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ABSTRACT	
Somatic	mutations	 in	 cancer	 genes	have	been	ubiquitously	detected	 in	 clonal	 expansions	 across	healthy	human	
tissue,	 including	 in	 clonal	 hematopoiesis.	 However,	 mutated	 and	 wildtype	 cells	 are	 morphologically	 and	
phenotypically	similar,	limiting	the	ability	to	link	genotypes	with	cellular	phenotypes.	To	overcome	this	limitation,	
we	leveraged	multi-modality	single-cell	sequencing,	capturing	the	mutation	with	transcriptomes	and	methylomes	in	
stem	 and	 progenitors	 from	 individuals	 with	DNMT3A	 R882	mutated	 clonal	 hematopoiesis.	DNMT3A	 mutations	
resulted	 in	 myeloid	 over	 lymphoid	 bias,	 and	 in	 expansion	 of	 immature	 myeloid	 progenitors	 primed	 toward	
megakaryocytic-erythroid	fate.	We	observed	dysregulated	expression	of	 lineage	and	leukemia	stem	cell	markers.	
DNMT3A	 R882	 led	 to	 preferential	 hypomethylation	 of	 polycomb	 repressive	 complex	 2	 targets	 and	 a	 specific	
sequence	motif.	Notably,	the	hypomethylation	motif	is	enriched	in	binding	motifs	of	key	hematopoietic	transcription	
factors,	 serving	 as	 a	 potential	mechanistic	 link	 between	DNMT3A	 R882	mutations	 and	 aberrant	 transcriptional	
phenotypes.	Thus,	single-cell	multi-omics	pave	the	road	to	defining	the	downstream	consequences	of	mutations	that	
drive	human	clonal	mosaicism.	

INTRODUCTION	

Somatic	 mutations	 have	 been	 recently	 identified	
ubiquitously	 across	 healthy	 tissues,	 indicating	 the	
presence	 of	 acquired	 clonal	 mosaicisms1-6.	 These	
mutations	 are	 pervasive	 across	 tissues	 such	 as	 the	
blood7-17,	 skin5,	 lung2	 and	 esophagus1,3,	 and	 their	
prevalence	 increases	 with	 physiological	 aging.	
Importantly,	 somatic	 mutations	 in	 these	 clonal	
outgrowths	overlap	with	recurrent	drivers	of	cancer	(for	
example,	 DNMT3A,	 TP53,	 PIK3CA,	 and	 NOTCH1)1-5,8,18,	
suggesting	 that	 cancer	 may	 arise	 from	 pre-malignant	
clonal	 outgrowths.	 Nevertheless,	 mutated	 cells	 are	
morphologically	 and	 phenotypically	 similar	 to	 their	
wildtype	 counterparts.	 This	 limits	 the	 ability	 to	define	
the	 downstream	 transcriptional	 or	 phenotypic	 impact	
that	 may	 drive	 clonal	 outgrowth,	 and	 therefore	 prior	
studies	in	primary	human	tissue	have	largely	focused	on	
genetic	characterization	of	clonal	mosaicism.		

Clonal	 mosaicism	 within	 the	 hematopoietic	 system	
serves	as	an	informative	model	for	this	phenomenon,	as	
recurrent	drivers	of	myeloid	malignancies	(for	example,	
DNMT3A,	 TET2	 and	 ASXL1	 mutations)	 have	 been	

detected	 in	 individuals	 without	 overt	 hematologic	
abnormalities7-17.	 This	 state,	 termed	 clonal	
hematopoiesis	(CH),	predisposes	these	individuals	to	an	
increased	risk	of	developing	myeloid	malignancies,	such	
as	acute	myeloid	leukemias	(AML)	and	myelodysplastic	
syndromes,	 and	 thus	 represents	 the	 earliest	 stages	 of	
neoplastic	 evolution8,19-21.	 Intriguingly,	 CH	 mutations	
also	 increase	 the	 risk	 of	 cardiovascular	 disease11	 and	
progression	 of	 non-myeloid	 malignancies11,22,23,	 with	
early	 evidence	 supporting	 an	 aberrant	 immune	
microenvironment	 due	 to	 CH8,24-26.	 CH	mutations	 have	
also	been	found	in	stem	cell	grafts,	linked	with	idiopathic	
cytopenia	 in	graft	recipients27.	CH	mutations	 in	certain	
genes	(e.g.	DNMT3A,	TP53)	endow	a	particularly	strong	
fitness	 advantage	 in	 the	 context	 of	 stem	 cell	
transplantation,	wherein	 the	 variant	 allele	 frequencies	
(VAF)	markedly	 increase	 post-transplant	 compared	 to	
pre-transplant	grafts28,29.	These	data	suggest	that	certain	
CH	mutations	 confer	 a	 particularly	 robust	 competitive	
advantage	 over	 non-neoplastic	 hematopoietic	 cells	 in	
stressed	settings	such	as	transplantation.			
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DNMT3A,	 which	 encodes	 a	 de	 novo	 DNA	
methyltransferase	 that	 catalyzes	 the	 methylation	 of	
cytosine	bases	 in	CpG	dinucleotides,	 is	by	 far	 the	most	
frequently	 mutated	 gene	 in	 CH7-10.	 Consistently,	
DNMT3A	 mutations	 are	 considered	 an	 early	 event	 in	
AML7,	 and	 the	 hotspot	 variant	 at	 R882	 constitute	 the	
majority	of	DNMT3A	mutations	in	AML.	The	frequency	of	
R882	 variants	 is	 lower	 in	 CH,	 suggesting	 that	 these	
variants	 are	 particularly	 prone	 to	 progressing	 to	 AML	
through	 clonal	 evolution12,30,31.	 In	 vitro	 and	 murine	
models	 have	 suggested	 that	 DNMT3A	 R882	 (or	 the	
murine	R878	homologous	residue)	mutations	result	in	a	
differentiation	block	 and	 increased	 self-renewal	 in	 the	
hematopoietic	 stem	 cells	 (HSCs)32-34.	 Biochemically,	
DNMT3A	R882	variants	may	exhibit	a	dominant	negative	
effect35,36,	 resulting	 in	 the	 reduction	 of	
methyltransferase	 activity36.	 However,	 the	 study	 of	
DNMT3A	mutations	directly	in	human	samples	has	been	
largely	 limited	to	MDS	or	AML,	where	confounding	co-
occurrence	of	other	genetic	alterations	is	common.	Thus,	
CH	 presents	 a	 unique	 setting	 to	 interrogate	 the	
molecular	consequences	of	DNMT3A	mutations	in	non-
malignant	human	hematopoiesis.		

However,	 in	 CH	 as	 in	 other	 contexts	 of	 somatic	
mosaicism,	 mutated	 cells	 are	 admixed	 with	 wildtype	
cells12,31,	 limiting	 our	 ability	 to	 link	 genotype	 to	
phenotype	using	studies	of	bulk	populations.	Although	
recent	 fluidics	 methods	 for	 single-cell	 genotyping	
coupled	with	oligo-barcoded	antibodies	have	begun	 to	
shed	 light	 on	 the	 phenotypic	 consequences	 of	 CH	
mutations37,	 these	 methods	 are	 limited	 to	 a	 small	
number	 of	 pre-defined	 cell	 surface	 markers.	 To	
overcome	this	limitation,	we	applied	multi-omics	single-
cell	 sequencing	 to	 capture	 the	 mutational	 status	 of	
individual	 cells	 together	 with	 downstream	 epigenetic	
and	transcriptional	information38,39,	thus	enabling	us	to	
compare	mutated	cells	with	their	wildtype	counterparts	
from	 the	 same	 individuals,	 directly	 in	 primary	 human	
samples.		

RESULTS	

Genotyping	of	DNMT3A	mutations	in	single-cell	RNA-
seq	of	CD34+	cells	of	human	clonal	hematopoiesis	

As	 individuals	with	 CH	 have	 normal	 blood	 production	
and	 thus	 meet	 no	 clinical	 criteria	 for	 assessments	 by	
bone	marrow	biopsy,	progenitor-enriched	samples	with	
CH	are	scarce.	However,	we	recently	observed	that	CH	is	
prevalent	in	patients	with	multiple	myeloma	(MM),	and	
thus	we	interrogated	a	cohort	of	136	MM	patients	with	
CH	identified	in	hematopoietic	progenitor	cells	collected	
for	autologous	stem	cell	transplant	while	in	remission40.	
Given	the	known	strong	phenotypic	impact	of	DNMT3A	
R882	mutations,	we	focused	on	four	samples	with	these	
mutations	 and	 sufficiently	 high	 VAFs	 of	 >0.05	 (range:	

0.09-0.34)	 to	 enable	 profiling	 of	 large	 numbers	 of	
mutated	cells	with	single-cell	RNA-sequencing	(scRNA-
seq;	see	patient	and	sample	data	in	Extended	Data	Fig.	
1a;	 Supplementary	 Table	 1).	 Notably,	 although	 CH	
mutations	tend	to	have	low	VAFs,	CH	clones	with	higher	
VAFs	 have	 been	 frequently	 observed8,10,41.	 We	 further	
confirmed	 that	 no	morphologic	 evidence	 of	 a	myeloid	
neoplasm	 was	 seen	 in	 the	 bone	 marrow	
(Supplementary	 Table	 1).	 Screening	 for	 additional	
mutations	 through	 a	 targeted	myeloid	 panel40	 showed	
only	one	additional	mutation	(patient	CH03),	consisting	
of	 a	 clonal	 (VAF	 =	 0.5)	 heterozygous	 TET2	 nonsense	
mutation,	which	therefore	likely	arose	first	in	the	course	
of		clonal	evolution	and	serves	as	a	background	mutation	
for	both	the	DNMT3A	R882	mutated	and	wildtype	cells.	

We	 isolated	 viable	CD34+	 cells	 from	 these	CH	 samples	
and	performed	Genotyping	of	Transcriptomes	 (GoT38),	
capturing	 scRNA-seq	 with	 targeted	 genotyping	 of	 the	
R882	codon	(Fig.	1a).		A	total	of	27,324	cells	across	CH	
samples	 were	 sequenced	 and	 included	 in	 the	
downstream	 analysis	 after	 quality	 filters	 (online	
methods,	 Extended	 Data	 Fig.	 1b).	 Genotyping	 data	
were	 available	 for	 6,430	 cells	 of	 these	 27,324	 cells	
(23.5%)	 through	 GoT	 (Extended	 Data	 Fig.	 1a,c,d).	
Notably,	 to	 overcome	 the	 challenge	 of	 accurate	
genotyping	 of	 the	 lowly	 expressed	DNMT3A	 gene,	 we	
performed	deeper	sequencing	and	further	optimized	the	
original	GoT	analysis	pipeline	(IronThrone38,	see	online	
methods).	This	optimization	included	integrating	unique	
molecule	 identifier	 (UMI)	 consensus	 assembly42,	
resulting	in	enhanced	precision,	with	increased	number	
of	cells	correctly	assigned	with	only	mutant	or	wildtype	
UMIs	 in	a	species	mixing	experiment	 (P	<	10-10,	Fisher	
exact	test,	Extended	Data	Fig.	1e).	We	also	filtered	the	
GoT	 UMIs	 based	 on	 their	 presence	 in	 the	 10x	 gene	
expression	 library	 to	 determine	 the	 threshold	 for	 the	
number	of	supporting	reads	(online	methods,	Extended	
Data	 Fig.	 1f).	 Mutated	 CD34+	 cell	 frequencies	 ranged	
from	 13%	 to	 50%,	 comparable	 to	 the	 VAFs	 obtained	
through	bulk	sequencing	of	matched	unsorted	stem	cell	
products	(Extended	Data	Fig.	1a,c).	Finally,	to	exclude	
additional	genetic	 lesions,	we	performed	copy	number	
analysis	 with	 scRNA-seq	 data43	 and	 identified	 no	
significant	 chromosomal	 gains	 or	 losses	 (Extended	
Data	Fig.	2a,b).	

To	chart	the	differentiation	of	CD34+	progenitor	cells	in	
CH,	 we	 integrated	 data	 across	 the	 samples44	 and	
clustered	based	on	 transcriptomic	data	alone,	agnostic	
to	the	genotyping	information	(Fig.	1b,	Extended	Data	
Fig.	 3a,	online	methods).	 Consistent	with	 clinical	 data	
indicating	 normal	 hematopoietic	 production,	 we	
identified	 the	 expected	 progenitor	 subtypes,	 using	
previously	annotated	progenitor	identity	markers	(Fig.	
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1b,	 Extended	 Data	 Fig.	 3b-d,	 Supplementary	 Table	
2)45.	 Furthermore,	 consistent	 with	 the	 fact	 that	 G-CSF	
mobilizes	early	stem	and	progenitor	cells,	we	identified	
a	 large	 population	 of	 the	 earliest	 hematopoietic	 stem	
progenitor	 cells	 (HSPCs),	 as	well	 as	 immature	myeloid	
progenitor	 cells	 (IMPs),	 previously	 defined	 in	 a	
landmark	 scRNA-seq	 study45	 as	 corresponding	 to	 the	
phenotypically-defined	 common	 myeloid	 progenitors	
(CMPs)	and	granulocyte-monocyte	progenitors	(GMPs).	
The	 high-throughput	 profiling	 by	 digital	 scRNA-seq	
enabled	a	higher	resolution	view	of	the	IMPs,	revealing	a	
subcluster	 that	 exhibited	 markers	 of	 granulocyte-
monocyte	 differentiation	 (IMP-GM)	 and	 a	 subcluster	
that	 exhibited	 markers	 of	 megakaryocytic-erythroid	
differentiation	 (IMP-ME,	 Extended	 Data	 Fig.	 4a,b).	
Having	 established	 the	 progenitor	 identities,	 we	 then	
projected	 the	 genotyping	 information	 onto	 the	
differentiation	map	(Fig.	1c,	Extended	Data	Fig.	4c).	No	
novel	 cell	 identities	 were	 formed	 by	 the	 DNMT3A	

mutations,	consistent	with	the	fact	that	patients	with	CH	
exhibit	no	overt	peripheral	blood	count	or	morphologic	
abnormalities,	 Instead,	we	 observed	 that	mutated	 and	
wildtype	 cells	 co-mingled	 throughout	 (Fig.	 1c,	
Extended	Data	Fig.	4c),	highlighting	the	need	for	single-
cell	 multi-omics	 to	 link	 genotypes	 with	 cellular	
phenotypes	 in	 CH.	 Importantly,	 the	 genotyping	
efficiency	was	 balanced	 across	 the	 progenitor	 subsets,	
mitigating	 potential	 technical	 biases	 (Fig.	 1d,	 top),	
consistent	 with	 no	 significant	 difference	 in	 DNMT3A	
gene	expression	within	the	CD34+	cell	subsets	(Fig.	1d,	
bottom).		

DNMT3A-mutated	 cells	 show	 lineage	 biases	 at	 key	
differentiation	junctures	

As	 previous	 data	 in	 murine	 and	 in	 vitro	 models	 have	
suggested	 that	 DNMT3A	 mutations	 may	 lead	 to	 a	
differentiation	block46,47,	we	performed	a	differentiation	
pseudo-temporal	(pseudotime)	ordering	analysis	of	the	

Figure	1.	Genotyping	of	Transcriptomes	demonstrates	co-mingling	of	mutated	and	wildtype	cells	 in	DNMT3A	R882-
clonal	hematopoietic	differentiation.	a,	Schematic	of	GoT	workflow.	UMI,	unique	molecular	 identifier;	UTR,	untranslated	
region.	b,	Uniform	manifold	approximation	and	projection	(UMAP)	of	CD34+	cells	(n	=	27,324	cells)	from	clonal	hematopoiesis	
samples	 (n	 =	 4	 individuals),	 overlaid	 with	 cluster	 assignment	 (left);	 projections	 of	 cell	 cycle	 gene	 module	 (top	 right)	 or	
uncommitted	hematopoietic	stem	cell	(HSC)	associated	gene	module	score	(bottom	right,	Supplementary	Table	2).	c,	UMAP	of	
CD34+	cells	(n	=	27,324	cells)	with	projected	mutation	status	assignment	for	WT	(n	=	4,641	cells),	DNMT3A	R882	mutant	(MUT;	
n	=	1,789	cells)	or	unassigned	(NA;	n	=	20,894	cells).	d,	Percent	of	genotyped	cells	per	cluster	for	all	samples	(bars)	and	for	each	
patient	 sample	 (points)	 (top)	 and	normalized	gene	expression	of	DNMT3A	 per	 cluster	 (bottom).	HSPC,	hematopoietic	 stem	
progenitor	 cells;	 IMP,	 immature	 myeloid	 progenitors;	 IMP-ME,	 megakaryocytic-erythroid	 biased	 IMP;	 IMP-GM,	 granulo-
monocytic	biased	IMP;	LMPP,	lympho-myeloid	primed	progenitors;	CLP,	common	lymphoid	progenitor;	MEP,	megakaryocytic-
erythroid	progenitors;	E/B/M,	eosinophil,	basophil,	and	mast	cell	progenitors;	EP,	erythroid	progenitor;	MkP,	megakaryocytic	
progenitor;	NP,	neutrophil	progenitor;	WT,	wildtype;	MUT,	mutant;	NA,	not	assignable.	
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Figure	 2.	 DNMT3A	 R882	 mutated	 CH	 cells	 demonstrate	 distinct	 differentiation	 biases	 at	 key	 junctures.	 a,	 UMAP	
highlighting	multi-lineage	 lympho-myeloid	 primed	 progenitors	 (LMPPs)	 and	 common	 lymphoid	 progenitors	 (CLPs);	 UMAP	
showing	 analytically	 isolated	 and	 re-clustered	 LMPPs	 and	 CLPs,	 showing	 branch	 point	 of	 divergence	 into	 myeloid	 versus	
lymphoid	primed	progenitors	(left	middle);	UMAP	showing	the	cell	density	of	DNMT3A	R882	MUT	and	WT	cells	(left	bottom).	
The	normalized	frequency	of	mutant	cells	in	subclusters	for	aggregate	analysis	of	samples	CH01-CH04	with	mean	±	s.d.	of	100	
downsampling	iterations	to	1	genotyping	UMI	per	cell	(right,	downsampling	performed	to	control	for	potential	greater	ability	
to	detect	 the	mutant	heterozygous	allele	 in	cells	with	higher	DNMT3A	expression,	see	online	methods).	The	heatmap	at	 the	
bottom	depicts	representative	lineage-specific	genes	for	individual	clusters.	P-value	was	calculated	from	likelihood	ratio	test	of	
LMM	with/without	cluster	identity.	b,	Normalized	frequency	of	DNMT3A	R882	mutant	cells	in	progenitor	subsets	with	at	least	
200	genotyped	cells.	Bars	show	aggregate	analysis	of	samples	CH01-CH04	with	mean	±	s.d.	of	100	downsampling	iterations	to	
1	 genotyping	 UMI	 per	 cell.	 Points	 represent	mean	 of	 n	 =	 100	 downsampling	 iterations	 for	 each	 sample.	 Heatmap	 depicts	
representative	lineage-specific	genes	for	individual	progenitor	subsets.	c,	Megakaryocytic-erythroid	module	scores	in	wildtype	
versus	mutant	IMPs	(Supplementary	Table	2).	P-value	was	calculated	from	likelihood	ratio	test	of	LMM	with/without	mutation	
status.	d,	Fraction	of	IMP-ME	cells	out	of	all	biased	IMP	(IMP-ME	+	IMP-GM)	cells	in	wildtype	versus	DNMT3A	R882	mutant	
populations.	P-value	was	calculated	from	proportions	test.	e,	Cell	cycle	module	scores	in	wildtype	versus	mutant	progenitor	
subsets	(Supplementary	Table	2).	P-values	were	calculated	from	likelihood	ratio	test	of	LMM	with/without	mutation	status.		
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	GoT	data48-50.	We	found	no	significant	global	difference	
between	 wildtype	 and	 mutated	 cells	 (P	 =	 0.70,	 linear	
mixed	 model,	 Extended	 Data	 Fig.	 4d	 including	 per	
sample	 analysis,	 online	 methods),	 indicating	 that	
DNMT3A	R882	mutations	do	not	 result	 in	a	 significant	
global	 differentiation	 block	 in	 pre-cancerous	 human	
hematopoietic	development.	This	finding	is	nonetheless	
consistent	with	findings	in	murine	models,	where	even	
in	the	setting	of	homozygous	Dnmt3a	deletion,	mutated	
cells	 do	not	 exhibit	 self-renewal	 advantage	 in	 primary	
transplant	experiments47,	indicating	that	features	of	self-
renewal	advantage	may	not	be	overtly	obvious	in	steady-
state	 hematopoiesis.	 Although	 we	 did	 not	 observe	 a	
global	 differentiation	 block,	 we	 hypothesized	 that	 the	
DNMT3A	 mutated	 cell	 frequencies	 may	 vary	 across	
certain	progenitor	 identities.	For	example,	 as	DNMT3A	
R882	 mutations	 are	 more	 frequently	 associated	 with	
myeloid	 rather	 than	 lymphoid	 neoplasms,	 we	 tested	
whether	mutated	cells	may	demonstrate	a	 lineage	bias	
toward	 myeloid	 versus	 lymphoid	 differentiation	 by	
examining	lympho-myeloid	primed	progenitors	(LMPP)	
and	 common	 lymphoid	 progenitors	 (CLP).	 Consistent	
with	 frequency	 biases	 seen	 in	 murine	 models	 for	
DNMT3A	 mutations51,	 mutated	 cells	 were	 enriched	 in	
myeloid	biased	cells	versus	early	lymphoid	progenitors	
(P	<	0.001,	linear	mixed	model,	Fig.	2a).	Moreover,	these	
data	are	also	consistent	with	previous	results	obtained	
with	bulk,	sorted	populations	from	a	DNMT3A	I780T	CH	
sample,	 which	 showed	 a	 lower	 VAF	 in	 mutated	 cell	
frequency	 in	 mature	 lymphoid	 cells	 (e.g.	 NK	 cells,	 B	
cells),	 compared	 to	 those	 in	 myeloid	 progenitor	 and	
mature	cells52.	

