highly non-local. The AJD remains 

above 0.75 for both t-SNE and UMAP until the neighborhoods include ~12,000 cells, or over 

half of the dataset. While the distortion in the PCA embedding is generally lower than that of the 

t-SNE and UMAP representations, the also AJD remains above 0.5 until the value of k reaches 

many thousands of cells. Regardless of the technique, the AJD only reaches relatively low values 

(~0.05) until nearly the entire dataset is included in the “neighborhood” (Fig. 3E). This indicates 

that the distortion introduced by dimensionality reduction is not purely local, but rather induces 

large-scale changes in the structure of the data.	

 The analyses described above focus on just a single data set, and while the range of 

dimensions considered is typical of scRNA-seq analyses (Luecken and Theis 2019) one could 

imagine expanding the range of dimensions to ask whether or not dimensionality reduction 

techniques can effectively embed scRNA-seq data in higher-dimensional spaces. To answer 

these questions, we collected a representative sample of recent scRNA-seq studies for both 

invertebrate and vertebrate animals (Siebert et al. 2019; Cao et al. 2019; Davie et al. 2018; Jean-

Baptiste et al. 2019; Taylor et al. 2019; Zhong et al. 2018; Farrell et al. 2018					; Jackson et al. 

2019).  Many NDR tools are numerically unstable above ~100 dimensions, so for this analysis 

we focused on UMAP, which performs efficiently across the entire range of dimensions we 

considered. We compared the AJD of the UMAP embedding with that for PCA across a range of 

dimensions form 1-1000; above 1000 dimensions, there are too few cells to robustly estimate the 
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principal components for the studies we considered. We found that, as with our results on 

simulated data, UMAP’s performance did not improve significantly as the dimensionality of the 

embedding increased, and in most cases the AJD never drops below 0.6. In contrast, we found 

that PCA was able to generate low distortion embeddings with AJD values between 0.05 and 0.1 

(i.e. a 5-10% disruption of local neighborhoods) for nearly all of the data sets considered (Figs. 

3F and G). Achieving such low-distortion embeddings, however, required many more 

dimensions than are typically employed for PCA in scRNA-seq studies (between 250 and 750 in 

most data sets). While these representations are certainly not “low-dimensional,” they do 

represent a significant reduction from the 20,000-40,000 dimensions present in the original 

datasets (Siebert et al. 2019; Cao et al. 2019; Davie et al. 2018; Zhong et al. 2018; Farrell et al. 

2018					; Jackson et al. 2019; Jean-Baptiste et al. 2019; Taylor et al. 2019). 

In order to confirm that the observed distortion wasn’t unique to these two studies, we 

next selected a wide variety of scRNA-seq studies from a diverse set of model organisms, both 

vertebrate (Fig. 3e) and invertebrate (Fig. 3f) and repeated our analysis in Seurat, using the 

dimensionality reduction techniques PCA and UMAP (Fig. 3e).  In every case, the distortion 

introduced by UMAP was substantial, and the technique consistently failed to find a low-

distortion embedding even in higher dimensions.  The performance of PCA varied from data set 

to data set, but often needed well over 100 dimensions to represent the data with low levels of 

distortion (e.g. AJD < 0.05). Interestingly, we found that NDR techniques also failed to find low-

distortion embeddings for several standard machine learning data sets of considerably smaller 

size and complexity than scRNA-seq data (Supporting Info). 

These results indicate that dimensionality reduction likely introduces significant 

distortion into data not only reduced to two dimensions, which is commonly used for 
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visualization and some data analysis, but even in higher-dimensional representations of the data.  

As some degree of dimensionality reduction is an integral part of essentially every scRNA-seq 

data analysis pipeline, it is clear that the vast majority of scRNA-seq studies are carried out on 

representations that are likely highly distorted relative to the original neighbor relationships 

present in the data. 

Evaluating the Ability of PCA to “De-noise” Data 

Our analysis above assumes that the original neighborhoods present in the data are useful as a 

“ground truth” for making a comparison between high-dimensional data and lower-dimensional 

representations. While this makes sense for simulated data, which can be generated without 

noise, real-world scRNA-seq data is obtained from a noisy experimental technique (Luecken and 

Theis 2019; Andrews et al. 2021), and thus the original neighborhoods might not represent the 

true relationships present in the data. It has thus been suggested that PCA might be able to 

productively “de-noise” this kind of data by finding the principal directions of variance. In other 

words, the main PCA components should capture the true biological variation within the data; 

the remaining components can be thought of as capturing the influence of “noise” and can thus 

be discarded (Lun et al. 2016). 

