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Abstract Mathematical models of cancer growth have become increasingly more accurate9

both in the space and time domains. However, the limited amount of data typically available has10

resulted in a larger number of qualitative rather than quantitative studies. In the present study,11

we provide an integrated experimental-computational framework for the quantification of the12

morphological characteristics and the mechanistic modelling of cancer progression in 3D13

environments. The proposed framework allows for the calibration of multiscale, spatiotemporal14

models of cancer growth using state-of-the-art 3D cell culture data, and their validation based on15

the resulting experimental morphological patterns. Its implementation enabled us to pursue two16

goals; first, the quantitative description of the morphology of cancer progression in 3D cultures,17

and second, the relation of tumour morphology with underlying biophysical mechanisms that18

govern cancer growth and migration. We applied this framework to the study of the19

spatiotemporal progression of Triple Negative Breast Cancer cells cultured in Matrigel scaffolds,20

and validated the hypothesis of chemotactic migration using a multiscale Keller-Segel model. The21

results revealed transient, non-random spatial distributions of cancer cells that consist of22

clustered, and dispersion patterns. The proposed model was able to describe the general23

characteristics of the experimental observations and suggests that cancer cells exhibited24

chemotactic migration and accumulation, as well as random motion during the examined time25

period of development. To our knowledge, this is the first time that a multiscale model is used to26

quantify the relationship between the spatial patterns and the underlying mechanisms of cancer27

growth in 3D environments.28

29

Introduction30

Cancer progression is frequently accompanied by migration of cancer cells into the surrounding31

tissues, that eventually leads tometastasis. Both in-vivo and in-vitro studies of cancer cell migration32

have shown that cancers can exhibit several types of patterns including single cell migration, multi-33

cellular streaming, collective cell migration, as well as passive patterns, such as tissue folding, and34

expansive growth Friedl et al. (2012). Studies of breast cancer have shown that the tumour border35

is dominated by collective cell migration Friedl et al. (2012) forming small acinar structures with a36

central lumenal space, with cancer cells that maintain their epithelial morphology Tan et al. (1999).37

Evidence of multicellular streaming also exist from orthotopic breast cancer in xenograft mouse38

models Roussos et al. (2011a). Other clinical studies of the surface morphology of infiltrating duc-39

1 of 24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2022. ; https://doi.org/10.1101/2021.11.16.468856doi: bioRxiv preprint 

nikolaos.dimitriou@mail.mcgill.ca
georgios.mitsis@mcgill.ca
https://doi.org/10.1101/2021.11.16.468856
http://creativecommons.org/licenses/by-nc-nd/4.0/


tal adenocarcinoma have shown that the fractal dimension of cancerous tissue is larger compared40

to normal breast tissue Norton (2005). Similar observations of different fractality characteristics41

in different tumour stages have also been made in ovarian cancer Kikuchi et al. (2002). Though42

there is significant knowledge on the qualitative aspects of tumour morphology, the quantitative43

characterization of this morphology and the biophysical mechanisms that govern cancer growth44

and migration remain still elusive.45

Significant insights into both morphological and mechanistic characteristics of cancer growth46

can be gained from the use of mathematical models. Spatiotemporal models of cancer growth can47

be distinguished in three general categories; discrete (e.g. agent based models), continuum (Par-48

tial Differential Equations, PDEs), and hybrid models Cristini and Lowengrub (2010). Each of these49

categories provides different information on the aspects of tumour growth. Specifically, discrete50

models can provide information on individual cell processes or tissue microarchitecture Anderson51

et al. (2008). Continuum models have been widely used, initially to describe qualitative aspects of52

tumour growth, albeit lacking experimental validation Greenspan (1972), and more recently, for a53

more detailed quantitative description of the macroscopic characteristics of spatiotemporal can-54

cer growth and its response to therapy under both in-vitro Loessner et al. (2013); Stein et al. (2007);55

Warne et al. (2019); Jin et al. (2016) and in-vivo conditions Tunc et al. (2021); Hoehme et al. (2018);56

Lipková et al. (2019); Hormuth et al. (2017, 2018); Abler et al. (2019); Jarrett et al. (2020). Hybrid57

models attempt a multiscale description of cancer growth, by incorporating both continuous and58

discrete variables Rejniak and Anderson (2011); Sanga et al. (2007). Studies from Tweedy et al.59

Tweedy et al. (2020); Tweedy and Insall (2020) utilized experiments and hybrid discrete-continuum60

(HDC) models of chemotactic migration to investigate the role of self-generated chemotactic gra-61

dients in cancer migration. Even though there is a growing literature on spatiotemporal models of62

cancer, their validation using experimental data is important for quantitatively describing cancer63