To	 identify	 differentiation	 biases	 more	 broadly	 in	
DNMT3A-mutated	 CH,	 we	 evaluated	 the	 mutated	 cell	
frequencies	 across	 the	 different	 prevalent	 progenitor	
cell	types	(>200	genotyped	cells).	Of	note,	as	cells	may	
display	 variable	 expression	 of	 DNMT3A	 itself,	 we	
performed	 amplicon	 UMI	 down-sampling	 to	 exclude	
sampling	biases	given	the	heterozygosity	of	the	mutated	
allele	as	a	potential	confounder	for	observed	differences	
in	mutated	cell	 frequencies38.	We	observed	that	across	
samples,	mutated	cells	were	enriched	in	IMPs	compared	
to	the	earliest	HSPCs	(P	<	0.001,	linear	mixed	model,	Fig.	
2b).	Mutated	 IMPs	 also	 displayed	 an	ME	 bias	with	 an	
increase	in	the	expression	of	an	MkP-EP	gene	set53	(P	=	
8.8	x	10-5,	linear	mixed	model,	Fig.	2c,	Supplementary	
Table	2,	online	methods),	consistent	with	an	increase	in	
the	 proportion	 of	 IMP-ME	 to	 IMP-GM	 in	 mutant	

compared	to	wildtype	cells	(P	=	0.004,	proportions	test,	
odds	ratio	of	1.38	(1.08	–	1.76),	Fig.	2d).	These	data	are	
in	 line	with	evidence	of	subtle	erythroid	abnormalities	
observed	in	CH	via	routine	clinical	assays	(e.g.	elevated	
red	 cell	 distribution	 width	(RDW))21,	 and	 with	 our	
recent	 demonstration	 of	 increased	 HSC	 erythroid	
priming	in	a	Dnmt3a	knock-out	murine	model54.		

Increased	mutated	cell	frequency	in	a	specific	progenitor	
subtype	 can	 result	 from	 cell-type	 specific	 elevated	
proliferation38.	 We	 therefore	 first	 compared	 the	
expression	 of	 cell	 cycle	 genes55	 between	mutated	 and	
wildtype	progenitors	and	found	a	modest	increase	in	cell	
cycle	gene	expression	only	in	mutated	IMPs	(P	=	4.1	x	10-
3,	linear	mixed	model,	Fig.	2e,	Extended	Data	Fig.	5a).	
Alternatively,	 increased	 mutated	 cell	 frequency	 in	 a	
given	 progenitor	 subtype,	may	 stem	 from	 a	 change	 in	
transition	 rates	 into	 this	 cell	 state.	 To	 explore	 this	
hypothesis,	 we	 measured	 transition	 probabilities	
between	progenitor	subtypes	with	RNA	velocity	(online	
methods)56,57.	 The	 overall	 RNA	 velocity	measurements	
demonstrated	 that	 these	 mobilized	 CD34+	 cells	 follow	
the	expected	differentiation	trajectories	as	described	in	
normal	 human	 bone	 marrow	 hematopoiesis53,58	 (Fig.	
2f).	Consistent	with	the	hypothesis	that	transition	rates	
contribute	 to	 the	 observed	 differentiation	 biases,	 we	
identified	 that	 the	 transition	 probability	 of	 mutated	
IMPs	to	become	IMP-MEs	was	higher	compared	to	that		
of	wildtype	cells	(P	=	3.7	x				10-7,	linear	mixed	model,	Fig.	
2g,	 see	 Extended	 Data	 Fig.	 6a	 for	 per	 sample	
comparison),	 whereas	 the	 transition	 probability	 of	
mutated	IMPs	to	IMP-GMs	was	diminished	(P	=	2.9	x	10-
6,	linear	mixed	model,	Extended	Fig.	6b).	These	analyses	
thus	 orthogonally	 confirmed	ME-biased	differentiation	
of	DNMT3A-mutated	CD34+	human	progenitors,	as	was	
also	revealed	by	 the	gene	set	expression	analysis	 (Fig.	
1c).			

Gene	expression	changes	 in	DNMT3A	mutated	cells	
include	leukemia	stem	cell	genes,	and	are	linked	to	
proinflammatory	 signatures	 and	 putative	
dysregulated	transcription	factor	activity	

To	 identify	 the	 transcriptional	 dysregulation	 that	may	
underlie	 the	 observed	 differentiation	 biases,	 we	
performed	 differential	 gene	 expression	 analysis	
between	mutated	and	wildtype	progenitors	within	each	
progenitor	 cell	 type.	 Differential	 expression	 (DE)	
analysis	of	mutated	versus	wildtype	HSPCs	revealed	88		
dysregulated	 genes	 (Fig.	 3a,	 68-122	 differentially	

f,	RNA	velocity	field	vectors	overlaid	on	UMAP,	demonstrating	differentiation	trajectories	computed	via	scVelo	(online	methods).	
g,	Schematic	representation	of	the	transition	probabilities	between	HSPCs	and	IMP	subsets	from	samples	CH01-CH04	(right).	
Odds	ratios	(OR)	were	calculated	as	the	ratio	between	DNMT3A	R882	MUT	and	WT	transition	probabilities,	as	measured	using	
RNA	velocity.	Single	cell	mean	IMP	à	IMP-ME	or	IMP	à	IMP-GM	transition	probabilities	between	wildtype	or	DNMT3A	R882	
mutant	cells,	 inset.	P-values	were	calculated	from	likelihood	ratio	test	of	LMM	with/without	mutation	status	(see	Extended	
Data	Fig.	6	for	per-sample	data).		
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expressed	 genes	 in	 each	 progenitor	 subset,	 see	
Supplementary	Table	3	for	results	for	each	progenitor	
subset;	 batch-aware	 permutation	 test	 where	 mutated	
and	wildtype	labels	are	permuted	only	within	the	same	
sample,	see	online	methods).	Of	note,	to	ensure	that	the	
analysis	 was	 not	 dominated	 by	 a	 single	 sample,	 we	
down-sampled	 the	 number	 of	 mutated	 and	 wildtype	
cells	from	each	sample	to	maintain	equal	representation	
in	 the	 progenitor	 subset	 DE	 analysis.	 To	 test	 the	

robustness	of	our	approach	further,	we	also	determined	
DE	by	an	alternative	linear	mixed	model	framework,	in	
which	we	explicitly	modeled	samples	as	a	random	effect	
variable,	 and	 identified	 a	 high	 degree	 of	 concordance	
between	the	two	statistical	frameworks	(Extended	Data	
Fig.	7a,	Supplementary	Table	3,	online	methods).		

DE	genes	included,	for	example,	the	upregulation	of	CD9	
in	 the	 early	 mutated	 HSPCs	 (Fig.	 3a,	 Supplementary	

Figure	 3.	 Differential	 gene	 expression	 analysis	 between	 mutated	 and	 wildtype	 cells	 reveals	 markers	 of	 lineage	
aberrancies	 and	 dysregulated	MYC	 activity.	 a,	Differentially	 expressed	 (DE)	 genes	 between	DNMT3A	 R882	mutant	 and	
wildtype	hematopoietic	stem	progenitor	cells	(HSPC)	via	permutation	test	(online	methods).	Genes	highlighted	in	red	represent	
DE	genes	overlapping	with	58	genes	upregulated	on	acute	myeloid	leukemia	stem	cells	(LSC)	compared	to	normal	HSCs	(P	=	9.3	
x	10-5).	P-value	was	calculated	by	hypergeometric	test.		b,	Heatmap	of	upregulated	genes	in	DNMT3A	mutant	cells	compared	to	
wildtype	cells,	in	at	least	two	cell	clusters	(P	<	0.05,	permutation	test).	Histograms	show	numbers	of	upregulated	genes	in	each	
cluster	(top)	and	numbers	of	clusters	per	upregulated	gene	(left).	Next	to	the	genes	are	listed	putative	TFs	(TRANSFAC)	with	
black	indicating	the	TFs	that	overlap	for	more	than	one	recurrent	DE	gene.	c,	Differentially	expressed	genes	between	DNMT3A	
R882	mutant	 and	wildtype	 EPs	 via	 permutation	 test.	 Pathway	 enrichment	 of	MSigDB	 CGP	 gene	 sets	 shows	 enrichment	 of	
Benporath	 MYC	 MAX	 targets	 (FDR-adjusted	 P-value	 =	 0.01)	 and	 Coller	 MYC	 targets	 (FDR-adjusted	 P-value	 =	 0.01,	 see	
Supplementary	Table	4	for	complete	gene	set	enrichment	results	against	the	MSigDB	CGP	dataset).	P-values	were	calculated	
from	hypergeometric	test	with	FDR	(Benjamini-Hochberg)	correction.	d,	Local	regression	of	normalized	expression	levels	as	a	
function	of	pseudotime	of	MYC/MAX	targets	(differentially	upregulated	in	Fig.	3c)	for	WT	and	DNMT3A	R882	mutant	(MUT)	
cells.	Shading	denotes	95%	confidence	interval.	Histogram	shows	cell	density	of	clusters	included	in	the	analysis,	ordered	by	
pseudotime.	
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Table	 3).	 CD9	 expression	 is	 closely	 linked	 with	
megakaryocytic-priming59,60	and	platelet	activation61-63,	
thus	 providing	 further	 support	 for	 the	 ME	 bias	 of	
DNMT3A	mutated	 progenitors.	 These	 data	 are	 also	 in	
line	with	a	lower	degree	of	thrombocytopenia	observed	
in	 patients	 with	 DNMT3A	 mutated	 versus	 wildtype	
AML64,65	and	thrombocytosis	 in	a	murine	model	of	 this	
mutation66.	We	further	observed	an	enrichment	of	genes	
previously	associated	with	leukemia	stem	cells	(LSCs)67	
in	mutated	HSPCs,	 including	PRSS21,	FCER1G,	TYROBP,	
and	TNFRSF4,	mapping	these	dysregulated	genes	to	the	
nascent	 neoplastic	 process	 (P	 =	 9.3	 x	 10-5,	
hypergeometric	test,	Fig.	3a,	Supplementary	Table	3).	
FCER1G,	 TYROBP	 and	 TNFRSF4,	 are	 known	 to	 be	
involved	 in	 proinflammatory	 signaling68-76,	 consistent	
with	previous	reports	suggesting	that	CH	clones	display	
enhanced	 proinflammatory	 signatures24,26,41,77-81.	 In	
another	example,	we	identified	upregulation	of	the	pro-
survival	oncogene	PIM2,	downstream	of	STAT	signaling,	
in	mutated	 LMPPs,	 recently	 implicated	 as	 a	 target	 for	
eradicating	 chemotherapy-resistant	 chronic	 myeloid	
leukemia	stem	cells82	(Supplementary	Table	3).		

Nine	 genes	 were	 upregulated	 in	 more	 than	 one	
progenitor	 subset	 (Fig.	 3b,	 Supplementary	 Table	 3).	
This	 analysis	 highlighted	 mediators	 of	 cell-to-cell	
interactions,	 such	 as	 a	 regulator	 of	 the	 inflammatory	
network	C1QTNF483,84.	We	also	identified	CLEC11A	(also	
known	 as	 stem	 cell	 growth	 factor	 (SCGF)),	 which	 has	
been	 implicated	 as	 a	 hematopoietic	 growth	 factor85,86,	
including	in	the	setting	of	hematopoietic	stress	such	as	
irradiation	 and	 transplantation85,87.	 This	 finding	 is	
consistent	with	published	murine	data	showing	a	6.75-
fold	increase	of	Clec11a	in	transplanted	Dnmt3a	KO	cells	
compared	 to	 wildtype	 cells88.	 Thus,	 overexpression	 of	
CLEC11A	by	DNMT3A-mutated	progenitors	may	provide	
a	 potential	 mechanism	 for	 marked	 expansion	 of	 CH	
clones	upon	transplantation28,29,89-93.	Genes	upregulated	
in	 more	 than	 one	 progenitor	 subset	 were	 associated	
with	 putative	 transcription	 factors94,	 identifying	
recurring	TFs	 (highlighted	 in	black,	Fig.	3b),	 including	
MYC	and	its	cofactor	MAX,	as	well	as	the	inflammatory	
NFKB	 and	 STAT	 transcription	 factors	 and	 interferon	
regulatory	factor	IRF7,	consistent	with	proinflammatory	
networks	in	CH	clones24,26,77,80,81.		

To	 more	 broadly	 identify	 dysregulated	 pathways,	 we	
performed	 a	 gene	 set	 enrichment	 analysis	 of	 the	
differentially	 upregulated	 genes	 (Fig.	 3c,	
Supplementary	 Table	 4)95,96.	 The	 top	 significantly	
enriched	pathways	(FDR	<	0.2)	included	MYC	targets	in	
the	 mutated	 erythroid	 progenitors	 (FDR-adjusted	 P	 =	
0.01,	Fig.	3c).	Notably,	we	observed	the	enrichment	of	
two	independent	MYC	target	gene	sets,	including	a	MYC	
signature	 that	 was	 downregulated	 with	 monocytic	

differentiation	 in	 an	 HSPC	 differentiation	 cell	 line	
model97,98.	Consistently,	MYC	has	been	demonstrated	to	
be	 a	 critical	 factor	 specifically	 for	 erythropoiesis99-101,	
and	may	thus	contribute	to	the	observed	ME	bias	(Fig.	
2c,d,g).	 Of	 interest,	 DNMT3A	 mutation	 driven	 MYC	
target	expression	increased	during	differentiation	along	
the	 erythroid	 lineage	 (Fig.	 3d),	 despite	 no	 increase	 in	
MYC	 gene	expression	 itself	 in	 the	mutated	progenitors	
(Extended	 Data	 Fig.	 7b),	 suggesting	 that	 its	
transcriptional	 output	 as	 a	 transcription	 factor	 is	
differentially	increased	in	mutated	cells.	Other	enriched	
pathways	included	targets	of	cell	cycle	regulator	E2F	in	
LMPPs	(FDR-adjusted	P	=	0.057,	Supplementary	Table	
4).	 Altogether,	 these	 findings	 suggest	 a	 focused	
dysregulation	 in	 TF	 activity	 that	 may	 orchestrate	 the	
observed	 lineage	 and	 transcriptional	 perturbations	 in	
the	premalignant	stages	of	hematopoietic	neoplasia.	

Single-cell	 multi-omics	 integrating	 somatic	
genotyping,	methylome,	and	transcriptome	profiling	
reveals	 patterns	 of	 DNMT3A	 mutation	
hypomethylation		

To	 directly	 decipher	 the	 underlying	 link	 between	
mutated	 DNMT3A-induced	 DNA	 hypomethylation	 and	
the	 observed	 altered	 transcriptional	 regulatory	
networks	in	CH,	we	profiled	CD34+	progenitors	from	the	
same	individuals	(from	samples	CH02	and	CH04	where	
additional	material	was	available)	with	multi-modality	
single-cell	 sequencing	 capturing	 DNA	 methylation	
(DNAme)102,	 scRNA-seq	 (Smart-seq2103),	 and	 targeted	
DNMT3A	 genotyping39	 (n	 =	 528	 cells	 after	 quality	
filtering,	 Fig.	 4a,b,	 Extended	 Data	 Fig.	 8a-c,	 online	
methods).	As	expected,	these	scRNA-seq	data	identified	
the	major	progenitor	 identities	 as	 those	demonstrated	
by	 the	10x	platform,	albeit	at	a	 lower	 resolution	given	
fewer	 cells	 (Fig.	 4b,	 left,	 Extended	 Data	 Fig.	 8b).	 Of	
these	528	cells,	genotyping	data	were	available	for	441	
cells	 (Fig.	 4b,	 right,	 84%	 cells	 genotyped).	 This	multi-
modal	 profiling	 uniquely	 enabled	 us	 to	 compare	 the	
methylation	status	of	mutated	and	wildtype	cells	 from	
the	same	individuals,	showing	a	decrease	in	DNAme	in	
CpG	islands	even	in	this	relatively	heterogeneous	CD34+	
population	(CGI,	P	=	5.72	x	10-3,	linear	mixed	model,	Fig.	
4c),	 consistent	with	 the	 finding	 that	DNMT3A	mutated	
AMLs	 have	 lower	 methylation	 of	 CGI	 compared	 to	
DNMT3A	wildtype	AMLs104.	While	enhancers	have	been	
demonstrated	 to	 be	particularly	 impacted	by	DNMT3A	
loss	 in	 the	setting	of	AML105,	 these	relatively	CpG-poor	
regions	 have	 lower	 coverage	 in	 standard	 enzymatic	
methyl-seq	 (EM-seq)106	 or	 reduced	 representation	
bisulfite	 sequencing	 (RRBS)	 with	 a	 single	 restriction	
enzyme	 Msp1.	 We	 therefore	 increased	 the	 capture	 of	
enhancer	 regions	 through	 double	 restriction-enzyme	
Msp1	and	HaeIII	digestion107	and	identified	marked		
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Figure	4.	DNMT3A	R882	promotes	selective	hypomethylation	of	PRC2	targets	 in	human	hematopoiesis.	a,	Schematic	
representation	of	the	single-cell	multi-omics	platform	that	captures	methylome,	transcriptome,	and	somatic	genotype	status.	b,	
UMAP	dimensionality	reduction	(n	=	528	cells)	showing	the	assigned	progenitor	identities	(left)	or	the	assigned	genotype	(right)	
from	available	samples	CH02	and	CH04.	(c-d)	Average	single	cell	methylation	at	CpG	islands	c,	and	enhancers	d,	from	double	
digest	experiments	(online	methods).	P-values	from	likelihood	ratio	test	of	LMM	with/without	mutation	status.	e,	Differentially	
methylated	promoters	 between	wildtype	 and	DNMT3A	 R882	mutant	 hematopoietic	 progenitors.	 P-values	 from	generalized	
linear	 model	 (GLM)	 to	 account	 for	 global	 hypomethylation	 in	DNMT3A	mutated	 cells	 and	 identify	 regions	 of	 preferential	
hypomethylation	 (online	methods).	Red	 dots	 indicate	 significantly	 hypomethylated	 Benporath	 PRC2	 and	 EED	 target	 genes	
(MSigDB	C2:	CGP	gene	sets).	f,	Differentially	hypomethylated	ChIP-seq	peaks	(ENCODE	hg38	Tf	clusters)	ranked	by	P-value.	P-
values	 from	 a	 GLM	 to	 account	 for	 global	 hypomethylation	 in	DNMT3A	mutated	 cells	 and	 identify	 regions	 of	 preferential	
hypomethylation.	g,	Single	cell	average	methylation	at	ChIP-seq	peaks	(ENCODE	hg38	Tf	clusters	intersected	with	bivalent	peaks	
(H3K27me3,	H3K4me3)	from	human	CD34+	hematopoietic	progenitor	cells)	for	either	SUZ12	(left)	or	EZH2	(right).	P-values	
from	likelihood	ratio	test	of	LMM	with/without	mutation	status.	h,	Comparison	of	AML	samples	with/without	DNMT3A	R882	
showing	DNMT3A	mutant-to-wildtype	ratio	of	methylation	at	TSS	overlapping	PRC2	ChIP-seq	peaks	or	non-overlapping	CpG		
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hypomethylation	of	enhancer	regions108	(P	=	7.29	x	10-8,	
linear	 mixed	 model,	 Fig.	 4d)	 as	 well	 as	 global	
hypomethylation	 in	 DNMT3A	 R882	 cells	 compared	 to	
wildtype	 cells	 (P	 =	 2.92	 x	 10-3,	 linear	 mixed	 model,	
Extended	 Data	 Fig.	 8c-d,	 online	 methods).	 Thus,	 we	
demonstrated	that	the	methylation	of	regulatory	regions	
is	 affected	 by	DNMT3A	 R882	mutations	 in	 human	 CH.	
Interestingly,	prior	 in	vitro	studies	suggested	that	CpH	
sites	may	be	hypermethylated	 in	DNMT3A	R882H.	Our	
data	revealed	no	significant	difference,	and	an	opposite	
trend	(Extended	Data	Fig.	8e),	further	highlighting	the	
significance	of	examining	primary	human	cells.					

