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Summary

Globally, nearly a million plastic bottles are produced every minute (1). These non-biodegradable

plastic products are composed of Polyethylene terephthalate (PET). In 2016, researchers discovered 

PETase, an enzyme from the bacteria Ideonella sakaiensis which breaks down PET and nonbiodegradable

plastic. However, PETase has low efficiency at high temperatures. In this project, we optimized the rate 

of PET degradation by PETase by designing  new mutant enzymes which could break down PET much 

faster than PETase, which is currently the gold standard. We used machine learning (ML) guided directed

evolution to modify the PETase enzyme to have a higher optimal temperature (Topt), which would allow 

the enzyme to degrade PET more efficiently. 

First, we trained three machine learning models to predict Topt with high performance, including 

Logistic Regression, Linear Regression and Random Forest. We then used Random Forest to perform 

ML-guided directed evolution. Our algorithm generated hundreds of mutants of PETase and screened 

them using Random Forest to select mutants with the highest Topt, and then used the top mutants as the 

enzyme being mutated. 

After 1000 iterations, we produced a new mutant of PETase with Topt of 71.38 . We also ℃. We also 

produced a new mutant enzyme after 29 iterations with Topt of 61.3 . To ensure these mutant enzymes ℃. We also 

would remain stable, we predicted their melting temperatures using an external predictor and found the 

29-iteration mutant had improved thermostability over PETase.Our research is significant because using 

our approach and algorithm, scientists can optimize additional enzymes for improved efficiency.
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Introduction

According to the UN, over 200 million tons of plastic are produced every year, and 91 percent of 

all plastic produced is not recycled (1, 2). One non-polluting recycling and waste management method for

plastic is enzymatic recycling. In 2016, researchers in Japan stumbled upon a bacteria that consumed and 

successfully degraded Polyethylene terephthalate (PET), the most common form of non biodegradable 

plastic. This bacteria was named Ideonella sakaiensis. The bacteria contained the two enzymes, PETase 

and MHETase. PETase was the enzyme that enables Ideonella sakaiensis to successfully degrade PET 

(3). 

However, PETase from Ideonella sakaiensis has a low efficiency in breaking down PET. Factors 

that affect the rate of PET degradation by PETase include surface topology of the enzyme, water 

absorbency of PET, and higher enzyme reaction temperatures (4). Changing these factors can result in 

faster rates of PET degradation by PETase. For maximum efficiency, the optimal reaction temperature 

(Topt) should be above 60-65 degrees Celsius. This is because the polymer chain of the plastic fluctuates 

at these temperatures. This fluctuation allows water molecules to enter between the chains and weaken 

them, thus improving the efficiency at which an enzyme can break down PET (4). 

Directed evolution is the process of performing natural selection on biological molecules such as 

enzymes, amino acids, etc and generating mutants which are then steered toward a user defined goal. 

First, directed evolution generates different possible mutations of an enzyme. Second, based on those 

mutations, corresponding mutants are produced and then scored in the lab.The best scoring mutants are 

then selected based on the user defined goal such as activity or thermostability. Directed evolution then 

repeats this process with the top mutants from the previous iteration now acting as the main enzyme. 

Directed evolution was developed by Frances Arnold and won the Nobel prize in 2018 (5). 

Performing directed evolution using machine learning on the computer is known as in silico 

directed evolution. For in silico directed evolution, instead of producing those mutants in the lab, machine

learning is used to score and evaluate different possible mutations of enzymes. Based on the machine 

learning scores, the algorithm then selects the best mutant and uses it as a starting point again. Machine 

learning (ML) guided directed evolution is beneficial because machine learning algorithms can take in 

more data at once, iterations are faster, and the process is cheaper and less time consuming than actually 

performing directed evolution in the lab. One challenge that exists with this method is that if the machine 

learning algorithms written do not have a high performance, directed evolution will not achieve its 

purpose. Another challenge is that the machine learning models that make up the algorithm often perform 

better with classification tasks rather than predicting a continuous score. One case where ML-guided 

directed evolution has been used successfully for enzyme engineering is in 2019, where one group of 
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researchers engineered a new enzyme for stereodivergent carbon–silicon bond formation, a new-to-nature

chemical transformation (6). However, machine learning guided directed evolution has not previously 

been used to engineer enzymes which break down non-biodegradable plastic.