 Under this scenario, one might suggest that we should take the PCA embedding as the 

ground truth for scRNA-seq data, and calculate the AJD relative to that embedding for further 

downstream steps like visualization or, in some cases, clustering in the 2-D t-SNE or UMAP 

representation (Rosenberg et al. 2018; Jean-Baptiste et al. 2019; Taylor et al. 2019). In other 

words, rather than using the set of k-NN in the original data as the “true neighbors,” one could 

argue that the PCA representation of the data should be used as the source of the true set of 
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neighbors for the AJD calculation. It is currently unclear, however, if PCA can indeed remove 

noise and recover a true set of neighbors in noisy data. 

 To test this, we generated a number of different synthetic data sets for which we know 

both the true dimensionality of the data and the original set of true neighbors. We then added 

noise to this data at increasing levels and used PCA to embed this noisy data. This allowed us to 

compare the neighborhoods in the PCA embedding to the original neighborhoods using the AJD 

metric (Fig. 4A). The idea here is that, if the PCA embedding has an AJD of 0 relative to the 

original data (before noise was added), then PCA is indeed able to remove or reverse the impact 

of noise. If the AJD is greater than 0, however, this indicates that PCA cannot successfully de-

noise the data. 

 We applied this approach to several types of simulated data sets: hyperspheres, 

multivariate Gaussian distributions, and simulated scRNA-seq data generated using the 

PROSSTT package (Papadapolous et al. 2019).  Here, we used the PROSST package rather than 

Splatter to simulate scRNA-seq data with more realistic branching trajectories. The noise added 

to the data was sampled from a Gaussian distribution with a specified standard deviation and 

added independently to each simulated “gene” in the data set. To investigate this effect in more 

realistic settings, we also added noise to the hydra data set (Siebert et al. 2019).  Further details 

on how we generated this noisy data can be found in the Supplementary Information. To evaluate 

the performance of PCA, we generated the PCA embedding into the correct latent dimension for 

the synthetic data sets and the standard “elbow” dimension for the hydra data, and then 

calculated the AJD between the original, noiseless data and the PCA embedding. We found that, 

once noise increased above a very low level, the AJD increased rapidly to 1 for each data set 
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(Fig. 4B). In other words, unless noise levels are very small, PCA cannot productively de-noise 

the data. 

 

Figure 4.  Does PCA Remove Noise?  (A) Schematic of the experiment to test whether PCA 
can recover the original neighborhoods after noise has been introduced into the dataset. In this 
experiment, Gaussian noise is added to each element in the dataset then PCA is done down the 
latent dimensionality of the dataset (which is known in the synthetic datasets, and is estimated 
using the “elbow” in the scree plot for the Hydra endodermal epithelial stem cells) (B) Plot 
showing the AJD of the PCA embedding as a function of the amount of Gaussian noise added to 
the dataset. In all cases, adding even a small amount of noise resulted in high AJD values, 
indicating that PCA cannot recover the true local neighborhood structure in its embeddings in the 
presence of noise. (C) Schematic of the experiment whether PCA can improve the neighborhood 
structure of data with noise and return it to a state with no noise. In this case, the denoising effect 
is defined by the difference of AJD between the Noiseless Data and the Noisy Data (AJD1) and 
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the Noiseless Data and the PCA embedding created after adding Gaussian Noise (AJD2). The 
difference between AJD2 and AJD1 is the measure of the denoising effect of PCA, as it directly 
measures how much the AJD has improved with regards to original “ground truth” 
neighborhoods as a result of using PCA on the noisy data. (D) Plot showing the denoising effect 
with regard to the amount of noise in the Dataset. With the exception of the Multivariate 
Gaussian, PCA can only denoise the data if the amount of noise added is extremely small. Even 
then, the improvement in the AJD is extremely limited, less than 6 percent. 
 

 One issue with the above analysis is that, when noise is very small, the noise itself might 

not actually impact the neighborhoods to a significant degree. In other words, imagine that we 

add so little noise to the data that the noise does not change the neighborhood relationships 

among the points. In that scenario, it would not be surprising that PCA could recover the original 

neighborhoods, since the noise itself did not change them. To investigate this, we compared the 

AJD between the original, noiseless data and the noisy data (which we term AJD1) and the AJD 

between the original data and the PCA embedding (AJD2, Fig. 4C). The difference between these 

AJDs, AJD2 – AJD1, represents the improvement in AJD that PCA provides. In other words, this 

quantifies how much PCA reduces the impact of noise on the structure of local neighborhoods. 

 We applied this second metric to each of the data sets described above and found that 

PCA provides very little de-noising capacity (Fig. 4D). For both the hydra data and simulated 

hyperspheres, PCA was essentially unable to de-noise the data at all. in the case of the PROSTT 

simulated data and the multivariate Gaussian, PCA was able to provide a small improvement in 

AJD (up to 0.06) but generally only when noise levels are relatively small.   