Differentially	 methylated	 regions	 (DMR)	 analysis	
identified	 269	 promoters	 to	 be	 significantly	
hypomethylated	 considering	 the	 observed	 global	
hypomethylation	 (P	 <	 0.05	 and	 at	 least	 5%	 loss	 in	
methylation,	 Fig.	 4e,	 Extended	 Data	 Fig.	 8f,	
Supplementary	 Table	 5,	 see	 online	 methods	 for	
statistical	 modeling	 to	 identify	 promoters	 with	
preferential	 hypomethylation	 that	 explicitly	 models	
samples	as	a	variable).	Gene	set	enrichment	analysis	of	
these	genes	identified	enrichment	of	targets	of	the	PRC2	
(FDR-adjusted	P	<	0.2,	GSEA	with	MSigDB	C2:	CGP	gene	
set,	Fig.	4e,	Supplementary	Table	6,	online	methods).	
As	 an	 orthogonal	 approach,	we	 performed	 differential	
methylation	analysis	of	chromatin	immunoprecipitation	
sequencing	(ChIP-seq)	peaks	(ENCODE	database109)	that	
overlap	with	TSS	regions.	This	approach	also	identified	
the	targets	of	PRC2	components	SUZ12	and	EZH2	to	be	
differentially	hypomethylated	(Fig.	4f),	as	well	as	that	of	
GATA2,	involved	in	ME	differentiation.	As	ENCODE	ChIP-
seq	tracks	reflect	aggregation	across	several	cell	types,	
we	 validated	 that	 preferential	 hypomethylation	
specifically	 impacted	 regions	 marked	 by	 H3K27me3,	
H3K4me3	 bivalency	 in	 human	 hematopoietic	
progenitors,	 by	 intersecting	 the	 ENCODE	 ChIP-seq	
tracks	 with	 bivalent	 peaks	 in	 CD34+	 cells110	(Fig.	 4g,	
Supplementary	 Table	 7,	 for	 per-sample	 data	 see	
Extended	Data	Fig.	8g).	This	finding	is	consistent	with	
previous	 data	 showing	 that	 germline	 gain-of-function	
mutations	 in	 DNMT3A	 result	 in	 the	 reciprocal	
hypermethylation	of	PRC2	targets,	leading	to	premature	
differentiation	programs111.	Furthermore,	PRC2	targets	
exhibit	 significant	 overlap	 with	 previously	 reported	
methylation	 canyons,	 shown	 to	 undergo	 preferential	
hypomethylation	upon	Dnmt3a	loss112	(98%	of	canyons	
harbored	a	PRC2	target	compared	with	16%	of	canyons	
harboring	 peaks	 of	 a	 size-matched	 set	 of	 random	
genomic	 intervals,	 P	 <	 10-10,	 Fisher	 exact	 test)113.	
Notably,	while	gene	expression	changes	in	PRC2	targets	
were	not	observed	between	mutated	and	wildtype	cells	

from	 the	 GoT	 data	 (P	 =	 0.42,	 linear	 mixed	 model,	
Extended	Data	Fig.	8h),	this	may	be	expected	given	that	
PRC2-repressed	genes	 that	gain	DNA	methylation	may	
only	 switch	 between	 different	 silencing	 states.	
Nonetheless,	DNA	methylation	of	PRC2	targets	has	been	
shown	 to	 reinforce	 gene	 silencing114-116,	 and	 thus	
mutated	 DNMT3A	 mediated	 hypomethylation	 of	 PRC2	
targets	 may	 poise	 mutated	 progenitors	 to	 aberrant	
reactivation	of	stem	cell	maintainers,	as	seen	in	a	PRC2	
deficient	mouse	model117.		

Finally,	 to	 determine	 whether	 CH	 hypomethylation	 of	
PRC2	 targets	persists	 through	progression	 to	AML,	we	
compared	the	methylation	status	of	PRC2	targets	(online	
methods)	between	DNMT3A	R882	mutated	AML	(n	=	7)	
and	DNMT3A	 wildtype	 AML	 (n	 =	 6,	 both	 groups	 with	
NPM1	 mutations105,	 Supplementary	 Table	 8).	 We	
found	 that	 compared	 with	 DNMT3A	 wildtype	 AML,	
DNMT3A	R882	mutated	AML	demonstrated	preferential	
hypomethylation	 at	 promoters	 of	 PRC2	 targets	
compared	 to	promoters	with	 similar	CpG	 content	 (P	=	
0.0087,	online	methods,	Fig.	4h,	Extended	Data	Fig.	8i).	
To	determine	whether	the	preferential	hypomethylation	
of	 PRC2	 targets	 may	 be	 robust	 against	 various	 co-
occurring	 mutations,	 we	 compared	 the	 methylation	
rates	 of	 PRC2	 targets	 in	DNMT3A	wildtype	 (n	 =	 122)	
versus	 DNMT3A	 R882	 mutated	 AML	 (n	 =	 9)	 with	
heterogeneous	 mutation	 status	 from	 The	 Cancer	
Genome	Atlas	(TCGA)118	and	identified	similar	results	as	
observed	 in	 the	NPM1-mutated	 AML	 (Extended	 Data	
Fig.	 8j).	 	 These	 results	 demonstrated	 that	 mutated	
DNMT3A-mediated	hypomethylation	of	PRC2	targets	 is	
maintained	 through	 evolution	 to	 AML,	 further	
supporting	 it	 as	 a	 potential	 mechanism	 for	 enhanced	
self-renewal,	 from	 clonal	 hematopoiesis	 to	 frank	
malignancy.		

DNMT3A	 R882	 displays	 differential	
methyltransferase	 activity	 as	 a	 function	 of	 CpG	
flanking	sequence	

We	 hypothesized	 that	 mutated	 DNMT3A	 R882	 may	
further	 display	 differential	 methyltransferase	 activity,	
depending	on	the	flanking	sequence	context	of	the	CpG	
dinucleotide119,120.	 Indeed,	 CpGs	 within	 DMRs	 defined	
CpG	 motifs	 that	 are	 particularly	 hypomethylated	
(disfavored)	 in	mutated	versus	wildtype	human	CD34+	
cells	(online	methods,	Fig.	5a,	Extended	Data	Fig.	9a).	
Of	 note,	 CpGpT	 was	 particularly	 associated	 with	
hypomethylation	 (Fig.	 5a,	 Extended	 Data	 Fig.	 9a),	
consistent	with	 in	 vitro	 enzymatic	 studies	of	DNMT3A	
R882	 variants119,120	 (Extended	 Data	 Fig.	 9b,c).	
Importantly,	this	CpG	flanking	motif	was	enriched	in	the	

rich	TSS	as	control.	P-value	from	two-sided	Wilcoxon	rank	sum	test.	HSPC,	hematopoietic	stem	progenitor	cells;	IMP,	immature	
myeloid	 progenitor;	 NP,	 neutrophil	 progenitor;	 M/D,	 monocytic/dendritic	 cell	 progenitors;	 EP,	 erythroid	 progenitor;	 WT,	
wildtype;	MUT,	mutant;	NA,	not	assignable.	
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binding	 motifs	 of	 specific	 TFs	 expressed	 in	
hematopoietic	progenitors	(Fig.	5b).	These	included	key	
regulators	of	 hematopoiesis	 such	 as	MYC/MAX,	whose	
activities	are	known	to	be	negatively	impacted	by	DNA	
methylation	 of	 their	 binding	 motifs121,122,	 and	 were	
found	 to	 have	 increased	 target	 expression	 in	mutated	
cells	 (Fig.	 3c,d).	 Other	 key	 transcription	 regulators	
included	HIF1A	(and	its	cofactor	ARNT),	whose	binding	
is	 facilitated	 by	 demethylation	 of	 the	 binding	motif123;	
HIF1A/ARNT	 are	 critical	 factors	 for	 HSC	 quiescence,	
through	 maintenance	 of	 the	 anaerobic	 glycolysis-
dependent	 metabolic	 activity	 in	 the	 bone	 marrow	
niche124-130.	 USF1/2	 were	 also	 among	 the	 highlighted	
TFs,	 which	 have	 been	 shown	 to	 regulate	 chromatin	
architecture	 in	 erythroid	 differentiation	 and	 the	 beta-
globin	 locus131,132.	 In	 further	 support	 for	 a	 model	 in	
which	 preferential	 hypomethylation	 of	 the	 specific	
sequence	motif	underlies	transcriptional	dysregulation,	
we	 observed	 enrichment	 of	 the	 hypomethylated	 CpG	
flanking	 sequence	 in	 regions	 surrounding	 genes	
upregulated	 in	 mutated	 HSPCs	 and	 EPs	 (Fig.	 5c,	
Extended	Data	Fig.	9d-f).		

To	 validate	 the	 impact	 of	 mutated	 DNMT3A	 on	 TF	
activation,	we	collected	Lin-,	c-Kit+	hematopoietic	stem	
and	progenitor	cells	from	mice	with	and	without	Dnmt3a	
R878H	(the	murine	R882H	equivalent;	no.	of	mice	=	3	in	
each	cohort)51.	While	recent	progress	has	been	made	in	
single-cell	chromatin	binding	assays133-135,	the	ability	to	
determine	the	weaker	signal	of	TF	binding	in	single	cells	
remains	 a	 challenge.	 We	 therefore	 performed	 a	
chromatin	 accessibility	 assay,	 shown	 to	 be	 a	 reliable	
surrogate	for	determining	TF	activity136,	on	single	nuclei	
(n	=	46,496	cells,	Fig.	5d,	Extended	Data	Fig.	10a-d).	
Confirming	our	findings	in	human	CH,	we	found	that	the	
accessibility	 of	 the	 DNMT3A	 R882-specific	
hypomethylated	 motif	 was	 increased	 in	 R878H	 cells,	
across	 clusters,	 including	 in	HSPCs,	 and	particularly	 in	
EPs	 (Fig.	 5e,f,	 Extended	 Data	 Fig.	 10e-g),	 whereas	
shuffled	versions	of	 the	hypomethylated	motif,	with	or	
without	 a	 CpG,	 displayed	 lower	 difference	 in	
accessibility	 between	 mutated	 and	 wildtype	
progenitors.	Candidate	TFs	with	high	similarities	scores	
in	 their	 binding	motif	with	 the	 hypomethylated	motif,	
including	 MYC/MAX,	 HIF1A/ARNT,	 USF1/2,	 displayed	
enhanced	 accessibility	 in	 R878H	 compared	 with	
wildtype	 progenitors,	 across	 multiple	 progenitor	
subsets	(Fig.	5f,	Extended	Data	Fig.	10g).	The	myeloid	
progenitors	 were	 particularly	 impacted,	 whereas	 the	
lymphoid	 progenitors	 showed	 little	 to	 no	 significant	
difference	 in	 accessibility	 for	 these	 TF	 binding	 motifs	
(Extended	 Data	 Fig.	 10g),	 suggesting	 overactivity	 of	
these	TFs	may	play	a	role	in	the	myeloid	differentiation	
bias.	 While	 Dnmt3a	 R878H	 HSPCs	 displayed	 a	 more	
modest	increase	in	chromatin	accessibility,	this	may	be	

due	to	the	global	open	chromatin	in	stem	cells	reducing	
the	 ability	 to	 measure	 specific	 enrichments137,138.		
Overall,	 as	 chromatin	 accessibility	 has	 been	
demonstrated	 to	accurately	reflect	TF	activity136,	 these	
data	provided	further	evidence	for	the	model	 in	which	
the	 DNMT3A	 mutation	 enhances	 the	 activity	 of	 	 TFs	
whose	 binding	 motifs	 are	 prone	 to	 hypomethylation	
through	 enrichment	 in	 the	 hypomethylated	 sequence	
motif.	This	model	 then	provides	 the	basis	of	enhanced	
MYC/MAX	 target	 gene	 expression	 in	 the	 DNMT3A	
mutated	 cells	 observed	 in	 the	 GoT	 data	 (Fig.	 3c,d),	
despite	 no	 expression	 increase	 in	 the	MYC	 gene	 itself	
(Extended	Data	Fig.	7b).	With	respect	to	PRC2	targets,	
although	 hypomethylation	 of	 PRC2	 target	 genes	 were	
observed,	 we	 observed	 no	 differential	 increase	 in	
expression	 in	 mutated	 cells	 (Extended	 Data	 Fig.	 8h)	
and	 no	 enhanced	 accessibility	 of	 PRC2	 targets	 in	 the	
mutated	cells	from	mouse	snATAC-seq	data	(Extended	
Data	Fig.	10h).		

As	 further	 confirmation	 of	 our	 proposed	 model,	 we	
found	that	HIF1A/ARNT	and	MYC/MAX	binding	motifs	
were	hypomethylated	in	CH	mutated	cells	compared	to	
wildtype	progenitors	in	the	single-cell	multi-omics	data	
(P	 =	 2.7	 x	 10-4	and	 P	 =	 1.7	 x	 10-2,	 respectively,	 linear	
mixed	model,	Fig.	5g,h).	Moreover,	as	MYC	targets	were	
upregulated	 in	 CH	 mutated	 cells	 in	 the	 GoT	 data,	 we	
leveraged	 our	 single-cell	 multi-omics	 approach	 to	
directly	link	the	expression	of	MYC/MAX	targets	with	the	
level	of	DNA	methylation	of	MYC/MAX	target	promoters	
within	the	same	cells	(see	online	methods).	Indeed,	the	
expression	 of	 MYC/MAX	 target	 genes	 was	 negatively	
correlated	with	mean	methylation	of	their	binding	sites	
(P	 =	 3.2	 x	 10-18,	 generalized	 linear	 model,	 Fig.	 5i),	
consistent	 with	 prior	 studies	 indicating	 that	
hypomethylation	 of	 binding	 motifs	 enhances	 MYC	
binding121,122,139,140.	 Thus,	 our	 single-cell	 multi-omics	
profiling	 provides	 a	 potential	 model	 for	 the	 observed	
transcriptional	 aberration	 in	human	DNMT3A	mutated	
CH,	 supporting	 enhanced	 fitness	 of	 DNMT3A	 mutated	
cells	via	selective	hypomethylation	of	key	hematopoietic	
TF	binding	motifs.		

DNMT3A-mutated	 CH	 bone	 marrow	 sample	
corroborates	results	from	stem	cell	graft	CH	samples	

To	 confirm	 that	 the	 findings	 we	 observed	 in	 the	 CH	
samples	were	generalizable	to	CH	not	exposed	to	G-CSF	
or	 prior	 chemotherapy,	 we	 obtained	 a	 bone	 marrow	
sample	 from	 a	 patient	 without	 any	 underlying	
hematologic	disorders	with	a	DNMT3A	R882H	mutation	
(CH05).	We	sorted	for	CD34+	cells	and	performed	GoT	as	
we	had	done	for	CH01-CH04	samples	(n	=	5,770	cells).	
Although	 a	 low	 genotyping	 efficiency	 limited	 the	
comparisons	between	mutated	and	wildtype	cells	within	
the	same	sample	(n	=	687	genotyped	cells),	this	sample		
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consisted	of	mostly	mutated	cells	with	a	high	VAF	(0.4),	
enabling	 a	 direct	 comparison	 to	 previously	 published	
healthy	 control	 CD34+	 bone	marrow	 cells	 (n	 =	 39,082	
cells,	 Supplementary	 Table	 9,	 online	 methods)141,142.	
We	batch-corrected	and	 integrated	across	 the	 samples	
as	previously	described44	(Fig.	6a,b,	Extended	Data	Fig.	
11a-e).	We	first	determined	whether	the	bone	marrow	
CH	 IMPs	may	 display	 the	 lineage	 biases	 as	 previously	
observed	 in	 the	 CH01-CH04	 samples.	 Consistent	 with	
those	 results,	 the	 IMPs	 from	 CH05	 demonstrated	
skewing	 toward	 the	ME	versus	GM	state,	 compared	 to	
the	control	bone	marrow	CD34+	cells	(Fig.	6c,	Extended	
Data	 Fig.	 12a-c).	 Next,	 we	 assessed	 the	 progenitor-
specific	differentially	expressed	genes	 identified	 in	 the	
CH01-CH04	 samples	 and	 confirmed	 the	 expected	
increased	or	decreased	expression	for	the	differentially	
upregulated	 or	 downregulated	 genes	 in	mutated	 cells,	
respectively,	in	CH05	progenitors,	compared	to	control	
progenitors	 (data	 for	 HSPCs	 and	 EPs	 in	 Fig.	 6d,	
Extended	 Data	 Fig.	 12d,e,	 see	 other	 progenitors	 in	
Extended	Data	Fig.	12f).	Furthermore,	we	observed	an	
enrichment	of	 the	MYC/MAX	 target	genes	 in	 the	CH05	
progenitors	 compared	 to	 the	 control	 progenitor	 cells	
(Fig.	 6e),	 again	 most	 pronounced	 within	 the	 EPs.	
Intriguingly,	 the	 CH05	 cells	 integrated	 evenly	 across	
progenitor	subsets	with	control	CD34+	cells	except	for	a	
subcluster	of	EPs	 (EP2,	Fig.	6a-b,	Extended	Data	Fig.	
12g).	 We	 suspected	 that	 the	 MYC/MAX	 target	 gene	
expression	may	be	particularly	impacted	in	this	aberrant	
cluster	and	identified	this	to	be	the	case	(Fig.	6e,	right).	
While	the	low	genotyping	efficiency	limited	our	ability	to	
make	 within	 cluster	 mutated	 versus	 wildtype	

comparisons	 in	 this	 sample,	 we	 were	 able	 to	 confirm	
across	clusters	the	increased	expression	of	differentially	
upregulated	 genes	 identified	 in	 more	 than	 one	
progenitor	 subset	 (Extended	 Data	 Fig.	 12h-j,	 genes	
from	 Fig.	 3b).	 Lastly,	 to	 test	 whether	 CD9	 protein	
expression	was	impacted	by	the	upregulation	of	the	gene	
expression	observed	in	the	mutated	HSPCs	from	CH01-
CH04,	we	incorporated	protein	expression	in	this	sample	
through	CITE-seq143.	As	CD9	expression	has	been	linked	
with	 megakaryocytic	 differentiation	 priming59,60,	 we	
examined	 CD9	 protein	 expression	 in	 the	 in	 the	 early	
CD34+,	CD38low	hematopoietic	stem	and	progenitor	cells	
along	the	megakaryocytic	differentiation	trajectory	and	
observed	 an	 increased	 CD9	 expression	 in	 mutated	
compared	 with	 wildtype	 cells	 (Extended	 Data	 Fig.	
12k,l).			

To	 test	 the	 chromatin	 accessibility	 of	 TF	 motifs	 (as	 a	
surrogate	for	TF	activity)	that	bear	high	similarity	to	the	
DNMT3A	R882	hypomethylated	motif	directly	in	this	CH	
sample,	 we	 extended	 GoT	 to	 the	 10x	 Multiome	
(ATAC+RNA)	 platform	 and	 applied	 it	 to	 sorted	 CD34+	
nuclei	 (Fig.	 6f,	 Extended	 Data	 Fig.	 13a-c,	 n	 =	 3,824	
nuclei,	 note	 that	 the	 transcriptome	 data	 failed	 QC	
metrics	and	was	not	used	downstream).	As	genotyping	
efficiency	 depends	 on	 mRNA	 abundance,	 the	 lower	
mRNA	 abundance	 in	 nuclei	 limited	 genotyping.	 We	
therefore	again	took	advantage	of	the	high	VAF	(~80%	
cells	are	mutant)	and	showed	that	across	these	cells,	the	
accessibility	 of	 the	 hypomethylated	motif	 –	 as	well	 as	
those	of	MYC/MAX,	HIF1A/ARNT,	USF1/2/TFE3	–	was	
increased	compared	to	a	shuffled	motif	and	that	of	MYB,	
which	may	serve	as	an	additional	negative	control	(Fig.		