We hypothesize that machine learning can be used to predict an enzyme’s optimal temperature, 

and machine learning can be combined with directed evolution to engineer an optimized mutant of 

PETase with a Topt greater than 60°C for more efficient breakdown of PET and nonbiodegradable 

plastic.

In this project, machine learning was used to perform in silico directed evolution on the PETase 

enzyme to design a mutant which has predicted Topt of 70°C, nearly double that of the wild type PETase.

This novel enzyme has the potential to break down non-biodegradable plastic more efficiently and at a 

faster rate than PETase by functioning at a higher optimal temperature. This enzyme is also predicted by 

external algorithms to have a higher thermostability than the original PETase enzyme. This approach is 

novel because it is the first to optimize the PETase enzyme’s optimal reaction temperature using a 

machine-learning guided directed evolution approach. 

First, I used enzymes from the Brenda database to train the Linear Regression, Logistic 

Regression and Random Forest to predict an enzyme’s Topt with high performance. Then we performed 

in silico directed evolution on PETase by generating mutant enzymes and then screening them against the

Machine Learning models to predict the new mutant enzyme’s Topt and select new mutants for further 

evolution.

Results

A Machine-learning guided directed evolution algorithm was written in Python in order to 

engineer PETase for a higher thermostability. A flowchart of the approach is shown in Figures 1, 2 and 3. 

In order to guide the directed evolution, a machine learning model was written to predict an enzyme’s 

optimal reaction temperature (Topt). Three machine learning models: Random Forest, Linear Regression 

and Logistic Regression, were trained for this task using enzymes from the BRENDA database. In the 

second stage, my algorithm generated millions of mutants of PETase by randomly mutating different 

positions of the amino acid sequence and scored the mutants using Random Forest Regression – the ML 

model which performed the best – to determine which mutation would lead to the highest Topt. The 

algorithm then reenacted this mutation and selection process with the best scoring mutants, which now 

acted as the starting point for the next round of directed evolution.

Machine-Learning Models for Predicting Optimal Reaction Temperature
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Three machine learning models were trained to predict an enzyme’s Topt. Random Forest and 

Linear Regression were used to predict the actual Topt value of the enzymes. Logistic Regression was 

used as a classification model to predict whether the enzyme had a Topt above 65 degrees Celsius. 

The data set for the machine learning models consisted of enzymes from 11,420 organisms in 

total obtained from the BRENDA Database (7). Enzymes without Topt values were removed from the 

dataset. Before performing a cleanup of the data set, there were 2745 enzyme amino acid sequences 

comprising the dataset. During the cleanup process, we dropped duplicates, amino acid sequences with a 

length less than or equal to 7 and enzymes with a Topt equal to or lower than 0 degrees Celsius. The final 

training data consisted of 2643 enzyme amino acid sequences listed with the experimental Topts of each 

enzyme. The inputs for the models are the enzyme features such as molecular weight, amino acid 

frequencies, dipeptide frequencies, and the enzyme’s host organism’s optimal growth temperature, as 

shown in Table 1. These enzyme features were calculated from the amino acid sequence listed from the 

BRENDA database.

The Random Forest and Linear Regression models were evaluated based on the R^2 value. The 

Logistic Regression model was evaluated using an accuracy score. The results are shown in Table 2. 

Lasso Linear Regression obtained an R^2 value of 0.54 on the training set and 0.52 on the test set. 

Random Forest attained a R^2 value of 0.9322 on the training set and 0.624 on the test set.  

Logistic Regression attained an accuracy of 92.6% on the training set and 88.3% on the test set. The 

graphs of these results are shown in Figure 6.

Feature Ranking and Selection:

Using Lasso Linear Regression, we ranked the enzyme features that we used as inputs for the 

models and algorithms. The most important 10 features are shown in Table 5. Out of 431 features, 156 

features had non-zero coefficients and were kept by Lasso Linear Regression in the feature set. 

