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Abstract. The ability to constrain the mechanisms that transport organic carbon into the deep ocean is complicated 13 
by the multiple physical, chemical, and ecological processes that intersect to create, transform, and transport 14 
particles in the ocean.  In this manuscript we develop and parameterize a data-assimilative model of the multiple 15 
pathways of the biological carbon pump (NEMUROBCP).  The mechanistic model is designed to represent sinking 16 
particle flux, active transport by vertically migrating zooplankton, and passive transport by subduction and vertical 17 
mixing, while also explicitly representing multiple biological and chemical properties measured directly in the field 18 
(including nutrients, phytoplankton and zooplankton taxa, carbon dioxide and oxygen, nitrogen isotopes, and 19 
234Thorium).  Using 30 different data types (including standing stock and rate measurements related to nutrients, 20 
phytoplankton, zooplankton, and non-living organic matter) from Lagrangian experiments conducted on 11 cruises 21 
from four ocean regions, we conduct an objective statistical parameterization of the model and generate one million 22 
different potential parameter sets that are used for ensemble model simulations.  The model simulates in situ 23 
parameters that were assimilated (net primary production and gravitational particle flux) and parameters that were 24 
withheld (234Thorium and nitrogen isotopes) with reasonable accuracy.  Model results show that gravitational flux of 25 
sinking particles and vertical mixing of organic matter from the surface ocean are more important biological pump 26 
pathways than active transport by vertically-migrating zooplankton.  However, these processes are regionally 27 
variable, with sinking particles most important in oligotrophic areas of the Gulf of Mexico and California, sinking 28 
particles and vertical mixing roughly equivalent in productive regions of the CCE and the subtropical front in the 29 
Southern Ocean, and active transport an important contributor in the Eastern Tropical Pacific.  We further find that 30 
mortality at depth is an important component of active transport when mesozooplankton biomasses are high, but that 31 
it is negligible in regions with low mesozooplankton biomass.  Our results also highlight the high degree of 32 
uncertainty, particularly amongst mesozooplankton functional groups, that is derived from uncertainty in model 33 
parameters, with important implications from results that rely on non-ensemble model outputs.  We also discuss the 34 
implications of our results for other data assimilation approaches.   35 
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1. INTRODUCTION 36 

Marine phytoplankton in the surface ocean are responsible for approximately half of the world’s photosynthesis 37 
(Field et al. 1998).  However, as a result of their short lifetimes and active grazing by a diverse suite of zooplankton, 38 
most of the carbon dioxide fixed by phytoplankton will be respired back into the surface ocean on a time scale of 39 
days to weeks (Steinberg and Landry 2017).  Long-term sequestration of this biologically-fixed carbon dioxide 40 
requires that the organic matter produced by marine autotrophs be transported into the deep ocean through a suite of 41 
processes collectively referred to as the biological carbon pump (BCP) (Boyd et al. 2019; Ducklow et al. 2001; Volk 42 
and Hoffert 1985).  The BCP is estimated to transport 5 – 13 Pg C yr-1 into the deep ocean (Henson et al. 2011; 43 
Laws et al. 2011; Laws et al. 2000; Siegel et al. 2014).  Our ability to constrain the magnitude of this globally 44 
important process (and its response to anthropogenic forcing) more accurately is hampered, however, by the diverse 45 
spatiotemporal scales over which these processes act and difficulties in quantifying rates in a heterogeneous three-46 
dimensional ocean (Boyd 2015; Burd et al. 2016; Siegel et al. 2016).   47 

Attempts to predict future changes in the BCP are also complicated by the diverse pathways of organic matter 48 
flux into the deep ocean.  Most research of the BCP has focused on sinking particles (Buesseler and Boyd 2009; 49 
Honjo et al. 2008; Martin et al. 1987; Turner 2015), which include diverse biologically-produced material from dead 50 
phytoplankton and zooplankton, fecal pellets, crustacean molts, and mucous feeding structures (Alldredge 1976; 51 
Bruland and Silver 1981; Fowler and Small 1972; Hansen et al. 1996; Kirchner 1995; Lebrato et al. 2013; Small et 52 
al. 1979; Smayda 1970).  Slowly-sinking and suspended particles are also reshaped into rapidly-sinking marine 53 
snow through abiotic aggregation processes (Alldredge 1998; Burd and Jackson 2009; Jackson 2001; Passow et al. 54 
1994).  These sinking particles are continually transformed, remineralized, and modified by a community of 55 
particle-attached bacteria and protists and suspension- and flux-feeding mesozooplankton (Boeuf et al. 2019; 56 
Poulsen and Kiorboe 2005; Simon et al. 2002; Steinberg et al. 2008; Stukel et al. 2019b).   57 

Organic matter is also transported into the deep ocean through active transport by vertically-migrating 58 
zooplankton and nekton (Archibald et al. 2019; Bianchi et al. 2013b; Longhurst et al. 1990; Steinberg et al. 2000) 59 
and by passive transport of dissolved and particulate organic matter that is subducted by ocean currents or mixed 60 
into the deep ocean (Carlson et al. 1994; Levy et al. 2013).  The global magnitudes of these processes are highly 61 
uncertain because they are difficult to constrain from in situ measurements.  Active transport is commonly believed 62 
to be responsible for a relatively small proportion (~10-20%) of the biological pump (Archibald et al. 2019; 63 
Hannides et al. 2009; Steinberg et al. 2000).  However, if mortality at depth is included as part of active flux, it can 64 
be an important and at times dominant source of export, although such estimates are highly uncertain (Hernández-65 
León et al. 2019; Kelly et al. 2019; Kiko et al. 2020).  Similarly, investigations of the importance of passive 66 
transport initially focused on the role of refractory dissolved organic matter (Carlson et al. 1994; Copin-Montégut 67 
and Avril 1993).  Recent studies, however, highlight the importance and spatiotemporal variability of passive 68 
transport of particles via subduction, eddy mixing, mixed layer shoaling, and vertical diffusion (Levy et al. 2013; 69 
Omand et al. 2015; Resplandy et al. 2019; Stukel and Ducklow 2017; Stukel et al. 2018b).  These passive transport 70 
processes can be driven both by large-scale flows and by meso- and submesoscale circulation near fronts and eddies 71 
(Llort et al. 2018; Omand et al. 2015; Resplandy et al. 2019; Stukel et al. 2017). 72 

Numerical models are essential tools for investigating such processes that act across multiple spatiotemporal 73 
scales and integrate multiple physical, chemical, and biological drivers.  Such models have, for instance, been 74 
crucial in elucidating spatial and temporal decoupling of phytoplankton production and sinking particle export 75 
(Henson et al. 2015; Plattner et al. 2005), determining the temporal horizon over which anthropogenic signals appear 76 
in the world ocean (Schlunegger et al. 2019), quantifying regional variability in subduction of organic matter (Levy 77 
et al. 2013), and predicting climate change impacts on plankton communities and the BCP (Bopp et al. 2005; 78 
Dutkiewicz et al. 2013; Hauck et al. 2015; Oschlies et al. 2008; Yamamoto et al. 2018).  Models have also been used 79 
to investigate the role of vertically migrating zooplankton in strengthening oxygen minimum zones (Bianchi et al. 80 
2013b), meso- and submesoscale hotspots of particle subduction (Resplandy et al. 2019), and the impact of 81 
glacial/interglacial changes in iron deposition on the BCP (Parekh et al. 2006).  Such investigations would be 82 
difficult or even impossible to undertake without models.  Nevertheless, the models for varying processes differ 83 
substantially, and few are able to thoroughly investigate the full potential parameter space or quantify the accuracy 84 
of simulated energy flows through multiple trophic levels.  While accurate simulation of physical circulation is 85 
critical for simulating marine biogeochemistry (Doney et al. 2004), objective parameterization of biogeochemical 86 
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models lags substantially behind similar approaches for physics.  Indeed, the inability to constrain biogeochemical 87 
relationships accurately may be the primary limitation on our ability to objectively evaluate biogeochemical models 88 
(Anderson 2005; Follows and Dutkiewicz 2011; Franks 2009; Ward et al. 2013).  Recent advances in formal 89 
assimilation of biogeochemical properties into ocean models are beginning to allow objective model 90 
parameterization, a crucial first step for treating models as testable hypotheses (Ford et al. 2018; Kaufman et al. 91 
2018; Kriest et al. 2017; Mattern and Edwards 2019; Oschlies 2006; Shen et al. 2016; Xiao and Friedrichs 2014a).  92 
Nevertheless, most of these approaches rely only on the assimilation of surface chlorophyll and/or other 93 
phytoplankton properties, thus leading to potentially high inaccuracies in parameterizing zooplankton dynamics 94 
(Löptien and Dietze 2015; Shropshire et al. 2020).  This is particularly important, because inaccurate 95 
parameterizations of mesozooplankton may lead to qualitatively and quantitatively inaccurate export dynamics 96 
(Anderson et al. 2013; Cavan et al. 2017).  Accurate simulation of the BCP likely requires a focus on assimilation of 97 
data types crossing multiple trophic levels and both ecological and biogeochemical parameters. 98 

In this study, we modify an existing, widely used biogeochemical model (NEMURO) to focus specifically on 99 
the multiple pathways of the biological carbon pump.  We refer to the new model as NEMUROBCP.  We have three 100 
distinct goals in creating NEMUROBCP.  The first is to mechanistically model the multiple BCP pathways (sinking 101 
particles, active transport by vertical migrants, and passive transport of organic matter by ocean circulation and 102 
mixing).  Our second goal is to enable direct comparability between modeled and field measurements of standing 103 
stocks and rates.  This allows the model to act as a synthetic tool using diverse measured variables to enhance 104 
investigation of underlying and unmeasured processes (Dietze et al. 2013).  Our third goal is a model that can be run 105 
efficiently in multiple physical configurations to allow extensive data assimilation and hypothesis testing.  106 
NEMUROBCP is designed with a “core” nitrogen-based module (including all biological components, nutrients, 107 
detritus, dissolved organic matter, and oxygen) that includes all three pathways of the BCP, along with submodules 108 
(that can be turned on or off) that model the carbon system, 234Th dynamics, and nitrogen isotopes.  Here, we 109 
perform a Markov Chain Monte Carlo statistical data assimilation to develop ensemble parameterizations of 110 
NEMUROBCP using 30 distinct types of field measurements from 49 Lagrangian experiments.  We then investigate 111 
the model’s ability to predict withheld measurements, conduct sensitivity analyses, and use the model to investigate 112 
the BCP in four ocean regions.   113 

2. METHODS 114 

2.1. Core NEMUROBCP model 115 

 NEMUROBCP was developed from the NEMURO class of models originally developed for the North Pacific 116 
(Kishi et al. 2011; Kishi et al. 2007; Yoshie et al. 2007) and includes several modifications adapted by Shropshire et 117 
al. (2020) that allow the model to be compared more directly to common field measurements.  It also includes three 118 
optional modules that can be toggled on and off (the carbon system, nitrogen isotopes, and 234Th).   119 

The core of NEMUROBCP is nitrogen-based and includes 19 state variables (Table 1): 3 nutrients (nitrate, 120 
ammonium, and silicic acid), 2 phytoplankton (small phytoplankton and diatoms), 5 zooplankton (protistan 121 
zooplankton, small non-vertically-migrating mesozooplankton, small vertically-migrating mesozooplankton, large 122 
non-vertically-migrating mesozooplankton, large vertically-migrating mesozooplankton), 2 dissolved organic pools 123 
(labile dissolved organic nitrogen and refractory dissolved organic nitrogen), 4 non-living particulate pools (small 124 
particulate nitrogen, large particulate nitrogen, small opal, and large opal), two chlorophyll state variables (one 125 
associated with small phytoplankton, the other with diatoms), and oxygen.  As in Shropshire et al. (2020), the small 126 
and large mesozooplankton are defined based on size (<1-mm and >1-mm, respectively) rather than trophic status to 127 
allow direct comparison to common size-fractionated measurements.  Relative to the original NEMURO model, key 128 
changes include: 1) An explicit chlorophyll module (based on Li et al. 2010) that allows direct comparison to in situ 129 
chlorophyll measurements and gut pigment measurements made with herbivorous zooplankton; 2) Division of 130 
dissolved organic matter into refractory and labile dissolved organic nitrogen to simulate subduction of refractory 131 
molecules; 3) Division of detrital pools into slowly and rapidly sinking particles to simulate more accurately the 132 
gravitational pump; 4) Division of mesozooplankton into epipelagic resident taxa and vertical migrants to simulate 133 
active transport by diel vertical migrators; and 5) Addition of a dissolved oxygen state variable that potentially limits 134 
heterotrophic growth in the mesopelagic ocean.  NEMUROBCP also modifies key transfer functions by, for instance, 135 
allowing protists to feed on diatoms, since protistan grazers are often important diatom grazers (e.g., Landry et al. 136 
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2011).  The transfer functions linking state variables in NEMUROBCP are shown in Fig. 1 and explained in detail in 137 
the online supplementary appendix.  The 103 parameters in NEMUROBCP are explained in Supp. Table. 1. 138 

 Diel vertical migration is incorporated into NEMUROBCP via two alternate formulations.  The first formulation 139 
is designed for computational efficiency when the model is run in a euphotic zone only configuration 140 
(NEMUROBCP,EUPONLY).  In NEMUROBCP,EUPONLY diel vertically migrating taxa (LZDVM and PZDVM) only feed at 141 
night.  During the day, their mortality and respiration do not contribute to detritus and dissolved nutrient pools, but 142 
rather are treated as a loss of nitrogen from the model.  The second formulation includes a true diel vertical 143 
migration model based on the model of Bianchi et al. (2013b) for use when the model explicitly represents 144 
mesopelagic layers.  In this formulation (NEMUROBCP,DVM), vertically-migrating zooplankton swim towards a target 145 
depth with a swimming speed of 3 cm s-1 (with speed decreasing as zooplankton approach the target depth).  During 146 
the day, the target depth is defined as the depth of the 10-3 W m-2 isolume.  At night, the target depth is defined as 147 
the mean depth of phytoplankton biomass.  NEMUROBCP,DVM also includes a biological diffusion term that ensures 148 
that LZDVM and PZDVM are dispersed around the target depth rather than accumulating within a single model layer. 149 

2.1.1.  Optional carbon system submodule  150 

The carbon system in NEMUROBCP includes dissolved inorganic carbon (DIC) and alkalinity as state variables.  151 
DIC is produced whenever there is net biological utilization of organic carbon and consumed whenever there is net 152 
biological production of organic carbon at fixed stoichiometric ratios of C:N = 106:16 (mol:mol).  Calculation of 153 
other carbon system parameters (pH and partial pressure of CO2) and air-sea CO2 gas exchange are calculated using 154 
procedures described in Follows et al. (2006).   155 

2.1.2. Optional 234Th submodule   156 

The 234Th submodule is based on the model of Resplandy et al. (2012).  It adds a dissolved 234Th state variable, 157 
as well as state variables associated with 234Th bound to each of the nitrogen-containing particulate state variables 158 
(i.e., each phytoplankton, zooplankton, and detritus state variable).  Dissolved 234Th is produced from the decay of 159 
238U (which is assumed to be proportional to salinity, Owens et al. 2011).  Dissolved 234Th adsorbs onto the 160 
aforementioned particulate pools following second-order rate kinetics.  Particulate 234Th is returned to the dissolved 161 
pool through both desorption and destruction of particulate matter.  234Th is also lost from the dissolved and 162 
particulate phases through radioactive decay.   163 

2.1.3. Optional 15N submodule  164 

The nitrogen isotopes submodule is based on the NEMURO+15N model of Stukel et al. (2018a) that was based 165 
on an earlier isotope model by Yoshikawa et al. (2005).   The 15N submodule adds an additional 13 state variables 166 
that simulate the concentration of 15N in each nitrogen-containing state variable (nitrate, ammonium, all 167 
phytoplankton and zooplankton groups, both detritus classes, and both dissolved organic nitrogen pools).  Isotopic 168 
fractionation occurs with most biological processes including nitrate uptake, ammonium uptake, exudation of 169 
organic matter by phytoplankton, excretion and egestion by zooplankton, remineralization of detritus and dissolved 170 
organic nitrogen, and nitrification.   171 

2.2. Physical framework for model simulations 172 

NEMUROBCP was developed so that it can be implemented in any physical framework.  In this study, we used a 173 
simple one-dimensional physical framework to simulate the water column associated with Lagrangian experiments 174 
from which we derived our field data (see below).  While this oversimplifies a system in which advection and 175 
diffusion play important roles in re-distributing biological and chemical properties, we believe it is a reasonable 176 
short-term approximation, especially because we are explicitly simulating results from in situ Lagrangian 177 
experiments.  In Lagrangian experiments, advection should play a reduced to negligible role in re-shaping plankton 178 
time-series, although we note that Lagrangian drifters (see below) explicitly track only the mixed layer, which may 179 
not be transported by the same currents as deeper layers.  The use of a one-dimensional model does, however, allow 180 
us to perform more than one million simulations for each of the 49 Lagrangian experiments, something that would 181 
not be possible with a three-dimensional model grid.   Our physical model framework simulates the euphotic zone 182 
with variable vertical spacing that increases with depth, chosen to match sampling depths from the field programs.  183 
Vertical layers are centered at 2, 5, 8, 12, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 184 
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and 160 m, although for each Lagrangian experiment we only include depths above the 0.1% light level.  We 185 
simulate vertical mixing as a simple diffusive process, with vertical eddy diffusivity coefficients varying with depth 186 
and estimated by Thorpe-scale analyses from field measurements (Gargett and Garner 2008).  Initial and boundary 187 
conditions were determined from field measurements, although we sometimes had to estimate initial conditions from 188 
relationships with other measured parameters because all state variables were not measured for all experiments (e.g., 189 
if diatom biomass was not determined, we estimated it from a relationship between diatom biomass and total 190 
phytoplankton biomass).  We ran the model for 30-days with constant vertical diffusion rates.  30-days is an 191 
arbitrary length of time to run the model, but this time span was chosen for multiple reasons: 1) it is long enough to 192 
reduce sensitivity to initial conditions, 2) it is the longest period of time for which we would expect quasi-steady 193 
state conditions to be maintained in our study regions, 3) it allows sufficient time for parameter sets to potentially 194 
drive some taxa to near extinction (i.e., it allows time for unreasonable parameter sets to, for instance, lead to 195 
competitive dominance of small phytoplankton and drive diatoms to extinction).  We recognize that maintaining 196 
constant physical forcing introduces inaccuracy to our simulations and hence expect model-data mismatches, 197 
particularly during dynamic conditions (e.g., upwelling) when the system changes more rapidly.  Model outputs 198 
were evaluated on the 30th day of the model simulation.  Since we only simulate the euphotic zone, the model was 199 
run in NEMUROBCP,EUPONLY configuration. 200 

2.3. Field data 201 

Field data come from 49 short-term (~4-day) Lagrangian experiments conducted on 11 different cruises (Fig. 2) 202 
in the California Current Ecosystem (CCE) (Ohman et al. 2013), in the Costa Rica Dome (CRD) in the Eastern 203 
Tropical Pacific (Landry et al. 2016a), in the Gulf of Mexico (GoM) (Gerard et al. in review), and at the Chatham 204 
Rise near the subtropical front in the Southern Ocean (Décima et al. in review).  On these cruises a consistent 205 
sampling strategy involved utilization of an in situ incubation array with satellite-enabled surface drifter and 1×3-m 206 
“holey-sock” drogue centered at 15-m depth in the mixed layer (Landry et al. 2009).  Samples for rate measurement 207 
experiments (see below) were incubated in polycarbonate bottles placed in mesh bags at 6 – 8 depths spanning the 208 
euphotic zone on the incubation array (Landry et al. 2009).  On 10 of the cruises, an identically-drogued sediment 209 
trap array was deployed to capture sinking particles (Stukel et al. 2015).   210 

We assimilated a broad suite of standing stock and rate measurements across multiple trophic levels that 211 
included: 466 measurements of NO3

- concentration and 423 measurements of NH4
+ concentration (Knapp et al. 212 

2021); 422 measurements each of silicic acid and 84 measurements of biogenic silica (Krause et al. 2015; Krause et 213 
al. 2016); 455 chlorophyll a measurements (Goericke 2011); 193 measurements of small phytoplankton biomass by 214 
a combination of epifluorescence microscopy and flow cytometry (Selph et al. 2021; Taylor et al. 2012); 193 215 
measurements of diatom biomass by epifluorescence microscopy (Taylor et al. 2012; Taylor et al. 2016); 193 216 
measurements of protistan zooplankton biomass by epifluorescence microscopy and/or light microscopy of Lugol’s 217 
stained samples (Freibott et al. 2016); 44 measurements each of vertically-integrated <1- and >1-mm epipelagic-218 
resident mesozooplankton biomass; 43 measurements each of vertically-integrated <1- and >1-mm diel-vertically-219 
migrating mesozooplankton biomass; 413 measurements of particulate organic nitrogen and 28 measurements of 220 
dissolved organic nitrogen (Stephens et al. 2018); 342 measurements of net primary productivity by either H13CO3

- 221 
or H14CO3

- uptake methods (Morrow et al. 2018; Yingling et al. 2021); 149 measurements of nitrate uptake by 222 
incorporation of 15NO3