Figure	5.	DNMT3A	R882	displays	flanking	sequence	specificity	associated	with	MYC	binding	motif.	a,	Motif	logo	for	the	
odds	ratio	of	base	frequency	of	the	flanking	positions	(N-1,	N-2,	N+1,	N+2)	of	CpG	sites.	Odds	ratios	were	calculated	based	on	
the	 flanking	 regions	 of	 CpG	 sites	 hypomethylated	 or	 hypermethylated	 in	DNMT3A	 R882	mutant	 compared	 with	 wildtype	
hematopoietic	progenitors	(online	methods).	b,	Similarity	score	between	the	hypomethylated	motif	of	DNMT3A	R882	(Fig.	5a)	
and	 TF	 binding	motifs	 in	 the	 HOCOMOCO	 v11	 collection	 of	 human	 TF	 binding	motifs.	 Relevant	 transcription	 factors	 with	
expression	level	in	HSPCs	>	0.5	and	motif	similarity	>	0.5	are	labeled.	c,	Frequencies	of	DNMT3A	R882	hypomethylated	motif	
within	30	kb	of	TSS	of	the	differentially	expressed	genes	between	MUT	and	WT	cells	in	HSPCs	and	EPs	(identified	in	GoT	data,	
Fig.	3a,c,	see	Extended	Data	Fig.	9d	 for	other	progenitor	subsets,	Extended	Data	Fig.	9e	 for	10	kb	and	50	kb	of	TSS,	and	
Extended	Data	Fig.	9f	 for	data	accounting	for	CpG	content).	P-values	were	calculated	by	Wilcoxon	rank	sum	test.	d,	UMAP	
dimensionality	reduction	of	murine	wildtype	(n	=	3	mice)	and	Dnmt3a	R878H	(n	=	3	mice)	Lin-,	Kit+	snATAC-seq	data	showing	
progenitor	cluster	annotation	and	representative	progenitor	gene	marker	accessibility	(n	=	46,496	cells).	e,	UMAP	showing	
accessibility	 deviation	 as	 calculated	 with	 chromVar	 for	 hypomethylated	motif	 (left)	 and	 shuffled	motif	 (right,	 z-scores).	 f,	
Bonferroni	 FWER-adjusted	 P-values	 for	 accessibility	 changes	 between	 wildtype	 and	 Dnmt3a	 R878H	 cells	 by	 progenitor	
identities	for	hypomethylated	motif	and	negative	control	shuffled	motifs	(with/without	CpG),	as	well	as	binding	motifs	of	the	
TFs	identified	in	Fig.	5b.	g,	Comparison	of	single	cell	average	methylation	of	ARNT	binding	motifs	(intersected	with	ARNT	ChIP-
seq	peaks,	ENCODE	hg38	Tf	clusters)	between	wildtype	and	DNMT3A	R882	mutant	hematopoietic	progenitor	cells.	P-values	
from	likelihood	ratio	test	of	LMM	with/without	mutation	status.	h,	Comparison	of	single	cell	average	methylation	of	MYC	binding	
motifs	 (intersected	 with	 MYC	 ChIP-seq	 peaks,	 ENCODE	 hg38	 Tf	 clusters)	 between	 wildtype	 and	 DNMT3A	 R882	 mutant	
hematopoietic	progenitor	cells.	P-values	from	likelihood	ratio	test	of	LMM	with/without	mutation	status.	i,	Relative	expression	
per	cell	(AUC)	of	MYC	downstream	targets	inferred	using	the	SCENIC	package	(online	methods)	as	a	function	of	average	MYC	
motif	 methylation.	 Correlation	 coefficient	 R	 calculated	 using	 Pearson's	 Correlation.	 P-value	 derived	 from	 GLM.	 HSPC,	
hematopoietic	stem	progenitor	cells;	MP,	multipotent	progenitors;	IMP,	immature	myeloid	progenitors;	LMPP,	lympho-myeloid	
primed	 progenitors;	 CLP,	 common	 lymphoid	 progenitor;	 EP,	 erythroid	 progenitor;	 MkP,	 megakaryocytic	 progenitor;	 NP,	
neutrophil	progenitor.	
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Figure	6.	Bone	marrow	clonal	hematopoiesis	progenitor	cells	display	megakaryocytic-erythroid	differentiation	bias,	
MYC	target	gene	expression,	and	enhanced	accessibility	for	the	R882	hypomethylated	motif.	a,	UMAP	of	CD34+	cells	(n	=	
44,782	cells)	for	scRNA-seq	data	from	a	clonal	hematopoiesis	sample	(CH05)	and	previously	published	five	control	bone	marrow	
samples	(BM01-05),	labeled	with	cluster	assignments.	b,	UMAP	of	CD34+	cells	(n	=	44,782	cells)	labeled	with	CH	(n	=	5,770)	or	
control	(n	=	39,082)	status.	c,	Megakaryocytic-erythroid	module	scores	in	control	versus	CH	IMPs	(left,	Supplementary	Table	
2)	granulocytic-monocytic	module	scores	in	control	versus	CH	IMPs	(right,	Supplementary	Table	2).	P-values	were	calculated	
from	likelihood	ratio	test	of	LMM	with/without	CH	status.	d,	Module	scores	for	differentially	down-	or	up-regulated	genes	in	
mutant	DNMT3A	HSPCs	and	EPs	(identified	in	GoT	data,	Fig.	3a,c)	in	control	versus	CH	HSPCs	and	EPs.	e,	Local	regression	of	
normalized	expression	levels	as	a	function	of	pseudotime	of	MYC/MAX	targets	(differentially	upregulated	in	Fig.	3c)	for	control	
and	DNMT3A	R882	CH	cells.	Shading	denotes	95%	confidence	interval.	Histogram	shows	cell	density	of	clusters	included	in	the	
analysis,	ordered	by	pseudotime.	Boxplot	shows	comparison	of	module	scores	between	control	and	CH	cells	within	the	two	EP	
clusters.	P-value	calculated	 from	 likelihood	ratio	 test	of	LMM	with/without	CH	status.	 f,	UMAP	dimensionality	 reduction	of	
CD34+	 cells	 (n	 =	 3,824	 cells)	 for	 snATAC-seq	 data	 from	 a	 clonal	 hematopoiesis	 sample	 (CH05)	 depicting	 the	 cell	 cluster	
assignment	and	cell	type	labels.	g,	Motif	accessibility	z-scores	for	shuffled,	hypo-methylated	motif	and	relevant	transcription	
factors	for	the	HSPC	cluster	(n	=	788	cells).	P-values	correspond	to	Wilcoxon	rank	sum	test	between	accessibility	of	the	shuffled	
motif	and	the	indicated	motif.	h,	UMAP	projection	of	genotype	assignment	for	WT	(n	=	135	cells)	and	MUT	(n	=	160	cells).	i,	
Motif	accessibility	z-score	comparison	for	either	hypo-methylated	or	shuffled	motifs	between	WT	(n	=	135	cells),	MUT	(n	=	160		
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6g).	 The	 accessibility	 of	 the	 hypomethylated	 motif	
increased	 with	 erythroid	 differentiation	 but	 not	 with	
lymphoid	 differentiation,	 consistent	 with	 the	
importance	 of	 these	 highlighted	 TFs	 in	 erythroid	
differentiation	 (Extended	 Data	 Fig.	 13d,e).	 Finally,	
even	within	the	 limited	number	of	genotyped	cells,	we	
observed	 that	 the	 accessibility	 of	 the	 hypomethylated	
motif	 was	 increased	 overall	 in	 the	 mutated	 cells	
compared	 to	 the	 wildtype-enriched	 population	 (Fig.	
6h,i).	 In	 summary,	 these	 findings	 in	 a	 bone	 marrow	
DNMT3A-mutated	 CH	 sample,	 not	 complicated	 by	
exposure	to	G-CSF	or	prior	chemotherapy,	corroborated	
the	findings	in	samples	CH01-CH04,	suggesting	that	the	
comparisons	between	mutated	and	wildtype	cells	within	
the	same	individuals	are	indeed	robust	to	the	potentially	
confounding	 extrinsic	 factors	 and	 are	 largely	
generalizable	 to	 steady-state	 DNMT3A	 R882-mutated	
CH.		

	

Discussion	

We	 present	 an	 unbiased	 profiling	 of	 the	 downstream	
effects	of	somatic	driver	mutations	in	clonal	mosaicism	
of	normal	human	tissue,	focusing	on	DNMT3A	mutations	
in	 clonal	 hematopoiesis.	 Hitherto,	 extensive	 genetic	
profiling	 across	normal	 tissues	has	been	performed	 to	
document	 the	 striking	 mosaicism	 that	 result	 from	
pervasive	age-related	acquisition	of	somatic	mutations1-
5.	 For	 example,	 a	 landmark	 study	 of	 morphologically	
normal	 skin	 from	 the	 eyelids	 of	 four	 individuals	
identified	 ~140	 mutations	 per	 square	 centimeter5.	
Importantly,	while	these	studies	have	demonstrated	that	
mutations	in	cancer	drivers	are	particularly	prevalent5,	
the	downstream	effects	of	cancer	driver	mutations	that	
enable	 clonal	 outgrowths	 in	 normal	 human	 tissue	 are	
largely	unknown.		

Similarly,	CH	is	a	prevalent	phenomenon	in	physiological	
hematopoietic	 aging	 fueled	by	driver	mutations	 linked	
with	 myeloid	 neoplasms.	 However,	 the	 downstream	
consequences	 of	 these	 mutations	 in	 normal	 human	
hematopoietic	 progenitors	 are	 largely	 unknown.	
Previous	 studies	 leveraged	 rare	germline	mutations	 in	
small	 cohorts	 of	 patients	 to	 study	 the	 downstream	
perturbations	of	these	mutations104,111.	For	example,	by	
examining	mature	 blood	 cells	 from	 an	 individual	with	
Tatten-Brown-Rahman	 Syndrome	 (TBRS)	 due	 to	 a	
germline	 DNMT3A	 R882H	 mutation,	 with	 a	 sibling	
control104,	 the	 Ley	 group	 demonstrated	 focal	
hypomethylation,	 including	 of	 CpG	 islands,	 consistent	

with	 our	 findings.	 More	 recently,	 the	 Goodell	 group	
studied	 the	 effects	 of	 DNMT3A	 R771Q	 mutation	 by	
transforming	 primary	 cells	 into	 a	 lymphoblastoid	 cell	
line	(LCL)	from	an	early	embryonal	mosaic	individual144,	
demonstrating	 significant	 overlap	 in	 hypomethylated	
regions	 in	 these	 DNMT3A	 R771Q	 LCLs	 and	 DNMT3A	
mutated	AML.		

Nonetheless,	we	previously	lacked	the	ability	to	directly	
compare	mutated	 and	wildtype	 progenitors	 in	 human	
CH	 in	 their	 native	 context.	 Specifically,	 two	 obstacles	
challenge	 the	 study	 of	 CH	mutation	 impact	 directly	 in	
primary	 patient	 samples.	 First,	 CH	 specimens	 with	
enriched	human	hematopoietic	progenitors	are	scarce,	
as	individuals	with	CH	have	no	current	clinical	indication	
for	a	bone	marrow	biopsy.	To	circumvent	this	limitation,	
we	 pursued	 an	 alternative	 approach	 to	 profile	 CH	
mutated	cells	in	stem	cell	graft	products	obtained	from	a	
cohort	of	MM	patients	in	remission145	and	identified	one	
DNMT3A	R882H	CH	bone	marrow	specimen	without	G-
CSF	 exposure	 or	 a	 potentially	 confounding	 cancer	
diagnosis	to	validate	our	findings.	Second,	mutated	cells	
are	 admixed	 with	 wildtype	 in	 the	 hematopoietic	
progenitor	 pool	 and	 are	 morphologically	 and	
phenotypically	indistinct.	Thus,	mutated	cells	cannot	be	
isolated	 from	 wildtype	 cells	 for	 downstream	 analysis.	
We	 overcame	 this	 challenge	 by	 leveraging	 single-cell	
multi-omics	 that	 enabled	 us	 to	 profile	 the	
transcriptomes	 and	 epigenomes,	 together	 with	 the	
genotype	information,	of	these	single	cells.		

The	 application	 of	 the	 GoT	 approach38	 enabled	 high-
resolution	mapping	of	DNMT3A	 R882	mutated	 cells	 to	
the	 hematopoietic	 differentiation	 tree	 to	 reveal	
differentiation	 skewing,	 even	 before	 clinically	
observable	 changes	 in	 blood	 counts.	 We	 observed	 a	
myeloid	 over	 lymphoid	 bias,	 consistent	 with	 prior	
murine	 studies51,	 and	 the	 strong	 association	 of	 this	
genotype	with	myeloid	versus	lymphoid	neoplasms.	We	
further	 identified	 expansion	of	mutated	 IMPs	 and	ME-
biased	 IMPs.	Enrichment	of	mutated	 cells	 in	 IMPs	was	
linked	with	a	specific	increase	in	proliferation	compared	
to	wildtype	cells.	Notably,	myeloid-bias	has	been	linked	
with	 proinflammatory	 signaling64,146,	 and	 thus	 a	
proinflammatory	 state	 in	 mutated	 HSPCs	 (i.e.	 as	
evidenced	by	the	overexpression	of	TNFRSF4,	TYROBP,	
FCER1G)	 may	 also	 contribute	 to	 the	 enrichment	 of	
mutated	cells	in	IMPs.	Mutated	IMPs	further	displayed	a	
megakaryocytic-erythroid	 lineage	 bias,	 with	 enhanced	
transition	 probability	 of	mutated	 IMPs	 to	 differentiate	
into	 IMP-MEs,	 consistent	 with	 our	 previous	 study	 in	

cells).	P-values	were	calculated	by	Wilcoxon	rank	sum	test.	HSPC,	Hematopoietic	stem	and	progenitor	cell;	IMP-	ME,	immature	
myeloid	progenitor	with	megakaryocytic/erythroid	bias;	IMP-GM,	immature	myeloid	progenitor	with	granulocyte/monocyte	
bias;	 LMPP,	 Lymphoid-myeloid	 pluripotent	 progenitor;	 MkP,	 Megakaryocyte	 progenitor;	 NP,	 Neutrophil	 progenitor;	 CLP,	
Common	lymphoid	progenitor;	Pre-B1/2,	Pre-B	cell	progenitor;	EP1/2,	Erythroid	progenitor.	
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Dnmt3a	KO	mouse	model54,	as	well	as	a	Dnmt3a	R878H	
model	showing	increased	platelet	counts64.		

As	 DNMT3A	 R882-induced	 changes	 in	 DNAme	 are	
globally	 distributed	 across	 the	 genome,	 we	 sought	 to	
understand	 how	 stochastic	 DNAme	 changes	 can	 be	
translated	 into	 deterministic	 outputs,	 especially	 with	
respect	 to	 differentiation	 skews.	 We	 found	 that	 the	
DNMT3A	R882	variants	displayed	a	CpG	sequence	motif	
specificity,	disfavoring	CpGs	with	T	at	the	N+1	position,	
consistent	with	deep	enzymology	assays119.	Notably,	this	
hypomethylated	CpG	flanking	motif	bore	high	similarity	
to	the	binding	motifs	of	key	hematopoietic	TFs,	such	as	
MYC/MAX,	 HIF1A/ARNT,	 USF1/2,	 providing	 a	
mechanistic	model	for	enhanced	MYC	activity	observed	
in	 our	GoT	data.	 This	model	was	 supported	 by	mouse	
Dnmt3a	R878H	and,	critically,	human	CH	bone	marrow	
data	in	which	snATAC-seq	of	hematopoietic	progenitors	
revealed	enhanced	accessibility	of	 the	hypomethylated	
motif	 and	 importantly	of	 the	MYC/MAX,	HIF1A/ARNT,	
USF1/2	 binding	 motifs.	 The	 accessibility	 changes	
associated	 with	 the	 hypomethylated	 motif	 were	
specifically	 pronounced	 in	 myeloid	 versus	 lymphoid	
progenitors,	 suggesting	 that	 these	 molecular	
consequences	may	play	a	role	 in	differentiation	biases.	
Furthermore,	 our	 single-cell	 multi-omics	 platform	
further	 enabled	 us	 to	 identify	 that	 cells	 with	
hypomethylation	 of	 MYC/MAX	 binding	motifs	 showed	
increased	 expression	 of	 their	 transcriptional	 targets	
within	the	same	cells,	consistent	with	previous	reports	
that	demonstrated	the	negative	impact	on	MYC	activity	
imparted	 by	 the	 methylation	 of	 its	 binding	
motif121,122,139,140.	 These	 data	 revealed	 how	 modest,	
global,	stochastically	distributed	DNAme	changes	can	be	
translated	 into	phenotypic	 skews.	Through	differences	
in	the	enrichment	of	CpG	flanking	sequence	density	of	TF	
DNA	 binding	 motifs,	 subtle	 global	 DNAme	 changes	
affecting	 hundreds	 of	 binding	 sites	 can	 modulate	 TF	
output	 to	 result	 in	 reshaping	 of	 the	 differentiation	
landscape54.		

We	 further	 identified	 preferential	 hypomethylation	 of	
PRC2	 targets.	 While	 the	 relationship	 between	 PRC2-
mediated	histone	methylation	and	DNA	methylation	 is	
not	 fully	 understood,	 DNA	 methylation	 may	 serve	 to	
“lock	 in”	 gene	 silencing	 with	 a	 mechanism	with	more	
robust	mitotic	inheritance147.			PRC2	targets	in	stem	cells	
include	 pluripotency/stemness	 genes148-150,	 and	 are	
enriched	 for	 bivalent	 H3K27me3/H3K4me3	
marks151,152,	 suggesting	 that	 PRC2	results	in	 “poising”	
rather	 than	 in	 complete	 silencing	 at	 those	 sites.	 In	
contrast,	 more	 differentiated	 cells	 reinforce	 gene	
silencing	 by	 increasing	 the	 length	 of	 H3K27me3	
domains,	 or	 through	 complementary	 silencing	
mechanisms	 including	 DNA	 methylation114-116.	Thus,	

while	PRC2	targets	are	broadly	suppressed	in	stem	cells,	
some	 leaky	 transcription	may	 still	 occur,	 compared	 to	
PRC2	 targets	 that	 have	 also	 underwent	 DNA	
methylation.	 This	 nuanced	 model	 posits	 that	 PRC2	
targets	 DNA	 hypomethylation	 in	 DNMT3A	 mutated	
progenitors,	 may	 allow	 for	 their	 re-activation	 in	
response	to	stimuli,	as	another	candidate	mechanism	for	
enhanced	 self-renewal	 through	 de-repression	 of	 stem	
cell	programs.		As	activation	of	stem	cell	markers	such	as	
those	 repressed	by	 the	polycomb	group	proteins	 have	
been	 implicated	 in	 endowing	 cancer	 with	 stem-like	
properties153,	our	data	points	to	poising	of	PRC2	targets	
as	a	potential	mechanism	for	enhanced	stem	cell	renewal	
upon	malignant	transformation.	While	PRC2	deficiency	
has	been	reported	to	lead	to	overexpression	of	stem	cell	
maintainers	 such	 as	 HoxC4	 and	 inhibitors	 of	
differentiation	such	as	Sox7	and	Id2	 in	a	murine	model	
(Eed	KO),	as	well	as	relative	expansion	of	LT-HSC117,	Eed	
KO	cells	also	showed	reduced	competitive	repopulating	
capacities	 with	 pro-apoptotic	 predisposition117.	 These	
data	suggest	that	PRC2	target	activation	of	self-renewal	
requires	cooperation	of	an	oncogenic	TF	such	as	MYC	to	
counterbalance	 the	 proapoptotic	 effects	 and	 support	
clonal	 expansion	 in	DNMT3A	 R882	 cells.	 In	 support	 of	
this	 model,	 a	 recent	 work	 in	 mice	 demonstrated	 that	
while	Ezh2	KO	itself	had	little	impact	on	hematopoiesis	
(likely	due	 to	 redundant	homologs),	Ezh2	 KO	 together	
with	 a	 compounding	 oncogenic	 driver	 (Nras	 G12D)	
promoted	 myeloid	 malignancy	 with	 activation	 of	
stemness	 genes154.	 Interestingly,	 Nras	 G12D	 alone	
promoted	GM	over	ME	bias,	but	in	the	double	Ezh2	KO,	
Nras	 G12D	mutated	model,	 hematopoiesis	was	 shifted	
toward	 ME	 over	 GM,	 suggesting	 that	 the	 PRC2	
aberrations	may	indeed	play	a	role	in	the	observed	ME	
bias	(in	addition	to	the	better-established	role	of	MYC	in	
ME	differentiation)154.		

A	potential	limitation	of	our	study	of	stem	cell	grafts	is	
the	 exposure	 to	 G-CSF	 used	 in	 stem	 cell	 mobilization	
from	 patients	 with	 MM	 (of	 note,	 patients	 were	 not	
subject	 to	 other	 mobilization	 agents,	 such	 as	 CXCR4	
antagonists	 or	 cyclophosphamide).	 Nonetheless,	 our	
analyses	uniquely	compared	mutated	and	wildtype	cells	
within	the	same	sample,	which	were	equally	subjected	to	
G-CSF.	Indeed,	our	CH05	bone	marrow	aspirate	sample	
from	 an	 individual	 with	 CH	 and	 no	 cancer	 diagnosis	
confirmed	the	major	findings	of	the	study,	showing	that	
comparing	mutated	versus	wildtype	cells	from	the	same	
individuals	 is	 robust	 to	 the	 potential	 extrinsic	
confounders.	 For	 example,	 although	 G-CSF	 stimulates	
granulocytic	 differentiation	 and	 proliferation155,	 we	
were	still	able	to	capture	the	megakaryocytic-erythroid	
bias	 in	 the	 early	mutated	 progenitors.	 Importantly,	 G-
CSF	 is	 especially	 effective	 in	 mobilizing	 quiescent	
murine	 HSCs,	 without	 inducing	 proliferation156.	
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Interestingly,	 in	 the	 context	 of	 cell	 line	 models	 of	
DNMT3A	R882,	G-CSF	induced	a	differentiation	block	in	
vitro	in	one	study34	and	GM-CSF	masked	the	proliferative	
effects	 of	 the	 mutation	 in	 another157.	 Although	 these	
results	 were	 observed	 in	 cell	 lines,	 and	 thus	 the	
applicability	 to	 human	 CH	 is	 less	 clear,	 these	 data	
suggest	 that	 G-CSF	may	 serve	 as	 a	 confounder.	 In	 this	
context,	 our	 validation	 of	 the	 major	 findings	 in	 a	 CH	
sample	 without	 exposure	 to	 G-CSF	 is	 of	 particular	
importance.	

Another	limitation	results	from	the	incomplete	capture	
of	 the	 heterozygous	 allele	 in	 our	 GoT	 cDNA	 amplicon	
method	due	to	low	expression	(median	of	1	amplicon	per	
genotyped	cell,	range	1-4	UMIs	per	cell).	This	is	likely	to	
result	 in	 misclassification	 of	 some	 mutated	 cells	 as	
wildtype	 cells.	 Nonetheless,	 as	 this	 is	 expected	 to	
diminish	mutation-specific	signals,	the	mutation-specific	
aberrations	 reported	 herein	 may	 likely	 have	 an	 even	
stronger	effect	size.	Another	limitation	of	the	study	is	the	
sample	size,	due	to	the	rarity	of	available	samples.	In	this	
context,	it	is	important	to	note	that	intensive	profiling	of	
a	small	number	of	samples	(e.g.	mutational	profiling	of	
normal	 eyelid	 samples	 from	 four	 individuals5	 or	
epigenetic	profiling	of	one	TBRS	patient	with	germline	
DNMT3A	 R882H	 mutation104)	 have	 shown	 that	
fundamental	 insights	 can	 be	 gained	 from	 these	 cases,	
directly	 in	human	samples.	Our	 single-cell	multi-omics	
profiling	of	thousands	of	progenitors,	directly	comparing	
mutated	and	wildtype	cells	within	the	same	individuals,	
thus	 enabled	 us	 to	 highlight	 reproducible	 gene	
expression	perturbations	and	epigenetic	underpinnings,	
that	were	supported	by	evidence	from	published	reports	
and	murine	data.		