Directed Evolution for PETase Engineering

The amino acid sequence for the old original PETase enzyme is shown above in the left column 

of Table 4 with its Topt of 42 degrees Celsius. The Amino Acid sequence for the newly designed 

enzymes with 1000 and 29 iterations of directed evolution are shown in the second and third columns of 

Table 3. The enzyme generated with 1000 mutations has a predicted Topt of 71.38 degrees C.  The 

enzyme generated with 29 mutations has a predicted Topt of 61.3 degrees C.  Figure 5 shows the Topt of 

the mutant enzyme developed after 29 iterations, increasing through the iterations.

The thermostability of the enzyme was measured by the predicted melting temperatures shown in 

Table 4. We used the melting temperature predictor published by Ku et al (8) to predict these melting 
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temperatures.  The TM index is proportional to the actual melting temperatures of the enzymes. The TM 

Index > 1 implies that the True Melting temperature value of the protein may exceed 65 ◦C (high Tm 

protein), whereas a TM < 0 implies that the True Melting temperature value may be below 55 degrees C. 

A TM index between 0 and 1 implies that the true melting temperature is within 55 and 65 degrees 

Celsius. As seen in Table 4, the original PETase enzyme had a melting temperature in the range of 55 to 

65 degrees C and a TM index of 0.778. The mutant PETase enzyme after 1000 iterations was also 

predicted as having a melting temperature in the range of 55 to 65 degrees C and achieved a TM index of 

0.458.  The mutant PETase enzyme after 29 iterations was also predicted as having a melting temperature 

in the range of 55 to 65 degrees C and received a TM index of 0.988.  

Discussion:

Machine Learning Results: 

Out of the three Machine learning models trained, Random Forest was the best regression model for 

calculating the actual Topt while Logistic Regression was the best classifier for predicting a Topt above 

65 degrees C.  The models were evaluated on a training and test set. A training set is the data used to 

build and train the model. A test set determines how well the model performs on data outside the training 

set. The regression models were scored based on the coefficient of determination (R^2 metric). The R2 

score is a metric that is used to evaluate the performance of a regression-based machine learning model. It

measures the amount of variance in the predictions explained by the dataset. The classification models 

were scored based on accuracy. Accuracy is the fraction of correct predictions over total predictions. 

       The inputs of the models and the algorithm were the enzyme features. Lasso Linear Regression was 

also used to rank the features by their coefficients when predicting Topt. Out of the 431 enzyme features, 

only 156 features had non-zero coefficients. Lasso Linear Regression kept these features in the feature set

and dropped the features with the zero coefficients. The top 10 ranking features selected by Lasso Linear 

Regression are shown in Table 5 with their respective weights. The most important feature by far was 

OGT, the optimal growth temperature of the host organism of the enzyme. This makes sense because the 

Topt of an enzyme would naturally evolve to be around the range of the temperature where its host 

organism grows. For example, enzymes of thermophilic organisms would have to have a high Topt in 

order for the enzyme to function at the high temperatures these organisms thrive in.

As seen by its’ R^2 value of 0.54 on the training set and 0.52 on the test set,  Linear Regression 

with Lasso Regularization did not work very well on both of the datasets for predicting the Topt of the 

enzymes. However as shown by its similar R^2 value on both the training and test set, Linear Regression 

generalized well. With a R^2 value of 0.9322 on the training set and 0.624, Random Forest did very well 
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on the training set and was the best regression model for predicting Topt. Logistic Regression showed a 

high accuracy of 92.6 % on the training set and of 88.3% on the test set for predicting a Topt greater than 

or equal to 65 degrees Celsius. As compared to a previous research study that created a model to predict 

Topt, our algorithm performed better based on the metrics of R^2 score (9). The other model achieved a 

R^2 score of 0.51 on the test set using Random Forest and Deep Learning. 

Directed Evolution Results

In the directed evolution stage of the algorithm, the mutant enzyme of PETase developed as an 

output after 29 iterations is the better enzyme to test in the lab as it more closely resembles the original 

PETase enzyme as compared to the mutant enzyme developed after 1000 iterations. The mutant enzyme 

of PETase after 1000 iterations achieved a Topt of 71.38 degrees C whereas the mutant enzyme of 

PETase after 29 iterations achieved a Topt of 61.3 degrees C. As shown in Figure 4, the Topt of the 

enzyme increases at a very high rate for the first 200 iterations of Directed Evolution and then stabilizes 

and continues to rise between 65 and 70 degrees Celsius. 