 Taken together, our findings suggest that, despite claims to the contrary in the literature 

(Wagner et al. 2019), PCA does not generally have the capacity to “de-noise” data in such a way 

that it recovers the structure of local neighborhoods (Fig. 4). Indeed, PCA can only moderately 

de-noise data if that noise is both small and orthogonal to the underlying structure within the data 

(see Supplementary Fig. 8). This finding makes intuitive sense; as an unsupervised technique, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2022. ; https://doi.org/10.1101/689851doi: bioRxiv preprint 

https://doi.org/10.1101/689851
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
Cooley et al. 2021 

PCA has no way to distinguish true variation in the data from noise. An array of statistical 

studies have demonstrated that, due to the relatively low capture probability of individual mRNA 

molecules, scRNA-seq experiments have relatively high levels of technical noise, which affects 

every gene in the data set (Luecken and Theis 2019; Andrews et al. 2021).  As such, it is 

extremely unlikely that scRNA-seq data meets the narrow set of criteria that would allow PCA to 

restore a set of original neighborhoods that are disrupted by noise. Of course, since there is 

significant noise in the experiment, the neighborhoods observed in the data may not be the 

original neighborhoods of the cells in question. In the absence of more reliable experimental 

techniques, the raw scRNA-seq data is the best representation of the gene expression patterns 

available. As such, we consider the original set of neighborhoods in the data to be an appropriate 

“ground truth” for the purposes of evaluating distortion introduced by dimensionality reduction. 

Evaluating the Effect of Distortion on Downstream Analyses 

 As mentioned above, the “standard” pipeline of scRNA-seq data analysis entails both 

several dimensionality reduction steps and a series of linear and non-linear transformations to the 

data (Luecken and Theis 2019; Andrews et al. 2021).  In our above analysis, we focused on 

minimally processed scRNA-seq data where the raw counts were just corrected for doublets, 

batch effects, and other common sources of technical noise in the scRNA-seq experiment. While 

this allowed us to focus on the impact of PCA and NDR techniques on the local structure of the 

data, it is unclear how much each of the common steps in scRNA-seq analysis might also 

influence neighborhood structure. For instance, raw counts are generally first normalized to 

Counts Per Million (CPM) so that each cell has a total of 1 million counts; this removes variation 

in the data that comes from different total numbers of counts (i.e. “read depth”) between cells 

(Luecken and Theis 2019; Andrews et al. 2021).  The data are then typically subjected to a log 
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(CPM + 1) transformation. This dataset is then used to identify the subset of “Highly Variable 

Genes” (HVGs) that display significantly more variability between cells in the experiment than 

one would expect according to a simple null model. Each of these steps can introduce distortion 

into the data, even before PCA or NDR techniques are used to reduce the dimensionality further. 

Analyses like cell type clustering are only performed after all of these transformations, and it is 

unclear to what extent this entire pipeline affects both the structure of the data and the results of 

those analyses.	

To quantify the impact of these steps on the structure of the data, we first focused on 

measuring the AJD between the original data and the results of typical analysis pipelines applied 

to a wide variety of data sets. We used the Seurat package in R (Butler et al. 2018) to perform 

these analyses, partially because of the popularity of the package and partially because the 

original analysis of the data was performed using Seurat for the datasets we chose. For each 

study we used the same embedding dimension for PCA as was used by the original investigators.  

In Table 1, we report the total level of distortion introduced by this pipeline up to either the PCA 

step or after UMAP.  Clearly, the local structure of the data is significantly disrupted by the 

pipeline at the PCA step (with AJDs generally above 0.9) and is almost entirely lost downstream 

of the final NDR step. Note that the UMAP results in Table 1 were obtained using the default 

settings for the free parameters in the UMAP algorithm, without any attempt at optimization. To 

see if the results could be improved with parameter optimization, we performed a grid search 

across values of the two UMAP parameters for the hydra data (Supplementary Material Table 2). 

While some improvement in distortion is possible, the AJD remained over 0.78 regardless of the 

parameters, suggesting that parameter optimization cannot fully resolve this issue. We found 

similar results using AJD to optimize the t-SNE parameters (Supplementary Material Table 3). 
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These results suggest that the AJD could serve as a useful metric for optimizing the parameters 

of NDR approaches, but also demonstrate that significant distortion is almost impossible to avoid 

for 2-D embeddings of scRNA-seq data. 