Altogether,	we	report	the	first	direct	examination	of	the	
molecular	consequences	of	DNMT3A	R882	mutations	in	
primary	CD34+	cells	in	human	CH.	These	studies	allowed	
us	 to	 directly	 superimpose	 the	 differentiation	
topographies	 of	 mutated	 and	 wildtype	 hematopoietic	
progenitors,	co-existing	within	the	same	individuals.	We	
identified	key	epigenetic	and	transcriptional	aberrations	
that	 reshape	 the	 differentiation	 topography	 and	
contribute	to	clonal	expansion	in	the	most	nascent	stage	
of	neoplasia.	These	data	also	demonstrate	the	power	of	
emerging	single-cell	multi-omics	methods158-161	to	pave	
the	road	towards	defining	how	mutations	drive	normal	
tissue	mosaicism	in	human	somatic	evolution.	
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METHODS	

Patient	samples	

The	study	was	approved	by	the	 local	ethics	committee	
and	 by	 the	 Institutional	 Review	 Board	 (IRB)	 of	 Weill	
Cornell	Medicine,	University	of	Chicago	and	Dana	Farber	
Cancer	 Institute	 conducted	 in	 accordance	 to	 the	
Declaration	 of	 Helsinki	 protocol.	All	 patients	 provided	
informed	consent.	Cryopreserved	G-CSF	mobilized	stem	
cell	grafts	(without	additional	mobilizing	agents	such	as	
plerixafor	 or	 cyclophosphamide)	 from	 patients	 in	
remission	 for	 multiple	 myeloma,	 with	 documented	
DNMT3A	 R882	 mutations	 were	 retrieved	 after	
interrogating	 a	 cohort	 of	 136	 patients	 with	 CH40.	 See	
Supplementary	 Table	 1	 for	 clinical	 information.	
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Cryopreserved	 grafts	 were	 thawed	 and	 stained	 using	
standard	 procedures	 (10	 min,	 4°C)	 with	 the	 surface	
antibody	 CD34-PE-Vio770	 (clone	 AC136,	 lot#	
5180718070,	 dilution	 1:50,	Miltenyi	 Biotec)	 and	 DAPI	
(Sigma-Aldrich).	 Cells	 were	 then	 sorted	 for	 DAPI-
negative,	CD34+	cells	using	BD	Influx	at	the	Weill	Cornell	
Medicine	flow	cytometry	core.	

Mouse	Models	

All	 animals	 were	 housed	 at	 Memorial	 Sloan	 Kettering	
Cancer	 Center	 (MSKCC).	 All	 animal	 procedures	 were	
completed	 in	 accordance	 with	 the	 Guidelines	 for	 the	
Care	and	Use	of	Laboratory	Animals	and	were	approved	
by	the	Institutional	Animal	Care	and	Use	Committees	at	
MSKCC.	 The	 Dnmt3a	 R878H	 mouse	 model	 has	 been	
described	 previously51,	 and	 was	 crossed	 to	 the	 Tal1-
creERT2	transgenic	model	to	allow	for	inducible	control	
of	 the	 R878H	 mutation	 within	 the	 hematopoietic	
system162.	 To	 induce	 recombination	 of	 the	 conditional	
alleles,	 age	 and	 gender-matched	10-16	week	old	Tal1-
creERT2	control	mice	and	Dnmt3a	R878H	Tal1-creERT2	
mice	 were	 treated	 with	 tamoxifen	 (4	 mg/kg/day;	
Cayman	 Chemical,	 Ann	 Arbor,	 Michigan)	 for	 2	 doses,	
separated	 2	 days	 apart.	 The	 mice	 were	 sacrificed	 4-8	
weeks	 after	 tamoxifen-induction.	 Primary	mouse	bone	
marrow	 (BM)	 cells	were	 isolated	 into	 cold	phosphate-
buffered	 saline	 (PBS),	 without	 Ca2+	 and	 Mg2+,	 and	
supplemented	with	2%	bovine	serum	albumin	(BSA)	to	
generate	single	cell	suspensions.	Red	blood	cells	(RBCs)	
were	 removed	 using	 ammonium	 chloride-potassium	
bicarbonate	(ACK)	lysis	buffer,	resuspended	in	PBS/2%	
BSA,	 and	 filtered	 through	 a	 40μm	 cell	 strainer.	 Total	
nucleated	cells	were	quantified	by	Vi-Cell	XR	cell	counter	
(Beckman	Coulter,	Brea,	CA)	and	used	for	downstream	
data	production.	

Genotyping	of	Transcriptomes	(GoT)	

Genotyping	 of	 Transcriptomes	 was	 performed	 as	
previously	 described38.	 The	 standard	 10x	 Genomics	
Chromium	3’	(v.3	chemistry)	libraries	were	carried	out	
according	 to	manufacturer’s	 recommendations	 for	 the	
generation	of	scRNA-seq	libraries	(Fig.	1a).	At	the	cDNA	
amplification	 step,	 1	 µL	 of	 1	 µM	 spike-in	 primer	 (5’	 –	
GAGGTCAAACTCCATAAAGCAGGGC–	 3’)	 was	 added	 to	
increase	 the	 yield	 of	 DNMT3A	 cDNA.	 After	 cDNA	
amplification	and	cleanup	with	SPRI	beads,	25%	of	the	
cDNA	 underwent	 the	 standard	 10x	 protocol	 per	
manufacturer	recommendations.	The	unused	cDNA	was	
stored	 and	 10%	 was	 subsequently	 used	 for	 targeted	
genotyping.	For	 locus-specific	amplification	(GoT),	 two	
serial	PCRs	were	performed	with	nested	reverse	primers	
(5’	 –CTTATGGTGCACTGAAATGGAAAGGG	 –	 3’	 and	 5’	 –	
CCTTGGCACCCGAGAATTCCAGGTTTCCCAGTCCACTATA
CTGACG	–	3’)	and	the	generic	forward	SI-PCR	were	used	
to	amplify	 the	 site	of	 interest	 from	 the	cDNA	 template	

(10	PCR	cycles	each).	The	second	locus-specific	reverse	
primer	 contains	 a	 partial	 Illumina	 TruSeq	 Small	 RNA	
read	 2	 handle	 and	 a	 locus-specific	 region	 to	 allow	
specific	 priming.	 The	 SI-PCR	 oligo	 (10x	 Genomics)	
anneals	to	the	partial	Illumina	TruSeq	read	1	sequence,	
preserving	 the	 cell	 barcode	 (CB)	 and	 unique	molecule	
identifier	(UMI).	After	these	rounds	of	amplification	and	
SPRI	purification	to	remove	unincorporated	primers,	a	
third	 PCR	was	 performed	with	 a	 generic	 forward	 PCR	
primer	 (P5_generic,	 5’	 –	
AATGATACGGCGACCACCGAGATCTACAC	 –	 3’)	 to	 retain	
the	CB	and	UMI	together	with	an	RPI-x	primer	(Illumina)	
to	complete	the	P7	end	of	the	library	and	add	a	sample	
index	 (6	 cycles).	 The	 targeted	 amplicon	 library	 was	
subsequently	 spiked	 into	 the	 remainder	 of	 the	 10x	
library	 to	 be	 sequenced	 together	 on	 a	 NovaSeq	
(Illumina).	The	cycle	settings	were	as	follows:	28	cycles	
for	read	1,	98	cycles	for	read	2,	8	cycles	for	i7	and	8	cycles	
for	i5	sample	index.	

10x	scRNA-seq	data	processing,	alignment,	cell-type	
classification	and	clustering	

10x	data	were	processed	using	Cell	Ranger	(v3.0.1)	with	
default	 parameters.	 Reads	were	 aligned	 to	 the	 human	
reference	sequence	hg19.	The	genomic	region	of	interest	
for	 genotyping	was	 examined	 to	determine	how	many	
UMIs	 with	 the	 targeted	 sequence	were	 present	 in	 the	
conventional	10x	data.	The	Seurat	package	(v.3.1)	was	
used	to	perform	unbiased	clustering	of	the	CD34+	sorted	
cells	 from	 patient	 samples163.	 In	 brief,	 for	 individual	
datasets,	 cells	 with	 UMI	 <	 200	 or	 UMI	 >	 3	 median	
absolute	 deviations	 from	 the	 median	 UMI,	 or	
mitochondrial	 gene	 percentage	 >	 20%,	 were	 filtered.	
The	 data	 were	 log-normalized	 using	 a	 scale	 factor	 of	
10,000.	Before	clustering,	the	individual	datasets	(CH01-
CH04)	were	integrated	and	underwent	batch-correction	
within	Seurat,	which	 implements	canonical	 correlation	
analysis	and	the	principles	of	mutual	nearest	neighbor44.	
Recommended	 settings	 were	 used	 for	 the	 integration	
(30	 canonical	 correlation	 vectors	 for	 canonical	
correlation	 analysis	 in	 the	 FindIntegrationAnchors	
function	 and	 30	 principal	 components	 for	 the	 anchor	
weighting	 procedure	 in	 IntegrateData	 function).	
Following	 integration,	 potential	 confounders	
(specifically,	 number	 of	 UMIs	 per	 cell,	 proportion	 of	
mitochondrial	 genes,	 and	 patient	 sex)	 were	 regressed	
out	of	the	data	before	principal	component	analysis	was	
performed	 using	 variable	 genes	 using	 recommended	
settings	 (i.e.	 top	 2000	 variable	 genes	 using	 variance	
stabilizing	 transformation)44.	 The	 first	 statistically	
significant	30	principal	components	were	used	as	inputs	
to	 the	 UMAP	 algorithm	 for	 cluster	 visualization164.	
Clusters	 were	 manually	 assigned	 on	 the	 basis	 of	
differentially	expressed	genes	using	the	FindAllMarkers	
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function	using	default	settings	(using	all	genes	that	are	
detected	 in	a	minimum	of	25%	of	cells	 in	either	of	 the	
two	comparison	sets	as	input,	and	log-transformed	fold	
change	 of	 0.25	 as	 the	 threshold).	 We	 identified	 20	
clusters	 in	 the	 integrated	 data,	 which	were	 annotated	
according	 to	 canonical	 lineage	 markers	 identified	
previously	 in	 single-cell	 RNA-seq	 data	 of	 normal	
hematopoietic	 progenitor	 cells53.	 These	 clusters	 were	
collapsed	 into	 11	 main	 progenitor	 subsets	 based	 on	
expression	 of	 levels	 of	 these	 canonical	 markers	
(Extended	 Data	 Fig.	 3b,c).	 Pseudotime	 analysis	 was	
performed	 using	 the	 Monocle3	 R	 package	 using	
recommended	parameters	(v.0.2.1,	Extended	Data	Fig.	
4d)	 50.	 In	 order	 to	 specify	 the	 initial	 cluster	 of	 the	
pseudotime	trajectory,	we	identified	the	cluster	with	the	
highest	expression	level	of	the	HSPC	gene	module	(Fig.	
1b,	Supplementary	Table	2).	The	Slingshot	R	package	
(v.1.6.1)	was	used	to	isolate	the	minimum	spanning	tree	
for	 the	 LMPP	 and	 CLP	 subset	 of	 cells	 (Fig.	 2a)	 with	
default	parameters.	

IronThrone	 GoT	 for	 processing	 targeted	 amplicon	
sequences	and	mutation	calling	

Analysis	of	the	GoT	library	was	carried	out	as	described	
previously38.	Briefly,	amplicon	reads	were	assessed	for	
presence	 of	 the	 primer	 sequence	 and	 the	 expected	
sequence	 between	 the	 primer	 and	 the	 mutation	 site.	
Reads	 were	 also	 assessed	 for	 matching	 to	 the	 cell	
barcode	list	of	the	10x	dataset.	A	mismatch	of	20%	was	
allowed	for	all	sequence	matching	steps.	Only	UMIs	with	
at	 least	 2	 or	more	 supporting	 reads	were	 retained	 for	
final	genotyping	assignments.	A	few	key	improvements	
to	our	IronThrone	pipeline	(v.2.1)	are	detailed	below.	

First,	 parallelization	 was	 implemented	 to	 increase	
runtime	efficiency	for	larger	sequencing	libraries165.	The	
amplicon	 library	 of	 paired	 reads	 was	 shuffled	 and	
subsetted	into	smaller	groups	of	reads	(default	125,000	
reads/group).	Then,	 the	original	 IronThrone	algorithm	
was	run	on	each	one	of	these	groups.	This	step	has	been	
parallelized	 using	 both	 GNU	 Parallel	 tools	 for	 local	
interactive	 operation,	 as	 well	 as	 options	 for	 Slurm-
managed	 high-performance	 compute	 clusters.	 Output	
tables	 from	 these	 runs	are	 finally	 concatenated	by	cell	
barcode.	

Second,	we	improved	the	UMI	counting	of	the	amplicon	
reads	 by	 removing	 ‘pseudo’-UMIs	 introduced	 by	 PCR	
and	 sequencing	 errors	 (that	 would	 result	 in	 a	 false	
increase	 in	the	number	of	UMIs).	 	Based	on	previously	
published	 work42,	 we	 implemented	 a	 network-based	
UMI	 collapsing	 algorithm	 to	 aggregate	 amplicon	 reads	
that	likely	originated	from	the	same	UMI	in	the	original	
10x	library.	Briefly,	pairwise	Levenshtein	distances	were	
calculated	between	all	UMIs	paired	within	a	single	cell	
barcode,	and	“matches”	between	UMIs	were	identified	as	

UMI	 pairs	 with	 a	 Levenshtein	 distance	 below	 a	
predetermined	 threshold	 (default	 =	 ceiling(0.1	 	 *	 UMI	
length),	or	2	bases	for	a	12	base	UMI).	The	UMI	with	the	
greatest	number	of	matched	UMIs	was	determined	to	be	
the	initial	UMI.	The	number	of	supporting	reads	for	these	
UMI	groups	was	summed	together	and	attributed	to	that	
initial	UMI	with	the	most	matches.	This	process	was	then	
repeated	 for	 the	UMI	with	 the	next	highest	number	of	
matches	until	no	additional	collapsing	was	possible.	This	
improved	 pipeline	 was	 applied	 to	 the	 previously-
described	species	mixing	experiment38,	demonstrating	a	
significant	 improvement	 in	 the	 removal	 of	 aberrant	
genotyping	UMIs	(see	Results,	Extended	Data	Fig.	1e).		

Following	 UMI	 collapse,	 genotype	 assignment	 of	
individual	UMIs	was	conducted	as	described	previously	
with	majority	 rule	of	 supporting	 reads	 for	wildtype	or	
mutant	 status.	 Rare	 UMIs	 with	 an	 equal	 number	 of	
mutant	and	wildtype	reads	were	removed	as	ambiguous.	
Additionally,	 to	 remove	 reads	 that	 result	 from	 PCR	
recombination38,	 UMIs	 in	 the	 amplicon	 library	 that	
match	 UMIs	 of	 non-DNMT3A	 genes	 in	 the	 gene	
expression	 library	 were	 discarded.	 Of	 note,	 the	 latter	
likely	 PCR-recombination	 events	were	 associated	with	
lower	number	of	read	per	UMI	compared	with	UMIs	in	
the	amplicon	library	that	matched	DNMT3A	UMI	in	the	
gene	 expression	 library	 (Extended	 Data	 Fig.	 1f).	 We	
leveraged	this	observation,	and	retained	UMIs	without	a	
corresponding	 associated	 gene	 in	 the	 gene	 expression	
library,	 so	 long	as	 their	 read	count	was	above	 the	80th	
percentile	 of	 read	 counts	 for	 non-DNMT3A	 genes.	
Finally,	 single	 cells	were	 assigned	mutant	 or	wildtype	
genotype	 status	 as	 follows:	 cells	 with	 one	 or	 more	
mutant	 UMIs	were	 assigned	 as	mutant	 cells,	 and	 cells	
with	0	mutant	UMIs	and	at	least	one	wildtype	UMI	were	
assigned	as	wildtype.	While	the	genotyping	information	
is	 derived	 from	 transcribed	 molecules	 and	 may	 be	
affected	 by	 the	 capture	 of	 transcripts	 from	 wildtype	
versus	 mutant	 alleles	 of	 heterozygous	 mutations,	 the	
frequency	of	mutant	cells	as	determined	by	GoT	using	all	
cells	 that	 harbor	 at	 least	 one	 UMI	 yielded	 values	 that	
were	 similar	 to	 that	 determined	 by	 bulk	 DNA	 exon	
sequencing	(Extended	Data	Fig.	1c).		

Mutant	cell	frequency	analysis	

To	 exclude	 the	 possibility	 that	 variable	 DNMT3A	
expression	 may	 impact	 the	 ability	 to	 detect	 mutant	
alleles	 and	 thereby	 impact	 mutated	 cell	 frequency	 in	
distinct	progenitor	subsets,	we	down-sampled	all	cells	to	
a	 single	 amplicon	 UMI	 prior	 to	 mutation	 calling	 for	
calculating	mutant	cell	frequencies	(Fig.	2a,b).	An	equal	
number	of	 cells	 from	each	sample	CH01-CH04	(n	=	83	
cells	 for	 LMPP	 +	 CLP	 (Fig.	 2a)	 and	 n	 =	 978	 cells	 for	
analysis	 of	 all	 cell	 types	 (Fig.	 2b)),	 were	 subsampled	
randomly	for	the	integrated	data.	Genotyping	amplicon	
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UMIs	were	 downsampled	 (x100	 iterations)	 to	 one	 per	
cell	and	mutant	cell	frequency	was	determined	for	each	
cluster	 for	 either	 the	 integrated	 dataset	 or	 individual	
samples.	 This	 frequency	was	 then	divided	by	 the	 total	
mutant	cell	 frequency	across	all	progenitor	subsets	for	
each	of	the	iterations.	Linear	mixed	effects	analysis	was	
performed	using	the	lme4	package	(v.1.2-1).	Progenitor	
identity	was	defined	as	the	fixed	effect,	and	for	random	
effects,	 we	 used	 intercepts	 for	 individual	 patients	
(subjects)	 and	 iterative	 downsampling.	 P-values	 were	
obtained	by	likelihood	ratio	tests	of	the	full	model	with	
the	 fixed	 effect	 against	 the	 model	 without	 the	 fixed	
effect166.	

RNA	velocity	

RNA	velocity	was	calculated	using	scVelo	(v0.2.2)57.	For	
generating	 the	 loom	 file,	 the	 Python	 (v3.7)	 version	 of	
Velocyto	 (v0.17)56	 was	 ran	 using	 the	 velocyto	 run	
command.	The	cell	barcode	and	bam	files	were	obtained	
using	 Cell	 Ranger.	 In	 addition	 to	 the	 cell	 barcode	 and	
bam	files,	a	GTF	file	corresponding	to	the	reference	used	
for	 alignment	 (hg19;	 Ensembl	 187)	 was	 supplied.	
Repetitive	 regions	 were	 masked	 using	 a	 GTF	 file	
downloaded	from	UCSC	selecting	for	repetitive	regions	
in	 GRCh37	 (hg19).	 QC	was	 assessed	 by	 the	 percent	 of	
unspliced	 reads	 per	 sample,	 requiring	 a	 minimum	 of	
25%	 total	 unspliced	 reads.	 If	 duplicated	 gene	 names	
were	 present	 in	 the	 spliced	 and	 unspliced	 tables	 the	
counts	were	summed	to	leave	only	unique	genes.	Next,	
gene	 velocity	 for	 each	 patient	 and	 genotype	 was	
estimated	 separately	using	 scVelo	 (v0.2.2).	 In	order	 to	
avoid	a	potential	confounder	of	unequal	number	of	cells	
for	each	genotype,	random	sampling	of	the	same	number	
of	mutant	and	wildtype	cells	to	the	minimum	number	in	
either	group	was	performed	for	each	patient	sample	for	
downstream	 analysis.	 Gene	 selection	 for	 RNA	 velocity	
estimation	was	performed	 requiring	 a	minimum	of	20	
counts.	 After	 log-normalization	 by	 cell	 depth,	 the	 top	
2,000	genes	with	 the	highest	dispersion	were	 selected	
for	 downstream	 calculations.	 Next,	 first	 and	 second	
order	 moments	 were	 computed	 among	 nearest	
neighbors	 in	 principal	 component	 space,	 using	 the	
pp.moments	 function	with	 parameters	 n_pcs	 =	 30	 and	
n_neighbors	=	30.		RNA	velocity	was	estimated	using	the	
dynamical	model	option	of	 the	tl.velocity	 function.	The	
cell-to-cell	 transition	 probability	 matrices	 were	
retrieved	for	either	wild	type	or	mutant	cells.	For	a	given	
cell,	 we	 averaged	 the	 probabilities	 of	 transitioning	 to	
transcriptional	 states	within	 a	 cluster	 of	 interest.	 This	
resulted	in	a	mean	probability	of	transition	for	the	cell	of	
interest	to	a	given	cluster.	Statistical	significance	of	the	
mean	 single	 cell	 differentiation	 probabilities	 between	
genotypes	 was	 estimated	 by	 linear	 mixed	 models.	
Sample	was	added	as	the	random	effect	and	genotype	as	

the	 fixed	 effect.	 P-values	 were	 obtained	 by	 likelihood	
ratio	tests	of	the	full	model	with	the	fixed	effect	against	
the	model	without	the	fixed	effect.	To	further	compare	
wildtype	to	mutant	probabilities	 for	a	given	transition,	
we	calculated	 the	median	of	 the	distribution	of	 single-
cell	 mean	 transition	 probabilities	 toward	 other	 cell	
clusters,	 and	 calculated	 the	 mutant-to-wildtype	 odds	
ratio	of	the	median	probabilities.	

Gene	 module	 scoring,	 differential	 expression	 and	
gene	set	enrichment	analysis	

For	 examining	 gene	 and	 gene	module	 expression	 (see	
Supplementary	 Table	 2),	 the	 function	
AddModuleScore	 was	 used	 to	 calculate	 the	 relative	
expression	of	 the	genes	 for	each	cell	within	 the	Seurat	
package	(e.g.	Fig.	2c;	MkP-EP	module	score	(union	of	the	
MkP	and	EP	module	genes	in	Supplementary	Table	2)	
was	 calculated	 using	 the	 AddModuleScore	 function)44.	
Briefly,	 control	 gene	 module	 expressions	 were	
calculated	and	subtracted	from	the	average	gene	module	
expression	 of	 interest,	 as	 previously	 described55.	 All	
analyzed	 genes	 were	 classified	 based	 on	 average	
expression	into	24	bins,	and	for	each	gene	in	the	module,	
100	control	genes	are	randomly	selected	from	the	same	
expression	bin	as	the	gene	of	 interest55.	 	For	statistical	
analysis,	genotype	status	was	entered	as	the	fixed	effect	
and	subjects	as	random	effects	in	a	linear	mixed	model.	
P-values	were	obtained	by	 likelihood	ratio	 tests	of	 the	
full	model	with	the	fixed	effect	against	the	model	without	
the	fixed	effect.	