The mutant enzyme of PETase after 1000 iterations could be considered as a separate enzyme 

rather than a mutant of PETase, since its amino acid sequence differs greatly from that of the original 

PETase enzyme. In addition, the mutant PETase enzyme after 29 iterations achieved a much higher TM 

index (0.988) than the mutant PETase enzyme after 1000 iterations (0.458). This might be due to the TM 

predictor considering the mutant PETase enzyme after 1000 iterations to be separate from the original 

PETase enzyme since their amino acid sequences vary so greatly. The mutant PETase enzyme with 29 

iterations more closely resembles the original PETase enzyme. These enzyme melting temperature values 

show that the PETase and the mutant PETase enzymes’ thermostability is between 55 and 65 degrees 

Celsius. This means that we can indeed optimize the optimal temperatures of PETase above 60 degrees 

Celsius for maximum efficiency, and the enzyme will still be stable and working at those temperatures. In

addition, our 29-iteration mutated PETase enzyme has a higher TM index as compared to the original 

PETase enzyme, which provides external validation that our ML-guided directed evolution was 

successful. This also signifies that increasing the enzyme’s Topt also increased its thermostability.

Conclusions and Future Work

In order to avoid potential sources of error, while generating mutants, the algorithm avoided 

mutating the substrate site of the PETase enzyme in order to ensure the enzyme would continue to 

function. This was implemented by preserving certain positions on the amino acid sequence and making 

sure the algorithm excluded those areas while mutating. Those positions corresponded to  the substrate 

binding positions on the enzyme.
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In looking towards future work on this project, we plan to synthesize and test the two mutant 

enzymes this algorithm produced in the lab, both after 1000 and 29 iterations. We will also test their 

optimal temperature for breaking down PET. We will express the enzymes into bacteria and then measure

the bacteria’s efficiency in degrading PET samples of differing sizes. For a future project, I am also 

planning to express the best mutant enzyme in Cyanobacteria, in order to allow these photosynthetic 

bacteria to degrade the plastic in the sea and convert it into non-harmful products for the ocean and 

marine life. 

Materials and Methods

A. Machine Learning Main Procedure and Training the Machine Learning Models:

Enzyme data from the Brenda Database was used to train the machine learning models to predict 

the enzyme’s Topt. After obtaining the data, the algorithm split the data set into a training (90% of the 

data set) and independent test set (10% of the data set). The inputs for the model were the enzyme 

features calculated from the amino acid sequence and are listed in Table 1. These inputs include amino 

acid frequency, dipeptide frequency, and optimal growth temperature (OGT). Optimal growth 

temperature is defined as the temperature at which the host organism of the enzyme has maximum growth

and reproduction. OGT was listed in the BRENDA database. The remaining features were calculated 

from the amino acid sequences through the modLAMP python library(12). Before performing a cleanup 

of the BRENDA data set, there were 2745 enzyme amino acid sequences comprising the dataset. During 

the cleanup process, we used the Pandas library to drop duplicate rows, amino acid sequences with a 

length less than or equal to 7, and enzymes with a Topt equal to or lower than 0 degrees Celsius. The final

training data consisted of 2643 enzyme amino acid sequences listed with the experimental Topts of each 

enzyme.

Three Machine learning models were trained to predict Topt: Random Forest, Linear Regression 

and Logistic regression. Classification Models such as logistic regression are concerned with predicting a 

discrete label, such as Topt >=  65 degrees C. Regression models such as Linear Regression and Random 

Forest models fundamentally predict a continuous quantity such as the actual Topt value for the enzymes. 

The three Machine Learning models were implemented using the scikit python library (11).  