Table 1 

Study Model Organism Number of 
PCs 

AJD after PCA AJD after UMAP 

(Siebert et al. 2019) Hydra vulgaris 
31 0.87 0.92 

(Jean-Baptiste et al. 
2019) Arabidopsis thaliana 

25 0.75 0.81 

(Farrell et al. 2018					
) 

Danio rerio (Zebrafish) 
97 0.90 0.92 

(Taylor et al. 2019) Caenorhabditis elegans 
125 0.94 0.95 

(Davie et al. 2018) Drosophila melanogaster 
(Fruit Fly) 

82 0.94 0.95 

(Ma et al. 2019) Homo sapiens 
20 0.90 0.91 

(Mays et al. 2018) Rattus norvegicus 13 0.99 0.99 
 
Table 1. Average Jaccard distance (AJD) between the minimally processed (raw) scRNA-seq 
datasets and the representations produced after the “standard” pipeline. Note that the PCA 
column represents the AJD between the raw data and the data after CPM normalization, 
log(CPM +1) transformation, HVG identification, and PCA down to the dimension used by the 
authors of the indicated study. This pipeline is suggested in Seurat and was used by all the 
authors of the studies in question. As is standard in the field, UMAP was applied to the data after 
the PCA step to generate the 2-D visualization, and the UMAP column reports the AJD between 
the visualization and the original data. We used a neighborhood size of 20 for calculating these 
AJD values.  
 
 

As mentioned above, one of the most common applications of scRNA-seq analysis is in 

the identification of distinct cell types in the data, which is almost always done by clustering the 

cells after application of the “standard pipeline” described above.  Our findings from Table 1 

suggest that the clusters obtained after all of this dimensionality reduction might be quite distinct 

from the clusters one would identify in the original data. To test this, we performed  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2022. ; https://doi.org/10.1101/689851doi: bioRxiv preprint 

https://doi.org/10.1101/689851
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
Cooley et al. 2021 

 

Fig.  5.  Distortion and its influence on downstream analyses. (A) Distortion vs. 
neighborhood size. A single cell RNA sequencing dataset is filtered for highly varying genes.  
The data is then embedded into a 45-dimensional space using PCA.  (The choice of 45 principal 
components was based on inspection of a scree plot) The data is then embedded into 2 
dimensions using t-SNE and UMAP.  Average Jaccard Distances are calculated between the raw 
data and the PCA embedding, as well as between the raw data and the 2-dimensional 
embeddings using various values for the k-nearest neighbor search.  (B)  The result of clustering 
of scRNA-seq data in the original, ambient dimension (left), and the result using the same 
clustering algorithm with the same parameters on PCA-reduced representation of the data.  Only 
a subset of the points is colored for clarity.  The graphs were produced using t-SNE for the 
purpose of visualization only, as the t-SNE embedding loses much of the structure of the data.  
(C)  The Graph Edit Distance between a minimum spanning tree constructed in the ambient 
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space and a minimum spanning tree constructed in the NDR-reduced representation.  The dotted 
line corresponds to a random embedding that retains none of the original information. 
 

clustering on the entire Hydra data set, first on the raw data, and then after application of the 

standard pipeline up to the PCA step using the number of components employed by the authors 

in their original work (Siebert et al. 2019). We used the standard Louvain clustering algorithm 

with the default parameters in Seurat (see Methods) (Butler et al. 2018). To visualize the impact 

of the standard pipeline on clustering results, we chose the largest cluster we obtained from 

clustering on the raw data and colored those points green on a t-SNE visualization (Fig. 5A). We 

then colored those same cells according to the clusters obtained from the standard pipeline data 

(Fig. 5B). Although this t-SNE is used simply for visualization purposes, given the large amount 

of distortion it introduces, visual inspection of these results clearly indicates that the resulting 

clusters are very different. 

While these results suggest that cell type clustering may be heavily influenced by 

dimensionality reduction, a visualization like this is difficult to interpret quantitatively. We thus 

used the Adjusted Rand Index (ARI), a measurement of similarity in clustering results, to 

quantify the similarity of the clusters obtained from either the PCA or UMAP step of the 

standard pipeline with those obtained from clustering on the raw data (Table 2).  Because 

clustering only makes sense in the case where there are multiple distinct cell types, we applied 

this analysis only to those studies where it was computationally feasible to analyze all cells in the 

data set.  As in Fig. 5, we obtained clusters using the standard procedure in Seurat (see Methods). 

We found that the ARI values between the clusters obtained from raw data and the 

clusters based on the PCA-reduced data indicates significant differences between the clusters in 

every case. Clustering in the 2-D UMAP space results in even more divergence between the  
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Table 2 

Study Model Organism ARI:  PCA ARI:  UMAP 
(Siebert et al. 2019) 

Hydra vulgaris 
0.61 0.43 

(Jean-Baptiste et al. 2019) 
Arabidopsis thaliana 

0.53 0.45 

(Jackson et al. 2019) Saccharomyces cerevisiae (Yeast) 0.25 0.14 
(Siebert et al. 2019) Danio rerio (Zebrafish) 0.12 0.09 
(Taylor et al. 2019) Caenorhabditis elegans (Worm) 0.31 0.23 
(Ma et al. 2019) Homo sapiens (Human) 0.36 0.21 
(Davie et al. 2018) Drosophila melanogaster (Fruit Fly) 0.27 0.12 
 