- (Kranz et al. 2020; Stukel et al. 2016); 50 measurements of silicic acid uptake by 223 
incorporation of 32Si (Krause et al. 2015); 248 measurements each of whole phytoplankton community growth rates 224 
and whole phytoplankton community mortality rates due to protistan grazing determined by chlorophyll analyses of 225 
microzooplankton dilution experiments (Landry et al. 2009; Landry et al. 2021); 53 measurements each of small 226 
phytoplankton growth rates and small phytoplankton mortality rates due to protistan grazing determined by high-227 
pressure liquid chromatography pigment analyses of microzooplankton dilution experiments combined with flow 228 
cytometry and epifluorescence microscopy (Landry et al. 2016b; Landry et al. 2021); 53 measurements each of 229 
diatom growth rates and diatom mortality rates due to protistan grazing determined by high-pressure liquid 230 
chromatography pigment analyses of microzooplankton dilution experiments combined with flow cytometry and 231 
epifluorescence microscopy (Landry et al. 2016b; Landry et al. 2021); 41 measurements each of vertically-232 
integrated <1-mm and >1-mm nighttime mesozooplankton grazing rates by the gut pigment method (Décima et al. 233 
2016; Landry and Swalethorp 2021); 41 measurements each of vertically-integrated <1-mm and >1-mm daytime 234 
mesozooplankton grazing rates by the gut pigment method (Décima et al. 2016; Landry and Swalethorp 2021); 37 235 
measurements of sinking nitrogen using sediment traps (Stukel et al. 2019a; Stukel et al. 2021); 19 measurements of 236 
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sinking biogenic silica using sediment traps (Krause et al. 2016; Stukel et al. 2019a); and 475 measurements of 237 
photosynthetically-active radiation.  Each of the above measurements was typically the mean of measurements taken 238 
at a specific depth (or vertically-integrated) on multiple days of the Lagrangian experiment, thus allowing us to also 239 
quantify uncertainties for all measurement types.  Each of the above measurements also directly maps onto a 240 
specific standing stock or process in the model enabling direct model-data comparisons.  Field data are listed in 241 
Supp. Tables 2 – 4.   242 

2.4. Data assimilation and objective model parameterization approach 243 

 Using the available datasets described above, our goal was to develop an automated and objective model 244 
parameterization method that would allow us to generate an ensemble of parameter sets for hypothesis testing or as 245 
prior distributions in future data assimilation studies.  We refer to this approach as objective ensemble 246 
parameterization with Markov Chain Monte Carlo (OEPMCMC).  We began by log-transforming most field 247 
measurements to normalize the data (some measurements, e.g. growth rates that can be positive or negative, were 248 
not transformed).  We then defined a cost function: 249 

𝐽(𝑝) =
1

∑ √𝑁𝐿𝐸,𝑖

∑
√𝑁𝐿𝐸,𝑖

𝑁𝐷𝑇,𝑖

∑
1

𝑁𝑂,𝑖,𝑗

∑ (
𝑒𝑟𝑟𝑜𝑟𝑖,𝑗,𝑘

𝑢𝑛𝑐𝑖,𝑗,𝑘

)

2
𝑁𝑂,𝑖,𝑗

𝑘=1

𝑁𝐷𝑇,𝑖

𝑗=1

𝑁𝑠𝑖𝑡𝑒𝑠

𝑖=1

 250 

where Nsites was the number of different sampling locations (i.e., 4 = CCE, CRD, GoM, and Chatham Rise), NLE,i 251 
was the number of Lagrangian experiments conducted at location i,  NDT,i was the number of data types that were 252 
measured at site i, NM,i,j was the number of distinct observations of data type j at location i, and: 253 

𝑒𝑟𝑟𝑜𝑟𝑖,𝑗,𝑘 =
𝑚𝑜𝑑𝑒𝑙𝑖,𝑗,𝑘 − 𝑜𝑏𝑠𝑖,𝑗,𝑘    if  𝑚𝑜𝑑𝑒𝑙𝑖,𝑗,𝑘 > 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗,𝑘   or  𝑜𝑏𝑠𝑖,𝑗,𝑘 > 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗  

                   0                    if  𝑚𝑜𝑑𝑒𝑙𝑖,𝑗,𝑘 < 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗,𝑘   and  𝑜𝑏𝑠𝑖,𝑗,𝑘 < 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗
 254 

where modeli,j,k is the model result corresponding to observation obsi,j,k, and detlimi,j,k is the detection limit for data 255 
type j.  This is equivalent to stating that there is no model data discrepancy if both the observation and the 256 
corresponding model result are below the experimental detection limit.  Observational uncertainty was defined as: 257 

𝑢𝑛𝑐𝑖,𝑗,𝑘 = max (
𝜎𝑖,𝑗,𝑘

√𝑁𝑆,𝑖,𝑗,𝑘

, 𝐸𝑥𝑝𝑈𝑛𝑐𝑖,𝑗,𝑘) 258 

where σi,j,k is the standard deviation of multiple samples taken for the distinct observation k of data type j at location 259 
i (i.e., σi,j,k is the standard deviation of multiple measurements taken at the same depth over the course of a 260 
Lagrangian experiment), NSi,j,k is the number of samples associated with observation k of data type j at location I, 261 
and ExpUnci,j,k is the experimental uncertainty (e.g., instrument accuracy) of observation k of data type j at location 262 
i.  We chose to use the maximum of these two terms because, in most cases, the standard error of repeated 263 
measurements was greater than experimental uncertainty (and inherently incorporates experimental uncertainty).  264 
However, in some cases (e.g., if three measurements of nitrate at 12 m depth on a particular Lagrangian experiment 265 
reported the same value), the standard error of the measurements was an unrealistically low estimate of true 266 
uncertainty. 267 

 The cost function, J(p), gives equal weight to all measurement types within a specific Lagrangian experiment 268 
(e.g., if a Lagrangian experiment has 10 measurements of sinking nitrogen flux and 100 measurements of 269 
chlorophyll, J(p) gives each of those measurement types equal weight).  It also gives different locations a weight 270 
proportional to the square root of the number of Lagrangian experiments at that site.  That decision was made so that 271 
a more heavily sampled region (i.e., CCE) can provide more constraint to the model, while preventing that region 272 
from overwhelming the model results.  We note that this is a comparatively weak cost function (relative to, for 273 
instance, likelihood), because it normalizes to the number of measurements.  We chose a weak cost function, 274 
because it reflects the fact that uncertainty in initial conditions and physical forcing introduces model data misfit that 275 
is unassociated with parameter choice. 276 

 To investigate the parameter space, we performed a Markov Chain Monte Carlo search (Metropolis et al. 1953).  277 
We first defined allowable ranges for all parameter values based on laboratory and field experiments, combined with 278 
results from prior model simulations (Supp. Table 1).  These allowable ranges were defined to be broad and often 279 
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spanned several orders of magnitude for a particular parameter.  We then defined an initial guess for each parameter 280 
based primarily on values used in other NEMURO models (Kishi et al. 2007; Shropshire et al. 2020; Yoshie et al. 281 
2007). We first ran 30-day simulations for all 49 Lagrangian experiments using the initial parameter values and 282 
calculated the cost function based on J(p1).  We then perturbed the parameter set by adding to each parameter a 283 
random number drawn from a normal distribution with mean of 0 and standard deviation equal to a jump length of 284 
0.02 times the width of the allowable range for that parameter.  When newly selected values fell outside the 285 
allowable range, we mirrored them across the boundary.  For many of the variables expected to follow a log-normal 286 
distribution (e.g., phytoplankton half-saturation constants), we log-transformed prior to the MCMC search.  We then 287 
re-ran the 30-day model for all Lagrangian experiments and calculated a new cost associated with this parameter set, 288 
J(p2).  We chose whether or not to accept this parameter set based on the relative cost functions of J(p1) and J(p2).  289 
If J(p2) was less than J(p1) we automatically accepted the new parameter set as a viable solution.  If J(p2) was greater 290 
than J(p1), we accepted it with probability: 291 

𝑝𝑟𝑜𝑏 = 𝑒0.5×(𝐽(𝑝𝑛)−𝐽(𝑝𝑛+1)) 292 

We walked through the parameter solution space for a total of 1.1 million iterations (discarding the first 100,000 293 
iterations as a “burn-in” period before the cost function stabilized at a relatively low value).  In this way, we 294 
explored the correlated uncertainty in all parameters of the core model, except the temperature sensitivity 295 
coefficient.  We chose not to vary the temperature sensitivity coefficient (TLIM), because it is fairly well-296 
constrained from experimental measurements and most model rates were directly correlated to TLIM; hence 297 
changes in TLIM lead to commensurate changes in so many other rate parameters that allowing it to vary would 298 
have made calculation of mean values of other parameters (e.g., maximum growth or grazing rates) almost 299 
meaningless. 300 

 We also saved model results associated with the BCP (e.g., sinking particle flux, net primary production, 301 
subduction rates, active transport) for the model simulations associated with each parameter set.   302 

3. RESULTS  303 

3.1. Objective model parameterization  304 

In our Markov Chain Monte Carlo (MCMC) exploration of the solution space, the cost function evaluated at our 305 
initial guess was 972.  Over the first ~100,000 iterations of the MCMC procedure, the cost function declined to 306 
approximately 100 and remained near this value for the remainder of the MCMC procedure (1 million additional 307 
simulations).  We thus considered the first 100,000 iterations to be a “burn-in” period, and all results are based on 308 
the subsequent 1,000,000 solution sets.  For this analysis set, the mean cost function was 98.2 with 95% confidence 309 
interval = 83.8 – 115.3.  For comparison, we also conducted an undirected MCMC exploration of the solution space 310 
(i.e., every solution was accepted regardless of relative change in cost function) that yielded a mean cost function of 311 
3197 (C.I. = 1270 – 5657) after the burn-in period, with a minimum value of 740 (across the 1,000,000 simulations).  312 
The OEPMCMC procedure thus determined a set of 1,000,000 solutions for which the cost function was substantially 313 
reduced relative to either our initial parameter guess or a random sample of the solution space.   314 

We investigated the 1,000,000 OEPMCMC solution sets to determine which parameters were well or poorly 315 
constrained by the data (Supp. Tables 1 and 2).  We focus here on how well the field observations allowed the 316 
OEPMCMC approach to constrain the parameters relative to prior estimates of allowable ranges.  This is distinct from 317 
the question of which parameters are most well constrained because some parameters were well known from prior 318 
knowledge (e.g., phytoplankton maximum growth rates) while others are poorly known (e.g., phytoplankton half-319 
saturation constants).  Some parameters were very well constrained by the data.  Ten of the 101 variables were 320 
constrained to within 10% of their allowed range (for log-transformed variables, 10% of their log-transformed 321 
parameter space).  Six of the 10 well-constrained variables were associated with phytoplankton bottom-up forcing, 322 
while only two parameters associated with zooplankton were well constrained by the data (the Ivlev constants for 323 
protistan grazing on small and large phytoplankton).  The most well-constrained parameter was the ammonium half-324 
saturation constant for small phytoplankton which was assumed to vary from 0.001 – 1 mmol NH4

+ m-3 and was 325 
constrained by the OEPMCMC procedure to a 95% C.I. of 0.0011 - 0.0065 mmol NH4

+ m-3.  For metazoan 326 
zooplankton, all parameters except Ivlev constants had 95% C.I.s that spanned >60% of the allowable range, and 327 
many exceeded 90% of the allowable range.  Overall, 25 parameters had 95% C.I.s that spanned >60% of the 328 
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allowable range, suggesting that those parameters were more strongly constrained by our prior estimates than by the 329 
field data (Supp. Table 1).   330 

Next, we highlight analyses of bottom-up forcing on small phytoplankton (Fig. 3) and correlation of large 331 
phytoplankton (i.e., diatoms) bottom-up forcing with other model dynamics (Fig. 4) as examples of typical patterns 332 
of correlation among parameters.  Small phytoplankton parameters were generally well-constrained by the extensive 333 
datasets of phytoplankton growth rates, net primary production, and phytoplankton biomass (as assessed 334 
microscopically and/or by chlorophyll analyses).  For instance, although we allowed the maximum growth rate of 335 
small phytoplankton (Vmax,SP) to vary from 0.1 to 1 d-1, the OEPMCMC procedure constrained Vmax,SP to 0.22 to 0.64 336 
(at the 95% C.I.).  The least well constrained parameter related to small phytoplankton growth was the half-337 
saturation constant for nitrate uptake, which varied from 0.011 to 1.3 mmol N m-3.  Several of these phytoplankton 338 
parameters were also correlated in predictable manners.  For instance, Vmax,SP was negatively correlated with the 339 
initial-slope of the photosynthesis-irradiance curve (αSP, correlation coefficient (ρ) = -0.15), because increased 340 
maximum growth rates and stronger light dependence (i.e., a slower rate of increase in photosynthesis with 341 
increasing light) offset each other to maintain similar realized growth rates under typical light-limited conditions.  342 
Vmax,SP was also positively correlated with the mortality rate (mortSP, ρ=0.25), because commensurate changes in 343 
Vmax,SP and mortSP maintain similar net growth rates for small phytoplankton. 344 

Parameters associated with large phytoplankton were typically less well-constrained, although they did differ 345 
from parameters associated with small phytoplankton in several predictable ways.  For instance, the maximum 346 
growth rate of large phytoplankton (Vmax,LP, mean = 0.72 d-1, 95% C.I. was 0.43 – 0.99 d-1) was greater than the 347 
maximum growth rate of small phytoplankton (mean = 0.37 d-1, 95% C.I. was 0.22 – 0.64 d-1) despite the fact that 348 
we used identical allowable ranges of 0.1 – 1 d-1.   The half-saturation rate for large phytoplankton uptake of nitrate 349 
(KNO,LP = 1.6 mmol N m-3) was also substantially greater than KNO,SP (0.25 mmol N m-3), although their half-350 
saturation constants for ammonium uptake were similar.  Unsurprisingly, the maximum growth rate of large 351 
phytoplankton was strongly correlated with the maximum growth rate of protistan zooplankton on large 352 
phytoplankton (gmax,SZ,LP, ρ=0.35), because grazing by protistan zooplankton is often the dominant source of 353 
mortality for all phytoplankton (including diatoms).  More surprisingly, Vmax,LP had an even stronger correlation 354 
with the maximum grazing rate of epipelagic-resident large (>1-mm) mesozooplankton on small phytoplankton 355 
(gmax,PZRES,SP, ρ = 0.43).  We believe that this arises from a correlation between large mesozooplankton standing 356 
stock and gmax,PZRES,SP.  Since small phytoplankton are often the most abundant potential prey item, higher 357 
gmax,PZRES,SP values allow large mesozooplankton (which preferentially graze large phytoplankton) to sustain higher 358 
biomass and prevent large phytoplankton from escaping grazing pressure, thus requiring a higher maximum growth 359 
rate to maintain their biomass.   360 

Some correlations were unexpected.  For instance, the initial slope of the photosynthesis-irradiance curve (αLP) 361 
was positively correlated with the remineralization rate of labile dissolved organic nitrogen to NH4

+ (refdec,DON,NH, 362 
ρ=0.31).  Both of these parameters were strongly constrained by the OEPMCMC procedure (αLP had an allowable prior 363 
range of 0.001 – 0.04 m2 W-1 d-1 but had a posterior 95% C.I. of 0.008 – 0.03 m2 W-1 d-1; refdec,DON,NH had an 364 
allowable range of 0.005 – 0.3 d-1 but a 95% C.I. of 0.005 – 0.01 d-1).  It is not clear why these parameters would be 365 
correlated, although it is likely related to the relative realized growth rates of large phytoplankton in the upper and 366 
lower euphotic zone.  High values of αLP would promote higher realized growth rates in the deep euphotic zone; 367 
high values of refdec,DON,NH would lead to higher realized growth rates in the nutrient-limited upper euphotic zone.  368 
The Ikeda parameter for large zooplankton (IkLZ, d-1), which sets the basal respiration of small (<1-mm) 369 
mesozooplankton was positively correlated with Vmax,LP (ρ = 0.12), KNH,LP (ρ = 0.16), and αLP (ρ = 0.29).  While the 370 
first and third correlations are not surprising (both lead to increased large phytoplankton growth which would 371 
support higher mesozooplankton respiration), it is surprising that IkLZ would be correlated with KNH,LP since higher 372 
half-saturation constants lead to lower realized phytoplankton growth rates.  Vmax,LP was also negatively correlated 373 
with the daytime mortality rate of small (<1-mm) vertically-migrating mesozooplankton at their mesopelagic resting 374 
depth (mortday,LZDVM, ρ = -0.35), which is opposite to what would be expected if large phytoplankton growth was 375 
necessary to support mesozooplankton mortality, but may reflect an indirect effect of intraguild competition between 376 
small mesozooplankton and protistan grazers (mortday,LZDVM was also negatively correlated with the Ivlev constant 377 
for small mesozooplankton grazing on protistan zooplankton (IvLZDVM,SZ, ρ = -0.27) which would indicate that 378 
mesozooplankton increases when their feeding rate on protists increases).   379 
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While these are only a subset of the multiple correlations, they highlight the complex, and often 380 
counterintuitive, relationships among many parameters.  This analysis also clearly elucidates the importance of joint 381 
parameter sensitivity analyses.  For instance, when model sensitivity to maximum large vertically-migrating 382 
mesozooplankton grazing rates on small phytoplankton (gmax,PZRES,SP) was investigated with a maximum large 383 
phytoplankton growth rate (Vmax,LP) of ~0.6 d-1, the analysis suggested that the model was only weakly sensitive to 384 
gmaxPZRES,SP, and that the optimal value was near 0.03 d-1.  However, when the same analysis was conducted with 385 
Vmax,LP = ~1.0, the model was very sensitive to gmaxPZRES,SP, and the optimal value of 0.1 – 0.2 d-1.   386 

3.2. Model data comparison (assimilated data)  387 

To determine whether the model was able to simulate assimilated measurements accurately, we compared 388 
model-data results with respect to two key processes related to export: net primary production and sinking particle 389 
flux (Figs. 5 and 6, respectively).  For most Lagrangian experiments, the model 95% confidence interval bracketed 390 
the mean of the observed net primary production (Fig. 5).  However, the model substantially underestimated net 391 
primary productivity for several experiments in the CCE (e.g., 605-1, 605-3, 704-4, 810-5, and 1604-4) conducted in 392 
near-coastal regions with recently upwelled high-nitrate water.  The model-data discrepancy thus likely results from 393 
our assumption of a one-dimensional system with constant physics for 30-days.  In reality, these Lagrangian 394 
experiments were heavily influenced by coastal upwelling processes missing in our one-dimensional model and 395 
experienced markedly non-linear dynamics as the water parcels were advected away from the upwelling source and 396 
nutrients drawn down over time (e.g., Landry et al. 2009).  Contemporaneous nutrient input from directly below 397 
these water parcels was thus likely not the source of nitrogen supporting high production, as is assumed by our one-398 
dimensional physical framework.  In less dynamic regions (e.g., GoM), the model more faithfully simulated 399 
phytoplankton production. 400 

The model did a reasonable job simulating sinking particle export flux from the euphotic zone (Fig. 6).  For the 401 
majority of experiments, observed export fell within the 95% confidence interval of the model simulations.  402 
However, that the simulated export flux range was quite substantial for most cycles.  Indeed, the 95% confidence 403 
intervals for export flux at a single locations using the 1,000,000 MCMC solutions were at times as large as the 404 
confidence interval for mean observed flux across the 49 different Lagrangian experiments.  This suggests that 405 
uncertainty in parameter estimation for the model is as important a source of error for export flux as variability 406 
between regions and seasons.  The only region for which the model produced a stark bias in export flux relative to 407 
the observations was the CRD, where the model consistently overestimated export flux.  This is not surprising for 408 
this region, because the CRD is dominated by Synechococcus, which contribute substantially less to export flux than 409 
larger phytoplankton (Saito et al. 2005; Stukel et al. 2013).  In other regions, model underestimates of export flux 410 
were typically more notable than model overestimates (observations were seldom less than the lower bound of the 411 
model’s 95% confidence interval).   412 

3.3. Model data comparison (unassimilated data)  413 

To assess the model’s ability to simulate state variables and processes not included in the assimilation dataset, 414 
we utilized the thorium sorption and nitrogen isotope submodules and compared model results to measured total 415 
water column 234Th (Fig. 7), the C:234Th ratio of sinking particles (Fig. 8a), and the δ15N of sinking particles (Fig. 416 
8b).  NEMUROBCP accurately simulated many properties of 234Th dynamics found in the field data.  For instance, it 417 
did a reasonable job of estimating the shape and magnitude of vertical profiles, notably simulating low 234Th activity 418 
in surface waters and 234Th activity close to equilibrium with 238U in deeper waters.  The model also captured some 419 
key aspects of inter- and intra-regional variability in 234Th activity, including much lower 234Th activity in coastal 420 
regions of the CCE (e.g., Fig. 7a, c, ah) relative to offshore regions (e.g., Fig. 7e, ad, ae).  The model also accurately 421 
estimated the consistently high 234Th activity found in the GoM.  The greatest model-data mismatch with respect to 422 
234Th activity was found in the CRD (Fig. 7ai – am).  In this region, the model was fairly accurate at predicting 423 
mixed layer 234Th activity, but the model consistently underestimated 234Th activity in the deep euphotic zone.  The 424 
model was also reasonably effective at predicting the C:234Th ratio of sinking particles.  The model both accurately 425 
estimated the mean value of sinking particle C:234Th ratios (median observation = 7.2 µmol C dpm-1; median model 426 
value for locations paired with observations = 7.7 µmol C dpm-1) and the range of C:234Th values (observation = 2.2 427 
– 20.5 µmol C dpm-1; model = 4.1 – 30.0 µmol C dpm-1).  For most simulations, the modeled and observed C:234Th 428 
ratios also showed very good agreement (Fig. 8a).  However, the model consistently overestimated the C:234Th ratio 429 
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of sinking particles in the CRD, a region where the model was particularly poorly constrained and predicted a wide 430 
range of C:234Th ratios.  The model also substantially underestimated the C:234Th ratio for several sediment trap 431 
collections in the GoM.  Nevertheless, the overall model-data agreement with respect to 234Th dynamics is 432 
reassuring, especially since key parameters (e.g., thorium sorption and desorption coefficients) were not estimated 433 
by the OEPMCMC procedure but instead were taken directly from the literature. 434 