In the training stage, first Linear Regression was trained to have a high R^2 value (correlation 

value) between the Predicted Topt and the actual Topt of the enzymes. However in ordinary least squares 

regression,  the R^2 values were only 0.607 for the training set and 0.33 for the test set. This showed that 

Linear regression was overfitting and not generalizing well to unseen data from the test set. Thus, we had 

to regularize Linear regression by using the lasso method. Lasso Regression is linear regression with 
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added l1 regularization. This regularization adds a penalty to a model if the model is overfitting, meaning 

if it is setting the value of its weights too high. Here,Lasso regularization set the weights of the enzyme 

features that were unimportant to Linear Regression to 0. Now after implementing Lasso, Linear 

regression obtained an R^2 value of 0.54 on the training set and 0.52 on the test set. 

Then a Random Forest regression model was trained which performed much better on 

minimizing error between the predicted and actual Topt. Random Forest models operate by assembling 

different decision trees, then taking the mean of those decision trees and setting that as the predicted 

output.  Random Forest attained a R^2 value of 0.9322 on the training set and 0.624 on the test set.  

Logistic Regression was the classifier that was trained and it was measured by its accuracy in 

predicting whether an enzyme’s Topt was above 65 degrees Celsius. Logistic Regression attained an 

accuracy of 92.6% on the training set and 88.3% on the test set. The graphs of these results are shown in 

Figure 6.

B. Directed Evolution Procedure:

The ML-guided directed evolution algorithm generated a thousand mutants of PETase on every 

iteration and screened them using Random Forest Regression. The enzyme with the highest Topt was then

selected and mutated in the next iteration of the algorithm. This process is known as machine learning 

(ML) guided in silico directed evolution and it was used in order to steer the mutants of PETase towards 

higher thermostability. In this type of directed evolution, machine learning is used to score and evaluate 

different possible mutations of enzymes. Based on the machine learning scores, the algorithm then selects

the best mutant and uses it as a starting point again.

First, in our ML-guided directed evolution approach, the algorithm randomly mutated the PETase

enzyme at random positions, excluding the substrate site at positions where the PET molecule binds to the

enzyme according to the Uniprot database (13). The algorithm did not mutate the binding site of the 

enzyme because this might decrease enzymatic activity. A thousand mutants were generated in this way. 

Second, based on those mutations, the algorithm used Random Forest to score the corresponding mutants 

based on their predicted Topt values. The best scoring mutant was then selected based on its optimal 

temperature. The algorithm then repeated this mutation and selection process with the top mutant from 

the previous iteration now acting as the main enzyme. Summed up, after performing directed evolution on

the mutants of PETase, the algorithm selected the best scoring mutant and performed random mutations 

on it at random positions, excluding the substrate site. This process was repeated for 1000 iterations and 

yielded an enzyme with 71.38 degrees C Topt. However, 1000 iterations would lead to approximately 

1000 mutations in the original enzyme, which would create an enzyme vastly different from the original 

PETase. The original PETase enzyme has only 290 amino acids. Thus, this process was then also repeated
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for 29 iterations in order to yield a mutant enzyme more similar to PETase rather than a completely new 

enzyme. After 29 iterations, ML-guided directed evolution produced an enzyme with a predicted Topt of 

61.3 degrees C.  

C. External Validation of Mutant PETase Enzyme

The enzyme’s melting temperature ranges and TM index values were generated by the online melting 

temperature predictor by Ku et al (8). The TM values are shown in Table 4. These melting temperatures 

further validate that the mutant enzymes produced by the algorithm are stable and can function at their 

optimal temperatures without breaking down. These values show that the PETase and the mutant PETase 

enzymes’ thermostability is between 55 and 65 degrees Celsius. The TM index for the mutated PETase 

enzyme is larger than that of the original PETase enzyme, signifying that increasing the enzyme’s Topt 

also increased the enzyme’s thermostability. 
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Figures and Tables

Figure 1: First Flow Chart of Training Stage Approach

Caption: This flowchart shows the training of Linear Regression, Logistic regression and Random Forest

to predict the Topt of the training set of the data. 

Figure 2: Second Flow Chart of Training Stage Approach

Caption: This flowchart shows how the three Machine Learning models were used to predict the Topt of 

the enzymes in the test set of the data. 

Figure 3: Third Flow Chart show Ml-guided Directed Evolution Approach

Caption: This flowchart shows our process of performing in silico directed evolution on PETase.
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Table 1

Input Feature Description Number of Features

Global Protein Features The global protein features 
included in this list are : 
Aromaticity, Hydrophobicity, 
Instability Index, Charge, 
Length, Molecular Weight, 
Aliphaticity, Charge Density, 
Boman Index, and PI.