Table 2. Adjusted Rand Index (ARI) between clustering performed on the minimally processed 
(raw) scRNA-seq datasets and clustering performed on representations produced by 
dimensionality reduction.  In each case, the number of PCs used for PCA is the same as in the 
original study, and UMAP into 2 dimensions is performed downstream of PCA.  In every case, 
the clustering is substantially different after PCA, and even more dissimilar after UMAP. 
 

clusters obtained, with ARI values close to 0 in several cases (Table 2). This indicates that the 

overlap between clustering in UMAP space vs. clustering in the raw space is roughly equivalent 

to what one would expect if the two different clusterings were generated completely at random. 

Overall, these results suggest that distortion introduced by both linear and non-linear 

dimensionality reduction can significantly change the classification of cells into specific cell 

types based on clustering in scRNA-seq data. 

Pseudotime ordering attempts to use cells captured at various points along a 

differentiation or developmental trajectory to infer the underlying trajectory itself  (Trapnell et al. 

2014b).  A large number of algorithms have been proposed for this analysis, but perhaps the 

most classic approach involves the calculation of a minimum spanning tree that connects the 

beginning and end point in the trajectory (Trapnell et al. 2014b).  This tree is formed by linking 

cells in close proximity to each other to form a graph, typically after NDR is performed.  

Because NDR readily changes both the local and global relationships between cells in the data 
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set (Figs. 2 and 3), we hypothesized that the trees produced by analyzing data after NDR would 

not closely resemble trees formed using the original data.  To test this, we calculated the graph 

edit distance between trees formed from the raw data and after various NDR techniques were 

used to project the data into a variety of different dimensions (Fig. 5C).  For comparison, we also 

generated a random embedding by simply assigning each cell to a random point in the reduced-

dimensional space (see Methods).  The graph edit distances obtained from the NDR techniques 

and from the random embedding are similar until embedding dimensions of ~100 are reached 

(Fig. 5C).  Even above 100 dimensions, the improvement in the graph edit distance relative to a 

random embedding is not very large.  Because pseudotime trees are usually built using 2- or 3-

dimensional representations based on t-SNE, UMAP or similar techniques (Trapnell et al. 2014b; 

Saelens et al. 2019), our findings suggest that distortion caused by NDR could have a large effect 

on the results. Even pseudotime inferences techniques that do not form minimum spanning trees 

are based on analysis of scRNA-seq data after significant dimensionality reduction, suggesting 

that distortion has a wide-ranging impact on this type of analysis (Saelens et al. 2019). 

 
Discussion 

The capacity to generate high-dimensional data is currently in the process of 

revolutionizing scientific inquiry.  scRNA-seq, for example, has the potential to drive significant 

advances in our understanding of the evolution and differentiation of cell types, the progression 

of cellular state during development and disease, and a host of other critical biological 

phenomena (Luecken and Theis 2019; Andrews et al. 2021).  Yet the very thing that makes this 

technique so powerful – the ability to simultaneously measure the expression level of tens of 

thousands of genes within a single cell – also entails the curse of dimensionality and thus 

complicates the analyses needed to extract meaning from the data.  As such, dimensionality 
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reduction has become an indispensable part of scRNA-seq data analysis (Moon et al. 2018; 

Luecken and Theis 2019; Andrews et al. 2021). It is currently unclear, however, to what extent 

dimensionality reduction disrupts the underlying structure of the data itself. 

Distortion from dimensionality reduction can take several forms.  Much of the previous 

work on this problem has focused on the extent to which the process changes the distances 

between points (McInnes et al. 2018					; Laurens van der Maaten and Geoffrey E. 2008).  Our 

work highlights that there are even larger problems with dimensionality reduction than just 

distortion of distances.  For one, even in possession of a perfect technique, one cannot reduce the 

dimensionality of the data to arbitrarily low dimensions without creating large numbers of 

discontinuities in local neighborhoods and other distortions in the data. In the case of points 

taken from the surface of a 3-D sphere, for instance, it is mathematically impossible to project 

those points into a 2-D representation without introducing discontinuities in local neighborhoods 

into the data (e.g., the scattering of the rainbow pattern in Fig. 1c).  Many analyses commonly 

performed with scRNA-seq data, including cell type clustering, RNA velocity, and pseudotime 

ordering, rely at least in part on the local relationships between data points (Trapnell et al. 2014b; 

Luecken and Theis 2019; Andrews et al. 2021; La Manno et al. 2018).  The introduction of 

discontinuities thus has the potential to significantly impact the results of a wide range of 

downstream analyses. 

A second problem is the fact that, even if it is theoretically possible to represent the data 

in a given dimension, available techniques may not be capable of finding that representation.  