Differential	expression	analysis	comparing	wildtype	and	
mutant	 cells	 was	 conducted	 using	 a	 within-sample	
permutation	 test	 for	 each	 progenitor	 cell	 subtype.	
Briefly,	 to	 ensure	 equal	 representation	 from	 each	
patient,	the	numbers	of	mutated	and	wildtype	cells	from	
each	 patient	were	 downsampled	 to	 the	 same	 number,	
respectively.	 Observed	 log2	 fold	 change	 values	 were	
calculated	with	original	 genotyping	 assignments	 (MUT	
versus	 WT)	 for	 the	 tested	 genes.	 The	 tested	 genes	
included	the	top	2,500	most	variable	genes	which	were	
filtered	for	those	expressed	in	at	least	5%	of	either	group	
(mutated	versus	wildtype),	for	each	progenitor	subtype.	
Ribosomal	 and	 mitochondrial	 genes	 were	 excluded.	
Next,	over	100,000	iterations,	WT	and	MUT	labels	were	
shuffled	 within	 each	 patient,	 and	 fold	 change	 values	
were	re-calculated	to	create	a	background	distribution.	
P-values	 were	 calculated	 per	 gene	 as	 a	 percent	 of	
permutations	whose	 absolute	 fold	 change	values	were	
more	extreme	 than	 the	absolute	value	of	 the	observed	
fold	change	(Supplementary	Table	3).	As	an	orthogonal	
approach,	 we	 also	 performed	 differential	 expression	
analysis	 comparing	 wildtype	 and	 mutant	 cells	 via	 the	
linear	mixed	model	framework.	For	each	gene,	genotype	
status	 was	 entered	 as	 the	 fixed	 effect	 and	 subjects	 as	
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random	 effects.	 P-values	 were	 obtained	 by	 likelihood	
ratio	tests	of	the	full	model	with	the	fixed	effect	against	
the	 model	 without	 the	 fixed	 effect	 (Supplementary	
Table	3).	

Hypergeometric	test	for	gene	set	enrichment	analysis	of	
the	integrated	differentially	expressed	genes	(P-value	<	
0.05,	log2(fold	change)	>	0.25)	was	performed	using	the	
Cluster	 Profile	 package	 (v.	 0.1.9)167.	 FDR	 multiple	
hypothesis	 testing	 correction	 was	 performed.	 MSigDB	
C2:	 Chemical	 and	 genetic	 perturbations	 (CGP)	 sources	
were	 included	 in	 the	 analyses	 (Supplementary	Table	
4).	

Copy	number	variation	analysis	

The	InferCNV	package	(v.1.4.0)43	was	used	to	analyze	the	
single	 cell	 dataset	 for	 any	 duplications	 or	 deletions	 of	
entire	 chromosomes	 or	 large	 chromosome	 fragments.	
Briefly,	 by	 comparing	 expression	 levels	 of	 genes	
annotated	 by	 chromosomal	 position	 (using	 the	
CONICSmat	 package,	 v0.0.0.1168)	 to	 a	 set	 of	 reference	
cells	(in	this	case,	a	one-versus-rest	comparison	of	cells	
by	patient	 of	 origin),	 a	 heatmap	of	 relative	 expression	
can	 be	 generated	 and	 used	 to	 identify	 regions	 with	
significantly	 increased	 or	 decreased	 expression.	 We	
removed	the	 few	genes	 for	which	alternative	positions	
have	been	reported	(<2%	of	genes).	We	downsampled	
our	 dataset	 to	 978	 genotyped	 cells	 from	 each	 patient	
(the	minimum	number	of	genotyped	cells	from	any	given	
individual	patient).	We	then	ran	the	InferCNV	workflow	
with	 recommended	 parameters,	 using	 the	 i6	 6-state	
Hidden	Markov	model	 (Extended	 Data	 Fig.	 2a).	 As	 a	
positive	 control,	 we	 specifically	 analyzed	 relative	
expression	 of	 Y-chromosome	 genes	 to	 ensure	 sex-
differences	 between	 patients	 were	 appropriately	
reflected	in	our	data	(Extended	Data	Fig.	2b).		

Hypomethylated	 motif	 enrichment	 analysis	 in	
differentially	expressed	genes	

The	HOMER	(v4.9)	scanMotifGenomeWide	function	was	
used	 to	 search	 for	 occurrences	 of	 the	 DNMT3A	 R882	
hypomethylated	motif	and	a	control	motif	containing	a	
CpG.	 For	 each	 gene	 in	 the	 scRNA-seq	 dataset,	 TSS	
coordinates	were	identified	and	a	 .bed	file	was	created	
with	 intervals	 of	 ±10	 kb,	 30	 kb	 or	 50	 kb	 surrounding	
each	TSS.	These	two	sets	of	coordinates	were	intersected	
using	 bedtools	 (v2.30.0),	 and	 the	 number	 of	
hypomethylated	 motif	 or	 control	 motif	 sites	 were	
counted	per	 gene.	Differentially	 expressed	 genes	were	
classified	as	upregulated	(P	<	0.05,	log2(fold	change)	>	
0.25)	or	downregulated	(P	<	0.05,	log2(fold	change)	<	-
0.25),	 and	 counts	 of	 hypomethylated	motif	 sites	 were	
compared,	with	P-values	obtained	by	Wilcoxon	rank	sum	
test.	To	ensure	that	the	results	were	not	driven	simply	
by	the	presence	of	a	CpG,	we	also	determined	the	ratio	of	

the	 counts	 of	 the	 hypomethylated	motif	 to	 that	 of	 the	
control	shuffled	motif	with	CpG	per	gene.		

Joint	multiplexed	single-cell	methylome	and	single-
cell	RNA-seq	library	construction	

DNA	 methylation	 data	 was	 processed	 produced	 as	
previously	 described	 by	 Gaiti	 et	 al.39	 Briefly,	 genomic	
DNA	 (gDNA)	 and	mRNA	were	 separated	 as	 follows.	 A	
modified	 oligo-dT	 primer	 (5′-biotin-triethyleneglycol-
AAGCAGTGGTATCAACGCAGAGTACT30VN-3′,	 where	 V	
is	either	A,	C	or	G,	and	N	is	any	base;	IDT)	was	conjugated	
to	 streptavidin-coupled	 magnetic	 beads	 (Dynabeads,	
Life	 Technologies)	 according	 to	 the	 manufacturer's	
instructions.	 To	 capture	 polyadenylated	 mRNA,	 we	
added	 the	conjugated	beads	(10	μl)	directly	 to	 the	cell	
lysate	 and	 incubated	 them	 for	 20	 min	 at	 room	
temperature	 with	 mixing	 to	 prevent	 the	 beads	 from	
settling.	The	mRNA	was	then	collected	to	the	side	of	the	
well	using	a	magnet,	and	the	supernatant,	containing	the	
gDNA,	 was	 transferred	 to	 a	 fresh	 plate.	 Single-cell	
complementary	 DNA	 was	 amplified	 from	 the	 tubes	
containing	the	captured	mRNA	according	to	a	variation	
of	the	Smart-Seq2	protocol	107	using	molecular	crowding	
to	 increase	 sensitivity169.	 After	 amplification	 and	
purification	 using	 0.8X	 SPRI	 beads,	 0.5	 ng	 cDNA	 was	
used	for	Nextera	Tagmentation	and	library	construction.	
At	 the	 cDNA	 amplification	 step,	 the	 following	 primers	
were	 spiked-in	 (0.5	 μM	 final)	 to	 specifically	 increase	
capture	 of	 the	 locus	 around	 DNMT3A	 R882	 mutation	
(Fw:	 5’-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGTTTC
CCAGTCCACTATACTGACG-3’	 ;	 Rv:	 5’-	
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGACC
GGCCCAGCAGTCTC	-3’).	The	same	primers	were	used	to	
specifically	 amplify	 the	 target	 locus	 separately	 in	 a	
portion	of	the	cDNA.	Library	quality	and	quantity	were	
assessed	 using	 Agilent	 Bioanalyzer	 2100	 and	 Qubit,	
respectively.	 Libraries	 were	 then	 sequenced	 with	
paired-end,	50-base	 reads,	using	a	NovaSeq	 sequencer	
(Illumina).	

Genomic	 DNA	 present	 in	 the	 pooled	 supernatant	 and	
wash	 buffer	 from	 the	 mRNA	 isolation	 step	 was	
concentrated	on	0.8X	SPRI	beads	and	eluted	directly	into	
the	reaction	mixtures	for	single	digest	or	Msp1	+	HaeIII	
(Fermentas)	 for	 double	 restriction	 enzyme	 digest	
reaction	(10µL	final	reaction)	for	90	min	at	37°C.	Heat-
inactivation	was	performed	for	10	min	at	70°C.	Digested	
DNA	was	filled-in	and	A-tailed	at	the	3’	sticky	ends	in	8.5	
µL	final	volume	of	1X	CutSmart	with	2.5	units	of	Klenow	
fragment	 (Exo-,	 Fermentas).	 Reaction	 was	
supplemented	with	1	mM	dATP	and	0.1	mM	dCTP	and	
0.1	 mM	 dGTP	 (NEB)	 and	 performed	 as	 follows	 in	 a	
thermocycler:	 30°C	 for	 25	 min,	 37°C	 for	 25	 min,	 and	
70°C	 for	 10	min	 (heat-inactivation).	 Custom	 barcoded	
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methylated	 adaptors	 (0.1	 µM)	 were	 then	 ligated	
overnight	at	16°C	with	the	dA-tailed	DNA	fragments	in	
the	presence	of	800	units	of	T4	DNA	ligase	(NEB)	and	1	
mM	 ATP	 (Roche)	 in	 a	 final	 volume	 of	 11.5	 µL	 of	 1X	
CutSmart	 buffer.	 T4	 DNA	 ligase	 heat-inactivation	 was	
performed	at	70°C	for	15	min	the	next	day.	Genomic	DNA	
from	24	individual	cells	were	pooled	together	according	
to	their	barcodes,	giving	4	pools	of	24	cells	for	a	96-well	
plate.	 Pooled	 genomic	 DNA	 was	 cleaned-up	 and	
concentrated	using	1.8X	SPRI	beads	(Agencourt	AMPure	
XP,	 Beckman	 Coulter).	 Each	 pool	 was	 then	 converted	
using	 an	 enzyme-based	 conversion	 to	 increase	 the	
recovery	 of	 single	 cell	 gDNA	 compared	 to	 standard	
bisulfite	 conversion	 (NEBNext	 Enzymatic	 Methyl-seq,	
New	England	Biolabs)102.	Standard	bisulfite	conversion	
was	 implemented	for	double	restriction	enzyme	digest	
reactions,	 as	 previously	 described107.	 Converted	 DNA	
was	then	amplified	using	primers	containing	Illumina	i7	
and	 i5	 index.	 Following	 Illumina	 pooling	 guidelines,	 a	
different	i7	and	i5	index	was	used	for	every	24-cell	pool,	
allowing	multiplexing	of	several	samples	for	sequencing	
on	Illumina	NovaSeq6000.	Library	enrichment	was	done	
using	KAPA	HiFi	Uracil+	master	mix	(Kapa	Biosystems)	
and	the	following	PCR	condition	was	used:	98°C	for	45	
secs;	6	cycles	of:	98°C	for	20	secs,	58°C	for	30	secs,	72°C	
for	1	min;	followed	by	12	cycles	of:	98°C	for	20	secs,	65°C	
for	30	secs,	72°C	for	1	min.	PCR	was	terminated	by	an	
incubation	 at	 72°C	 for	 5	min.	 Enriched	 libraries	 were	
cleaned-up	 and	 concentrated	 using	 1.3X	 SPRI	 beads.	
DNA	 fragments	 between	 200	 bp	 and	 1	 Kb	 were	 size-
selected	 and	 recovered	 after	 resolving	 on	 an	 E-Gel	 EX	
Precast	Agarose	Gels	(Thermo	Fisher	Scientific).	Library	
molarity	 concentration	 calculation	 was	 obtained	 by	
measuring	 concentration	 of	 double	 stranded	 DNA	
(Qubit)	 and	 quantifying	 the	 average	 library	 size	 (bp)	
using	 an	 Agilent	 Bioanalyzer.	 Every	 24-cell	 pool	 was	
mixed	 with	 the	 other	 pools	 in	 an	 equimolar	 ratio.	
Negative	controls	(empty	wells	with	no	cells)	were	used	
to	control	for	non-specific	amplification	of	the	libraries.		

Multimodal	 single	 cell	 methylome	 and	 RNA	
sequencing	data	processing	

Methylation	analysis	pipeline.	DNA	methylation	data	was	
processed	 as	 previously	 described39.	 Pools	 of	 24	 cells	
were	 demultiplexed	 based	 on	 a	 supplied	 list	 of	 cell	
barcodes.	Adapter	sequences	were	trimmed	by	the	first	
3	bp	on	each	3’	end	of	R1	and	R2.	Bismark	(v0.14.5)	was	
used	 to	 create	bisulfite-converted	 genomes	of	GRCh38	
(hg38	Ensembl	version	93).	Reads	were	mapped	using	
Bismark	 with	 Bowtie	 (v2.2.8)	 and	 default	 alignment	
parameters.	 BAM	 files	were	 then	used	 to	 run	Bismark	
methylation	extractor	ignoring	6	bp	from	the	end	of	R1	
and	5	bp	 from	R2.	This	was	done	 to	 remove	 technical	
variability	introduced	at	the	ends	of	the	reads	during	end	

repair	 with	 unmethylated	 nucleotides.	 These	 settings	
were	determined	from	the	M-bias	reports,	which	contain	
the	 methylation	 proportion	 at	 each	 read	 position.	
Bismark	 methylation	 extractor	 (-bedgraph	
comprehensive)	was	used	to	determine	the	methylation	
state	of	each	individual	CpG.	Cells	with	>	99%	conversion	
efficiency	as	determined	by	Bismark	were	retained	 for	
downstream	 analysis.	 Reads	mapping	 to	 ChrY	 and	 the	
mitochondrial	genome	were	removed	from	the	resulting	
.cov	files.	For	all	downstream	analysis,	the	methylation	
status	of	CpGs	per	cell	was	binarized.	CpGs	with	10-90%	
methylation	values	were	removed	(<	2%	of	total	CpGs)	
and	those	with	values	<10%	were	encoded	as	0,	while	
those	with	values	>90%	are	encoded	as	1.		On	average,	
209,519	 ±	 15,200	 (±	 SEM)	 unique	 CpGs	 per	 cell	 were	
covered	in	the	DNA	methylome.	

RNA	analysis	pipeline.	scRNA-seq	data	was	aligned	using	
STAR	 (v2.5.2a).	 Default	 parameters	 were	 used,	 other	
than	twopassMode	Basic.	Reads	were	aligned	to	GRCh38	
(hg38	 Ensembl	 version	 93).	 Gene	 counts	 were	
determined	using	featureCounts	 from	Subread	(v1.5.2)	
using	 default	 parameters.	 Ensembl	 gene	 IDs	 were	
converted	to	hgnc	symbols	using	the	R	package	biomaRt	
(v2.40.5).	 In	 cases	 where	 there	 were	 duplicated	 gene	
symbols	 the	counts	were	summed.	Seurat	(v3.1.1)	was	
then	used	 to	 analyze	 gene	 expression	data.	 Cells	were	
filtered	for	mitochondrial	reads	of	less	than	25%	and	a	
minimum	of	200	detected	genes.	Genes	were	filtered	for	
coverage	 across	 at	 least	 three	 cells.	 The	 mean	 (±	
standard	deviation)	number	of	detected	genes	was	5,763	
±	2075	genes/cell	 (range	3,117	±	678	–	8,715	±	1,449	
genes/cell	across	the	plates).	The	mean	number	of	reads	
was	 511,840	 ±	 315,941	 reads/cell	 (range	 170,383	 ±	
63,951	 –	 779,771	 ±	 361,887	 reads/cell	 across	 the	
plates).	 Normalization	 and	 variable	 feature	 detection	
were	 performed	 for	 each	 batch	 (i.e.	 plate).	 Batch	
correction	and	integration	was	performed	via	the	Seurat	
integration	 pipeline44	 using	 recommended	 parameters	
for	 SelectIntegrationFeatures,	 FindIntegrationAnchors,	
and	 IntegrateData.	 Dimensionality	 reduction	 was	
performed	 by	 principal	 component	 analysis	 using	 the	
RunPCA	function,	and	the	first	12	principal	components	
were	 retained	 for	 downstream	 analysis.	 For	
visualization,	 UMAP164	 was	 performed	 using	 the	
RunUMAP	function.	Cell	type	assignment	was	performed	
as	described	for	the	10x	Genomics	scRNA-seq	data.			

Genotyping.	 To	 process	 genotyping	 data,	 genotyping	
FASTQs	were	aligned	the	same	manner	as	RNA	library	
FASTQs.	 Pysam	 (v0.8.2.1)	 was	 used	 to	 select	 reads	
overlapping	the	target	allele	by	using	the	pileup	function.	
Reads	were	filtered	by	a	minimum	read	mapping	quality	
(MAPQ)	of	40	and	a	minimum	base	quality	(Phred	score)	
of	 20.	 Each	 remaining	 read	 was	 classified	 as	 either	
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mutant	or	wildtype	based	on	the	nucleotide	detected	at	
the	mutation	site	based	on	bulk	sequencing	data40.	Cells	
were	 classified	 as	 mutant	 if	 there	 were	 at	 least	 two	
mutant	reads,	and	wildtype	if	there	were	at	least	three	
wildtype	 reads	 (increased	 stringency	 given	 mutation	
heterozygosity)	 and	 no	 mutant	 reads.	 For	 genotyping	
libraries	with	increased	sequencing	depth	(7,712	±	319	
versus	20	±	2.75	reads;	mean	±	SEM),	 the	base	quality	
thresholds	 were	 increased	 to	 40.	 For	 genotype	
classification,	 a	 bootstrapping	 approach	 was	
implemented	 by	 randomly	 sampling	 50	 reads	 for	 100	
iterations.	For	each	iteration,	a	mutant	fraction	cutoff	of	
0.10	 was	 applied.	 The	 final	 genotyping	 call	 was	
performed	in	cells	with	above	80%	bootstrap	support.	

Average	Single	Cell	Methylation		

We	 compared	 single	 cell	 methylation	 at	 selected	
genomic	 regions	 (i.e.	 enhancers,	 CpG	 islands,	 ChIP-seq	
peaks)	 between	 mutant	 and	 wildtype	 cells	 from	 each	
patient.	 To	 achieve	 this,	we	 first	 filtered	 for	 CpG	 sites	
with	coverage	 in	at	 least	 three	cells	 in	each	patient,	 in	
order	 to	 reduce	 inter-patient	 variability.	 The	 genomic	
region	of	interest	was	then	intersected	with	the	CpG	sites	
using	 the	R	package	GenomicRanges	 (v1.36.1).	 Finally,	
the	 average	methylation	 for	 a	 given	 region	 across	 the	
covered	CpG	sites	was	calculated	for	each	cell.		Statistical	
significance	between	genotypes	was	estimated	by	linear	
mixed	models.	Sample	was	added	as	the	random	effect	
and	genotype	as	the	fixed	effect.	P-values	were	obtained	
by	likelihood	ratio	tests	of	the	full	model	with	the	fixed	
effect	against	the	model	without	the	fixed	effect.	Due	to	
potential	 differences	 between	 single	 versus	 double	
digest	 data,	 we	 display	 single	 digest	 datasets	 as	
representatives	(unless	otherwise	indicated	for	analysis	
that	 specifically	 relies	 on	 the	 enhanced	 coverage	 of	
double	digest).	

Single-cell	 differentially	 methylated	 region	 (DMR)	
analysis	to	identify	preferential	hypomethylation	

For	each	cell,	Bismark	methylation	extractor	output	files	
(containing	 information	 on	 methylation	 state	 of	 each	
individual	 CpG)	 were	 intersected	 with	 the	 genomic	
regions	 of	 interest	 (e.g.,	 promoters)	 using	 BEDTools	
(v2.27.1).	 A	 generalized	 linear	model	 (GLM)	was	 then	
built	 to	predict	 the	DNAme	for	a	given	genomic	region	
between	 genotypes,	 accounting	 for	 global	methylation	
changes.	 For	 each	 cell,	 the	 global	 DNAme	 value	 was	
defined	 as	 the	 average	 DNAme	 across	 all	 genomic	
regions	investigated.	The	model	used	was	as	follows:		

GLM		=	mi,j	~	gi	+	ti	

Where	 mi,j	 represents	 the	 average	 DNAme	 of	 the	
genomic	region	 j	 (e.g.,	promoter	of	FOXA2)	 for	cell	 i;	gi	
represents	 the	 genotype	 of	 cell	 i	 and	 ti	 represents	 the	
average	methylation	for	all	CpGs	detected	in	cell	i.	Only	

genomic	regions	with	sufficient	DNAme	information	(>5	
CpGs	per	region	for	promoters	and	>50	CpGs	for	ChIP-
Seq	 peaks)	 in	 at	 least	 15	 cells	 per	 group	 (mutated	 or	
wildtype)	were	used	in	the	analysis.	To	test	the	impact	of	
genotype	 on	 DNAme	 for	 a	 given	 genomic	 region	 (e.g.	
promoter	 of	 FOXA2),	 P-values	 were	 derived	 from	 the	
GLM	 (calculated	 from	 the	 t-statistic	 computed	 by	
dividing	 the	genotype	 (g)	 regression	 coefficient	by	 the	
residual	 standard	 error,	Supplementary	Table	5).	 To	
calculate	 the	 percentage	 methylation	 difference	 in	
mutant	cells	for	a	given	genomic	region	of	interest,	the	
average	 across	 mutant	 and	 wildtype	 cells	 was	 taken	
within	plate	to	control	for	batch	effects.	Next,	the	DNAme	
difference	between	mutant	and	wildtype	was	computed	
within	 plate	 and	 a	weighted	 average	 of	 the	 difference	
was	calculated,	using	the	number	of	cells	from	each	plate	
as	 weights.	 In	 order	 to	 be	 consistent	 across	 genes,	
promoters	 were	 defined	 as	 1	 kb	 upstream	 and	 1	 kb	
downstream	 of	 transcription	 start	 sites	 (hg38	
RefSeqGene)109.	 ChIP-seq	 peaks	 were	 obtained	 from	
ENCODE	 (hg38	 Tfbs	 clustered)109.	 When	 directly	
examining	 the	methylation	 status	 of	 SUZ12	 and	 EZH2	
targets,	we	intersected	the	ENCODE	ChIP-seq	peaks	with	
bivalent	 peaks	 (H3K27me3,	 H3K4me3)	 from	 human	
CD34+	hematopoietic	progenitor	cells110.	