10

Amino Acid Frequencies The occurrence of a particular 
amino acid in the sequence 
divided by the length of the 
sequence.

20

Dipeptide Frequencies The occurrence of peptides that 
yields two molecules of amino 
acid on hydrolysis.

400

Optimal Growth Temperature The temperature at which the 
host organism exhibits 
maximum growth and 
reproduction.

1

Total Number of Features 431 431

Caption: Enzyme Features calculated for predicting Topt using machine learning models. 

Table 2

Linear Regression with Lasso 
Regularization

Random Forest Logistic Regression

Training Set R^2 = 0.54 R^2 = 0.9322 Accuracy = 92.6%

Test Set R^2 = 0.52 R^2 = 0.624 Accuracy = 88.3%

Caption: Results of Machine Learning models for predicting Topt.
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Figure 4: Directed Evolution graph for 1000 Iterations

Caption:  This graph shows the progression of Predicted Topt we obtained over 1000 iterations of 

mutations and ML-guided directed evolution on the original PETase enzyme. The final Topt obtained was

71.48 degrees Celsius as seen in Table 3.
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Figure 5 : Directed Evolution over 29 iterations

Caption:  This graph shows the progression of Predicted Topt we obtained over 29 iterations of  

mutations and ML-guided directed evolution on the original PETase enzyme. The final Topt we obtained 

was 61.3 degrees Celsius.

Table 3

Type of enzyme Original PETase 
enzyme

Modified new PETase 
enzyme after 1000 
iterations

Mutant PETase Enzyme
after 29 iterations

Amino Acid Sequence MNFPRASRLMQAAV
LGGLMAVSAAATA
QTNPYARGPNPTAA
SLEASAGPFTVRSFT
VSRPSGYGAGTVYY
PTNAGGTVGAIAIVP
GYTARQSSIKWWGP
RLASHGFVVITIDTN
STLDQPSSRSSQQMA
ALRQVASLNGTSSSP
IYGKV
DTARMGVMGWSM

WNFYIIDENQLIDVW
PFLEESVCRLTLFTC
EKACYPGPTVPMRY
YYSVWSTKPASTVP
GKIYYPQATMYYPT
GPAGTGGVWPSRYA
YTDSYVNFRWYGPN
LLWGVCSDLTWVT
NKTLYQENFNDSQC
GEPDSINGPCGPTPD
HLRYLSQGTLTMPW
GKWSMGMMLYCPI

MNFPRASRWMGAA
VFGGLIAVSAAATV
QTNCYARGPNPTAA
SLEASAGPGTVRNFT
VSRPGGYGAGTVYY
PTNAGGTVGAIAIVP
GYTVRQSSIKWWGP
RLAFHGFVTKTIDTN
STLDQCYSRISQQM
AALRQVASLNATSS
SPIYGKKDTAEMGC
CGWSMGGGGSLIRC
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GGGGSLISAANNPSL
KAAAPQAPWDSSTN
FSSVTVPTLIFACEN
DSIAPVNSSALPIYDS
MSRNAKQFLEINGG
SHSCANSGNSNQALI
GKKGVAWMKRFMD
NDTRYSTFACENPNS
TRVSDFRTANCS

SFWPPHLELDNLCC
DWIRPTDFANVTMG
TIWQHCWGDDYVA
GNSSYLAMWAVPPC
DAIEYIDRPNPMHSC
GNSWGRNEALHNG
EGLPWEDFRGRYRT
DWATPGCCMGRCT
RNGEFGTSMLH

ANNPWLNAAAPQAP
WDSSTNFSSVTVPTL
IPHCENDSIAPSNSSA
LPIYDSMSRNAKQFL
EINGGSHSCANSGNS
NQALSGKKGVAWM
KRFMDNDTRYSTFA
CENPNSTRVSDFRTA
NCS

Predicted Topt 43.35℃. We also 71.48℃. We also 61.30℃. We also 

Caption:Table of comparison between original PETase enzyme and newly designed enzymes from ML-

guided directed evolution.