The model was also able to accurately simulate the δ15N of sinking particles, albeit with a more limited set of 435 
observations available (note that we did not simulate nitrogen isotopes for Lagrangian experiments from the 436 
SalpPOOP cruise, because the δ15N of deepwater nitrate, an important boundary value, was unknown in this region).  437 
The median observed δ15N of sinking particles was 4.6 compared to a model estimate of 6.1, while the observed 438 
range was 1.7 – 14.3 and the modeled range was 1.8 – 9.3 (Fig. 8b).  The only simulation for which there was a 439 
substantial mismatch between model result and observation was from a single experiment in the CRD in which there 440 
is substantial uncertainty in the observed δ15N because one sediment trap replicate had a very high δ15N value, while 441 
the other two replicates had values near the simulated value. 442 

3.4. Sensitivity analysis  443 

 The OEPMCMC approach allowed us to investigate uncertainty associated with all three pathways of the BCP 444 
(see the next two sections).  First, we focus specifically on variability in model estimates of gravitational flux, as 445 
these can be directly compared to field measurements.  When comparing modeled gravitational flux for different 446 
Lagrangian cycles, the median coefficient of variation (standard deviation / mean) was 0.49, with a range of 0.29 – 447 
1.38.  This represents substantial uncertainty in sinking particle flux due solely to different potential parameter 448 
choices (Fig. 6).  For instance, on the fifth Chatham Rise Lagrangian experiment (which was the experiment with 449 
coefficient of variation closest to the median), the mean model predicted gravitational flux was 1.24 mmol N m-2 d-1 450 
with a standard deviation of 0.62 mmol N m-2 d-1 and a 95% confidence interval from 0.29 to 2.6 mmol N m-2 d-1.  451 
This shows that for a typical cycle, there was nearly an order of magnitude variability in export flux based solely on 452 
uncertainty in model parameterization.  For comparison, across the 49 Lagrangian experiments for which we have 453 
sediment trap deployments near the base of the euphotic zone, the field observations of gravitational flux at the base 454 
of the euphotic zone ranged from 0.22 – 6.3 mmol N m-2 d-1.  Thus, for a typical Lagrangian experiment, uncertainty 455 
in model parameterization introduced slightly less uncertainty in gravitational flux than variability across the 456 
multiple regions.  For the fourth GoM Lagrangian experiment (the experiment with the highest coefficient of 457 
variation), the mean model predicted gravitational flux was 0.23 mmol N m-2 d-1 with a standard deviation of 0.31 458 
and a 95% confidence interval from 0.0069 – 1.07 mmol N m-2 d-1.  For this particular cycle, some likely parameter 459 
sets predicted gravitational flux nearly equal to the mean measured gravitational flux across the diverse regions we 460 
studied, while other likely parameter sets predicted export more than an order of magnitude lower than the lowest 461 
observed flux.  This high degree of uncertainty should be considered when results of a single model simulation are 462 
considered and provide a strong argument for the importance of ensemble modeling.    463 

To investigate the relationships among uncertainties in the three pathways of the BCP and uncertainties in 464 
parameters, we computed the R2 of ordinary least squares linear regressions of each BCP pathway as a function of 465 
each parameter.  This approach allows us to quantify the percentage of variability in the export pathway explained 466 
by a linear relationship with a specific parameter.  This is distinctly different from some traditional sensitivity 467 
analysis approaches that either compute the derivative of a model output with respect to different parameters or vary 468 
parameters by a fixed amount (e.g., ±10%).  Unlike those approaches, our R2 approach explicitly accounts for the 469 
certainty with which different parameters are constrained.  For instance, a model may be very sensitive to the 470 
maximum growth rate of diatoms; however, if that parameter is well constrained by laboratory experiments, field 471 
data, and/or data assimilation, then parameter uncertainty may not be the dominant source of uncertainty in model 472 
results.  Our approach is thus well suited to determining which parameters especially merit future experimental 473 
focus. 474 

 Our results show that the R2 values for BCP pathways regressed against most parameters were ~0.01 or less.  475 
However, some of the parameters were able to explain 10% of the variability in specific BCP pathways.  For 476 
instance, the linear mortality parameter for protistan zooplankton (mortSZ) explained 15% of the variability in 477 
gravitational particle export (positive correlation) and 18% of the variability in export due to vertical mixing 478 
(negative correlation).  These correlations reflect the importance of protistan zooplankton in controlling 479 
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phytoplankton populations without producing rapidly sinking particles.  Multiple parameters had similar inverse 480 
correlations with gravitational particle export and export due to vertical mixing.  For example, the assimilation 481 
efficiency of small epipelagic-resident mesozooplankton, the Ivlev constant for large mesozooplankton feeding on 482 
small mesozooplankton, and the sinking speed of fast-sinking detritus all had positive correlations with gravitational 483 
flux; the maximum grazing rate of small epipelagic-resident mesozooplankton on protistan zooplankton, and the 484 
remineralization rate of fast-sinking detritus had negative correlations with gravitational flux.  The remineralization 485 
rate of fast-sinking detritus explained the highest proportion of variability in gravitational flux (45%).  Only two 486 
parameters (the maximum grazing rate of large vertically-migrating mesozooplankton on small mesozooplankton 487 
and the Ivlev constant for large mesozooplankton feeding on small protists) explained >10% of the variability in 488 
active transport (19% and 18%, respectively, with both positively correlated with active transport).  Notably, none of 489 
the parameters most responsible for uncertainty in the BCP were related to phytoplankton bottom-up limitation.  We 490 
do not believe that this reflects a lack of importance of bottom-up processes in the BCP.  Rather, this reflects a much 491 
greater uncertainty in parameterizations for zooplankton and non-living organic matter, combined with the 492 
importance of these processes to the BCP (Anderson et al. 2013; Cavan et al. 2017). 493 

 As mentioned previously, two of the most important parameters for determining gravitational flux are the 494 
sinking speed (Lsink) and remineralization rate of fast-sinking particles to DON (refdec,LPON,DON).  Notably, these two 495 
parameters are strongly related to the remineralization length scale for these particles 496 
(RLS=Lsink/(refdec,LPON,DON+refdec,LPON,NH4)).  We illustrate the impact of variability in RLS on model gravitational 497 
flux by focusing on two Lagrangian experiments representative of the CRD (CRD-1) and upwelling-influenced 498 
regions of the CCE (1604-3).  RLS was strongly correlated with gravitational flux for each experiment (Pearson’s ρ 499 
= 0.62 for both experiments, p<<10-7).  The relationship was not perfectly linear, however (Supp. Fig. 1a,b).  500 
Particularly for the CRD experiment, but also for the CCE experiment, there was a threshold effect such that RLS 501 
was only weakly correlated with gravitational flux at RLS > ~150 m.  This resulted from higher RLS values leading 502 
to decreased recycling in the system and hence reduced primary production.  Comparison of the probability density 503 
functions for RLS determined by the OEPMCMC procedure with probability density functions for only those 504 
parameter sets that accurately predicted gravitational flux for these cycles (to ±1 standard deviation of the observed 505 
value) show that gravitational flux was more accurately predicted for the CCE experiment with RLS values slightly 506 
higher than the overall average of the whole dataset (median for the entire dataset was 85 m; median for parameter 507 
sets that accurately predicted export for this cycle was 115 m, Supp. Fig. 1c), while it was more accurately predicted 508 
for the CRD experiment with RLS values lower than the average for the dataset (median RLS for accurate parameter 509 
sets = 57 m, Supp. Fig. 1d).  This highlights the sensitivity of the model to these parameters while suggesting 510 
differences in remineralization length scale between these specific regions, although we caution that RLS calculated 511 
above is only for fast-sinking detritus and does not account for the additional gravitational flux mediated by slowly 512 
sinking particles.   513 

3.5. Model results: Three pathways of export  514 

 We compared the relative magnitude of the three BCP pathways for all Lagrangian cycles and all OEPMCMC 515 
parameter sets (Fig. 9a).  Results showed that export was typically dominated by some combination of gravitational 516 
and/or mixing flux.  Active transport typically contributed a relatively small proportion of export from the base of 517 
the euphotic zone (mean = 2.8%, 95% C.I. = 0.02% - 16.5%).  Across the dataset, gravitational flux was the 518 
dominant export pathway (mean = 56.1%, 7.1% - 99.6%), although mixing was also an important source of export 519 
(mean = 41.1%, 0% - 92.3%).  The large confidence intervals for each of these fluxes highlight the uncertainty in 520 
our estimates of the BCP pathways.  They also, however, obscure distinct regional variability among the 521 
experiments analyzed in our study.   522 

 During upwelling-influenced experiments in the CCE, mixing and gravitational flux often contributed 523 
approximately equally to the BCP, with different parameter sets suggesting either dominance by mixing or 524 
gravitational flux.  For instance, during CCE cycle 1604-3 (Fig. 9b) gravitational flux contributed an average of 61% 525 
(29 – 84%) of export, while mixing was responsible for 35% (12 – 67%).  Not every CCE coastal cycle had a 526 
relatively even split, however, with some more dominated by sinking flux and others more dominated by mixing 527 
flux (e,g. CCE cycle 0605-3 which occurred during a dense coastal dinoflagellate bloom, Fig. 9g).  In oligotrophic 528 
regions of the CCE and GoM, export was typically dominated by sinking flux, with relatively minor contributions 529 
from both mixing and active transport.  For instance, during CCE cycle 1408-5 gravitational flux was responsible for 530 
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86% (70 – 97%) of export (Fig. 9c), while during GoM cycle 5 sinking was responsible for 89% (66 – 98%) of 531 
export (Fig. 9e).  During CRD experiments, which had relatively high mesozooplankton biomasses relative to 532 
phytoplankton biomass, active transport was comparatively more important.  For instance, during CRD cycle 1, 533 
active transport averaged 6.5% (0.7 – 26%) of export and was more important than mixing flux (4.3%, 0.4 – 12%, 534 
Fig. 9d).  During the Chatham Rise experiments in the Southern Ocean, export patterns were comparable to those in 535 
the upwelling-influenced CCE, driven primarily by gravitational flux and mixing, with gravitational flux slightly 536 
more important.   537 

 Looking at patterns across regions and across the varying conditions on our Lagrangian experiments, the 538 
proportion of export driven by vertical mixing was correlated with vertical eddy diffusivity at the base of the 539 
euphotic zone (Spearman’s ρ = 0.64, p<10-6).  This is not surprising, since vertical diffusion drives particulate and 540 
dissolved organic matter flux across the euphotic zone.  Because sinking and vertical mixing were the two dominant 541 
mechanisms of export, vertical eddy diffusivity also showed a strong inverse correlation with gravitational flux 542 
(Spearman’s ρ = -0.64, p<10-6).  Across all simulations, organic matter mixed out of the euphotic zone was 543 
relatively evenly split between DOM and POM, but variability in POM flux was greater (mean = 3.4 ± 6.9 mmol N 544 
m-2 d-1) than variability in DOM (mean = 4.6 ± 5.5 mmol N m-2 d-1).  For most simulations (72%), DOM mixing flux 545 
exceeded POM mixing flux.  However, POM mixing was greater for 66% of the simulations with total mixing flux 546 
>20 mmol N m-2 d-1.  Flux of fast-sinking particles exceeded that of slow-sinking particles at the euphotic zone base 547 
for 90.5% of simulations, with fast-sinking particles averaging of 2.3 mmol N m-2 d-1 (0.07 – 10.4 mmol N m-2 d-1) 548 
and slow-sinking particles averaging 0.35 mmol N m-2 d-1 (0.02 – 1.4 mmol N m-2 d-1).   549 

3.6. Model results: Diel vertical migration and active transport 550 

   In NEMUROBCP, active transport is driven by two processes: respiration/excretion and mortality at depth.  The 551 
former is parameterized as a temperature- and size-dependent function representing basal respiration, and is 552 
comparatively well constrained by prior experimental work.  The latter is parameterized as a density-dependent 553 
function representing predator-induced mortality, a process that is highly uncertain because few studies have 554 
quantified zooplankton mortality in the mesopelagic ocean.  We fit linear regressions to log-transformed active 555 
transport plotted against log-transformed mesozooplankton biomass (Fig. 10a) to determine a power law relationship 556 
predicting active transport from mesozooplankton biomass: AT = aBc, where AT = active transport (mmol N m-2 d-557 
1), B = biomass (mmol N m-2), a = 0.0052 ± 6×10-6, and c = 1.29 ± 0.0004, R2 = 0.90, p<<10-9.  Similar relationships 558 
were also determined for the respiration/excretion component of active transport (E = aBc, a = 0.0037 ± 4×10-6, b = 559 
1.02 ± 0.0005, R2 = 0.87, p<<10-9) and the mortality component of active transport (M = aBc, a = 0.00054 ± 10-6, b = 560 
2.04 ± 0.001, R2 = 0.89, p<<10-9).  As expected, since excretion is density-independent while mortality is density-561 
dependent, the exponent of the excretion power law was ~1 and the exponent of the mortality power law was ~2.  562 
This led to mortality becoming a greater fraction of total active transport as mesozooplankton biomass increased 563 
(Fig. 10d).  The transition from active transport dominated almost entirely by respiration to active transport 564 
comprised mostly of mortality at depth occurred rapidly as biomass increased past ~5 mmol N m-2.  As a result of 565 
the density-dependent parameterization of mortality, daytime mortality also increased with increasing zooplankton 566 
biomass (m = aBc, where m is specific mortality (h-1) a = 2.6×10-4 ± 5×10-6, and b = 0.995 ± 0.001, R2 = 0.68, 567 
p<<10-9).  This generated daily mortality rates (i.e., over a 12-h daytime period) of ~0.3% d-1 at a biomass of 1 mmol 568 
N m-2 and ~6% d-1 at a biomass of 20 mmol N m-2 (Fig. 10e).  Overall mortality for vertically-migrating 569 
mesozooplankton was approximately evenly split between the epi- and mesopelagic, although this ratio was poorly 570 
constrained by the model (Fig. 10f).  For instance, 9% - 96% of large-mesozooplankton mortality occurred in the 571 
mesopelagic (at the 95% C.I.). 572 

 As suggested by the validation data, vertical migrator biomass was primarily found in the large (>1-mm) 573 
mesozooplankton size class.  The large mesozooplankton were also predominantly vertical migrators, while the 574 
small mesozooplankton were primarily epipelagic residents (Fig 10g).  Consequently, large mesozooplankton 575 
typically dominated active transport (Fig. 10h) even though small mesozooplankton usually contributed 576 
proportionally more to active transport than to biomass as a result of higher specific respiration rates (Fig. 10i).    577 

It would be reasonable to assume that predator-induced mortality in the deep ocean would be negatively 578 
correlated with the abundance of diel-vertical migrators, because high mortality would yield a competitive 579 
advantage for epipelagic-resident zooplankton.  For the full dataset, however, we found a negligible correlation 580 
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between the mesopelagic mortality term for large mesozooplankton (mortday,PZDVM) and large mesozooplankton 581 
biomass (Spearman’s ρ = -0.0077).  When investigating this correlation for individual experiments, the correlation 582 
was sometimes positive and sometimes negative.  This lack of a correlation was driven by strong correlations 583 
between the mortday,PZDVM and both the assimilation efficiency of these zooplankton and their maximum grazing rate 584 
on smaller mesozooplankton.  This led to a compensatory higher growth rate to offset the higher mortality rate and 585 
consequently to a reasonably strong correlation between mortday,PZDVM and the magnitude of export attributable to 586 
predation on large mesozooplankton in the deep ocean (ρ = 0.25).   587 

4. DISCUSSION 588 
4.1. Biological carbon pump pathways 589 

Gravitational flux is by far the most well studied pathway of the BCP, because it is the only pathway for which 590 
direct in situ flux measurements are possible.  Nevertheless, incredibly sparse in situ sampling necessitates 591 
spatiotemporal extrapolation approaches to derive regional and global estimates of gravitational flux, including the 592 
use of forward models, inverse models, and satellite algorithms (e.g., Hauck et al. 2015; Laws et al. 2000; Schlitzer 593 
2004).  Satellite algorithms, as perhaps the most widely used and cited methods for deriving global estimates, 594 
deserve special attention.  These approaches have delivered widely varying estimates of the magnitude of 595 
gravitational flux, and indeed the algorithms underlying such estimates often differ in the fundamental relationship 596 
predicted between sinking particle flux and phytoplankton biomass and production (Dunne et al. 2005; Henson et al. 597 
2011; Laws et al. 2000; Siegel et al. 2014).  Such studies typically estimate export flux from relationships with net 598 
primary production (or surface chlorophyll) and/or temperature because these properties are easily observable by 599 
satellite remote sensing.  These studies, however, have reached widely differing relationships about the relationships 600 
of these properties to export efficiency (e-ratio = gravitational flux / net primary productivity).  Indeed, the in situ 601 
data compiled here shows no significant dependence of export efficiency on NPP or temperature (Figure 11a), 602 
because export efficiency depends not just on temperature and phytoplankton production, but also the community 603 
composition of phytoplankton and zooplankton, physiological adaptations of important taxa, and a multitude of 604 
ecological interactions (Buesseler and Boyd 2009; Guidi et al. 2016; Turner 2015).  Indeed, focusing only on the 605 
regions studied here, anomalously high Synechococcus abundances likely results in low export efficiency in the 606 
CRD (Saito et al. 2005; Stukel et al. 2013), salp blooms drive very high export in the Chatham Rise (Décima et al. in 607 
review), and the diatom Thalassiosira seems to play a particularly important role in export in the CCE (Preston et al. 608 
2019; Valencia et al. 2021).  In the latter, diatom photophysiological health is a strong predictor of export 609 
(Brzezinski et al. 2015), although the diatoms likely sink mainly after grazing by metazooplankton (Morrow et al. 610 
2018).   611 

Despite the diversity of processes that affect the BCP, many of which are not included in NEMUROBCP, our 612 
simulations reasonably reproduce the variability of export efficiency across the study regions, even though results 613 
for individual experiments are imprecise (Fig. 11).  One important process that drives variability in export efficiency 614 
is temporal decoupling of production and export (Henson et al. 2015; Kahru et al. 2020; Laws and Maiti 2019).  615 
Despite the use of constant physical forcing throughout our 30-day simulations, they exhibit distinct temporal 616 
variability in biogeochemical properties.  We highlight results from one experiment in slightly-aged upwelled water 617 
off the California coast, using 5 different evenly-spaced parameter sets chosen from our ensemble (Fig. 12).  In each 618 
of these simulations, net primary production increases early in the simulations, rapidly in some, more gradual in 619 
others (Fig. 12a).  Net primary production soon diverges in all of the simulations, however, with some gradually 620 
decreasing after the first week and others exhibiting blooms.  Gravitational flux was even more variable, with one 621 
simulation peaking almost immediately and others with substantial temporal lags between net primary production 622 
and export (Fig. 12b).  This led to substantial temporal variability in export efficiency (Fig. 12c) and quite complex 623 
relationships between gravitational flux and net primary production (Fig. 12d).   624 

Assessing the accuracy with which the model simulates export due to vertical mixing (variously called the eddy 625 
subduction pump, mixed layer pump, and/or physical pump) is more difficult.  Previous studies to quantify this 626 
process have either relied on indirect biogeochemical proxies (Llort et al. 2018; Stukel and Ducklow 2017) or 627 
numerical models (Levy et al. 2013; Omand et al. 2015; Stukel et al. 2018b) to quantify these processes.  Our 628 
vertical mixing results should be considered with some caution due to our overly simplified one-dimensional 629 
physical framework.  Nevertheless, it is reassuring that our simulations from the CCE, which showed that vertical 630 
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mixing out of the euphotic zone was often similar in magnitude to gravitational flux and at times even higher, is 631 
similar to results based on a Lagrangian particle model developed for the region (Stukel et al. 2018b).  More realistic 632 
estimates for all regions could be derived by coupling NEMUROBCP and our parameter ensembles to a three-633 
dimensional ocean simulation. 634 

The magnitude of active transport mediated by diel-vertically migrating zooplankton in the global ocean 635 
remains highly uncertain due to a paucity of measurements and the difficulty of constraining the amount of mortality 636 
occurring at depth.  Studies that include only respiration and/or excretion of zooplankton at depth typically find that 637 
active transport is a relatively small fraction of gravitational flux (Hannides et al. 2009; Steinberg et al. 2000).  638 
However, more recent studies that have attempted to incorporate mortality experienced in the deep ocean have 639 
derived much larger estimates of active transport (Hernández-León et al. 2019; Kelly et al. 2019; Kiko et al. 2020).  640 
These studies should be considered highly uncertain, however, because they necessarily make large assumptions 641 
about the amount of zooplankton mortality occurring in the deep ocean, where it has never been directly quantified.  642 
Results from our study, which does include mortality at depth, suggests that active transport is a quantitatively 643 
important, but never dominant component of the BCP, in line with results from a recent global estimate derived 644 
from a combination of satellite remote-sensing products and modeling approaches (Archibald et al. 2019). 645 

One aspect of the BCP that our current euphotic-zone only simulations do not address is sequestration 646 
efficiency in the mesopelagic (Buesseler and Boyd 2009; Kwon et al. 2009; Marsay et al. 2015).  It is reasonable to 647 
surmise that the remineralization length scale will vary for different BCP pathways, and be regionally variable as 648 
well.  With gravitational flux, typically ~50% of particles will sink 100 m beneath the euphotic zone before 649 
remineralization, although remineralization length scales are highly variable and the spatial patterns are poorly 650 
understood (Buesseler and Boyd 2009; Marsay et al. 2015).  Meanwhile, vertically-migrating zooplankton typically 651 
reside at depths of 200 – 600 m during the day and hence respire the majority of their carbon dioxide at this depth 652 
(Bianchi et al. 2013a), although it is unclear how the inclusion of mortality depth into our understanding of active 653 
transport will affect the overall depth of penetration of actively-transported carbon into the deep ocean.  Stukel et al. 654 
(2018b), suggested that subducted particles in the southern CCE are mostly remineralized near the base of the 655 
euphotic zone with little penetration into the mesopelagic, although in regions with deep convective mixing, 656 
signatures of subduction show substantial transport into the deep ocean (Llort et al. 2018; Omand et al. 2015).  Boyd 657 
et al. (2019) surmised that active transport may have the greatest sequestration efficiency, followed by vertical 658 
mixing, then gravitational flux, although their synthesis was only able to draw from the few studies that have 659 
quantified these processes and they note that determining the sensitivities of sequestration efficiencies to 660 
environmental drivers is crucial to predicting climate change impacts on marine carbon sequestration.  We believe 661 
that future incorporation of our model ensemble approach into three-dimensional coupled modeling frameworks 662 
could be an important step forward in understanding the magnitude, and uncertainty in these processes. 663 