Unfortunately, it is currently impossible to evaluate the extent to which either of these issues 

have an impact on the analysis of scRNA-seq data (or, indeed, any high-dimensionality data).  
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Here, we developed a straightforward metric that quantifies the extent to which discontinuities of 

the type exemplified in Fig. 1C would impact the analysis of any given data set. 

One immediate application of this metric is in the discovery of the appropriate latent 

dimension of a given data set.  In testing this use case on data sampled from hyperspheres, 

however, we found that all NDR techniques currently in widespread use are far from perfect 

(Fig. 2).  Indeed, none of the techniques we tested could find a true embedding for even a 20-

dimensional hypersphere, despite a complete lack of noise in the data and the fact that the 

embedding in this case was rather trivial (and known a priori).  We found that this problem was 

not limited only to hyperspheres, but to also to generic multivariate Gaussians and simulated 

scRNA-seq data generated using the Splatter algorithm (Zappia et al. 2017) (Fig. 2). This finding 

suggests that fundamental work is needed to develop new and more effective NDR techniques.  

We expect that both the AJD metric we developed and the simulated data sets that we explored 

will prove useful in the design and testing of these algorithms. 

Application of our metric to scRNA-seq data revealed that the problem there is even 

worse than for hyperspheres (Fig. 3).  For instance, it is currently common to use t-SNE or 

UMAP to reduce scRNA-seq data to two dimensions for visualizations and, in many cases, 

downstream data analysis (Trapnell et al. 2014b; Rosenberg et al. 2018; Jean-Baptiste et al. 

2019; Taylor et al. 2019).  Our work revealed that nearly 100% of the local neighborhood 

structure is disrupted by this kind of dimensionality reduction.  We found that this level of 

distortion has a significant effect on the results of common analyses such as cell type clustering 

and pseudotime ordering (Tables 1 and 2 and Fig. 5). Interestingly, we also found that PCA, 

which is often thought to “de-noise” the data, is extremely unlikely to recover a set of true 
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neighborhood relationships given the high levels of noise typically observed in scRNA-seq 

experiments (Eraslan et al. 2019; Kim et al. 2015; Townes et al. 2019) (Fig. 4). 

There are several practical implications of our findings for routine scRNA-seq analysis.  

A straightforward recommendation flowing from this work is to exercise caution when analyzing 

data in dimensions that are significantly smaller than the ambient space of the original 

measurements, particularly the 2-D representations generated by t-SNE or UMAP. We 

recommend that practitioners use the AJD to track the distortion they introduce into their data 

when employing dimensionality reduction and report it so that others can understand potential 

biases and errors that may affect the results of analyses that rely on local relationships between 

cells in the dataset. Secondly, the AJD could be used as a parameter to optimize several steps in 

the analysis pipeline, from choosing the appropriate PCA dimension (i.e., an alternative to the 

scree plot, Fig. 3) to optimizing the parameters of NDR techniques (Tables 1, 2 and 3 

Supplementary Material). 

Our findings, and the recommendations above, might at first glance seem to conflict with 

the fact that most scRNA-seq studies ultimately produce results that are broadly consistent with 

orthogonal data regarding the system under study.  For instance, t-SNE and UMAP plots still 

tend to place cells of similar type close to one another.  This is often checked by coloring cells 

according to the expression of marker genes that are known to be associated with certain cell 

types, and finding that those cells tend to cluster together, at least on visual inspection (Siebert et 

al. 2019; Cao et al. 2019; Rosenberg et al. 2018).  Similarly, pseudotime analysis often results in 

expression dynamics that broadly correlate with known expression dynamics obtained from other 

techniques (Jean-Baptiste et al. 2019; Zhong et al. 2018; Bach et al. 2017).  While this agreement 

seems reassuring, there is a subtle issue with this kind of analysis. 
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Each of the dimensionality reduction techniques mentioned above are governed by one or 

more parameters.  A small adjustment in any of these parameters can result in vastly different 

representations of the data (Supplementary Fig. 6).  How does one decide the appropriate values 

for the parameters?  In practice, one first selects marker genes that they know correspond to 

certain cell types based on previous studies. The expectation in this case is that the analysis 

pipeline, which entails several steps of dimensionality reduction, will have been executed 

correctly when the marker genes cluster more-or-less according to prior knowledge.  Adjusting 

the parameters of the algorithm until agreement is achieved, the researcher concludes that these 

are the correct parameter values, and this is the correct representation because the result has been 

“validated” by prior knowledge.  Other observed clusters can then be interpreted as representing 

new cell types.  Popular packages, such as Seurat, include suggestions along these lines for users 

in their documentation, particularly when looking for rare cell types in a population (Butler et al. 

2018). 