Table 4

Type of enzyme  The original PETase 
enzyme 

Mutant PETase enzyme
after 1000 iterations

Mutant PETase enzyme
after 29 iterations

Amino Acid Sequence MNFPRASRLMQAAVL
GGLMAVSAAATAQTN
PYARGPNPTAASLEAS
AGPFTVRSFTVSRPSG
YGAGTVYYPTNAGGT
VGAIAIVPGYTARQSSI
KWWGPRLASHGFVVI
TIDTNSTLDQPSSRSSQ
QMAALRQVASLNGTS
SSPIYGKV
DTARMGVMGWSMGG
GGSLISAANNPSLKAA
APQAPWDSSTNFSSVT
VPTLIFACENDSIAPVN
SSALPIYDSMSRNAKQ
FLEINGGSHSCANSGN
SNQALIGKKGVAWMK
RFMDNDTRYSTFACE
NPNSTRVSDFRTANCS

WNFYIIDENQLIDVWP
FLEESVCRLTLFTCEK
ACYPGPTVPMRYYYS
VWSTKPASTVPGKIYY
PQATMYYPTGPAGTG
GVWPSRYAYTDSYVN
FRWYGPNLLWGVCSD
LTWVTNKTLYQENFN
DSQCGEPDSINGPCGP
TPDHLRYLSQGTLTMP
WGKWSMGMMLYCPI
SFWPPHLELDNLCCD
WIRPTDFANVTMGTIW
QHCWGDDYVAGNSSY
LAMWAVPPCDAIEYID
RPNPMHSCGNSWGRN
EALHNGEGLPWEDFR
GRYRTDWATPGCCMG
RCTRNGEFGTSMLH

MNFPRASRWMGAAVF
GGLIAVSAAATVQTNC
YARGPNPTAASLEASA
GPGTVRNFTVSRPGGY
GAGTVYYPTNAGGTV
GAIAIVPGYTVRQSSIK
WWGPRLAFHGFVTKT
IDTNSTLDQCYSRISQQ
MAALRQVASLNATSSS
PIYGKKDTAEMGCCG
WSMGGGGSLIRCANN
PWLNAAAPQAPWDSS
TNFSSVTVPTLIPHCEN
DSIAPSNSSALPIYDSM
SRNAKQFLEINGGSHS
CANSGNSNQALSGKK
GVAWMKRFMDNDTR
YSTFACENPNSTRVSD
FRTANCS

Melting Temperature 55-65℃. We also 55-65℃. We also 55-65℃. We also 

Tm Index 0.7715 0.458 0.988

Caption: Table of predicted melting temperatures and TM Index of original PETase and mutant PETase 

enzymes (8).
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Table 5

Feature Name Coefficient Absolute Value of 
Coefficient

OGT 11.958509287023 11.958509287023

Dipeptide 
Freq: YG

1.0444261357069 1.0444261357069

Dipeptide 
Freq: YN

0.831136543632622 0.831136543632622

Dipeptide 
Freq: WG

0.733657595656585 0.733657595656585

Amino Acid H
Frequency

-0.7304045328829 0.7304045328829

Dipeptide 
Freq: YL

-0.700898056815346 0.700898056815346

Dipeptide 
Freq: IG

-0.6659526774771 0.6659526774771

Amino Acid 
YFrequency

0.616193055377511 0.616193055377511

Dipeptide 
Freq: PG

0.588640535816482 0.588640535816482

Dipeptide 
Freq: YA

0.558509622057296 0.558509622057296

Caption: After feature selection by Lasso Linear Regression, only 156 features out of 431 had non-zero 

coefficients and were selected.  The features were ranked by the absolute value of their coefficients and 

the top 10 features are shown in Table 5. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475766doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475766


17

Figure 6: Graphs for Machine Learning training stage results:

Training Set Test Set

Lasso 
Linear 
Regressi
on

Random
Forest 
Regressi
on

Caption: These graphs show the performance of the regression machine learning models, Lasso Linear 

Regression and Random Forest Regression, on the training and test set.  The correlation between the 

predicted Topt values and actual Topt values is shown through the R2 coefficient.
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