4.2. Data-assimilating biogeochemical models 664 

 Implicit to our OEPMCMC approach is the philosophical realization that our model (like all biogeochemical 665 
models) oversimplifies an incredibly complex system.  Hence, we accept that no single solution set will accurately 666 
simulate all aspects of the BCP.  Instead, we proposed a mechanistic-probabilistic approach that explicitly 667 
investigates the ecosystem uncertainty.  This contrasts with some other data-assimilation approaches (e.g., gradient-668 
based methods including the variational adjoint, Friedrichs et al. 2007; Lawson et al. 1995; Schartau et al. 2001) that 669 
seek to find a single solution that minimizes model-data misfit.  While the variational-adjoint approach is 670 
computationally efficient and allows objective determination of a single solution that can then be used for high-671 
resolution simulations (Mattern et al. 2017), our work shows that very different parameter sets can result in similar 672 
cost function values, despite generating distinctly different model outputs.   673 

Our approach has similarities with other biogeochemical model ensemble approaches.  For instance, Doron et 674 
al. (2013) used an ensemble Kalman filter algorithm to assimilate surface chlorophyll data and determine regional 675 
variability in biogeochemical parameters for a simple ecosystem model.  Gharamti et al. (2017a; 2017b) used a 676 
modified approach to simultaneously estimate model parameters and state variable distributions to enable reasonably 677 
accurate ensemble predictions of modeled processes.   These Kalman filter approaches are widely used in physical 678 
sciences for state estimation, re-analyses, and prediction purposes, although the data-assimilating state variable 679 
updates sacrifice true dynamical consistency.  Meier et al. (2011) used dynamically consistent model ensembles 680 
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generated from three different biogeochemical models forced with four climate projections and three different 681 
nutrient loading scenarios to investigate increasing hypoxia in the Baltic Sea.  Garnier et al. (2016) used a 682 
probabilistic version of the NEMO/PISCES model to generate a 60-member ensemble simulation of chlorophyll in 683 
the North Atlantic that accounts for uncertainties in biogeochemical parameters and sub-grid scale processes.  Gal et 684 
al. (2014) conducted a single model ensemble approach similar to ours in which they perturbed the most sensitive 685 
parameters in their model to investigate whether trends associated with different nutrient loading scenarios were 686 
consistent across the ensemble, although their approach did not use data assimilation to determine the different 687 
parameter values used.  Ramondenc et al. (2020) used the statistical model check engine to assimilate laboratory and 688 
in situ observations to probabilistically constrain parameters associated with scyphozoan growth and degrowth.  689 
Anugerahanti et al. (2018) conducted a model ensemble approach in which, rather than modifying parameter values, 690 
they modified the functional form of key transfer functions associated with nutrient uptake, grazing, and mortality 691 
while simulated chlorophyll, nutrients, and primary production at 5 time-series sites.  They discovered that the 692 
model was especially sensitive to modifications the grazing and mortality functions.  A further study (Anugerahanti 693 
et al. 2020) simultaneously perturbed physical circulation fields and the biogeochemical model and found that 694 
results were most sensitive to variability in the biological model.  The result of these ensemble approaches is a 695 
probabilistic estimate of model outputs that (hopefully) accurately reflects true uncertainty in the system.  Our 696 
OEPMCMC approach, by utilizing field data to automate the choice of parameter sets to be used in the model 697 
ensemble, allows us to generate one million different dynamically consistent model realizations that each fit the 698 
available data, while simultaneously exploring different regions of the solution space with regard to uncertainties in 699 
all of the modeled parameters.  We consider this to be a reasonable tradeoff for the increased computational expense 700 
of our approach (relative to the variational adjoint or Kalman filter approaches), while noting that each approach has 701 
distinct advantages or disadvantages for different applications.  702 

An additional novelty of our study is the variety of different data types assimilated into the model (30 different 703 
rate and standing stock measurement types).  Most data-assimilating biogeochemical models only incorporate data 704 
associated with nutrients and/or surface chlorophyll and other remotely-sensed parameters (e.g., Mattern et al. 2014; 705 
Wang et al. 2012; Xiao and Friedrichs 2014b).  The incorporation of multiple data types spanning trophic levels and 706 
biogeochemical processes is important to model validation, because models can often reasonably simulate time 707 
series of one particular variable, with unrealistic dynamics of associated trophic levels.  Ciavatta et al. (2014) found 708 
that assimilation of light attenuation coefficient data improved model prediction of light attenuation coefficient data, 709 
but did not improve model estimates of surface chlorophyll, and even degraded model performance in some regions.  710 
Furthermore, assimilation of only noisy standing stock data can lead to model overfitting and inability to retrieve 711 
accurate model parameters, even in an idealized model (Löptien and Dietze 2015).  The few studies that have 712 
attempted to incorporate many measurement types have focused on nutrient and phytoplankton parameters.  For 713 
instance, Kim et al. (2021) assimilated standing stock data associated with 9 model compartments along with net 714 
primary production and bacterial production into a model of an Antarctic coastal ecosystem but incorporated no 715 
metazoan zooplankton data.  In a model simulating three distinct open ocean regions, Luo et al. (2010) incorporated 716 
only one zooplankton parameter (mesozooplankton biomass) amongst 17 assimilated data types, mostly associated 717 
with non-living compartments.  By contrast, we incorporate an extensive suite of group-specific protistan grazing 718 
rate measurements and biomass and grazing rate measurements for each of our 4 metazoan zooplankton groups.  719 
While these provide realistic bounds within which zooplankton dynamics can vary, zooplankton parameters still 720 
remain among the least constrained parameters in our model due to the difficulty of making zooplankton rate 721 
measurements (e.g., the paucity of grazing measurement relative to net primary production) and the fact that most 722 
zooplankton measurements (derived from net tows) inherently integrate over broad depth ranges.  The weak 723 
constraints on zooplankton processes are particularly important in light of multiple studies that have shown that even 724 
subtle changes in grazing formulations can fundamentally alter biogeochemical behaviors of models (Chenillat et al. 725 
2021; Gentleman and Neuheimer 2008; Prowe et al. 2012; Sailley et al. 2015; Sailley et al. 2013; Schartau et al. 726 
2017) and the crucial roles of metazoan zooplankton for multiple pathways of the BCP (Buitenhuis et al. 2006; 727 
Steinberg and Landry 2017). 728 

4.3. Future directions 729 

We have highlighted some of the insight about the BCP that can be gleaned from our ensemble data 730 
assimilation approach.  However, as noted previously, there are many limitations associated with using a simplified 731 
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one-dimensional physical framework, and indeed a large portion of our study goal was to set the stage for more 732 
advanced uses of NEMUROBCP and OEPMCMC.  One obvious future step is to incorporate NEMUROBCP into three-733 
dimensional circulation models.  Although NEMUROBCP was originally written in Matlab, we are currently 734 
adapting it to Fortran compatible with circulation models such as ROMS, HYCOM, and MITgcm.  Three-735 
dimensional NEMUROBCP simulations may take different forms  One approach would be to use different parameter 736 
sets from the data ensemble in independent model runs, to conduct three-dimensional global biogeochemical model 737 
ensembles.  Notably, our different parameter sets are equally supported by assimilated field data, yet some predict 738 
very different ecosystem states (e. g., they vary in relative proportion of large/small phytoplankton, in turnover times 739 
for biota, in partitioning of organic matter between the particulate and dissolved phase, etc.).  This ensemble 740 
modeling approach would thus allow quantification of BCP uncertainties in four dimensions.  An alternate approach 741 
would be to use parameter distributions from one-dimensional simulations as prior estimates of parameters for data-742 
assimilation in a three-dimensional model.  These prior estimates of each parameter (and the parameter covariance 743 
matrix) could be incorporated into the cost function for many different data-assimilation approaches.  Comparison to 744 
satellite-observed or in situ time-series data would add powerful additional constraints on parameter values. 745 

Another future use of the ensemble approach would be to asimulate the results of specific Lagrangian 746 
experiments.  In the current study, we developed an ensemble of plausible parameter sets that could be used for 747 
global ensemble models in the future or as prior distributions for future studies, while also assessing the uncertainty 748 
in parameter values.  These goals informed our decision to conduct a joint parameter estimation that simultaneously 749 
utilized data from all available experiments (rather than estimating different parameter values for each experiment or 750 
each region).  To simulate ecosystem dynamics for a specific experiment as accurately as possible, one would need 751 
to treat initial conditions and boundary values as unknown values to be determined during the optimization 752 
procedure.  As such, the cost function should formally be defined as a function of these unknown values: J(IC, BV, F, 753 
P) where IC represents the initial conditions (all state variables, all depths), BV is the boundary values (i.e., values of 754 
the state variables at the bottom boundary of the model), F is the physical forcing, and P is the parameter set.  While 755 
this introduces a large number of additional unknown variables to solve for, it also justifies use a more stringent cost 756 
function (e.g., the likelihood function).  Thus to use NEMUROBCP to model a specific Lagrangian experiment (e.g., 757 
time-varying conditions during the North Pacific EXPORTS Lagrangian study, Siegel et al. 2021), we recommend 758 
treating our results for estimated global ranges of parameters as prior values in a Bayesian analysis to 759 
simultaneously constrain IC, BV, F, and P for that Lagrangian experiment.   760 

In the current study, we incorporated a broad suite of standing stock and rate measurements spanning nutrients, 761 
phytoplankton, zooplankton, and non-living organic matter, because our goal was to simultaneously constrain all 762 
parameters in the model while investigating overall uncertainty in model outputs.  However, Loptien & Dietze 763 
(2015) noted that specific parameters and processes can be better constrained if only the most relevant type of data is 764 
included.  We thus suggest that targeted choice of data types to assimilate could allow the use of OEPMCMC for 765 
investigation of specific processes that are difficult to directly measure in situ.  For instance, zooplankton mortality 766 
at depth has been hypothesized to be a potentially important component of the BCP (Hernández-León et al. 2019; 767 
Kelly et al. 2019), but estimates of zooplankton mortality at depth are typically derived from either allometric 768 
relationships between zooplankton size and life span or estimates of mortality made in the upper ocean (Brett and 769 
Groves 1979; Hirst and Kiørboe 2002; Ohman and Hirche 2001).  By incorporating only the data sources that offer 770 
the most constraint on zooplankton parameters (e.g., biomass and grazing rates of each zooplankton group), it may 771 
be possible to better constrain the fraction of mortality occurring in the deep ocean. 772 

NEMUROBCP was built off of the NEMURO family of models (Kishi et al. 2007), and here we only added extra 773 
state variables essential for modeling BCP pathways from the euphotic zone into the mesopelagic.  There are, of 774 
course, multiple additional processes that are important to simulating marine biogeochemistry and the BCP that are 775 
currently absent.  Some additional processes that we consider priorities and plan to implement in future versions of 776 
NEMUROBCP include variable stoichiometry of organic matter, N2 fixation, and additional realism in the microbial 777 
community.  Elemental stoichiometry (e.g., C:N:P) can vary substantially between different organic pools and 778 
across the different BCP pathways (Hannides et al. 2009; Singh et al. 2015), is predicted to change as a result of 779 
ocean acidification and/or increased temperature and stratification (Oschlies et al. 2008; Riebesell et al. 2007), and 780 
can affect the balance between carbon sequestration and nutrient supply and regeneration leading to potentially 781 
enhanced carbon sequestration and growing oxygen minimum zones in a future ocean (Michaels et al. 2001; 782 
Oschlies et al. 2008; Riebesell et al. 2007).  Adding variable stoichiometry to NEMUROBCP is simple but will 783 
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require the addition of state variables associated with each model compartment that is allowed to vary in its 784 
elemental ratios, with substantial added computational costs.  N2 fixation is simultaneously a source of new 785 
production in the absence of upwelling and a process that can substantially alter elemental stoichiometry in the open 786 
ocean.  It could be introduced to the model through a state variable(s) simulating diazotrophs (Hood et al. 2001) or 787 
through implicit parameterization (Ilyina et al. 2013).  NEMUROBCP might also benefit from added realism in 788 
microbial dynamics.  The roles of heterotrophic bacteria in particle remineralization are currently included implicitly 789 
in the model.  Explicit simulation of bacterial biomass and processes such as colonization of particles, microbial 790 
hotspots on sinking particles, production of hydrolytic enzymes, quorum sensing, and predator-prey dynamics with 791 
protists have the potential to more accurately simulate feedbacks that affect remineralization length scales in the 792 
ocean (Mislan et al. 2014; Robinson et al. 2010; Simon et al. 2002).  Additionally, the model currently includes only 793 
two phytoplankton, which were explicitly identified as diatoms and non-diatoms in this data-assimilation exercise.  794 
The latter category subsumes a wide variety of different phytoplankton taxa into a group with transfer functions 795 
designed to simulate picophytoplankton (especially cyanobacteria).  It thus excludes the presence of mixotrophs, 796 
which are abundant and diverse bacterivores in the open ocean, can survive low-nutrient and low-light conditions by 797 
supplementing their nutritional budget with phagotrophy, and may have distinctly different biogeochemical roles 798 
due to their decreased reliance on dissolved nutrients (Jones 2000; Stoecker et al. 2017). 799 

5. Conclusions 800 

 The data assimilation approach utilized here is a computationally feasible method for incorporating a diverse 801 
suite of in situ measurements to objectively define parameter sets for ensemble modeling of the BCP.  The 30 data 802 
types assimilated in this study improve constraints on ecosystem dynamics.  However, some parameters, especially 803 
those related to metazoan zooplankton, remain poorly constrained by available data, despite assimilation of 8 data 804 
types explicitly representing metazoan zooplankton rates and standing stocks.  This likely results from a 805 
combination of the inherently patchy nature of many mesozooplankton populations (i.e., high measurement 806 
uncertainty) and the vertically-integrated nature of zooplankton net tows which obscures simple relationships 807 
between predator abundance, prey abundance, and grazing rates.   808 

 The three BCP pathways were spatiotemporally variable across four study regions.  Despite a very simple 809 
physical framework, distinct patterns were identified.  Active transport was only a dominant contributor to the BCP 810 
in the CRD, where simulations predicted it to be responsible for 20-40% of export from the euphotic zone.  Near the 811 
subtropical front of the Southern Ocean and in upwelling-influenced regions of the CCE, both gravitational flux and 812 
vertical mixing were important components of the BCP, with the relative importance of the two determined more by 813 
differences between parameter sets, than by differences between the conditions experienced during specific 814 
Lagrangian experiments.  In offshore oligotrophic regions of the CCE and the GoM >80% of export was usually 815 
attributable to gravitational flux, although mixing dominated in a few experiments.   816 

Our ensemble approach highlights uncertainties around model estimates of the BCP that arise from imprecisely 817 
defined parameters.  Indeed, variability in many aspects of the BCP is as large comparing different (realistic) 818 
parameter sets within a specific location as it is across regions as distinctly different as the oligotrophic GoM and 819 
coastal CCE.  Notably, different realistic parameter sets from our ensembles predict very different export 820 
efficiencies (and hence magnitudes of the gravitational pump) despite similar net primary production.  This suggests 821 
that model validation against net primary production (or sea surface chlorophyll) data is insufficient to validate 822 
model skill in simulating BCP variability.  The explicit representation of thorium and nitrogen isotope dynamics in 823 
NEMUROBCP should aid in future model validation efforts.   824 
  825 
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Code Availability 826 

Code will be available on GitHub. 827 

Data Availability 828 

Field data used in this manuscript is available on either the CCE LTER Datazoo repository 829 
(https://oceaninformatics.ucsd.edu/datazoo/catalogs/ccelter/datasets) or the Biological and Chemical Oceanography 830 
Data Management Office repository: https://www.bco-dmo.org/project/834957, https://www.bco-831 
dmo.org/project/819488, and https://www.bco-dmo.org/project/754878.  For ease of access it is also included in 832 
Supp. Tables 2-4.  The data file containing all model outputs (from all ensembles) is too large to deposit but can be 833 
generated from the code on GitHub.  A summarized version (every 1000th iteration) is included as Supp. Table 7, 834 
summary statistics are given in Supp. Table 1, with the correlation and covariance matrices given in Supp. Table 6.   835 
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Table 1.  State variables in NEMUROBCP 1273 

 Abbreviation Description Units 

Core model   

 SP Small (non-diatom) phytoplankton mmol N m-3 

 LP Large phytoplankton (diatoms) mmol N m-3 

 SZ Small (protistan) zooplankton mmol N m-3 

 LZRES <1-mm epipelagic-resident mesozoopankton mmol N m-3 

 LZDVM <1-mm diel-vertically-migrating mesozooplankton mmol N m-3 

 PZRES >1-mm epipelagic-resident mesozoopankton mmol N m-3 

 PZDVM >1-mm diel-vertically-migrating mesozooplankton mmol N m-3 

 NO Nitrate mmol N m-3 

 NH Ammonium mmol N m-3 

 PON Slowly-sinking detritus mmol N m-3 

 LPON Rapidly-sinking detritus mmol N m-3 

 DON Labile dissolved organic nitrogen mmol N m-3 

 DONref Refractory dissolved organic nitrogen mmol N m-3 

 SI Silicic acid mmol Si m-3 

 OP Slowly-sinking opal (biogenic silica) mmol Si m-3 

 LOP Rapidly-sinking opal (biogenic silica) mmol Si m-3 

 CHLPS Chlorophyll associated with small phytoplankton mg Chl a m-3 

 CHLPL Chlorophyll associated with large phytoplankton mg Chl a m-3 

 OXY Dissolved oxygen mmol O m-3 

Carbon submodule   

 DIC Dissolved inorganic carbon mmol C m-3 

 ALK Alkalinity mmol m-3 
234Thorium submodule  

 dTh Dissolved 234Th dpm L-1 

 SPTh 234Th adsorbed to small phytoplankton dpm L-1 

 LPTh 234Th adsorbed to large phytoplankton dpm L-1 

 SZTh 234Th adsorbed to small zooplankton dpm L-1 

 LZRESTh 234Th adsorbed to LZRES dpm L-1 

 LZDVMTh 234Th adsorbed to LZDVM dpm L-1 

 PZRESTh 234Th adsorbed to PZRES dpm L-1 

 PZDVMTh 234Th adsorbed to PZDVM dpm L-1 

 PONTh 234Th adsorbed to slowly-sinking detritus dpm L-1 

 LPONTh 234Th adsorbed to rapidly-sinking detritus dpm L-1 

Nitrogen isotope submodule  

 SPN15 15N in small phytoplankton mmol 15N m-3 

 LPN15 15N in large phytoplankton mmol 15N m-3 
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 SZN15 15N in small zooplankton mmol 15N m-3 

 LZRESN15 15N in LZRES mmol 15N m-3 

 LZDVMN15 15N in LZDVM mmol 15N m-3 

 PZRESN15 15N in PZRES mmol 15N m-3 

 PZDVMN15 15N in PZDVM mmol 15N m-3 

 NON15 15N in nitrate mmol 15N m-3 

 NHN15 15N in ammonium mmol 15N m-3 

 PONN15 15N in slowly-sinking detritus mmol 15N m-3 

 LPONN15 15N in rapidly-sinking detritus mmol 15N m-3 

 DONN15 15N in labile DON mmol 15N m-3 

 DONREFN15 15N in refractory DON mmol 15N m-3 
  1274 
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Figures 1275 

 1276 

 1277 

Figure 1 -   Schematic depiction of core NEMUROBCP model.  Arrows show transfer functions (orange = Si flux; 1278 
blue = N flux).  Rectangles show state variables (SiOH3 = silicic acid; NO3 = nitrate; NH4 = ammonium; Opalsmall = 1279 
small biogenic silica; Opallarge = large biogenic silica; DONref = refractory dissolved organic nitrogen; DONlabile = 1280 
labile dissolved organic nitrogen; PONsmall = small detritus; PONlarge = large detritus; DTM = diatoms; PS = small 1281 
phytoplankton; Chll = diatom chlorophyll; chls = small phytoplankton chlorophyll; ZS = protistan zooplankton; ZLres 1282 
= <1-mm metazoan zooplankton that are resident in the euphotic zone; ZLdvm = <1-mm diel-vertically-migrating 1283 
metazoan zooplankton; ZPres = >1-mm metazoan zooplankton that are resident in the euphotic zone; ZPdvm = >1-mm 1284 
diel-vertically-migrating metazoan zooplankton 1285 
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 1287 

Figure 2 – Locations of our in situ Lagrangian experiments (blue = California Current Ecosystem, Brown = Gulf of 1288 
Mexico, Green = Costa Rica Dome, Magenta = Chatham Rise).  1289 
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 1290 

Figure 3 – OEPMCMC parameter distributions for bottom-up control of small phytoplankton.  Line plots on top are 1291 
probability density functions for individual parameters (see bottom for label and axes).  Colored plots are heat maps 1292 
showing joint parameter distributions.  Parameters are: maximum growth rate at 0°C (Vmax,SP, units = d-1), half-1293 
saturation constant for nitrate uptake (KNO,SP, mmol N m-3), half-saturation constant for ammonium uptake (KNH,SP, 1294 
mmol N m-3), initial-slope of the photosynthesis-irradiance curve (αSP, m2 W-1 d-1), photoinhibition parameter (βSP, 1295 
m2 W-1 d-1), respiration rate at 0°C (resSP, d-1), linear mortality term at 0°C (mortSP, d-1), excretion parameter (excSP, 1296 
unitless), ammonium inhibition of nitrate uptake (inhNH,NO,SP, m3 mmol N-1). 1297 
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 1299 