Gene	 set	 enrichment	 analysis.	 To	 define	 the	 pathways	
enriched	at	hypo-	or	hypermethylated	TSS,	genes	were	
ranked	 based	 on	 methylation	 difference,	 and	
differentially	 hypomethylated	 genes	 (P	 <	 0.05)	 were	
selected	as	 inquiry	 for	pathway	analysis.	We	note	 that	
gene	 set	 enrichment	 analysis	 of	 RRBS	 data	 may	 be	
confounded	 by	 the	 fact	 that	 the	 use	 of	 restriction	
enzymes	enriches	for	CpG	rich	genomic	regions	as	well	
as	CpG	rich	promoters.	Thus,	pathway	enrichment	was	
performed	 via	 a	 pre-ranked	 gene	 set	 enrichment	
approach	(and	thus	including	only	genes	covered	in	our	
data)	using	 the	msigdbr	 (v7.2.1)	 and	 fgsea	 (v1.12.0)	R	
packages,	with	the	MSigDB	C2	CGP	collection	of	curated	
gene	sets.		

DNMT3A	R882	motif	analysis	

CpG	 flanking	 motif	 analysis.	 To	 identify	 the	 sequences	
surrounding	 hypo	 or	 hypermethylated	 CpG	 sites	 in	
wildtype	 versus	 DNMT3A	 mutant	 hematopoietic	
progenitors,	 we	 first	 performed	 differentially	
methylated	 regions	 (DMR)	 analysis	 in	 CpG	 islands	 as	
described	 above	 in	 the	 “Single-cell	 differentially	
methylated	region	(DMR)	analysis”	section.	CpGs	within	
hypo	 or	 hypermethylated	 regions	 (P	 <	 0.05)	 were	
selected,	 and	 the	 surrounding	 ±	 6	 bp	 sequences	were	
extracted	 using	 bedtools	 (v2.25.0).	 The	 frequency	 of	
each	base	pair	at	each	position	relative	to	the	CpG	site	
was	calculated,	and	statistical	significance	was	assessed	
by	Fisher	exact	 test.	Odds	ratio	 logo	was	generated	by	
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calculating	the	frequency	for	each	base	at	each	position	
for	 either	 hypomethylated	 or	 hypermethylated	 CpG	
sites.	 To	 identify	 differentially	 enriched	 bases	
surrounding	 the	 CpG	 site,	 we	 applied	 increasingly	
stringent	 thresholds	 on	 the	 absolute	 methylation	
difference	required	between	wildtype	and	mutated	cells	
to	consider	the	sites,	and	estimated	the	odds	ratio	of	base	
frequency	 of	 hypo-	 over	 hyper-methylated	 sites	 at	 a	
given	 position	 relative	 to	 the	 CpG	 site.	 	 Next,	 we	
calculated	 the	 correlation	 between	 the	 methylation	
difference	required	and	the	odds	ratio	of	base	frequency.	
We	 define	 bases	 differentially	 enriched	 or	 depleted	 in	
hypo-	versus	hyper-methylated	based	on	the	correlation	
significance	(P	<	0.05).	For	CpG	sites	with	greater	than	
absolute	methylation	difference	 of	 0.5,	 the	 odds	 ratios	
were	computed	and	used	as	input	to	generate	the	logo	
using	 the	 ggseqlogo	 (v0.1)	 package.	 	 To	 identify	
transcription	factors	with	the	motif	pattern	of	 interest,	
we	 used	 the	 HOCOMOCO	 v11	 human	 motif	 position	
weight	matrix	(PWM)	collection	in	HOMER	format	with	
P	<	0.001.	For	each	of	the	PWMs,	we	selected	the	position	
containing	 the	 highest	 CpG	 probability	 and	 calculated	
the	similarity	score	of	 the	 flanking	-2	and	+2	positions	
relative	 to	 the	 CpG	 site	 against	 the	 hypo-methylated	
flanking	sequences,	based	on	the	correlation	of	the	base	
frequencies	along	each	of	the	motifs.		

Average	 methylation	 at	 MYC	 motifs	 and	 modeling	
regulon	expression	

The	MYC	and	ARNT	motif	PWM	was	downloaded	from	
the	HOCOMOCO	(v11)	human	TF	database	and	used	as	
input	 to	 HOMER	 (v4.9).	 The	 scanMotifGenomeWide	
function	was	 used	 to	 search	 for	 occurrences	 of	motifs	
throughout	the	genome.	The	R	package	GenomicRanges	
(v1.36.1)	was	used	to	intersect	CpG	sites	with	motifs	and	
respective	 ChIP-seq	 peaks	 (ENCODE	 database)109.	
Methylation	 per	 cell	 was	 then	 averaged	 across	 the	
covered	 CpG	 sites.	 Positively	 regulated	 downstream	
MYC	targets	were	determined	using	pySCENIC	(v0.10.0).	
Counts	were	converted	to	transcripts	per	million	(TPM)	
and	genes	in	the	count	matrices	were	filtered	for	those	
in	the	cisTarget	database	(all	available	hg38	files	were	
used).	 The	 hgnc	 (v9)	 motif	 file	 from	 the	 cisTarget	
database	 was	 used	 to	 generate	 a	 list	 of	 input	 motifs.	
Regulons	 were	 determined	 from	 each	 patient	 sample	
separately	with	default	parameters	as	described170.	 To	
analyze	expression	of	the	regulons,	per-cell	AUC	scoring	
was	 done	 using	 the	 aucell	 function.	 The	 relationship	
between	MYC	motif	methylation	and	regulon	expression	
was	 modeled	 with	 a	 generalized	 linear	 model	 (GLM)	
using	a	Gamma	distribution	with	the	following	model:	

GLM	=	ri	~	mi	

Where	ri	represents	the	AUC	score	to	MYC	downstream	
targets	for	cell	i;	mi	represents	the	DNAme	of	MYC	motifs	

for	 cell	 i.	 Due	 to	 batch	 effects	 between	 methylome	
sequencing	methods,	only	samples	that	were	prepared	
using	 the	 enzymatic	 method	 were	 included.	 Rare	
outliers	 were	 excluded	 that	 had	 a	 Cook’s	 distance	
greater	than	2	*	mean	Cook’s	distance.	To	test	the	impact	
of	MYC	motif	methylation	on	regulon	expression,	the	P-
value	was	derived	from	GLM	output	(calculated	from	the	
t-statistic	 computed	 by	 dividing	 the	 MYC	 motif	
methylation	 (m)	 regression	 coefficient	 by	 the	 residual	
standard	error).		

AML	PRC2	target	methylation	analysis	

Methylated	 base	 call	 files	 of	 DNMT3A-mutated	 AML	
samples	 were	 downloaded	 from	 Glass	 et	 al.105	 PRC2	
targets	 were	 obtained	 from	 the	 union	 of	 EZH2	 and	
SUZ12	 ChIP-seq	 peaks	 (see	 “single-cell	 differential	
methylation	analysis”),	as	approximately	50%	of	SUZ12	
ChIP-seq	 peaks	 overlapped	 with	 EZH2	 peaks.	 PRC2	
targets	were	 further	 intersected	with	promoters	using	
the	 GenomicRanges	 (v1.38.0)	 findOverlaps	 function,	
requiring	at	least	30	bp	to	be	overlapping.	We	note	that	
PRC2	 targets	 are	 known	 to	 have	 a	 higher	 CpG	
content171,172,	 potentially	 biasing	 the	 result	 given	 the	
higher	coverage	of	RRBS	of	high	CpG	content	promoters.	
We	 therefore	 also	 compared	 PRC2	 target	 methylation	
only	with	high	CpG	content	promoters	as	annotated	by	
Saxonov	 et	 al.173	 and	±	1	KB	 surrounding	 the	TSS.	 For	
each	sample	270,000	CpG	sites	were	randomly	sampled	
from	either	promoters	overlapping	with	PRC2	peaks,	or	
non-overlapping	promoters	as	a	control.	The	number	of	
randomly	sampled	CpG	sites	was	selected	based	on	the	
minimum	 coverage	 among	 replicates.	 The	 ratio	 of	
methylation	 between	 DNMT3A	 mutant	 and	 wildtype	
AML	(Fig.	4h),	required	to	pair	each	mutated	AML	with	
a	 wildtype	 sample.	 As	 this	 pairing	 is	 arbitrary	 (i.e.,	
samples	are	not	explicitly	matched),	to	safeguard	against	
a	non-representative	pairing,	we	permutated	all	possible	
pairing	 and	 P-values	were	 obtained	 by	Wilcoxon	 rank	
sum	test.	The	example	shown	represents	the	median	P-
value	among	the	permutations.	Methylated	base	call	files	
of	DNMT3A-mutated	 and	wildtype	 AML	 samples	 were	
downloaded	 from	 TCGA118.	 Overlap	 of	 PRC2	 ChIP-seq	
peaks	 and	 promoter	 regions	 was	 carried	 out	 as	
described	above.	The	average	methylation	at	high	CpG	
promoters	that	overlap	with	PRC2	peaks	and	high	CpG	
promoters	 that	 do	 not	 overlap	 with	 PRC2	 peaks	 was	
calculated	per	sample	and	compared	between	DNMT3A	
R882	 mutant	 and	 DNMT3A	 wildtype	 AML	 (Wilcoxon	
rank	sum	test).	

Single	 nucleus	 ATAC-sequencing	 of	 Dnmt3a	 R878	
and	wildtype	HSPCs	

Hematopoietic	 progenitors	 (Lin-1-,	 c-Kit+)	were	 sorted	
from	wildtype	 (n	 =	 3	mice)	 or	Dnmt3a	 R878H	 (n	 =	 3	
mice)	 via	 c-Kit	 enrichment	 as	 directed	 by	 the	
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manufacturer	 (CD117	Microbeads,	 clone	3C1,	Miltenyi,	
Auburn,	 CA;	 LS	 Columns	 (Cat.	 No.	 #130-042-401),	
Miltenyi)	 followed	 by	 FACS	 (Lin-1	 BV421	 (Cat.	 No.	
#133311),	Biolegend,	San	Diego,	CA;	CD117	APC	(clone	
2B8,	 Invitrogen,	 Waltham,	 MA).	 Nuclei	 isolation	 was	
performed	 as	 suggested	 by	 the	 manufacturer	 (10x	
Genomics,	 Pleasanton,	 CA).	 Briefly,	 single	 cell	
suspensions	were	centrifuged	at	300	rcf	 for	5	minutes	
and	 cell	 pellets	 were	 resuspended	 in	 100	 μl	 of	 lysis	
buffer	(Tris-HCl	pH	7.4,	10mM;	NaCl	10mM;	MgCl2	3mM;	
Tween-20	0.1%;	Nonidet	P40	substitute	(Sigma-Aldrich,	
St.	 Louis,	MO)	0.1%;	Digitonin	0.01%;	BSA	1%;	DTT	1	
mM;	RNase	 inhibitor	 1	U/µL	 (Sigma-Aldrich,	 St.	 Louis,	
MO))	and	kept	on	ice	for	3	minutes.	Then,	1	ml	of	wash	
buffer	(Tris-HCl	pH	7.4,	10mM;	NaCl	10mM;	MgCl2	3mM;	
BSA	1%;	Tween-20	0.1%;	DTT	1	mM;	Sigma	Protector	
RNase	inhibitor	1	U/µL)	was	added.	The	isolated	nuclei	
were	centrifuged	for	5	min	at	500	rcf,	and	pellets	were	
resuspended	 in	 Diluted	 Nuclei	 Buffer	 (10x	 Genomics	
Nuclei	 Buffer	 1X;	 DTT	 1	 mM;	 Sigma	 Protector	 RNase	
inhibitor	1	U/µL).	Nuclei	concentration	was	determined	
by	 hemocytometer	 and	 processed	 as	 indicated	 by	 the	
manufacturer	 (10x	 Genomics	 User	 Guide:	 Chromium	
Next	GEM	Single	Cell	Multiome	ATAC	+	Gene	Expression,	
CG000338).	 Single	nucleus	ATAC	and	Gene	Expression	
(GEX)	 libraries	 were	 constructed	 in	 parallel	 and	
assessed	 for	 quality	 control	 metrics	 using	 Agilent	
Bioanalyzer	2100	and	Qubit	respectively.	ATAC	libraries	
were	 sequenced	 to	 a	 depth	 of	 25,000	 read	 pairs	 per	
nucleus	(paired-end,	dual	 indexing:	Read	1N	50	cycles,	
i7	Index	8	cycles,	i5	Index	24	cycles,	Read	2N	49	cycles)	
and	GEX	libraries	were	sequenced	to	a	depth	of	20,000	
read	 pairs	 per	 nucleus	 (paired-end,	 dual	 indexing:	 28	
cycles	for	Read	1,	10	cycles	for	i7	Index,	10	cycles	for	i5	
Index,	90	cycles	for	Read	2).	

Single	nucleus	ATAC-sequencing	data	processing	

Pre-processing	was	performed	using	10x	Genomics	Cell	
Ranger	ARC	(v1.0.1).	Reads	were	de-multiplexed	using	
the	 cellranger-arc	mkfastq	 function.	 Single	 cell	 feature	
counts	 for	each	sample	were	 then	generated	using	 the	
cellranger-arc	 count	 function.	 The	 gene	 expression	
information	for	these	libraries	exhibited	exceedingly	low	
UMI	 and	 genes	 per	 cell	 consistent	 with	 lower	 quality	
RNA	 in	 single-cell	 nuclei	 Multiome	 data;	 as	 such,	 we	
moved	forward	utilizing	only	the	ATAC	data	for	analysis.	
ATAC	 data	 was	 processed	 using	 the	 ArchR	 package	
(v1.0.1)	174	using	the	atac_fragments.tsv.gz	file	generated	
by	the	cellranger-arc	count	function	as	input.	Arrow	files	
were	created	using	a	minimum	TSS	enrichment	score	of	
5	and	a	minimum	number	of	unique	nuclear	fragments	
of	 1,000.	 Doublet	 scores	 were	 calculated	 using	 the	
addDoubletScores	 function	with	 k	 =	 10,	 knnMethod	 =	
“umap”	 and	 LSImethod	 =	 1.	 Doublets	 were	 removed	

using	 the	 filterDoublets	 function	 with	 default	
parameters.	 Dimensionality	 reduction	 was	 performed	
through	iterative	semantic	index	(LSI)	using	the	cell	by	
genomic	 window	 (500	 bp)	 matrix	 as	 input,	 using	 the	
addIterativeLSI	function	with	the	following	parameters:	
iterations	 =	 3,	 resolution	 =	 0.2,	 sampleCells	 =	 1,000,	
var.features	 =	 25,000	 and	 dimsToUse	 =	 1:30.	 Cell	
clusters	were	 identified	using	the	addClusters	 function	
using	 the	 iterative	 latent	 semantic	 index	 (LSI)	
dimensions	as	input,	with	method	=	“Seurat”,	resolution	
=	0.8.	For	visualization,	UMAP	dimensionality	reduction	
was	performed	using	the	LSI	dimensions	as	input,	using	
the	addUMAP	function	with:	nNeighbors	=	30,	minDist	=	
0.5	and	metric	=	“cosine”.	Cell	 identities	were	assigned	
based	 on	 gene	 accessibility	 scores	 of	 known	 marker	
genes.	 Custom	 motif	 accessibility	 deviations	 were	
calculated	 as	 follows:	 position	 weight	 matrices	 in	
HOMER	format	(P	<	0.001)	were	downloaded	from	the	
HOCOMOCO	 v11	 mouse	 database.	 Motif	 occurrences	
were	identified	using	the	scanGenomeWide	function	of	
the	 HOMER	 package.	 To	 include	 only	 high	 confidence	
motif	 sites,	 we	 applied	 a	 minimum	 odds	 ratio	 score	
threshold	of	6.	We	next	created	custom	peakAnnotations	
using	ArchR	and	performed	ChromaVar	 analysis	 using	
the	 addDeviationsMatrix	 function	 with	 default	
parameters.		

CH05	sample	processing	and	analysis	

Single	 cell	 RNA-seq	 processing	 and	 downstream	
analysis	

CH05	 bone	 marrow	 underwent	 sorting,	 scRNA-
sequencing	and	genotyping	with	GoT	as	described	above	
for	samples	CH01-04,	with	the	exception	of	the	addition	
of	 the	 CITE-seq	 integration.	 Briefly,	 the	 Total-seqA	
antibodies	 (Biolegend:	 CD38,	 CD9,	 CD49f,	 CD45RA,	
CD41,	 CD36,	 CD69,	 CD42,	 CD14,	 CD71,	 CD45RB,	
CD45RO,	CD37,	CD7,	CD279,	CD47,	CD90,	CD99,	CD84,	
CD274,	FLT3,	CD79B,	CD45,	CD81)	were	used	according	
to	manufacturer’s	recommendations.	The	CD34+	sorted	
cells	were	incubated	with	the	antibodies	for	30	minutes	
and	 underwent	 washes	 3X.	 	 10x	 data	 were	 processed	
using	 Cell	 Ranger	 (v3.0.1)	 with	 default	 parameters.	
Reads	were	 aligned	 to	 the	 human	 reference	 sequence	
hg19.	 Control	 bone	marrow	 samples	 (BM01-05)	 were	
identified	from	previously	published	reports141,142	with	
raw	count	matrices	available	for	download.	The	Seurat	
package	 (v.3.1)	 was	 used	 to	 perform	 integration	 and	
unbiased	 clustering	 of	 the	 CD34+	 sorted	 cells	 from	
patient	 samples	 as	 described	 previously	 with	 the	
following	 notable	 exceptions163.	 The	 publicly	 available	
archived	 count	matrices	 for	 samples	 BM04	 and	 BM05	
had	 the	 following	 QC	 filtering:	 the	 mitochondrial	 and	
ribosomal	 genes	were	 removed,	 and	 only	 cells	 with	 >	
400	unique	genes	and	between	1,000	and	10,000	UMIs	
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were	 kept.	 Consequently,	 these	 two	 patients	were	 not	
filtered	 with	 the	 aforementioned	 criteria.	 CH05	 and	
BM01-03	were	filtered	identically	as	samples	CH01-04,	
following	 which	 mitochondrial	 and	 ribosomal	 genes	
were	 removed	 from	 the	 gene	 expression	 matrix.	 All	
samples	 were	 then	 normalized	 and	 integrated	 as	
described	previously,	with	 the	exception	of	proportion	
of	mitochondrial	genes	no	longer	being	regressed	out	as	
a	potential	confounder.	We	identified	26	clusters	in	the	
integrated	data,	which	were	 annotated	 as	 above	using	
lineage	 markers	 previously	 identified	 for	 normal	
hematopoietic	progenitors53,175.		

Following	 cell-type	 assignment,	we	 down-sampled	 the	
count	matrices	using	 the	downsampleBatches	 function	
from	 the	 scuttle	 package	 (v1.0.4)	 to	 ensure	 that	 the	
average	 per-cell	 geometric	 mean	 of	 raw	 counts	 was	
consistent	across	all	6	patient	samples176.	

Module	scores	were	calculated	as	described	above.	The	
performance	 of	 the	 CITE-seq	 antibodies	 was	 assessed	
based	 on	 expected	 expression	 patterns	 across	 the	
progenitor	subsets.		