The problem with this approach is that it is inherently biased to reproduce known aspects 

of the system in question.  To see why, suppose that the biological ground truth doesn’t agree 

with prior biological knowledge.  The researcher will discard such a result and adjust the 

parameters of the analysis pipeline until the representation comes into agreement with their 

expectations.  In other words, if prior knowledge is used to guide the analysis, the fact that one 

ultimately sees agreement between the result and that prior knowledge is no guarantee that the 

analysis itself is sound.  This is true even if the marker genes used to guide clustering or other 

analysis are different from the ones used for “validation,” since it is unlikely that any such sets of 

genes will be truly independent of one another.  Thus, while many scRNA-seq analyses agree 
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with well-established prior knowledge, that in no way guarantees that distortion due to 

dimensionality reduction has not significantly impacted the analysis.  

Of course, one question raised by our results is whether or not meaningful dimensionality 

reduction of scRNA-seq data is possible at all.  The poor performance of NDR techniques on the 

simple hypersphere tests makes it difficult to say whether the results we obtained for scRNA-seq 

data are due to the limitations of available techniques or because the data do not actually lie on a 

low-dimensional manifold.  We note, however, that NDR techniques failed to find meaningful 

embeddings even for standard non-scRNA-seq data sets used in machine learning research 

(Supporting Info), strongly suggesting that the issue here lies with the techniques themselves, 

rather than representing limitations of the individual data sets.  The only technique that we found 

to provide something close to a “true” embedding, PCA, does so only at dimensionalities that are 

much larger than those typically used.  Indeed, PCA sometimes only finds a true embedding at 

the largest possible dimension that can be obtained by the technique (Fig. 3).  The development 

of new NDR techniques that are more effective at finding true embeddings thus represent a 

critical step in answering central questions not only in cell biology, but across all scientific 

disciplines that rely on the analysis of high-dimensional data.  Until such techniques are 

developed, the relentless expansion of single-cell genomics to larger and larger scales may 

provide a wealth of new data that cannot be optimally mined for its biological insights.  
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Methods 

Average Jaccard Distance 

For each data point, the neighborhood consisting of the nearest k-neighbors were found in 

the ambient space, call this set A, and the NDR-reduced space, call this set B, using 

sklearn.neighbors.NearestNeighbors.  We employed the ball-tree algorithm in both cases.  To 

calculate the Jaccard distance between A and B, we used the usual definition: 

𝐷! 𝐴,𝐵 =
𝐴 ∪ 𝐵 − 𝐴 ∩ 𝐵

𝐴 ∪ 𝐵  

The Average Jaccard Distance was calculated by taking the arithmetic mean of the Jaccard 

distance for every point. 

Sampling of Hyperspheres 

To create a synthetic dataset consisting of m uniformly distributed samples in an n-

dimensional spherical manifold in d-dimensional space, we used the following method:  For each 

of the m data points, we sampled from a standard normal distribution n times (using the Python 

Numpy method numpy.random.normal(0,1)).  This method ensured that the sampling on the 

sphere was uniform.  These samples became the first n coordinates of a vector.  The remaining 

n+1 to d coordinates were filled with zeros.  We then normalized each vector to length 1.   

Dimensionality Reduction 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2022. ; https://doi.org/10.1101/689851doi: bioRxiv preprint 

https://doi.org/10.1101/689851
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
Cooley et al. 2021 

We executed dimensionality reduction with t-SNE, Isomap, PCA, Spectral Embedding, 

Multidimensional Scaling, LLE, and LTSA using the implementations in Scikit-learn (Pedregosa 

et al. 2011).  For the methods UMAP and diffusion maps, we used umap-learn (McInnes et al. 

2018) and pydiffmap (Berry and Harlim 2016), respectively.  We implemented PCA using 

sklearn.decomposition.PCA.  We used default parameters except where otherwise noted.	

scRNA-seq Data	

The study from Siebert et al. is published on the Broad Institute’s single cell portal: 

https://portals.broadinstitute.org/single_cell/study/SCP260/stem-cell-differentiation-trajectories-

in-hydra-resolved-at-single-cell-resolution. 

The study from Cao et al. is published on The Gene Expression Omnibus: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119945  

The .txt files were converted to .csv files corresponding to individual clusters, and the data were 

loaded into Python pandas (https://pandas.pydata.org/) dataframes for dimensionality reduction. 

Minimum Spanning Tree and Graph Edit Distance 

The minimum spanning tree in the ambient space, mst1, and the minimum spanning tree 

in the NDR-reduced space, mst2, were constructed using the Python function 

scipy.sparse.csgraph.minimum_spanning_tree.  The graph edit distance was calculated in Python 

according to the following equation: 

𝐺𝐸𝐷 𝑚𝑠𝑡!,𝑚𝑠𝑡! = 𝑚𝑖𝑛
{!!,…,!!}∈! !"#!,!"#!

!