Figure 4 – OEPMCMC parameter distributions for large phytoplankton and some other other model processes.  Line 1300 
plots on top are probability density functions for individual parameters (see bottom for label and axes).  Colored 1301 
plots are heat maps showing joint parameter distributions.  Parameters are: maximum growth rate at 0°C (Vmax,LP, 1302 
units = d-1), initial-slope of the photosynthesis-irradiance curve (αLP, m2 W-1 d-1), half-saturation constant for NH4

+ 1303 
uptake (KNH,LP, mmol N m-3), maximum grazing rate of small zooplankton on large phytoplankton (gmax,SZ,LP, d-1). 1304 
maximum grazing rate of large (>1-mm) epipelagic-resident mesozooplankton on small phytoplankton (gmax,PZRES,SP, 1305 
d-1), maximum grazing rate of large (>1-mm) vertically-migrating mesozooplankton on small (<1-mm) 1306 
mesozooplankton (gmax,PZDVM,LZ, d-1), the Ikeda respiration parameter for small (<1-mm) mesozooplankton, daytime 1307 
mortality rate for small (<1-mm) vertically-migrating mesozooplankton (mortday,LZDVM, m3 mmol N-1 d-1), 1308 
remineralization rate of DON to NH4

+ (refdec,DON,NH, d-1). 1309 

 1310 

 1311 
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 1313 

Figure 5 – Model-data net primary production comparison.  Blue box plots show model results for each simulated 1314 
Lagrangian experiment, with whiskers extending to 95% confidence limits.  Yellow diamonds show observations 1315 
from Lagrangian experiments. 1316 

 1317 

 1318 

Figure 6 – Model-data sinking particle export comparison.  Blue box plots show model results for each simulated 1319 
Lagrangian experiment, with whiskers extending to 95% confidence limits.  Yellow diamonds show observations 1320 
from sediment trap deployments (no observations were available for 9 experiments). 1321 
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 1323 

Figure 7 – Model-data water-column 234Th activity comparison.  Dark blue lines show mean vertical profile of 234Th 1324 
activity from MCMC model simulations with lighter blue shading indicating 95% C.I.  Red diamonds show 1325 
observations.  Each panel is for a separate Lagrangian experiment. 1326 
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 1327 

Figure 8 – Model-data comparison of C:234Th ratio (a) and δ15N of sinking particles.  Color indicates region.  Error 1328 
bars are ±1 standard deviation.  Black line is the 1:1 line.  Observations are derived from sediment trap 1329 
measurements.   1330 
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 1333 

Figure 9 – Triangle diagrams showing the proportion of export due to each biological carbon pump pathway.  1334 
Locations near the upper apex of the triangle indicated dominance by sinking particles, locations near the bottom left indicate dominance by 1335 
active transport, locations near the bottom right show dominance by mixing.  Colors represent the proportion of total model simulations with 1336 
export patterns falling within a specific proportion of different export pathways.    Lines indicated contours showing a constant proportion of one 1337 
BCP pathway (i.e., red lines are constant proportions of active transport, blue lines are constant proportions of gravitational flux, and purple lines 1338 
are constant proportions of mixing flux).  a) results for all simulations, b) results for a typical CCE coastal site (1604-3), c) typical CCE 1339 
oligotrophic site (1408-5), d) typical Costa Rica Dome site (CRD-1), e) typical Gulf of Mexico site (GoM-5), f) typical Chatham Rise site (Salp-1340 
5), g) example of a CCE site (0605-3) dominated by mixing flux. 1341 
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 1343 

Figure 10 – Heatmaps of active transport (a), active transport due to excretion in the deep ocean (b), active transport due to mesozooplankton 1344 
mortality at depth (c), the fraction of active transport that was due to mortality at depth (d), and the daytime specific mortality experienced by 1345 
mesozooplankton at their mesopelagic resting depths (e), all as a function of the total biomass of vertically-migrating mesozooplankton (i.e., sum 1346 
of both size classes).  Black lines and equations in a, b, c, and d were determined from ordinary least squares regressions of log-transformed data 1347 
(see text for regression statistics). (f) shows the probability density function for the fraction of large (>1 mm) mesozoolpankton mortality 1348 
experienced during the day at their mesopelagic resting depths. (g) and (h) show normalized histograms of log10-transformed zooplankton 1349 
biomass and active transport, respectively.  Dashed blue line is small epipelagic-resident zooplankton, solid blue is small DVM zooplankton, 1350 
dashed red is large epipelagic-resident zooplankton, solid red is large DVM zooplankton.  (i) shows the fraction of active transport mediated by 1351 
large mesozooplankton (>1 mm) as a function of their fraction of total vertically-migrating mesozooplankton biomass.  Dashed gray line is the 1352 
1:1 line. 1353 
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 1355 

Figure 11 – Gravitational flux as a function of net primary production for in situ data (a) and model results (b).  1356 
Averages and standard deviations are shown for individual Lagrangian experiments.  Nitrogen-based model results 1357 
were converted to carbon units assuming a C:N ration of 106:16 (mol:mol).  Background in both figures is a 1358 
heatmap of all model results (i.e., all Lagrangian experiments and all parameter sets).  Solid black lines show 1359 
contours of constant e-ratio (=gravitational flux / net primary production).   1360 

 1361 

 1362 

Figure 12 – Temporal variability in net primary production (a, mmol C m-2 d-1), gravitational flux (b, mmol N m-2 1363 
d-1), and export efficiency (c, unitless with a C:N conversion ratio of 106:16 mol:mol), along with a phase-space plot 1364 
depicting the same data (d).  All plots are from Lagrangian experiment 1604-3 (CCE upwelling region).  Different 1365 
colors are for simulations with ensemble parameter sets 2×105, 4×105, 6×105, 8×105, or 106.   1366 
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 1367 

Supp. Fig. 1 – Heatmap showing the relationship between modeled gravitational flux and the remineralization length 1368 
scale of fast-sinking detritus (RLS = Lsink/(refdec,LPON,DON+refdec,LPON,NH4) ) for a representative CCE upwelling-1369 
influenced experiment (a, 1604-3) and a representative Costa Rica Dome experiment (b, CRD-1).  Horizontal 1370 
magenta lines show the sediment-trap measured gravitational flux.  Probability density function for RLS determined 1371 
by the OEPMCMC procedure (black lines in c and d) and for only those solutions that predicted export flux within ±1 1372 
standard deviation of the mean sediment trap measurement for CCE 1604-3 and CRD-1 (red lines in c and d, 1373 
respectively).  1374 
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Appendix 1: Core NEMUROBCP equations 

Equations for small phytoplankton (SP):  The rate of change of small (i.e., non-diatom) phytoplankton as a function of time is equal to the gross production of 

small phytoplankton on nitrate plus the gross production of small phytoplankton on ammonium minus the sum of small phytoplankton respiration, small 

phytoplankton excretion, grazing on small phytoplankton by all five zooplankton groups, and non-grazer mediated mortality. 

𝑑𝑆𝑃

𝑑𝑡
= 𝐺𝑃𝑃𝑁𝑂3𝑆𝑃 + 𝐺𝑃𝑃𝑁𝐻4𝑆𝑃 − 𝑅𝐸𝑆𝑆𝑃 − 𝐸𝑋𝐶𝑆𝑃 − 𝐺𝑅𝐴𝑍𝑆𝑃2𝑆𝑍 − 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝑅𝐸𝑆 − 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝐷𝑉𝑀 − 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝑅𝐸𝑆 − 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝐷𝑉𝑀 − 𝑀𝑂𝑅𝑇𝑆𝑃 

 

 𝐺𝑃𝑃𝑁𝑂3𝑆𝑃 = 𝑉𝑚𝑎𝑥,𝑆𝑃 × 𝑇𝐿𝐼𝑀𝑆𝑃 × 𝐿𝐿𝐼𝑀𝑆𝑃 × 𝑁𝑂𝐿𝐼𝑀𝑆𝑃 × 𝑆𝑃 

 𝐺𝑃𝑃𝑁𝐻4𝑆𝑃 = 𝑉𝑚𝑎𝑥,𝑆𝑃 × 𝑇𝐿𝐼𝑀𝑆𝑃 × 𝐿𝐿𝐼𝑀𝑆𝑃 × 𝑁𝐻𝐿𝐼𝑀𝑆𝑃 × 𝑆𝑃 

 𝑇𝐿𝐼𝑀𝑆𝑃 = 𝑒𝑡𝑐𝑉,𝑠𝑝×𝑇 

 𝐿𝐿𝐼𝑀𝑆𝑃 = (1 − 𝑒−𝛼𝑆𝑃/𝑉𝑚𝑎𝑥,𝑆𝑃×𝑃𝐴𝑅)(𝑒−𝛽𝑆𝑃/𝑉𝑚𝑎𝑥,𝑆𝑃×𝑃𝐴𝑅) 

 𝑁𝑂𝐿𝐼𝑀𝑆𝑃 =
𝑁𝑂3

𝑁𝑂3+𝐾𝑁𝑂3,𝑆𝑃
𝑒−(𝑁𝐻4×𝑖𝑛ℎ𝑁𝐻,𝑁𝑂,𝑆𝑃) 

 𝑁𝐻𝐿𝐼𝑀𝑆𝑃 =
𝑁𝐻4

𝑁𝑂3+𝐾𝑁𝐻4,𝑆𝑃
 

 𝐺𝑃𝑃𝑁𝑂2𝑆𝑃 = 𝑇𝐿𝐼𝑀𝑆𝑃 × 𝐿𝐿𝐼𝑀𝑆𝑃 × 𝑁𝑂𝐿𝐼𝑀𝑆𝑃 

 𝑅𝐸𝑆𝑆𝑃 = 𝑟𝑒𝑓𝑟𝑒𝑠𝑝,𝑆𝑃 × 𝑒𝑡𝑐𝑟,𝑆𝑃×𝑇 × 𝑆𝑃 

 𝐸𝑋𝐶𝑆𝑃 = 𝑒𝑥𝑡𝑒𝑥𝑐,𝑠𝑝 × (𝐺𝑃𝑃𝑁𝑂3𝑆𝑃 + 𝐺𝑃𝑃𝑁𝐻4𝑆𝑃) 

 𝐺𝑅𝐴𝑍𝑆𝑃2𝑆𝑍 = 𝑔𝑚𝑎𝑥,𝑆𝑍,𝑆𝑃 × 𝑇𝐿𝐼𝑀𝑔,𝑆𝑍,𝑆𝑃 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑖𝑐 × 𝐺𝐿𝐼𝑀𝑆𝑍,𝑆𝑃 × 𝑆𝑍 

 𝑇𝐿𝐼𝑀𝑔,𝑆𝑍,𝑆𝑃 = 𝑒𝑡𝑐𝑔,𝑆𝑍,𝑆𝑃×𝑇 

 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑖𝑐 =
𝑂𝑥𝑦

𝑂𝑥𝑦+𝑘𝑜𝑥𝑦,𝑚𝑖𝑐
 

 𝐺𝐿𝐼𝑀𝑆𝑍,𝑆𝑃 = max (0,1 − 𝑒𝑖𝑣𝑆𝑍,𝑆𝑃×(𝑡ℎ𝑟𝑒𝑠ℎ𝑆𝑍,𝑆𝑃−𝑆𝑃)) 

 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝑅𝐸𝑆 = 𝑔𝑚𝑎𝑥,𝐿𝑍𝑅𝐸𝑆,𝑆𝑃 × 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝑅𝐸𝑆,𝑆𝑃 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝐿𝑍𝑅𝐸𝑆,𝑆𝑃 × 𝐿𝑍𝑅𝐸𝑆 

 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝑅𝐸𝑆,𝑆𝑃 = 𝑒𝑡𝑐𝑔,𝐿𝑍𝑅𝐸𝑆,𝑆𝑃×𝑇 

 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 =
𝑂𝑥𝑦

𝑂𝑥𝑦+𝑘𝑜𝑥𝑦,𝑚𝑒𝑡
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.07.475464doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475464
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

 𝐺𝐿𝐼𝑀𝐿𝑍𝑅𝐸𝑆,𝑆𝑃 = max (0,1 − 𝑒𝑖𝑣𝐿𝑍𝑅𝐸𝑆,𝑆𝑃×(𝑡ℎ𝑟𝑒𝑠ℎ𝐿𝑍𝑅𝐸𝑆,𝑆𝑃−𝑆𝑃)) 

 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝐷𝑉𝑀 = 𝑔𝑚𝑎𝑥,𝐿𝑍𝐷𝑉𝑀,𝑆𝑃 × 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝐷𝑉𝑀,𝑆𝑃 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝐿𝑍𝐷𝑉𝑀,𝑆𝑃 × 𝐿𝑍𝐷𝑉𝑀 

 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝐷𝑉𝑀,𝑆𝑃 = 𝑒𝑡𝑐𝑔,𝐿𝑍𝐷𝑉𝑀,𝑆𝑃×𝑇 

 𝐺𝐿𝐼𝑀𝐿𝑍𝐷𝑉𝑀,𝑆𝑃 = max (0,1 − 𝑒𝑖𝑣𝐿𝑍𝐷𝑉𝑀,𝑆𝑃×(𝑡ℎ𝑟𝑒𝑠ℎ𝐿𝑍𝐷𝑉𝑀,𝑆𝑃−𝑆𝑃)) 

 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝑅𝐸𝑆 = 𝑔𝑚𝑎𝑥,𝑃𝑍𝑅𝐸𝑆,𝑆𝑃 × 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝑅𝐸𝑆,𝑆𝑃 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝑃𝑍𝑅𝐸𝑆,𝑆𝑃 × 𝑃𝑍𝑅𝐸𝑆 

 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝑅𝐸𝑆,𝑆𝑃 = 𝑒𝑡𝑐𝑔,𝑃𝑍𝑅𝐸𝑆,𝑆𝑃×𝑇 

 𝐺𝐿𝐼𝑀𝑃𝑍𝑅𝐸𝑆,𝑆𝑃 = max (0,1 − 𝑒𝑖𝑣𝑃𝑍𝑅𝐸𝑆,𝑆𝑃×(𝑡ℎ𝑟𝑒𝑠ℎ𝑃𝑍𝑅𝐸𝑆,𝑆𝑃−𝑆𝑃)) × 𝑒−(𝑖𝑛ℎ𝑆𝑍𝐿𝑍𝐿𝑃,𝑆𝑃×(𝐿𝑃+𝑆𝑍+𝐿𝑍𝑅𝐸𝑆+𝐿𝑍𝐷𝑉𝑀))
 

 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝐷𝑉𝑀 = 𝑔𝑚𝑎𝑥,𝑃𝑍𝐷𝑉𝑀,𝑆𝑃 × 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝐷𝑉𝑀,𝑆𝑃 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝑃𝑍𝐷𝑉𝑀,𝑆𝑃 × 𝑃𝑍𝐷𝑉𝑀 

 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝐷𝑉𝑀,𝑆𝑃 = 𝑒𝑡𝑐𝑔,𝑃𝑍𝐷𝑉𝑀,𝑆𝑃×𝑇 

 𝐺𝐿𝐼𝑀𝑃𝑍𝐷𝑉𝑀,𝑆𝑃 = max (0,1 − 𝑒𝑖𝑣𝑃𝑍𝐷𝑉𝑀,𝑆𝑃×(𝑡ℎ𝑟𝑒𝑠ℎ𝑃𝑍𝐷𝑉𝑀,𝑆𝑃−𝑆𝑃)) × 𝑒−(𝑖𝑛ℎ𝑆𝑍𝐿𝑍𝐿𝑃,𝑆𝑃×(𝐿𝑃+𝑆𝑍+𝐿𝑍𝑅𝐸𝑆+𝐿𝑍𝐷𝑉𝑀))
 

 𝑀𝑂𝑅𝑇𝑆𝑃 = 𝑟𝑒𝑓𝑚𝑜𝑟𝑡,𝑆𝑃 × 𝑒𝑡𝑐𝑚,𝑆𝑃×𝑇 × 𝑆𝑃 

 

Equations for large phytoplankton (LP):  The rate of change of large phytoplankton (i.e., diatoms) as a function of time is equal to the gross production of large 

phytoplankton on nitrate plus the gross production of large phytoplankton on ammonium minus the sum of large phytoplankton respiration, large phytoplankton 

excretion, grazing on large phytoplankton by all five zooplankton groups, and non-grazer mediated mortality. 

 

𝑑𝐿𝑃

𝑑𝑡
= 𝐺𝑃𝑃𝑁𝑂2𝐿𝑃 + 𝐺𝑃𝑃𝑁𝐻2𝐿𝑃 − 𝑅𝐸𝑆𝐿𝑃 − 𝐸𝑋𝐶𝐿𝑃 − 𝐺𝑅𝐴𝑍𝐿𝑃2𝑆𝑍 − 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝑅𝐸𝑆 − 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝐷𝑉𝑀 −  𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝑅𝐸𝑆 −  𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝐷𝑉𝑀 − 𝑀𝑂𝑅𝑇𝐿𝑃 

 

𝐺𝑃𝑃𝑁𝑂3𝐿𝑃 = 𝑉𝑚𝑎𝑥,𝐿𝑃 × 𝑇𝐿𝐼𝑀𝐿𝑃 × 𝐿𝐿𝐼𝑀𝐿𝑃 × min(𝑁𝑂𝐿𝐼𝑀𝐿𝑃 + 𝑁𝐻𝐿𝐼𝑀𝐿𝑃, 𝑆𝑖𝐿𝐼𝑀𝐿𝑃) ×
𝑁𝑂𝐿𝐼𝑀𝐿𝑃

𝑁𝑂𝐿𝐼𝑀𝐿𝑃 + 𝑁𝐻𝐿𝐼𝑀𝐿𝑃

× 𝐿𝑃 

 𝐺𝑃𝑃𝑁𝐻4𝐿𝑃 = 𝑉𝑚𝑎𝑥,𝐿𝑃 × 𝑇𝐿𝐼𝑀𝐿𝑃 × 𝐿𝐿𝐼𝑀𝐿𝑃 × min(𝑁𝑂𝐿𝐼𝑀𝐿𝑃 + 𝑁𝐻𝐿𝐼𝑀𝐿𝑃 , 𝑆𝑖𝐿𝐼𝑀𝐿𝑃) ×
𝑁𝐻𝐿𝐼𝑀𝐿𝑃

𝑁𝑂𝐿𝐼𝑀𝐿𝑃+𝑁𝐻𝐿𝐼𝑀𝐿𝑃
× 𝐿𝑃 

 𝑇𝐿𝐼𝑀𝐿𝑃 = 𝑒𝑡𝑐𝑉,𝐿𝑝×𝑇  

 𝐿𝐿𝐼𝑀𝐿𝑃 = (1 − 𝑒−𝛼𝐿𝑃/𝑉𝑚𝑎𝑥,𝐿𝑃×𝑃𝐴𝑅)(𝑒−𝛽𝐿𝑃/𝑉𝑚𝑎𝑥,𝐿𝑃×𝑃𝐴𝑅) 

 𝑁𝑂𝐿𝐼𝑀𝐿𝑃 =
𝑁𝑂3

𝑁𝑂3+𝐾𝑁𝑂3,𝑆𝑃
𝑒−(𝑁𝐻4×𝑖𝑛ℎ𝑁𝐻,𝑁𝑂,𝐿𝑃) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.07.475464doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475464
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44 

 𝑁𝐻𝐿𝐼𝑀𝐿𝑃 =
𝑁𝐻4

𝑁𝑂3+𝐾𝑁𝐻4,𝐿𝑃
 

 𝑆𝑖𝐿𝐼𝑀𝐿𝑃 =
𝑆𝑖

𝑆𝑖+𝐾𝑆𝑖,𝐿𝑃
 

 𝐺𝑃𝑃𝑁𝑂2𝐿𝑃 = 𝑇𝐿𝐼𝑀𝐿𝑃 × 𝐿𝐿𝐼𝑀𝐿𝑃 × 𝑁𝑂𝐿𝐼𝑀𝐿𝑃 

 𝑅𝐸𝑆𝐿𝑃 = 𝑟𝑒𝑓𝑟𝑒𝑠𝑝,𝐿𝑃 × 𝑒𝑡𝑐𝑟,𝐿𝑃×𝑇 × 𝐿𝑃 

 𝐸𝑋𝐶𝐿𝑃 = 𝑒𝑥𝑡𝑒𝑥𝑐,𝐿𝑃 × (𝐺𝑃𝑃𝑁𝑂3𝐿𝑃 + 𝐺𝑃𝑃𝑁𝐻4𝐿𝑃) 

 𝐺𝑅𝐴𝑍𝐿𝑃2𝑆𝑍 = 𝑔𝑚𝑎𝑥,𝑆𝑍,𝐿𝑃 × 𝑇𝐿𝐼𝑀𝑔,𝑆𝑍,𝐿𝑃 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑖𝑐 × 𝐺𝐿𝐼𝑀𝑆𝑍,𝐿𝑃 × 𝑆𝑍 

 𝑇𝐿𝐼𝑀𝑔,𝑆𝑍,𝐿𝑃 = 𝑒𝑡𝑐𝑔,𝑆𝑍,𝐿𝑃×𝑇  

 𝐺𝐿𝐼𝑀𝑆𝑍,𝐿𝑃 = max (0,1 − 𝑒𝑖𝑣𝑆𝑍,𝐿𝑃×(𝑡ℎ𝑟𝑒𝑠ℎ𝑆𝑍,𝐿𝑃−𝐿𝑃)) 

 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝑅𝐸𝑆 = 𝑔𝑚𝑎𝑥,𝐿𝑍𝑅𝐸𝑆,𝐿𝑃 × 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝑅𝐸𝑆,𝐿𝑃 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝐿𝑍𝑅𝐸𝑆,𝐿𝑃 × 𝐿𝑍𝑅𝐸𝑆 