Single	nucleus	ATAC-seq	and	downstream	analysis	

snATAC-seq	data	for	CH05	was	generated	as	described	
above	using	the	Multiome	platform	(10x	Genomics)	and	
GoT	 performed	 as	 described	 above	 using	 the	 cDNA	
generated	 from	 the	 Multiome	 workflow.	 The	 gene	
expression	information	for	these	libraries	exhibited	very	
low	UMI	and	genes	per	cell	consistent	with	lower	quality	
RNA	 in	 single-cell	 nuclei	 Multiome	 data;	 as	 such,	 we	
moved	forward	utilizing	only	the	ATAC	data	for	analysis.	
For	 the	 analysis,	 fragment	 files	 were	 generated	 by	
processing	the	fastq	files	using	cell-ranger-ARC	(v.1.0.0).	
Downstream	 analysis	 was	 performed	 using	 the	 ArchR	
(v1.0.1)	 pipeline174.	 Based	 on	 the	 distribution	 of	 total	
fragments	and	TSS	enrichment	per	cell,	empty	droplets	
were	 filtered	 out	 by	 requiring	 a	 minimum	 of	 3,000	
fragments	 per	 cell	 and	 a	 TSS	 enrichment	 score	 of	 7.5.	
Potential	 doublets	 were	 detected	 using	 the	
addDoubletScores	 function,	 using	 KNN	 on	 the	 UMAP	
dimensionality	reduction	with	k	=	10.	Cell	barcodes	with	
high	enrichment	for	doublet	scores	were	removed	using	
the	 filterDoublets	 function	 with	 default	 parameters.	
Next,	we	 performed	 dimensionality	 reduction	 through	
iterative	 latent	 semantic	 indexing	 (LSI)	 using	 the	 top	
25,000	variable	features.	Cell	clustering	was	performed	
using	 the	 addClusters	 function,	 with	 the	 following	
parameters:	 reduceDims	 =	 “IterativeLSI”;	 method	 =	
“Seurat”;	 resolution	 =1.	 For	 visualization,	 further	
dimensionality	 reduction	 was	 performed	 by	 applying	
UMAP	 to	 the	 iterative	 LSI	 space	 using	 the	 addUMAP	
function	with	 the	 following	 parameters:	 nNeighbors	 =	
30;	 minDist	 =	 0.5;	 metric	 =	 “cosine”.	 Cell	 type	
identification	was	performed	by	manually	inspecting	the	

genes	 showing	 up-regulated	 gene	 accessibility	 scores	
(FDR	<	0.01	and	log2(fold	change)	>	1.25)	for	each	of	the	
defined	 clusters	 (Extended	 Data	 Fig.	 13c).	 Motif	
occurrences	 were	 defined	 using	 the	 position	 weight	
matrices	(PWMs)	obtained	from	the	Hocomoco	(v.11.0)	
motif	 database	 or	 our	 custom	 PWMs	 for	 hypo-
methylated	 and	 shuffled	 motifs	 using	 HOMER	 (v4.9),	
requiring	 a	 minimum	 enrichment	 score	 above	 6.	
Transcription	 factor,	 hypo-methylated	 and	 shuffled	
motif	 accessibility	 was	 calculated	 using	 ChromVAR177	
within	 the	 ArchR	 (v1.0.1)	 pipeline174.	 Supervised	
pseudotime	trajectories	for	either	erythroid	or	lymphoid	
fates	were	defined	within	the	ArchR	(v1.0.1)	pipeline174	
applying	the	addTrajectory	function.	
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EXTENDED	DATA	

	 	
Extended	Data	Figure	1.	GoT	captures	genotyping	information	of	thousands	of	CD34+	cells	in	scRNA-seq.	a,	Summary	of	
GoT	data	from	CH	patient	samples	with	DNMT3A	R882	mutations.	b,	Number	of	genes	per	cell	(left)	and	number	of	UMIs	per	
cell	(right)	from	CD34+	sorted	hematopoietic	progenitors	by	patient	sample	after	QC	filters.	c,	DNMT3A	R882	mutant	fraction	of	
single	cells	determined	by	GoT	versus	DNMT3A	R882	mutation	variant	allele	frequencies	(VAF)	in	bulk	sequencing	of	matched	
unsorted	stem	cell	product.	d,	Fraction	of	cells	by	number	of	DNMT3A	UMIs	in	standard	10x	Genomics	data	without	genotyping	
information	(left),	DNMT3A	UMIs	with	R882	locus	coverage	in	standard	10x	data	(middle),	and	DNMT3A	UMIs	with	R882	locus	
coverage	in	GoT	amplicon	library	(right).	e,	Species-mixing	experiment	data	in	which	mouse	cells	(Ba/F3)	with	a	human	mutant	
CALR	 transgene	were	mixed	with	 human	 cells	 (UT-7)	with	 a	 human	wildtype	CALR	 transgene.	Mouse	 and	 human	 genome	
alignment	of	10x	data	with	genotyping	data	from	GoT	pre	(top)	and	post	(bottom)	implementation	of	UMI	consensus	assembly	
based	on	Levenshtein	distance	(online	methods).	 f,	Number	of	duplicate	reads	supporting	cell	barcode-UMI	pair	 in	 the	GoT	
library	that	is	identified	in	the	10x	gene	expression	(GEX)	library	as	a	DNMT3A	gene	(left),	no	gene	(middle),	or	a	non-DNMT3A	
gene	(right).		
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Extended	Data	Figure	2.	Copy	number	analysis	of	wildtype	and	mutant	single	cells	from	clonal	hematopoiesis	patient	
samples	with	DNMT3A	R882	mutations.	a,	Heatmap	of	relative	expression	of	genes	ordered	by	chromosome/chromosomal	
position	 following	 copy	 number	 variation	 analysis	 using	 the	 InferCNV	 package.	 Cells	 (y-axis)	 are	 stratified	 by	 patient	 and	
DNMT3A	R882	genotype	status.	b,	Heatmap	of	relative	expression	of	Y-chromosome	genes	following	copy	number	variation	
analysis	and	cell	stratification	as	in	a.	
	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2022. ; https://doi.org/10.1101/2022.01.14.476225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476225
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 	 		
32	 	 A.	Nam,	N.	Dusaj,	F.	Izzo,	R.	Murali,	R.	Myers,	et	al.	(2022).	BioRxiv.	

	
Extended	 Data	 Figure	 3.	 Integration	 of	 DNMT3A	 R882	 mutation	 and	 assignment	 of	 progenitor	 subsets	 in	 clonal	
hematopoiesis	patient	 samples.	 a,	 UMAP	of	 CD34+	 progenitor	 cells	 from	 samples	 CH01-CH04	 after	 integration	 using	 the	
Seurat	package	(online	methods).	b,	Heatmap	of	top	10	differentially	expressed	genes	for	progenitor	subsets.	c,	Lineage-specific	
genes	 (left)	 and	 modules	 from	 Velten	 et	 al.	 (right,	 Supplementary	 Table	 2)	 are	 scored	 and	 projected	 onto	 the	 UMAP	
representation	of	CD34+	cells.	d,	UMAP	of	CD34+	cells	overlaid	with	cluster	assignments,	split	by	patient	sample.		
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Extended	Data	Figure	4.	Classification	of	IMPs	showing	lineage	biases	and	pseudotime	analysis	between	mutated	and	
wildtype	cells.	a,	UMAP	of	CD34+	cells,	overlaid	with	cluster	assignment	of	all	IMP	subsets	in	the	dataset.	b,	Neutrophil	and	
Megakaryocytic-Erythroid	lineage	specific	gene	module	scores	from	Velten	et	al.	compared	across	the	three	IMP	clusters.	P-
value	was	calculated	from	Wilcoxon	rank	sum	test.	c,	UMAP	of	CD34+	cells	overlaid	with	mutation	status	for	WT,	DNMT3A	R882	
mutant	 (MUT),	 or	 unassigned	 (NA),	 split	 by	 genotype	 for	 all	 samples	 (top)	 and	by	patient	 sample	 (bottom).	d,	UMAP	with	
projected	pseudotime	values	(top	left).	Pseudotime	comparison	between	WT	and	MUT	cells	for	all	samples	(top	right)	and	for	
individual	samples	(bottom)	as	estimated	by	Monocle.	P-value	was	calculated	from	likelihood	ratio	test	of	linear	mixed	model	
with/without	mutation	status	for	aggregate	analysis	(online	methods,	top)	and	Wilcoxon	rank	sum	test	for	individual	samples	
(bottom).	
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Extended	Data	Figure	5.	Cell	cycle	module	expression	comparison	between	mutated	and	wildtype	progenitor	cells.	a,	
Cell	cycle	module	score	represents	the	union	of	S-phase	and	G2M-phase	gene-module	expression	(Supplementary	Table	2).	P-
value	was	calculated	from	likelihood	ratio	test	of	linear	mixed	model	with/without	mutation	status	(online	methods).	Analysis	
was	performed	for	clusters	with	at	least	200	genotyped	cells	across	all	patient	samples.		
	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2022. ; https://doi.org/10.1101/2022.01.14.476225doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.14.476225
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 	 		
35	 	 A.	Nam,	N.	Dusaj,	F.	Izzo,	R.	Murali,	R.	Myers,	et	al.	(2022).	BioRxiv.	

	
Extended	Data	Figure	6.	Transition	probabilities	via	RNA	velocity	reveals	a	megakaryocytic-erythroid	bias	of	IMPs.	a,	
Single	cell	mean	IMP	à	IMP-ME	and	b,	IMP	à	IMP-GM	transition	probabilities,	as	measured	via	RNA	velocity,	between	wildtype	
or	DNMT3A	R882	mutant	IMPs	for	each	sample.	P-values	from	Wilcoxon	rank-sum	test.	
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Extended	Data	Figure	7.	Comparison	of	differential	expression	analysis	between	permutation	test	and	linear	mixed	
model	and	MYC	gene	expression.	a,	P-values	from	permutation	test	and	linear	mixed	model	(online	methods)	are	plotted	per	
gene.	 Correlation	 coefficient	 R	 calculated	 using	 Pearson's	 Correlation.	 P-values	 derived	 from	 Student's	 t-distribution.	 b,	
Normalized	MYC	gene	expression	between	mutated	and	wildtype	cells	in	MEP	and	EP.	P-value	was	calculated	from	likelihood	
ratio	test	of	linear	mixed	model	with/without	mutation	status	(online	methods).	 	
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Extended	 Data	 Figure	 8.	 Multi-omics	 single	 cell	 methylome,	 transcriptomic,	 and	 somatic	 genotyping	 reveals	
hypomethylation	of	PRC2	targets	in	DNMT3A	R882	CH.	a,	UMAP	dimensionality	reduction	(n	=	528	cells)	based	on	scRNA-
seq	data	(Smart-seq2)	after	integration	and	batch	correction	of	six	plates	(online	methods).	b,	UMAP	dimensionality	reduction	
showing	cluster	gene	markers	for	the	transcriptome	data.	c,	Number	of	CpG	sites	captured	per	cell	after	quality	filtering	(online	
methods).	The	metrics	for	each	sample	according	to	enzymatic	digestion	with	Msp1	(Single)	or	Msp1	plus	HaeIII	(Double)	are	
shown.	d,	Average	 single	 cell	methylation	at	 all	 regions	 (global,	 double	digest),	 promoters,	 introns	or	 exons.	P-values	 from	
likelihood	ratio	test	of	LMM	with/without	mutation	status	(online	methods).	e,	Average	single	cell	methylation	at	CpH	(i.e.	CpA	
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or	CpT)	sites.	f,	Average	single	cell	methylation	at	269	hypomethylated	promoters	identified	with	DMR	analysis	(shown	in	Fig.	
4e,	promoters	with	P-value	<	0.05	and	at	least	-5%	methylation	change)	in	CH02	and	CH04.	g,	Average	single	cell	methylation	
at	SUZ12	(top	panel)	and	EZH2	(bottom	panel)	ENCODE	ChIP-seq	peaks	 intersected	with	bivalently	H3K27me3,	H3K4me3-
marked	regions	in	CD34+	cells	for	CH02	and	CH04.	P-values	from	likelihood	ratio	test	of	LMM	with/without	mutation	status.	h,	
Normalized	expression	of	PRC2	target	genes	with	preferentially	hypomethylated	TSS	(from	Fig.	4e)	in	GoT	data	of	WT	versus	
MUT	HSPCs.	P-values	from	likelihood	ratio	test	of	LMM	with/without	mutation	status.	i,	Comparison	of	average	methylation	
values	for	TSS	±	1	kb	regions	in	DNMT3A	WT	(n	=	6)	versus	DNMT3A	R882,	NPM1	mutated	acute	myeloid	leukemia	(AML;	n	=	
7)	samples	in	regions	without	(left)	or	with	(right)	PRC2	ChIP-seq	peaks,	controlling	for	CpG	content.	j,	Comparison	of	average	
methylation	values	for	promoter	regions	in	WT	(n	=	122)	versus	DNMT3A	R882	mutated	AML	(n	=	9)	samples	from	TCGA	in	
regions	without	(left)	or	with	(right)	PRC2	ChIP-seq	peaks,	controlling	for	CpG	content.	
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Extended	Data	Figure	9.	Motif	enrichment	at	hypomethylated	CpGs	and	hypomethylated	motif	enrichment	in	regions	
around	 differentially	 expressed	 genes.	 a,	 Base	 frequency	 odds	 ratio	 of	 hypo-	 versus	 hyper-methylated	 CpG	 flanking	
sequences	at	positions	N-2,	N-1,	N+1,	and	N+2.	The	odds	ratios	were	derived	from	base	frequencies	of	flanking	positions	of	the	
CpG	sites	hypo-	or	hyper-methylated	in	mutant	versus	wildtype	cells	above	the	thresholds	shown	in	the	x	axis	for	minimum	
absolute	CpG	methylation	difference	(Pearson	correlation,	P-values	derived	from	F-test).	b,	Reported	motif	logos	derived	from	
Emperle	et	al.	for	either	hypomethylated	(disfavored)	or	hypermethylated	(favored)	sites	for	DNMT3A	R882	compared	to	its	
wildtype	 counterpart	 (left).	 c,	 Similarity	 scores	 between	 the	 reported	 and	 our	 de	 novo	 DNMT3A	 R882	 hypo-	 and	
hypermethylated	motifs	 as	 measured	 by	 correlation	 coefficients	 of	 the	 position	 weight	 matrices	 for	 the	 respective	motifs	
excluding	the	CpG	dinucleotide.	d,	Frequencies	of	DNMT3A	R882	hypomethylated	motif	within	30kb	of	TSS	of	the	differentially	
expressed	genes	between	MUT	and	WT	cells	 in	progenitor	subsets.	P-values	were	calculated	by	Wilcoxon	rank	sum	test.	e,	
Frequencies	of	DNMT3A	R882	hypomethylated	motif	within	10	kb,	30	kb	or	50	kb	of	TSS	of	the	differentially	expressed	genes	
between	MUT	and	WT	cells	in	HSPCs	and	EPs.	P-values	were	calculated	by	Wilcoxon	rank	sum	test.	f,	Ratio	of	frequencies	of	
DNMT3A	 R882	 hypomethylated	motif	 to	 those	 of	 the	 control	 shuffled	motif	with	 CpG	 (Fig.	 5e)	within	 10	 kb	 of	 TSS	 of	 the	
differentially	expressed	genes	between	MUT	and	WT	cells	in	HSPCs	and	EPs.	P-values	were	calculated	by	Wilcoxon	rank	sum	
test.	
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Extended	 Data	 Figure	 10.	 Single	 nucleus	 ATAC-seq	 of	 Dnmt3a	 R878H	 Lin-,	 c-Kit+	 progenitors	 reveals	 enhanced	
accessibility	of	R882	hypomethylated	motif	and	TF	motifs	with	high	similarity	scores	to	the	hypomethylated	motif.	a,	
Distribution	of	fragment	size	in	snATAC-seq	data	of	Dnmt3a	R878H	and	wildtype	Lin-,	c-Kit+	progenitors	(n	=	3	in	each	cohort).	
b,	TSS	enrichment	of	accessible	fragments	as	a	function	of	unique	fragments	per	cell.	c,	UMAP	of	integrated	datasets	Dnmt3a	
R878H	and	wildtype	Lin-,	c-Kit+	progenitors,	displayed	per	sample	(n	=	3	in	each	cohort).	d,	Heatmap	of	gene	accessibility	scores	
for	differentially	accessible	progenitor	identity	marker	genes	across	progenitor	subsets.	e,	Scatterplot	of	similarity	scores	of	
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mouse	TF	motifs	versus	human	TF	motifs	to	the	R882-hypomethylated	motif	(Pearson’s	correlation,	P-value	derived	from	F-
test).	f,	Binding	motifs	of	mouse	and	human	TFs	with	high	similarity	score	to	the	R882-hypomethylated	motif	and	expression	in	
HSPCs	(Fig.	5b,	HOCOMOCO	v11).	g,	FWER-adjusted	P-values	for	accessibility	changes	between	wildtype	and	Dnmt3a	R878H	
cells	by	progenitor	identities	for	hypo-methylated	motif	and	shuffled	motifs	controls	(with	and	without	CpG),	as	well	as	motif	
accessibility	deviation	of	the	TFs	identified	Fig.	5b	(related	to	Fig.	5f).	h,	Accessibility	of	PRC2	targets	between	wildtype	and	
Dnmt3a	R878H	and	wildtype	Lin-,	c-Kit+	progenitor	subsets.	
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Extended	Data	 Figure	11.	 Integration	of	 CH05	 and	 control	 bone	marrow	CD34+	 scRNA-seq	data	 and	 assignment	 of	
progenitor	subsets.	a,	UMAP	of	CD34+	progenitor	cells	from	samples	CH05	and	samples	BM01-05	after	integration	using	the	
Seurat	 package	 (online	 methods).	 b,	 Number	 of	 genes	 per	 cell	 (top)	 and	 number	 of	 UMIs	 per	 cell	 (bottom)	 from	 CD34+	
hematopoietic	progenitors	by	patient	sample	after	QC	filters	and	down-sampling	to	equivalent	geometric	means	of	UMIs	per	
patient.	c,	Heatmap	of	 top	10	differentially	 expressed	genes	 for	progenitor	 subsets.	d,	UMAP	 representation	of	CD34+	 cells	
showing	cell	marker	gene	expressions.	e,	Modules	from	Velten	et	al.	(Supplementary	Table	2)	are	scored	and	projected	onto	
the	UMAP	representation	of	CD34+	cells.	
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Extended	Data	Figure	12.	Bone	marrow	clonal	hematopoiesis	patient	sample	confirms	results	from	CH01-CH04.	a,	Per-
patient	comparison	of	megakaryocytic-erythroid	module	scores	in	control	bone	marrow	versus	CH05	IMPs	(Supplementary	
Table	2).	Cell	number	downsampled	to	the	same	number	(n	=	132	cells	per	sample).	P-values	were	calculated	from	likelihood	
ratio	test	of	LMM	with/without	CH	status.	b,	Per-patient	comparison	of	granulocytic-monocytic	module	scores	in	control	versus	
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CH	 IMPs	 (Supplementary	Table	2).	P-values	were	calculated	 from	 likelihood	ratio	 test	of	LMM	with/without	CH	status.	c,	
Fraction	of	IMP-ME	cells	out	of	all	biased	IMP	(IMP-ME	+	IMP-GM)	cells	in	control	versus	CH	populations.	P-value	was	calculated	
from	one-sample	t-test.	d,	Per-patient	comparison	of	module	scores	for	differentially	down-	or	up-regulated	genes	in	mutant	
DNMT3A	HSPCs	(identified	in	GoT	data,	Fig.	3a,c)	in	control	versus	CH	HSPCs.	P-values	were	calculated	from	likelihood	ratio	
test	of	LMM	with/without	CH	status.	e,	Per-patient	comparison	of	module	scores	for	differentially	down-	or	up-regulated	genes	
in	mutant	DNMT3A	EPs	(identified	in	GoT	data,	Fig.	3a,c)	in	control	versus	CH	EPs.	P-values	were	calculated	from	likelihood	
ratio	test	of	LMM	with/without	CH	status.	f,	Module	scores	for	genes	upregulated	in	at	least	2	cell	types	(identified	in	GoT	data,	
Fig.	3b)	in	control	versus	CH	cells	of	major	cell	types.	P-values	from	likelihood	ratio	test	of	LMM	with/without	CH	status.	g,	
Fraction	of	control	BM	or	CH05	cells	in	EP1	versus	EP2	cell	clusters.	h,	UMAP	of	CH05	cells	(clustered	independently	of	the	
control	BM	samples)	with	progenitor	cell	assignments.	i,	UMAP	of	CH05	cells	with	genotyping	data	for	WT	(n	=	397	cells)	and	
DNMT3A	R882	mutant	(MUT;	n	=	290	cells).	j,	Normalized	expression	of	differentially	upregulated	genes	in	at	least	2	cell	types,	
highlighted	in	Fig.	3b	in	wildtype	versus	mutated	cells	in	CH05.	k,	UMAP	of	CH05	cells	with	protein	expression	(CITE-seq)	and	
gene	 expression	 for	 CD38	 and	 CD9.	 l,	 UMAP	 of	 CH05	 cells	 highlighting	 HSPCs,	 IMP-ME,	 and	 MkPs	 (left)	 included	 in	 the	
comparison	of	CD9	expression	in	wildtype	versus	mutated	cells	(right).		
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Extended	Data	Figure	13.	Single	nucleus	ATAC-seq	data	 from	bone	marrow	clonal	hematopoiesis	reveals	enhanced	
accessibility	of	hypomethylated	motif	in	mutated	erythroid	progenitors.	a,	Distribution	of	fragment	size	in	snATAC-seq	
data	of	patient	CH05	with	DNMT3A	R882	CH.	b,	TSS	enrichment	of	accessible	fragments	as	a	function	of	unique	fragments	per	
cell.	 c,	 Heatmap	 of	 the	 gene	 accessibility	 scores	 for	 cluster	marker	 genes	 (FDR	 <	 0.01	 and	 Log2FC	 >	 1)	 by	 cell	 cluster.	d,	
Pseudotime	trajectories	for	either	erythroid	(left,	n	=	1,843	cells)	or	lymphoid	(right,	n	=	1,740	cells)	differentiation.	e,	Difference	
between	hypomethylated	and	shuffled	motif	accessibility	z-scores	across	either	erythroid	(n	=	1,843	cells)	or	lymphoid	(n	=	
1,740	cells)	pseudotime	trajectory	quartiles.	P-values	were	calculated	by	Wilcoxon	rank	sum	test.	HSPC,	Hematopoietic	stem	
and	progenitor	cell;	IMP-ME,	immature	myeloid	progenitor	with	megakaryocytic/erythroid	bias;	IMP-GM,	immature	myeloid	
progenitor	 with	 granulocyte/monocyte	 bias;	 LMPP,	 Lymphoid-myeloid	 pluripotent	 progenitor;	 MkP,	 Megakaryocyte	
progenitor;	NP,	Neutrophil	progenitor;	CLP,	Common	lymphoid	progenitor;	Pre-B1/2,	Pre-B	cell;	EP1/2,	Erythroid	progenitor.	
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