!!!

𝑐 𝑒!  

Where 𝑃(𝑚𝑠𝑡!,𝑚𝑠𝑡!) is the set of edit paths transforming mst1 into mst2 and 𝑐(𝑒!) is the cost of 

each graph edit operation 𝑒!.  The cost of deleting a vertex and the cost of adding a vertex were 

both weighted as 1. 
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As a control, a random embedding was created by sampling coordinates from a uniform 

distribution between -1 and 1.  The minimum spanning tree was then computed on this random 

embedding and the Graph Edit Distance was calculated between this tree and the minimum 

spanning tree constructed in the ambient space.	

Adjusted Rand Index	

The Rand index quantifies the similarity between clusters in two partitions 𝑈 and 𝑉 (say, 

cell clusters in the ambient dimension and in a reduced dimension) through a contingency table 

that classifies pairs of points into four cases: pairs in the same cluster in both partitions (𝑎), pairs 

in the same cluster in 𝑈 but not 𝑉 (𝑏), pairs in the same cluster in 𝑉 but not 𝑈 (𝑐), or pairs in 

different clusters in both partitions (𝑑). It takes a value between 0 and 1. The adjusted Rand 

index corrects the value by accounting for coincidental/chance clustering and avoiding the 

tendency of the unadjusted Rand index to approach 1 as the number of clusters increases. It is 

given by 

𝐴𝑅𝐼 = ! ! !!! ! !!! !!! ! !!! !!!
! ! !! !!! !!! ! !!! !!!

 where 𝑛 is the number of points and 𝑛 2  is the total 

number of possible point pair combinations (Santos and Embrechts 2009). 

Replicating scRNA-seq Workflows 

To replicate a typical workflow, we used Seurat (Butler et al. 2018) in R.  To isolate 

highly variable genes, we used the data from the function FindVariableFeatures() in Seurat with 

default parameters.  For PCA reduction, we used the ElbowPlot function, with the “elbow” 

observed to be at 12 PCs. 

Our clustering was done in Seurat using the function FindNeighbors() on the specified 

dimensional space to compute the Shared Nearest Neighbor Graph, followed by the 
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FindClusters() function.  We set the resolution at 0.8, number of random starts at 10, random 

seed at 0, maximum number of iterations at 10 and we used the standard modularity function. 

Evaluating PCA’s denoising ability. 

 To test whether PCA can effectively denoise data. we decided to use 3 synthetic datasets 

and 1 real sc-RNA-seq datasets: 1000 points uniformly sampled from a 20 Dimensional 

Hypersphere embedded in 100-Dimensional Space; 1000 points sampled from a 20-Dimensional 

Multivariate Gaussian; 1000 Points from a tree-lineage structure generated by the Python 

Package PROSSTT, with 20 genes and 4 branch points; and the Endodermal Epithelial Stem Cell 

Cluster in the previously used Hydra Dataset.  

To each of these datasets, we added Gaussian Noise, both On-Manifold (referring to 

noise being added to the feature columns that were used to define the structure of the manifold) 

and Off-Manifold (referring to noise being added to columns of zeros appended to the end of the 

dataset to make the full space). For the Hypersphere and Multivariate Gaussian datasets, both the 

On-Manifold and Off-Manifold Noise was simulated by adding a vector sampled from a 

Gaussian distribution whose covariance matrix was the identity matrix. For the PROSSTT 

dataset, the On-manifold noise was simulated by adding a vector sampled from a Gaussian 

distribution with no covariance and whose variance was proportional to the variance of the 

aligned feature. The Off-manifold noise was simulated by adding a vector sampled from a 

Gaussian distribution which had no covariance and whose variance exponentially decreased from 

the maximum variance observed in the PROSSTT data without noise to the minimum variance 

observed in the PROSSTT data without noise. For the Hydra, noise was added by adding a 

vector sampled from a Gaussian distribution no covariance and whose variance was proportional 
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to the variance of the aligned feature. In each case, after noise was added the average Jaccard 

Distance for each dataset before and after noise was added was calculated (AJD1). 

After noise was added, PCA was done to denoise the data and find the latent 

dimensionality. For the synthetic datasets generated, the latent dimensionality was known a 

priori. For the Hydra dataset, the latent dimensionality was estimated using the “elbow” of the 

scree plot of explained variance. To automate the determination of this “elbow” and reduce 

operator bias introduced to the experiment, the kneelocator function within the Python package 

Kneed was used, with the sensitivity set to 1.0, the curve parameter set to “convex” and the 

direction set to “decreasing” to estimate the latent dimensionality of the dataset that PCA would 

reduce the data to during the denoising process. After PCA was applied to each of the datasets, 

the Average Jaccard Distance between the High Dimensional Datasets before noise was added 

and the datasets after PCA was applied (AJD2).    
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