 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝑅𝐸𝑆,𝐿𝑃 = 𝑒𝑡𝑐𝑔,𝐿𝑍𝑅𝐸𝑆,𝐿𝑃×𝑇 

 𝐺𝐿𝐼𝑀𝐿𝑍𝑅𝐸𝑆,𝐿𝑃 = max (0,1 − 𝑒𝑖𝑣𝐿𝑍𝑅𝐸𝑆,𝐿𝑃×(𝑡ℎ𝑟𝑒𝑠ℎ𝐿𝑍𝑅𝐸𝑆,𝐿𝑃−𝐿𝑃)) 

 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝐷𝑉𝑀 = 𝑔𝑚𝑎𝑥,𝐿𝑍𝐷𝑉𝑀,𝐿𝑃 × 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝐷𝑉𝑀,𝐿𝑃 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝐿𝑍𝐷𝑉𝑀,𝐿𝑃 × 𝐿𝑍𝐷𝑉𝑀 

 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝐷𝑉𝑀,𝐿𝑃 = 𝑒𝑡𝑐𝑔,𝐿𝑍𝐷𝑉𝑀,𝐿𝑃×𝑇 

 𝐺𝐿𝐼𝑀𝐿𝑍𝐷𝑉𝑀,𝐿𝑃 = max (0,1 − 𝑒𝑖𝑣𝐿𝑍𝐷𝑉𝑀,𝐿𝑃×(𝑡ℎ𝑟𝑒𝑠ℎ𝐿𝑍𝐷𝑉𝑀,𝐿𝑃−𝐿𝑃)) 

 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝑅𝐸𝑆 = 𝑔𝑚𝑎𝑥,𝑃𝑍𝑅𝐸𝑆,𝐿𝑃 × 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝑅𝐸𝑆,𝐿𝑃 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝑃𝑍𝑅𝐸𝑆,𝐿𝑃 × 𝑃𝑍𝑅𝐸𝑆 

 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝑅𝐸𝑆,𝐿𝑃 = 𝑒𝑡𝑐𝑔,𝑃𝑍𝑅𝐸𝑆,𝐿𝑃×𝑇 

 𝐺𝐿𝐼𝑀𝑃𝑍𝑅𝐸𝑆,𝐿𝑃 = max (0,1 − 𝑒𝑖𝑣𝑃𝑍𝑅𝐸𝑆,𝐿𝑃×(𝑡ℎ𝑟𝑒𝑠ℎ𝑃𝑍𝑅𝐸𝑆,𝐿𝑃−𝐿𝑃)) × 𝑒
−(𝑖𝑛ℎ𝑆𝑍𝐿𝑍,𝐿𝑃×(𝑆𝑍+𝐿𝑍𝑅𝐸𝑆+𝐿𝑍𝐷𝑉𝑀))

 

 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝐷𝑉𝑀 = 𝑔𝑚𝑎𝑥,𝑃𝑍𝐷𝑉𝑀,𝐿𝑃 × 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝐷𝑉𝑀,𝐿𝑃 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝑃𝑍𝐷𝑉𝑀,𝐿𝑃 × 𝑃𝑍𝐷𝑉𝑀 

 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝐷𝑉𝑀,𝐿𝑃 = 𝑒𝑡𝑐𝑔,𝑃𝑍𝐷𝑉𝑀,𝐿𝑃×𝑇 

 𝐺𝐿𝐼𝑀𝑃𝑍𝐷𝑉𝑀,𝐿𝑃 = max (0,1 − 𝑒𝑖𝑣𝑃𝑍𝐷𝑉𝑀,𝐿𝑃×(𝑡ℎ𝑟𝑒𝑠ℎ𝑃𝑍𝐷𝑉𝑀,𝐿𝑃−𝐿𝑃)) × 𝑒−(𝑖𝑛ℎ𝑆𝑍𝐿𝑍,𝐿𝑃×(𝑆𝑍+𝐿𝑍𝑅𝐸𝑆+𝐿𝑍𝐷𝑉𝑀))
 

 𝑀𝑂𝑅𝑇𝐿𝑃 = 𝑟𝑒𝑓𝑚𝑜𝑟𝑡,𝐿𝑃 × 𝑒𝑡𝑐𝑚,𝐿𝑃×𝑇 × 𝐿𝑃 

 

𝑑𝑆𝑍

𝑑𝑡
= (𝐺𝑅𝐴𝑍𝑆𝑃2𝑆𝑍 + 𝐺𝑅𝐴𝑍𝐿𝑃2𝑆𝑍) × 𝐺𝐺𝐸𝑆𝑍 − 𝑀𝑂𝑅𝑇𝑆𝑍 − 𝐸𝑋𝐶𝑆𝑍 − 𝐸𝐺𝐸𝑆𝑍 − 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝑅𝐸𝑆 − 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝐷𝑉𝑀 − 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝑅𝐸𝑆 − 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝐷𝑉𝑀 
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 𝑀𝑂𝑅𝑇𝑆𝑍 = 𝑟𝑒𝑓𝑚𝑜𝑟𝑡,𝑆𝑍 × 𝑒𝑡𝑐𝑚,𝑆𝑍×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑖𝑐 × 𝑆𝑍 

 𝐸𝑋𝐶𝑆𝑍 = (𝐺𝑅𝐴𝑍𝑆𝑃2𝑆𝑍 + 𝐺𝑅𝐴𝑍𝐿𝑃2𝑆𝑍) × (𝐴𝐸𝑆𝑍 − 𝐺𝐺𝐸𝑆𝑍) 

 𝐸𝐺𝐸𝑆𝑍 = (𝐺𝑅𝐴𝑍𝑆𝑃2𝑆𝑍 + 𝐺𝑅𝐴𝑍𝐿𝑃2𝑆𝑍) × (1 − 𝐴𝐸𝑆𝑍) 

 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝑅𝐸𝑆 = 𝑔𝑚𝑎𝑥,𝐿𝑍𝑅𝐸𝑆,𝑆𝑍 × 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝑅𝐸𝑆,𝑆𝑍 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝐿𝑍𝑅𝐸𝑆,𝑆𝑍 × 𝐿𝑍𝑅𝐸𝑆 

 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝑅𝐸𝑆,𝑆𝑍 = 𝑒𝑡𝑐𝑔,𝐿𝑍𝑅𝐸𝑆,𝑆𝑍×𝑇 

 𝐺𝐿𝐼𝑀𝐿𝑍𝑅𝐸𝑆,𝑆𝑍 = max (0,1 − 𝑒𝑖𝑣𝐿𝑍𝑅𝐸𝑆,𝑆𝑍×(𝑡ℎ𝑟𝑒𝑠ℎ𝐿𝑍𝑅𝐸𝑆,𝑆𝑍−𝑆𝑍)) 

 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝐷𝑉𝑀 = 𝑔𝑚𝑎𝑥,𝐿𝑍𝐷𝑉𝑀,𝑆𝑍 × 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝐷𝑉𝑀,𝑆𝑍 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝐿𝑍𝐷𝑉𝑀,𝑆𝑍 × 𝐿𝑍𝐷𝑉𝑀 

 𝑇𝐿𝐼𝑀𝑔,𝐿𝑍𝐷𝑉𝑀,𝑆𝑍 = 𝑒𝑡𝑐𝑔,𝐿𝑍𝐷𝑉𝑀,𝑆𝑍×𝑇 

 𝐺𝐿𝐼𝑀𝐿𝑍𝐷𝑉𝑀,𝑆𝑍 = max (0,1 − 𝑒𝑖𝑣𝐿𝑍𝐷𝑉𝑀,𝑆𝑍×(𝑡ℎ𝑟𝑒𝑠ℎ𝐿𝑍𝐷𝑉𝑀,𝑆𝑍−𝑆𝑍)) 

 

 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝑅𝐸𝑆 = 𝑔𝑚𝑎𝑥,𝑃𝑍𝑅𝐸𝑆,𝑆𝑍 × 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝑅𝐸𝑆,𝑆𝑍 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝑃𝑍𝑅𝐸𝑆,𝑆𝑍 × 𝑃𝑍𝑅𝐸𝑆 

 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝑅𝐸𝑆,𝑆𝑍 = 𝑒𝑡𝑐𝑔,𝑃𝑍𝑅𝐸𝑆,𝑆𝑍×𝑇 

 𝐺𝐿𝐼𝑀𝑃𝑍𝑅𝐸𝑆,𝑆𝑍 = max (0,1 − 𝑒𝑖𝑣𝑃𝑍𝑅𝐸𝑆,𝑆𝑍×(𝑡ℎ𝑟𝑒𝑠ℎ𝑃𝑍𝑅𝐸𝑆,𝑆𝑍−𝑆𝑍)) × 𝑒−(𝑖𝑛ℎ𝐿𝑍,𝑆𝑍×(𝐿𝑍𝑅𝐸𝑆+𝐿𝑍𝐷𝑉𝑀))
 

 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝐷𝑉𝑀 = 𝑔𝑚𝑎𝑥,𝑃𝑍𝐷𝑉𝑀,𝑆𝑍 × 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝐷𝑉𝑀,𝑆𝑍 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝑃𝑍𝐷𝑉𝑀,𝑆𝑍 × 𝑃𝑍𝐷𝑉𝑀 

 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝐷𝑉𝑀,𝑆𝑍 = 𝑒𝑡𝑐𝑔,𝑃𝑍𝐷𝑉𝑀,𝑆𝑍×𝑇 

 𝐺𝐿𝐼𝑀𝑃𝑍𝐷𝑉𝑀,𝑆𝑍 = max (0,1 − 𝑒𝑖𝑣𝑃𝑍𝐷𝑉𝑀,𝑆𝑍×(𝑡ℎ𝑟𝑒𝑠ℎ𝑃𝑍𝐷𝑉𝑀,𝑆𝑍−𝑆𝑍)) × 𝑒−(𝑖𝑛ℎ𝐿𝑍,𝑆𝑍×(𝐿𝑍𝑅𝐸𝑆+𝐿𝑍𝐷𝑉𝑀))
 

 

 

𝑑𝐿𝑍𝑅𝐸𝑆

𝑑𝑡
= (𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝑅𝐸𝑆) × 𝐺𝐺𝐸𝐿𝑍𝑅𝐸𝑆 − 𝑀𝑂𝑅𝑇𝐿𝑍𝑅𝐸𝑆 − 𝐸𝑋𝐶𝑎𝑐𝑡𝑖𝑣𝑒,𝐿𝑍𝑅𝐸𝑆 − 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝐿𝑍𝑅𝐸𝑆 − 𝐸𝐺𝐸𝐿𝑍𝑅𝐸𝑆 − 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝑅𝐸𝑆 − 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝐷𝑉𝑀 

 𝑀𝑂𝑅𝑇𝐿𝑍𝑅𝐸𝑆 =
𝑟𝑒𝑓𝑚𝑜𝑟𝑡,𝑛𝑖𝑔ℎ𝑡,𝐿𝑍𝑅𝐸𝑆 × 𝑒𝑡𝑐𝑚,𝐿𝑍𝑅𝐸𝑆×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐿𝑍𝑅𝐸𝑆

2     during the night

𝑟𝑒𝑓𝑚𝑜𝑟𝑡,𝑑𝑎𝑦,𝐿𝑍𝑅𝐸𝑆 × 𝑒𝑡𝑐𝑚,𝐿𝑍𝑅𝐸𝑆×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐿𝑍𝑅𝐸𝑆
2       during the day   

 

𝐸𝑋𝐶𝑎𝑐𝑡𝑖𝑣𝑒,𝐿𝑍𝑅𝐸𝑆 = (𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝑅𝐸𝑆) × 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝑅𝐸𝑆 

 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝐿𝑍𝑅𝐸𝑆 = 𝐼𝑘𝐿𝑍 × 𝑒𝐼𝑘𝑎2×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐿𝑍𝑅𝐸𝑆 

𝐸𝐺𝐸𝐿𝑍𝑅𝐸𝑆 = (𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝑅𝐸𝑆) × (1 − 𝐴𝐸𝐿𝑍𝑅𝐸𝑆) 
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 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝑅𝐸𝑆 = 𝑔𝑚𝑎𝑥,𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝑅𝐸𝑆 × 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝑅𝐸𝑆 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝑅𝐸𝑆 × 𝑃𝑍𝑅𝐸𝑆 

 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝑅𝐸𝑆 = 𝑒𝑡𝑐𝑔,𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝑅𝐸𝑆×𝑇 

 𝐺𝐿𝐼𝑀𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝑅𝐸𝑆 = max (0,1 − 𝑒𝑖𝑣𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝑅𝐸𝑆×(𝑡ℎ𝑟𝑒𝑠ℎ𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝑅𝐸𝑆−𝐿𝑍𝑅𝐸𝑆)) 

 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝐷𝑉𝑀 = 𝑔𝑚𝑎𝑥,𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝑅𝐸𝑆 × 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝑅𝐸𝑆 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝑅𝐸𝑆 × 𝑃𝑍𝐷𝑉𝑀 

 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝑅𝐸𝑆 = 𝑒𝑡𝑐𝑔,𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝑅𝐸𝑆×𝑇  

 𝐺𝐿𝐼𝑀𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝑅𝐸𝑆 = max (0,1 − 𝑒𝑖𝑣𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝑅𝐸𝑆×(𝑡ℎ𝑟𝑒𝑠ℎ𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝑅𝐸𝑆−𝐿𝑍𝑅𝐸𝑆)) 

 

𝑑𝐿𝑍𝐷𝑉𝑀

𝑑𝑡
= (𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝐷𝑉𝑀) × 𝐺𝐺𝐸𝐿𝑍𝐷𝑉𝑀 − 𝑀𝑂𝑅𝑇𝐿𝑍𝐷𝑉𝑀 − 𝐸𝑋𝐶𝑎𝑐𝑡𝑖𝑣𝑒,𝐿𝑍𝐷𝑉𝑀 − 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝐿𝑍𝐷𝑉𝑀 − 𝐸𝐺𝐸𝐿𝑍𝐷𝑉𝑀 − 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝑅𝐸𝑆 − 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝐷𝑉𝑀 

 𝑀𝑂𝑅𝑇𝐿𝑍𝐷𝑉𝑀 =
𝑟𝑒𝑓𝑚𝑜𝑟𝑡,𝑛𝑖𝑔ℎ𝑡,𝐿𝑍𝐷𝑉𝑀 × 𝑒𝑡𝑐𝑚,𝐿𝑍𝐷𝑉𝑀×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐿𝑍𝐷𝑉𝑀

2     during the night

𝑟𝑒𝑓𝑚𝑜𝑟𝑡,𝑑𝑎𝑦,𝐿𝑍𝐷𝑉𝑀 × 𝑒𝑡𝑐𝑚,𝐿𝑍𝐷𝑉𝑀×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐿𝑍𝐷𝑉𝑀
2       during the day   

 

𝐸𝑋𝐶𝑎𝑐𝑡𝑖𝑣𝑒,𝐿𝑍𝐷𝑉𝑀 = (𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝐷𝑉𝑀) × 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝐷𝑉𝑀 

 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝐿𝑍𝐷𝑉𝑀 = 𝐼𝑘𝐿𝑍 × 𝑒𝐼𝑘𝑎2×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐿𝑍𝐷𝑉𝑀 

𝐸𝐺𝐸𝐿𝑍𝐷𝑉𝑀 = (𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝐷𝑉𝑀) × (1 − 𝐴𝐸𝐿𝑍𝐷𝑉𝑀) 

 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝑅𝐸𝑆 = 𝑔𝑚𝑎𝑥,𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝐷𝑉𝑀 × 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝐷𝑉𝑀 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝐷𝑉𝑀 × 𝑃𝑍𝑅𝐸𝑆 

 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝐷𝑉𝑀 = 𝑒𝑡𝑐𝑔,𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝐷𝑉𝑀×𝑇  

 𝐺𝐿𝐼𝑀𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝐷𝑉𝑀 = max (0,1 − 𝑒𝑖𝑣𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝐷𝑉𝑀×(𝑡ℎ𝑟𝑒𝑠ℎ𝑃𝑍𝑅𝐸𝑆,𝐿𝑍𝐷𝑉𝑀−𝐿𝑍𝐷𝑉𝑀)) 

 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝐷𝑉𝑀 = 𝑔𝑚𝑎𝑥,𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝐷𝑉𝑀 × 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝐷𝑉𝑀 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝐺𝐿𝐼𝑀𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝐷𝑉𝑀 × 𝑃𝑍𝐷𝑉𝑀 

 𝑇𝐿𝐼𝑀𝑔,𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝐷𝑉𝑀 = 𝑒𝑡𝑐𝑔,𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝐷𝑉𝑀×𝑇  

 𝐺𝐿𝐼𝑀𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝐷𝑉𝑀 = max (0,1 − 𝑒𝑖𝑣𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝐷𝑉𝑀×(𝑡ℎ𝑟𝑒𝑠ℎ𝑃𝑍𝐷𝑉𝑀,𝐿𝑍𝐷𝑉𝑀−𝐿𝑍𝐷𝑉𝑀)) 

 

 

 

𝑑𝑃𝑍𝑅𝐸𝑆

𝑑𝑡
= (𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝑅𝐸𝑆) × 𝐺𝐺𝐸𝑃𝑍𝑅𝐸𝑆 − 𝑀𝑂𝑅𝑇𝑃𝑍𝑅𝐸𝑆 − 𝐸𝑋𝐶𝑎𝑐𝑡𝑖𝑣,𝑃𝑍𝑅𝐸𝑆 − 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝑃𝑍𝑅𝐸𝑆 − 𝐸𝐺𝐸𝑃𝑍𝑅𝐸𝑆 
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 𝑀𝑂𝑅𝑇𝑃𝑍𝑅𝐸𝑆 =
𝑟𝑒𝑓𝑚𝑜𝑟𝑡,𝑛𝑖𝑔ℎ𝑡,𝑃𝑍𝑅𝐸𝑆 × 𝑒𝑡𝑐𝑚,𝑃𝑍𝑅𝐸𝑆×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝑃𝑍𝑅𝐸𝑆

2     during the night

𝑟𝑒𝑓𝑚𝑜𝑟𝑡,𝑑𝑎𝑦,𝑃𝑍𝑅𝐸𝑆 × 𝑒𝑡𝑐𝑚,𝑃𝑍𝑅𝐸𝑆×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝑃𝑍𝑅𝐸𝑆
2       during the day   

 

𝐸𝑋𝐶𝑎𝑐𝑡𝑖𝑣𝑒,𝑃𝑍𝑅𝐸𝑆 = (𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝑅𝐸𝑆) × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝑅𝐸𝑆 

 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝑃𝑍𝑅𝐸𝑆 = 𝐼𝑘𝑃𝑍 × 𝑒𝐼𝑘𝑎2×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝑃𝑍𝑅𝐸𝑆 

𝐸𝐺𝐸𝑃𝑍𝑅𝐸𝑆 = (𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝑅𝐸𝑆) × (1 − 𝐴𝐸𝑃𝑍𝑅𝐸𝑆) 

 

 

𝑑𝑃𝑍𝐷𝑉𝑀

𝑑𝑡
= (𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝐷𝑉𝑀) × 𝐺𝐺𝐸𝑃𝑍𝐷𝑉𝑀 − 𝑀𝑂𝑅𝑇𝑃𝑍𝐷𝑉𝑀 − 𝐸𝑋𝐶𝑎𝑐𝑡𝑖𝑣,𝑃𝑍𝐷𝑉𝑀 − 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝑃𝑍𝐷𝑉𝑀 − 𝐸𝐺𝐸𝑃𝑍𝐷𝑉𝑀 

 

 𝑀𝑂𝑅𝑇𝑃𝑍𝐷𝑉𝑀 =
𝑟𝑒𝑓𝑚𝑜𝑟𝑡,𝑛𝑖𝑔ℎ𝑡,𝑃𝑍𝐷𝑉𝑀 × 𝑒𝑡𝑐𝑚,𝑃𝑍𝐷𝑉𝑀×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝑃𝑍𝐷𝑉𝑀

2     during the night

𝑟𝑒𝑓𝑚𝑜𝑟𝑡,𝑑𝑎𝑦,𝑃𝑍𝐷𝑉𝑀 × 𝑒𝑡𝑐𝑚,𝑃𝑍𝐷𝑉𝑀×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝑃𝑍𝐷𝑉𝑀
2       during the day   

 

𝐸𝑋𝐶𝑎𝑐𝑡𝑖𝑣𝑒,𝑃𝑍𝐷𝑉𝑀 = (𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝐷𝑉𝑀) × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝐷𝑉𝑀 

 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝑃𝑍𝐷𝑉𝑀 = 𝐼𝑘𝑃𝑍 × 𝑒𝐼𝑘𝑎2×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑒𝑡 × 𝑃𝑍𝐷𝑉𝑀 

𝐸𝐺𝐸𝑃𝑍𝐷𝑉𝑀 = (𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝐷𝑉𝑀) × (1 − 𝐴𝐸𝑃𝑍𝐷𝑉𝑀) 

 

 

𝑑𝑁𝑂3

𝑑𝑡
= 𝑁𝐼𝑇𝑅𝐼𝐹𝐼𝐶𝐴𝑇𝐼𝑂𝑁 − 𝐺𝑃𝑃𝑁𝑂3𝑆𝑃 + 𝑅𝐸𝑆𝑆𝑃 × 𝑁𝑃𝑓𝑟𝑎𝑐,𝑆𝑃 − 𝐺𝑃𝑃𝑁𝑂3𝐿𝑃 + 𝑅𝐸𝑆𝐿𝑃 × 𝑁𝑃𝑓𝑟𝑎𝑐,𝐿𝑃 

 𝑁𝑃𝑓𝑟𝑎𝑐,𝑆𝑃 = 𝑓𝑆𝑃 × min (𝑔𝑝𝑝𝑆𝑃/𝑅𝐸𝑆𝑆𝑃)  Note that this formulation is different from default NEMURO and fixes an oddity that allows phytoplankton to create NO3 when respiration exceeds GPP 

 𝑔𝑝𝑝𝑆𝑃 = 𝐺𝑃𝑃𝑁𝑂3𝑆𝑃 + 𝐺𝑃𝑃𝑁𝐻4𝑆𝑃 

 𝑓𝑆𝑃 =
𝐺𝑃𝑃𝑁𝑂3𝑆𝑃

𝐺𝑃𝑃𝑁𝑂3𝑆𝑃+𝐺𝑃𝑃𝑁𝐻4𝑆𝑃
 

 𝑁𝑃𝑓𝑟𝑎𝑐,𝐿𝑃 = 𝑓𝑆𝑃 × min (𝑔𝑝𝑝𝐿𝑃/𝑅𝐸𝑆𝐿𝑃)  Note that this formulation is different from default NEMURO and fixes an oddity that allows phytoplankton to create NO3 when respiration exceeds GPP 

 𝑔𝑝𝑝𝐿𝑃 = 𝐺𝑃𝑃𝑁𝑂3𝐿𝑃 + 𝐺𝑃𝑃𝑁𝐻4𝐿𝑃  

 𝑓𝐿𝑃 =
𝐺𝑃𝑃𝑁𝑂3𝐿𝑃

𝐺𝑃𝑃𝑁𝑂3𝐿𝑃+𝐺𝑃𝑃𝑁𝐻4𝐿𝑃
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 𝑁𝐼𝑇𝑅𝐼𝐹𝐼𝐶𝐴𝑇𝐼𝑂𝑁 = 𝑟𝑒𝑓𝑛𝑖𝑡𝑟 × 𝑒𝑡𝑐𝑛𝑖𝑡𝑟×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀
𝑀𝑖𝑐

× 𝑁𝐻4 

 

 

𝑑𝑁𝐻4

𝑑𝑡
= ∑ ∑ 𝐺𝑅𝐴𝑍𝑖2𝑗

𝑗=𝑝𝑟𝑒𝑦𝑖=𝑝𝑟𝑜𝑡𝑖𝑠𝑡𝑠

× (𝐴𝐸𝑖 − 𝐺𝐺𝐸𝑖) + ∑ (𝐸𝑋𝐶𝑎𝑐𝑡𝑖𝑣,𝑖 + 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝑖)

𝑖=𝑚𝑒𝑠𝑜𝑧𝑜𝑜

+ 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝑁𝐻4 + 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝑁𝐻4 + 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁,𝑁𝐻4 × (1 − 𝑓𝐷𝑂𝑁,𝐷𝑂𝑁𝑟𝑒𝑓) + 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁𝑟𝑒𝑓,𝑁𝐻4

− 𝐺𝑃𝑃𝑁𝑂3𝑆𝑃 + 𝑅𝐸𝑆𝑆𝑃 × (1 − 𝑁𝑃𝑓𝑟𝑎𝑐,𝑆𝑃) − 𝐺𝑃𝑃𝑁𝑂3𝐿𝑃 + 𝑅𝐸𝑆𝐿𝑃 × (1 − 𝑁𝑃𝑓𝑟𝑎𝑐,𝐿𝑃) − 𝑁𝐼𝑇𝑅𝐼𝐹𝐼𝐶𝐴𝑇𝐼𝑂𝑁 

  

 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝑁𝐻4 = 𝑟𝑒𝑓𝑑𝑒𝑐,𝑝𝑜𝑛,𝑛ℎ × 𝑒𝑡𝑐𝑑𝑒𝑐,𝑝𝑜𝑛,𝑛ℎ×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑖𝑐 × 𝑃𝑂𝑁 

 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝑁𝐻4 = 𝑟𝑒𝑓𝑑𝑒𝑐,𝑙𝑝𝑜𝑛,𝑛ℎ × 𝑒𝑡𝑐𝑑𝑒𝑐,𝑙𝑝𝑜𝑛,𝑛ℎ×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑖𝑐 × 𝐿𝑃𝑂𝑁 

 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁,𝑁𝐻4 = 𝑟𝑒𝑓𝑑𝑒𝑐,𝑑𝑜𝑛,𝑛ℎ × 𝑒𝑡𝑐𝑑𝑒𝑐,𝑑𝑜𝑛,𝑛ℎ×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑖𝑐 × (1 − 𝑓𝐷𝑂𝑁,𝐷𝑂𝑁𝑟𝑒𝑓) × 𝐷𝑂𝑁 

 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁𝑟𝑒𝑓,𝑁𝐻4 = 𝑟𝑒𝑓𝑑𝑒𝑐,𝑑𝑜𝑛𝑟𝑒𝑓,𝑛ℎ × 𝑒𝑡𝑐𝑑𝑒𝑐,𝑑𝑜𝑛𝑟𝑒𝑓,𝑛ℎ×𝑇 × 𝑂𝑥𝑦𝐿𝐼𝑀𝑀𝑖𝑐 × 𝐷𝑂𝑁𝑟𝑒𝑓 

 

 

𝑑𝑃𝑂𝑁

𝑑𝑡
= 𝑀𝑂𝑅𝑇𝑆𝑃 + 𝑀𝑂𝑅𝑇𝐿𝑃 + ∑ ∑ 𝐺𝑅𝐴𝑍𝑖2𝑗 × (1 − 𝐴𝐸𝑖)

𝑗=𝑝𝑟𝑒𝑦𝑖=𝑝𝑟𝑜𝑡𝑖𝑠𝑡𝑠

− 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐼𝑂𝑁 − 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝑁𝐻4 − 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝐷𝑂𝑁 

 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐼𝑂𝑁 = 𝑟𝑒𝑓𝑑𝑒𝑐,𝑝𝑜𝑛,𝑙𝑝𝑜𝑛 × 𝑒𝑡𝑐𝑑𝑒𝑐,𝑃𝑂𝑁,𝐿𝑃𝑂𝑁×𝑇 × 𝑃𝑂𝑁2 

 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝐷𝑂𝑁 = 𝑟𝑒𝑓𝑑𝑒𝑐,𝑝𝑜𝑛,𝐷𝑂𝑁 × 𝑒𝑡𝑐𝑑𝑒𝑐,𝑝𝑜𝑛,𝑑𝑜𝑛×𝑇 × 𝑃𝑂𝑁 

 

 

𝑑𝐿𝑃𝑂𝑁

𝑑𝑡
= 𝑀𝑂𝑅𝑇𝑆𝑍 + 𝑀𝑂𝑅𝑇𝐿𝑍𝑟𝑒𝑠 + 𝑀𝑂𝑅𝑇𝐿𝑍𝑑𝑣𝑚 + 𝑀𝑂𝑅𝑇𝑃𝑍𝑟𝑒𝑠 + 𝑀𝑂𝑅𝑇𝑃𝑍𝑑𝑣𝑚 + ∑ ∑ 𝐺𝑅𝐴𝑍𝑖2𝑗 × (1 − 𝐴𝐸𝑖)

𝑗=𝑝𝑟𝑒𝑦𝑖=𝑚𝑒𝑠𝑜𝑧𝑜𝑜

+ 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐼𝑂𝑁 − 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝑁𝐻4 − 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝐷𝑂𝑁 

 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝐷𝑂𝑁 = 𝑟𝑒𝑓𝑑𝑒𝑐,𝑙𝑝𝑜𝑛,𝐷𝑂𝑁 × 𝑒𝑡𝑐𝑑𝑒𝑐,𝑙𝑝𝑜𝑛,𝑑𝑜𝑛×𝑇 × 𝐿𝑃𝑂𝑁 
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𝑑𝐷𝑂𝑁

𝑑𝑡
= 𝐸𝑋𝐶𝑆𝑃 + 𝐸𝑋𝐶𝐿𝑃 + 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝐷𝑂𝑁 + 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝐷𝑂𝑁 − 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁,𝑁𝐻4 − 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁,𝐷𝑂𝑁𝑟𝑒𝑓  

 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁,𝐷𝑂𝑁𝑟𝑒𝑓 = 𝑟𝑒𝑓𝑑𝑒𝑐,𝑑𝑜𝑛,𝑛ℎ × 𝑒𝑡𝑐𝑑𝑒𝑐,𝑑𝑜𝑛,𝑛ℎ×𝑇 × 𝑓𝐷𝑂𝑁,𝐷𝑂𝑁𝑟𝑒𝑓 × 𝐷𝑂𝑁 

 

 

𝑑𝐷𝑂𝑁𝑟𝑒𝑓

𝑑𝑡
= 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁,𝑁𝐻4 × 𝑓𝐷𝑂𝑁,𝐷𝑂𝑁𝑟𝑒𝑓 − 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁𝑟𝑒𝑓,𝑁𝐻4 

 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁𝑟𝑒𝑓,𝑁𝐻4 = 𝑟𝑒𝑓𝑑𝑒𝑐,𝐷𝑂𝑁𝑟𝑒𝑓,𝑁𝐻4 × 𝑒𝑡𝑐𝑑𝑒𝑐,𝐷𝑂𝑁𝑟𝑒𝑓,𝑁𝐻4×𝑇 × 𝐷𝑂𝑁𝑟𝑒𝑓 

 

 

𝑑𝑆𝑖

𝑑𝑡
= 𝑅𝑠𝑖:𝑁 × 𝐸𝑋𝐶𝐿𝑃 + 𝐷𝐼𝑆𝑆𝑂𝐿𝑈𝑇𝐼𝑂𝑁𝑂𝑝𝑎𝑙,𝑆𝑖 + 𝐷𝐼𝑆𝑆𝑂𝐿𝑈𝑇𝐼𝑂𝑁𝐿𝑂𝑝𝑎𝑙,𝑆𝑖 − 𝑅𝑠𝑖:𝑁 × (𝐺𝑃𝑃𝑁𝑂2𝐿𝑃 + 𝐺𝑃𝑃𝑁𝐻2𝐿𝑃 − 𝑅𝐸𝑆𝐿𝑃) 

 𝐷𝐼𝑆𝑆𝑂𝐿𝑈𝑇𝐼𝑂𝑁𝑂𝑝𝑎𝑙,𝑆𝑖 = 𝑟𝑒𝑓𝑑𝑒𝑐,𝑂𝑝𝑎𝑙,𝑆𝑖 × 𝑒𝑡𝑐𝑑𝑒𝑐,𝑂𝑝𝑎𝑙,𝑆𝑖×𝑇 × 𝑂𝑃 

 𝐷𝐼𝑆𝑆𝑂𝐿𝑈𝑇𝐼𝑂𝑁𝐿𝑂𝑝𝑎𝑙,𝑆𝑖 = 𝑟𝑒𝑓𝑑𝑒𝑐,𝐿𝑂𝑝𝑎𝑙,𝑆𝑖 × 𝑒𝑡𝑐𝑑𝑒𝑐,𝐿𝑂𝑝𝑎𝑙,𝑆𝑖×𝑇 × 𝐿𝑂𝑃 

 

 

𝑑𝑂𝑃

𝑑𝑡
= 𝑀𝑂𝑅𝑇𝐿𝑃 × 𝑅𝑠𝑖:𝑁 + 𝐺𝑅𝐴𝑍𝐿𝑃2𝑆𝑍 × 𝑅𝑠𝑖:𝑁 − 𝐷𝐼𝑆𝑆𝑂𝐿𝑈𝑇𝐼𝑂𝑁𝑂𝑝𝑎𝑙,𝑆𝑖 

 

 

𝑑𝐿𝑂𝑃

𝑑𝑡
= ∑ 𝐺𝑅𝐴𝑍𝐿𝑃2𝑖

𝑖=𝑚𝑒𝑠𝑜𝑧𝑜𝑜

× 𝑅𝑠𝑖:𝑁 − 𝐷𝐼𝑆𝑆𝑂𝐿𝑈𝑇𝐼𝑂𝑁𝐿𝑂𝑝𝑎𝑙,𝑆𝑖 
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𝐶ℎ𝑙𝑆𝑃 = 𝑆𝑃 × 𝑅𝐶:𝑁 × 12 × 𝐶ℎ𝑙: 𝐶𝑆𝑃 

 𝐶ℎ𝑙: 𝐶𝑆𝑃 = max (
𝐶ℎ𝑙:𝐶𝑆𝑃,𝑚𝑎𝑥

1+0.5×𝐶ℎ𝑙:𝐶𝑆𝑃,𝑚𝑎𝑥×
𝛼𝑐ℎ𝑙,𝑠𝑝

𝑃𝑚
𝐶

𝑆𝑃

×𝑃𝐴𝑅
  , 𝐶ℎ𝑙: 𝐶𝑆𝑃,𝑚𝑖𝑛) 

 𝛼𝑐ℎ𝑙,𝑠𝑝 = 𝛼𝑠𝑝 𝐶ℎ𝑙: 𝐶𝑆𝑃,𝑚𝑎𝑥⁄  

 𝑃𝑚
𝐶

𝑆𝑃
= 𝑉𝑚𝑎𝑥,𝑆𝑃 × 𝑇𝐿𝐼𝑀𝑆𝑃 × (𝑁𝑂𝐿𝐼𝑀𝑆𝑃 + 𝑁𝐻𝐿𝐼𝑀𝑆𝑃) ×

𝛼𝑠𝑝

𝛼𝑠𝑝+𝛽𝑠𝑝
× (

𝛽𝑠𝑝

𝛼𝑠𝑝+𝛽𝑠𝑝
)

𝛽𝑠𝑝 𝛼𝑠𝑝⁄

 

 

𝐶ℎ𝑙𝐿𝑃 = 𝐿𝑃 × 𝑅𝐶:𝑁 × 12 × 𝐶ℎ𝑙: 𝐶𝐿𝑃 

 𝐶ℎ𝑙: 𝐶𝐿𝑃 = max (
𝐶ℎ𝑙:𝐶𝐿𝑃,𝑚𝑎𝑥

1+0.5×𝐶ℎ𝑙:𝐶𝐿𝑃,𝑚𝑎𝑥×
𝛼𝑐ℎ𝑙,𝑙𝑝

𝑃𝑚
𝐶

𝐿𝑃

×𝑃𝐴𝑅
  , 𝐶ℎ𝑙: 𝐶𝐿𝑃,𝑚𝑖𝑛) 

 𝛼𝑐ℎ𝑙,𝑙𝑝 = 𝛼𝑙𝑝 𝐶ℎ𝑙: 𝐶𝐿𝑃,𝑚𝑎𝑥⁄  

 𝑃𝑚
𝐶

𝐿𝑃
= 𝑉𝑚𝑎𝑥,𝐿𝑃 × 𝑇𝐿𝐼𝑀𝐿𝑃 × min(𝑁𝑂𝐿𝐼𝑀𝐿𝑃 + 𝑁𝐻𝐿𝐼𝑀𝐿𝑃, 𝑆𝑖𝐿𝐼𝑀𝐿𝑃) ×

𝛼𝑙𝑝

𝛼𝑙𝑝+𝛽𝑙𝑝
× (

𝛽𝑙𝑝

𝛼𝑙𝑝+𝛽𝑙𝑝
)

𝛽𝑙𝑝 𝛼𝑙𝑝⁄
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Appendix 2: Carbon system equations 

𝑁𝑜𝑟𝑔 = 𝑆𝑃 + 𝐿𝑃 + 𝑆𝑍 + 𝐿𝑍𝑅𝑒𝑠 + 𝐿𝑍𝐷𝑉𝑀 + 𝑃𝑍𝑅𝑒𝑠 + 𝑃𝑍𝐷𝑉𝑀 + 𝑃𝑂𝑁 + 𝐿𝑃𝑂𝑁 + 𝐷𝑂𝑁 + 𝐷𝑂𝑁𝑟𝑒𝑓 

 Norg is the sum of organic nitrogen in a model layer. 

 

∆𝑂𝑥𝑦 = ∆𝑁𝑜𝑟𝑔 × 𝑂: 𝑁𝑁𝐻4 − ∆𝑁𝑂3 × (𝑂: 𝑁𝑁𝑂3 − 𝑂: 𝑁𝑁𝐻4) 

 O:NNO3 = 150/16 

 O:NNH4 = 118/16 

 

 

∆𝐷𝐼𝐶 = −∆𝑁𝑜𝑟𝑔 × 𝐶: 𝑁 

 C:N = 106/16 

 

∆𝐴𝑙𝑘 = −∆𝑁𝑂3 × 𝐶: 𝑁 + ∆𝑁𝐻4 −
∆𝑁𝑂3 + ∆𝑁𝐻4

𝑁: 𝑃
 

 N:P = 16 
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Appendix 3: Thorium equations 

 

𝑑𝑇ℎ

𝑑𝑡
= 𝜆234 × 𝑈238 + 𝐺𝑅𝐴𝑍𝑆𝑃2𝑆𝑍 × (𝐴𝐸𝑆𝑍 − 𝐺𝐺𝐸𝑆𝑍)

𝑆𝑃𝑇ℎ

𝑆𝑃
+ 𝐺𝑅𝐴𝑍𝐿𝑃2𝑆𝑍 × (𝐴𝐸𝑆𝑍 − 𝐺𝐺𝐸𝑆𝑍)

𝐿𝑃𝑇ℎ

𝐿𝑃
+ 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝑅𝐸𝑆 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝑅𝐸𝑆

𝑆𝑃𝑇ℎ

𝑆𝑃
+ 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝐷𝑉𝑀 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝐷𝑉𝑀

𝑆𝑃𝑇ℎ

𝑆𝑃

+ 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝑅𝐸𝑆 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝑅𝐸𝑆

𝑆𝑃𝑇ℎ

𝑆𝑃
+ 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝐷𝑉𝑀 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝐷𝑉𝑀

𝑆𝑃𝑇ℎ

𝑆𝑃
+ 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝑅𝐸𝑆 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝑅𝐸𝑆

𝐿𝑃𝑇ℎ

𝐿𝑃
+ 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝐷𝑉𝑀 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝐷𝑉𝑀

𝐿𝑃𝑇ℎ

𝐿𝑃

+ 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝑅𝐸𝑆 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝑅𝐸𝑆

𝐿𝑃𝑇ℎ

𝐿𝑃
+ 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝐷𝑉𝑀 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝐷𝑉𝑀

𝐿𝑃𝑇ℎ

𝐿𝑃
+ 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝑅𝐸𝑆 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝑅𝐸𝑆

𝑆𝑍𝑇ℎ

𝑆𝑍
+ 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝐷𝑉𝑀 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝐷𝑉𝑀

𝑆𝑍𝑇ℎ

𝑆𝑍

+ 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝑅𝐸𝑆 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝑅𝐸𝑆

𝑆𝑍𝑇ℎ

𝑆𝑍
+ 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝐷𝑉𝑀 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝐷𝑉𝑀

𝑆𝑍𝑇ℎ

𝑆𝑍
+ 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝑅𝐸𝑆 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝑅𝐸𝑆

𝐿𝑍𝑟𝑒𝑠𝑇ℎ

𝐿𝑍𝑟𝑒𝑠

+ 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝑅𝐸𝑆 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝑅𝐸𝑆

𝐿𝑍𝑑𝑣𝑚𝑇ℎ

𝐿𝑍𝑑𝑣𝑚
+ 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝐷𝑉𝑀 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝐷𝑉𝑀

𝐿𝑍𝑟𝑒𝑠𝑇ℎ

𝐿𝑍𝑟𝑒𝑠
+ 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝐷𝑉𝑀 × 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝐷𝑉𝑀

𝐿𝑍𝑑𝑣𝑚𝑇ℎ

𝐿𝑍𝑑𝑣𝑚
+ 𝑅𝐸𝑆𝑆𝑃

𝑆𝑃𝑇ℎ

𝑆𝑃

+ 𝑅𝐸𝑆𝐿𝑃

𝐿𝑃𝑇ℎ

𝐿𝑃
+ 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝐿𝑍𝑅𝐸𝑆

𝐿𝑍𝑟𝑒𝑠𝑇ℎ

𝐿𝑍𝑟𝑒𝑠
+ 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝐿𝑍𝐷𝑉𝑀

𝐿𝑍𝑑𝑣𝑚𝑇ℎ

𝐿𝑍𝑑𝑣𝑚
+ 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝑃𝑍𝑅𝐸𝑆

𝑃𝑍𝑟𝑒𝑠𝑇ℎ

𝑃𝑍𝑟𝑒𝑠
+ 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝑃𝑍𝐷𝑉𝑀

𝑃𝑍𝑑𝑣𝑚𝑇ℎ

𝑃𝑍𝑑𝑣𝑚

+ (𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝑁𝐻4 + 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝐷𝑂𝑁)
𝑃𝑂𝑁𝑇ℎ

𝑃𝑂𝑁
+ (𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝑁𝐻4 + 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝐷𝑂𝑁)

𝐿𝑃𝑂𝑁𝑇ℎ

𝐿𝑃𝑂𝑁
+ 𝑘𝑏𝑎𝑐𝑘𝑆𝑃𝑇ℎ + 𝑘𝑏𝑎𝑐𝑘𝐿𝑃𝑇ℎ + 𝑘𝑏𝑎𝑐𝑘𝑆𝑍𝑇ℎ + 𝑘𝑏𝑎𝑐𝑘𝐿𝑍𝑟𝑒𝑠𝑇ℎ

+ 𝑘𝑏𝑎𝑐𝑘𝐿𝑍𝑑𝑣𝑚𝑇ℎ + 𝑘𝑏𝑎𝑐𝑘𝑃𝑍𝑟𝑒𝑠𝑇ℎ + 𝑘𝑏𝑎𝑐𝑘𝑃𝑍𝑑𝑣𝑚𝑇ℎ + 𝑘𝑏𝑎𝑐𝑘𝑃𝑂𝑁𝑇ℎ + 𝑘𝑏𝑎𝑐𝑘𝐿𝑃𝑂𝑁𝑇ℎ − 𝑘𝑓𝑜𝑟 × 𝑆𝑃 × 𝑇ℎ − 𝑘𝑓𝑜𝑟 × 𝐿𝑃 × 𝑇ℎ − 𝑘𝑓𝑜𝑟 × 𝑆𝑍 × 𝑇ℎ

− 𝑘𝑓𝑜𝑟 × 𝐿𝑍𝑟𝑒𝑠 × 𝑇ℎ − 𝑘𝑓𝑜𝑟 × 𝐿𝑍𝑑𝑣𝑚 × 𝑇ℎ − 𝑘𝑓𝑜𝑟 × 𝑃𝑍𝑟𝑒𝑠 × 𝑇ℎ − 𝑘𝑓𝑜𝑟 × 𝑃𝑍𝑑𝑣𝑚 × 𝑇ℎ − 𝑘𝑓𝑜𝑟 × 𝑃𝑂𝑁 × 𝑇ℎ − 𝑘𝑓𝑜𝑟 × 𝐿𝑃𝑂𝑁 × 𝑇ℎ − 𝜆234 × 𝑇ℎ 

 

 

 

𝑑𝑆𝑃𝑇ℎ

𝑑𝑡
= 𝑘𝑓𝑜𝑟 × 𝑆𝑃 × 𝑇ℎ − 𝐺𝑅𝐴𝑍𝑆𝑃2𝑆𝑍

𝑆𝑃𝑇ℎ

𝑆𝑃
− 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝑅𝐸𝑆

𝑆𝑃𝑇ℎ

𝑆𝑃
− 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝐷𝑉𝑀

𝑆𝑃𝑇ℎ

𝑆𝑃
− 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝑅𝐸𝑆

𝑆𝑃𝑇ℎ

𝑆𝑃
− 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝐷𝑉𝑀

𝑆𝑃𝑇ℎ

𝑆𝑃
− 𝑀𝑂𝑅𝑇𝑆𝑃

𝑆𝑃𝑇ℎ

𝑆𝑃
− 𝑅𝐸𝑆𝑆𝑃

𝑆𝑃𝑇ℎ

𝑆𝑃
− 𝑘𝑏𝑎𝑐𝑘𝑆𝑃𝑇ℎ − 𝜆234𝑆𝑃𝑇ℎ 

 

 

𝑑𝐿𝑃𝑇ℎ

𝑑𝑡
= 𝑘𝑓𝑜𝑟 × 𝐿𝑃 × 𝑇ℎ − 𝐺𝑅𝐴𝑍𝐿𝑃2𝑆𝑍

𝐿𝑃𝑇ℎ

𝐿𝑃
− 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝑅𝐸𝑆

𝐿𝑃𝑇ℎ

𝐿𝑃
− 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝐷𝑉𝑀

𝐿𝑃𝑇ℎ

𝐿𝑃
− 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝑅𝐸𝑆

𝐿𝑃𝑇ℎ

𝐿𝑃
− 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝐷𝑉𝑀

𝐿𝑃𝑇ℎ

𝐿𝑃
− 𝑀𝑂𝑅𝑇𝐿𝑃

𝐿𝑃𝑇ℎ

𝐿𝑃
− 𝑅𝐸𝑆𝐿𝑃

𝐿𝑃𝑇ℎ

𝐿𝑃
− 𝑘𝑏𝑎𝑐𝑘𝐿𝑃𝑇ℎ − 𝜆234𝐿𝑃𝑇ℎ  
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𝑑𝑆𝑍𝑇ℎ

𝑑𝑡
= 𝑘𝑓𝑜𝑟 × 𝑆𝑍 × 𝑇ℎ + 𝐺𝑅𝐴𝑍𝑆𝑃2𝑆𝑍 × 𝐺𝐺𝐸𝑆𝑍

𝑆𝑃𝑇ℎ

𝑆𝑃
+ 𝐺𝑅𝐴𝑍𝐿𝑃2𝑆𝑍 × 𝐺𝐺𝐸𝑆𝑍

𝐿𝑃𝑇ℎ

𝐿𝑃
− 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝑅𝐸𝑆

𝑆𝑍𝑇ℎ

𝑆𝑍
− 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝐷𝑉𝑀

𝑆𝑍𝑇ℎ

𝑆𝑍
− 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝑅𝐸𝑆

𝑆𝑍𝑇ℎ

𝑆𝑍
− 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝐷𝑉𝑀

𝑆𝑍𝑇ℎ

𝑆𝑍

− 𝑀𝑂𝑅𝑇𝑆𝑍

𝑆𝑍𝑇ℎ

𝑆𝑍
− 𝑘𝑏𝑎𝑐𝑘𝑆𝑍𝑇ℎ − 𝜆234𝑆𝑍𝑇ℎ 

 

 

 

𝑑𝐿𝑍𝑟𝑒𝑠𝑇ℎ

𝑑𝑡
= 𝑘𝑓𝑜𝑟 × 𝐿𝑍𝑟𝑒𝑠 × 𝑇ℎ − 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝑅𝐸𝑆

𝐿𝑍𝑟𝑒𝑠𝑇ℎ

𝐿𝑍𝑟𝑒𝑠
− 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝐷𝑉𝑀

𝐿𝑍𝑟𝑒𝑠𝑇ℎ

𝐿𝑍𝑟𝑒𝑠
− 𝑀𝑂𝑅𝑇𝐿𝑍𝑅𝐸𝑆

𝐿𝑍𝑟𝑒𝑠𝑇ℎ

𝐿𝑍𝑟𝑒𝑠
− 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝐿𝑍𝑅𝐸𝑆

𝐿𝑍𝑟𝑒𝑠𝑇ℎ

𝐿𝑍𝑟𝑒𝑠
− 𝑘𝑏𝑎𝑐𝑘𝐿𝑍𝑟𝑒𝑠𝑇ℎ

− 𝜆234𝐿𝑍𝑟𝑒𝑠𝑇ℎ  

 

 

𝑑𝐿𝑍𝑑𝑣𝑚𝑇ℎ

𝑑𝑡
= 𝑘𝑓𝑜𝑟 × 𝐿𝑍𝑑𝑣𝑚 × 𝑇ℎ − 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝑅𝐸𝑆

𝐿𝑍𝑑𝑣𝑚𝑇ℎ

𝐿𝑍𝑑𝑣𝑚
− 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝐷𝑉𝑀

𝐿𝑍𝑑𝑣𝑚𝑇ℎ

𝐿𝑍𝑑𝑣𝑚
− 𝑀𝑂𝑅𝑇𝐿𝑍𝐷𝑉𝑀

𝐿𝑍𝑑𝑣𝑚𝑇ℎ

𝐿𝑍𝑑𝑣𝑚
− 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝐿𝑍𝐷𝑉𝑀

𝐿𝑍𝑑𝑣𝑚𝑇ℎ

𝐿𝑍𝑑𝑣𝑚
− 𝑘𝑏𝑎𝑐𝑘𝐿𝑍𝑑𝑣𝑚𝑇ℎ

− 𝜆234𝐿𝑍𝑑𝑣𝑚𝑇ℎ 

 

 

 

𝑑𝑃𝑍𝑟𝑒𝑠𝑇ℎ

𝑑𝑡
= 𝑘𝑓𝑜𝑟 × 𝑃𝑍𝑟𝑒𝑠 × 𝑇ℎ − 𝑀𝑂𝑅𝑇𝑃𝑍𝑅𝐸𝑆

𝑃𝑍𝑟𝑒𝑠𝑇ℎ

𝑃𝑍𝑟𝑒𝑠
− 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝑃𝑍𝑅𝐸𝑆

𝑃𝑍𝑟𝑒𝑠𝑇ℎ

𝑃𝑍𝑟𝑒𝑠
− 𝑘𝑏𝑎𝑐𝑘𝑃𝑍𝑟𝑒𝑠𝑇ℎ − 𝜆234𝑃𝑍𝑟𝑒𝑠𝑇ℎ 
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𝑑𝑃𝑍𝑑𝑣𝑚𝑇ℎ

𝑑𝑡
= 𝑘𝑓𝑜𝑟 × 𝑃𝑍𝑑𝑣𝑚 × 𝑇ℎ − 𝑀𝑂𝑅𝑇𝑃𝑍𝐷𝑉𝑀

𝑃𝑍𝑑𝑣𝑚𝑇ℎ

𝑃𝑍𝑑𝑣𝑚
− 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝑃𝑍𝐷𝑉𝑀

𝑃𝑍𝑑𝑣𝑚𝑇ℎ

𝑃𝑍𝑑𝑣𝑚
− 𝑘𝑏𝑎𝑐𝑘𝑃𝑍𝑑𝑣𝑚𝑇ℎ − 𝜆234𝑃𝑍𝑑𝑣𝑚𝑇ℎ 

 

 

𝑑𝑃𝑂𝑁𝑇ℎ

𝑑𝑡
= 𝑘𝑓𝑜𝑟 × 𝑃𝑂𝑁 × 𝑇ℎ + 𝐺𝑅𝐴𝑍𝑆𝑃2𝑆𝑍 × (1 − 𝐴𝐸𝑆𝑍)

𝑆𝑃𝑇ℎ

𝑆𝑃
+ 𝐺𝑅𝐴𝑍𝐿𝑃2𝑆𝑍 × (1 − 𝐴𝐸𝑆𝑍)

𝐿𝑃𝑇ℎ

𝐿𝑃
+ 𝑀𝑂𝑅𝑇𝑆𝑃

𝑆𝑃𝑇ℎ

𝑆𝑃
+ 𝑀𝑂𝑅𝑇𝐿𝑃

𝐿𝑃𝑇ℎ

𝐿𝑃
− 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐼𝑂𝑁

𝑃𝑂𝑁𝑇ℎ

𝑃𝑂𝑁

− (𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝑁𝐻4 + 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝐷𝑂𝑁)
𝑃𝑂𝑁𝑇ℎ

𝑃𝑂𝑁
− 𝑘𝑏𝑎𝑐𝑘𝑃𝑂𝑁𝑇ℎ − 𝜆234𝑃𝑂𝑁𝑇ℎ 

 

 

 

𝑑𝐿𝑃𝑂𝑁𝑇ℎ

𝑑𝑡
= 𝑘𝑓𝑜𝑟 × 𝑃𝑂𝑁 × 𝑇ℎ + 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝑅𝐸𝑆 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝑅𝐸𝑆)

𝑆𝑃𝑇ℎ

𝑆𝑃
+ 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝐷𝑉𝑀 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝐷𝑉𝑀)

𝑆𝑃𝑇ℎ

𝑆𝑃
+ 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝑅𝐸𝑆 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝑅𝐸𝑆)

𝑆𝑃𝑇ℎ

𝑆𝑃

+ 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝐷𝑉𝑀 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝐷𝑉𝑀)
𝑆𝑃𝑇ℎ

𝑆𝑃
+ 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝑅𝐸𝑆 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝑅𝐸𝑆)

𝐿𝑃𝑇ℎ

𝐿𝑃
+ 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝐷𝑉𝑀 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝐷𝑉𝑀)

𝐿𝑃𝑇ℎ

𝐿𝑃

+ 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝑅𝐸𝑆 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝑅𝐸𝑆)
𝐿𝑃𝑇ℎ

𝐿𝑃
+ 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝐷𝑉𝑀 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝐷𝑉𝑀)

𝐿𝑃𝑇ℎ

𝐿𝑃
+ 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝑅𝐸𝑆 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝑅𝐸𝑆)

𝑆𝑍𝑇ℎ

𝑆𝑍

+ 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝐷𝑉𝑀 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝐿𝑍𝐷𝑉𝑀)
𝑆𝑍𝑇ℎ

𝑆𝑍
+ 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝑅𝐸𝑆 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝑅𝐸𝑆)

𝑆𝑍𝑇ℎ

𝑆𝑍
+ 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝐷𝑉𝑀 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝐷𝑉𝑀)

𝑆𝑍𝑇ℎ

𝑆𝑍

+ 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝑅𝐸𝑆 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝑅𝐸𝑆)
𝐿𝑍𝑟𝑒𝑠𝑇ℎ

𝐿𝑍𝑟𝑒𝑠
+ 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝑅𝐸𝑆 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝑅𝐸𝑆)

𝐿𝑍𝑑𝑣𝑚𝑇ℎ

𝐿𝑍𝑑𝑣𝑚
+ 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝐷𝑉𝑀 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝐷𝑉𝑀)

𝐿𝑍𝑟𝑒𝑠𝑇ℎ

𝐿𝑍𝑟𝑒𝑠

+ 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝐷𝑉𝑀 × (1 − 𝑎𝑐𝑡𝑟𝑒𝑠,𝑃𝑍𝐷𝑉𝑀)
𝐿𝑍𝑑𝑣𝑚𝑇ℎ

𝐿𝑍𝑑𝑣𝑚
+ 𝑀𝑂𝑅𝑇𝑆𝑍

𝑆𝑍𝑇ℎ

𝑆𝑍
+ 𝑀𝑂𝑅𝑇𝐿𝑍𝑅𝐸𝑆

𝐿𝑍𝑟𝑒𝑠𝑇ℎ

𝐿𝑍𝑟𝑒𝑠
+ 𝑀𝑂𝑅𝑇𝐿𝑍𝐷𝑉𝑀

𝐿𝑍𝑑𝑣𝑚𝑇ℎ

𝐿𝑍𝑑𝑣𝑚
+ 𝑀𝑂𝑅𝑇𝑃𝑍𝑅𝐸𝑆

𝑃𝑍𝑟𝑒𝑠𝑇ℎ

𝑃𝑍𝑟𝑒𝑠

+ 𝑀𝑂𝑅𝑇𝑃𝑍𝐷𝑉𝑀

𝑃𝑍𝑑𝑣𝑚𝑇ℎ

𝑃𝑍𝑑𝑣𝑚
+ 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐼𝑂𝑁

𝑃𝑂𝑁𝑇ℎ

𝑃𝑂𝑁
− (𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝑁𝐻4 + 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝐷𝑂𝑁)

𝐿𝑃𝑂𝑁𝑇ℎ

𝐿𝑃𝑂𝑁
− 𝑘𝑏𝑎𝑐𝑘𝐿𝑃𝑂𝑁𝑇ℎ − 𝜆234𝐿𝑃𝑂𝑁𝑇ℎ 
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Appendix 4: 
15

Nitrogen equations 

 

RSP = SPN15 / SP 

RLP = LPN15 / LP 

RSZ = SZN15 / SZ 

RLZres = LZresN15 / LZRES 

RLZdvm = LZdvmN15 / LZDVM 

RPZres = PZresN15 / PZRES 

RPZdvm = PZdvmN15 / PZDVM 

RNO3 = NO3N15 / NO3 

RNH4 = NH4N15 / NH4 

RPON = PONN15 / PON 

RLPON = LPONN15 / LPON 

RDON = DONN15 / DON 

RDONREF = DONrefN15 / DONREF 

 

𝑑𝑆𝑃𝑁15

𝑑𝑡
= (𝐺𝑃𝑃𝑁𝑂3𝑆𝑃 − 𝑅𝐸𝑆𝑆𝑃 × 𝑁𝑃𝑓𝑟𝑎𝑐,𝑆𝑃) × 𝑅𝑁𝑂3 × 𝛼𝑁𝑂3𝑢𝑝 + (𝐺𝑃𝑃𝑁𝐻4𝑆𝑃 − 𝑅𝐸𝑆𝑆𝑃 × (1 − 𝑁𝑃𝑓𝑟𝑎𝑐,𝑆𝑃)) × 𝑅𝑁𝐻4 × 𝛼𝑁𝐻4𝑢𝑝 − 𝐸𝑋𝐶𝑆𝑃 × 𝑅𝑆𝑃 × 𝛼𝐸𝑥𝑢 − 𝑀𝑂𝑅𝑇𝑆𝑃 × 𝑅𝑆𝑃

− 𝐺𝑅𝐴𝑍𝑆𝑃2𝑆𝑍 × 𝑅𝑆𝑃 − 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝑅𝐸𝑆 × 𝑅𝑆𝑃 − 𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝐷𝑉𝑀 × 𝑅𝑆𝑃 − 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝑅𝐸𝑆 × 𝑅𝑆𝑃 − 𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝐷𝑉𝑀 × 𝑅𝑆𝑃 

 

 

𝑑𝐿𝑃𝑁15

𝑑𝑡
= (𝐺𝑃𝑃𝑁𝑂3𝐿𝑃 − 𝑅𝐸𝑆𝐿𝑃 × 𝑁𝑃𝑓𝑟𝑎𝑐,𝐿𝑃) × 𝑅𝑁𝑂3 × 𝛼𝑁𝑂3𝑢𝑝 + (𝐺𝑃𝑃𝑁𝐻4𝐿𝑃 − 𝑅𝐸𝑆𝐿𝑃 × (1 − 𝑁𝑃𝑓𝑟𝑎𝑐,𝐿𝑃)) × 𝑅𝑁𝐻4 × 𝛼𝑁𝐻4𝑢𝑝 − 𝐸𝑋𝐶𝐿𝑃 × 𝑅𝐿𝑃 × 𝛼𝐸𝑥𝑢 − 𝑀𝑂𝑅𝑇𝐿𝑃 × 𝑅𝐿𝑃
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+ 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝐿𝑍𝐷𝑉𝑀𝑅𝐿𝑍𝐷𝑉𝑀𝛼𝐿𝑍,𝐸𝑥𝑐 + 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝑃𝑍𝑅𝐸𝑆𝑅𝑃𝑍𝑅𝐸𝑆𝛼𝑃𝑍,𝐸𝑥𝑐 + 𝐸𝑋𝐶𝑏𝑎𝑠𝑎𝑙,𝑃𝑍𝐷𝑉𝑀𝑅𝑃𝑍𝐷𝑉𝑀𝛼𝑃𝑍,𝐸𝑥𝑐 − 𝑁𝐼𝑇𝑅𝐼𝐹𝐼𝐶𝐴𝑇𝐼𝑂𝑁 × 𝑅𝑁𝐻4𝛼𝑁𝑖𝑡 + 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝑁𝐻4 × 𝑅𝑃𝑂𝑁𝛼𝑃2𝑁

+ 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝑁𝐻4 × 𝑅𝐿𝑃𝑂𝑁𝛼𝑃2𝑁 + 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁,𝑁𝐻4 × 𝑅𝐷𝑂𝑁𝛼𝐷2𝑁 + 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁𝑟𝑒𝑓,𝑁𝐻4 × 𝑅𝐷𝑂𝑁𝑟𝑒𝑓𝛼𝐷2𝑁 

 

 

𝑑𝑃𝑂𝑁𝑁15

𝑑𝑡
= 𝑀𝑂𝑅𝑇𝑆𝑃 × 𝑅𝑆𝑃 + 𝑀𝑂𝑅𝑇𝐿𝑃 × 𝑅𝐿𝑃 + (1 − 𝐴𝐸𝑆𝑍)(𝐺𝑅𝐴𝑍𝑆𝑃2𝑆𝑍 + 𝐺𝑅𝐴𝑍𝐿𝑃2𝑆𝑍)𝑅𝑆𝑍𝛼𝑆𝑍,𝐸𝑔 − 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐼𝑂𝑁 × 𝑅𝑃𝑂𝑁 − 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝑁𝐻4 × 𝑅𝑃𝑂𝑁𝛼𝑃2𝑁

− 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝐷𝑂𝑁 × 𝑅𝑃𝑂𝑁𝛼𝑃2𝐷 
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𝑑𝐿𝑃𝑂𝑁𝑁15

𝑑𝑡
= (1 − 𝐴𝐸𝐿𝑍𝑅𝐸𝑆)(𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝑅𝐸𝑆)𝑅𝐿𝑍𝑅𝐸𝑆𝛼𝐿𝑍,𝐸𝑔 + (1 − 𝐴𝐸𝐿𝑍𝐷𝑉𝑀)(𝐺𝑅𝐴𝑍𝑆𝑃2𝐿𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝐿𝑃2𝐿𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝐿𝑍𝐷𝑉𝑀)𝑅𝐿𝑍𝐷𝑉𝑀𝛼𝐿𝑍,𝐸𝑔

+ (1 − 𝐴𝐸𝑃𝑍𝑅𝐸𝑆)(𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝑅𝐸𝑆 + 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝑅𝐸𝑆)𝑅𝑃𝑍𝑅𝐸𝑆𝛼𝑃𝑍,𝐸𝑔

+ (1 − 𝐴𝐸𝑃𝑍𝐷𝑉𝑀)(𝐺𝑅𝐴𝑍𝑆𝑃2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝐿𝑃2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝑆𝑍2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝐿𝑍𝑅𝐸𝑆2𝑃𝑍𝐷𝑉𝑀 + 𝐺𝑅𝐴𝑍𝐿𝑍𝐷𝑉𝑀2𝑃𝑍𝐷𝑉𝑀)𝑅𝑃𝑍𝐷𝑉𝑀𝛼𝑃𝑍,𝐸𝑔 + 𝑀𝑂𝑅𝑇𝑆𝑍 × 𝑅𝑆𝑍

+ 𝑀𝑂𝑅𝑇𝐿𝑍𝑅𝐸𝑆 × 𝑅𝐿𝑍𝑅𝐸𝑆 + 𝑀𝑂𝑅𝑇𝐿𝑍𝐷𝑉𝑀 × 𝑅𝐿𝑍𝐷𝑉𝑀 + 𝑀𝑂𝑅𝑇𝑃𝑍𝑅𝐸𝑆 × 𝑅𝑃𝑍𝑅𝐸𝑆 + 𝑀𝑂𝑅𝑇𝑃𝑍𝐷𝑉𝑀 × 𝑅𝑃𝑍𝐷𝑉𝑀 + 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐼𝑂𝑁 × 𝑅𝑃𝑂𝑁 − 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝑁𝐻4 × 𝑅𝐿𝑃𝑂𝑁𝛼𝑃2𝑁

− 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝐷𝑂𝑁 × 𝑅𝐿𝑃𝑂𝑁𝛼𝑃2𝐷 

 

 

𝑑𝐷𝑂𝑁𝑁15

𝑑𝑡
= 𝐸𝑋𝐶𝑆𝑃 × 𝑅𝑆𝑃 × 𝛼𝐸𝑥𝑢 + 𝐸𝑋𝐶𝐿𝑃 × 𝑅𝐿𝑃 × 𝛼𝐸𝑥𝑢 + 𝑅𝐸𝑀𝐼𝑁𝑃𝑂𝑁,𝐷𝑂𝑁 × 𝑅𝑃𝑂𝑁𝛼𝑃2𝐷 + 𝑅𝐸𝑀𝐼𝑁𝐿𝑃𝑂𝑁,𝐷𝑂𝑁 × 𝑅𝐿𝑃𝑂𝑁𝛼𝑃2𝐷 − 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁,𝑁𝐻4 × 𝑅𝐷𝑂𝑁𝛼𝐷2𝑁

− 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁,𝐷𝑂𝑁𝑟𝑒𝑓 × 𝑅𝐷𝑂𝑁 

 

 

𝑑𝐷𝑂𝑁𝑟𝑒𝑓𝑁15

𝑑𝑡
= 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁,𝐷𝑂𝑁𝑟𝑒𝑓 × 𝑅𝐷𝑂𝑁 − 𝑅𝐸𝑀𝐼𝑁𝐷𝑂𝑁𝑟𝑒𝑓,𝑁𝐻4 × 𝑅𝐷𝑂𝑁𝑟𝑒𝑓𝛼𝐷2𝑁 
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