Collis et al. (2017); Lima et al. (2016).64

The validation of a model can be interpreted as the process of quantifying how the predictions65

accurately describe the experimental measurements Collis et al. (2017). Validation usually follows66

calibration of the model, which is usually defined as the process of inferring the model parame-67

ters that provide the best fit between model predictions and experimental data. Typically, model68

calibration is performed using a training dataset, and validation is used to assess the prediction of69

the calibrated model on a different dataset. In the work of Hawkins-Daarud et al. Hawkins-Daarud70

et al. (2013) a Bayesian framework was used for the validation of diffuse-interface models of tu-71

mour growth using synthetic data. Achilleos et al. Achilleos et al. (2013, 2014) utilized stochastic72

processes for the validation of a mixture-model using tumour measurements obtained from ex-73

periments in mice. Lima et al. Lima et al. (2016) employed the Occam Plausibility Algorithm (OPAL)74

Farrell et al. (2015) to validate various classes of PDE models using images of glioma tumours in75

mice. Recently, they Lima et al. (2021) performed calibration of hybrid models with in-vitro 2D cul-76

ture data. Although these studies have yielded significant advances in model validation, several77

studies exclude model validation from their analyses.78

A common reason for the absence of validation in tumour modelling studies is the lack of data79

availability. In-vitro studies usually include the use of 2D cultures Jin et al. (2016); Warne et al.80

(2019), resulting in a less realistic representation of cancer growth. In-vivo studies, both clinical and81

experimental, are more realistic; however, they also present limitations. On the one hand, caliper82

and microCT scan measurements of in-vivo tumours in mice do not typically provide information83

on tumour shape and invasiveness Loizides et al. (2015); Jensen et al. (2008). Intravital imaging is84

another common way of data collection for in-vivo models; however, this technique suffers from85

technical challenges, such as passive drift of cells or tissues, low penetration depth, tissue heating,86

and limitations on imaging intervals Friedl et al. (2012). On the other hand, clinical data can be87

limited in terms of time-points Lipková et al. (2019), resulting in model over-fit.88

To this end, 3D cell culture models have become a promising experimental tool. The main rea-89

sons are their increased control of the experimental conditions and flexibility of data collection90
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Experiment Modelling Analysis & Validation

Data collection & Segmentation

Density calculation

Macroscopic Model
𝜕𝑢
𝜕𝑡

= 𝐷𝑢∇2𝑢 + 𝑠𝑢(1 − 𝑢) − 𝜒∇ ⋅ [𝑢(1 − 𝑢)∇𝑓 ]

𝜕𝑓
𝜕𝑡

= 𝐷𝑓∇2𝑓 + 𝜌𝑓𝑢(1 − 𝑢)

∇𝑢 ⋅ 𝑛 = ∇𝑓 ⋅ 𝑛 = 0

Model Calibration

ℙ(𝜃|D ,𝑀) ∝ ℙ(D|𝜃,𝑀)ℙ(𝜃)

Model hybridization
(Continuum to Discrete)

Spatial - Point Pattern Analysis

Figure 1. Proposed pipeline for the modelling, validation and analysis of cancer progression using in-vitro 3D experimental data.

compared to in-vivo experiments, as well as their more realistic representation of tumour progres-91

sion compared to 2D cultures. Differences between 3D and 2D cultures have been observed in92

cancer growth and its related biochemical processes, such as the secretion of extracellular matrix93

(ECM) components, and cell-cell interaction components Hickman et al. (2014), while the histolog-94

ical and molecular features of in-vitro 3D spheroids exhibit more similarities to xenografts com-95

pared to 2Dmonolayers Hickman et al. (2014). Significant differences between 2D and 3D cultures96

have also been found in drug testing studies exhibiting alterations in the sensitivity of cytotoxic97

drugs Hickman et al. (2014). Another advantage of 3D cell culture models is their flexibility with re-98

gards to incorporatingmore than one cell populations, such as stromal cells, as well as on changing99

the stiffness of the ECM. The heterotypic intercellular interactions between cancer cells and stro-100

mal cells results in altered cancer cell proliferation andmigration, as well as the formation of more101

compact spheroids compared to equivalent 3D cell mono-culture systems Hickman et al. (2014).102

The mechanical properties of the ECM also contribute to the spheroid formation, viability, inva-103

siveness, and drug sensitivity of cancer cells Hickman et al. (2014). Additionally, the collection of104

imaging data for in-vitro 3D cell cultures is generally easier and more accurate than in-vivomodels,105

and high resolution images can be obtained using confocal microscopy. Although 3D cell cultures106

cannot yet capture the full complexity of tumour growth in a living tissue, overall they yield signifi-107

cant potential for quantitatively describing cancer growth, as they even provide the opportunity to108

track even single cells.109

The purpose of the present work is to introduce an integrated framework for the quantitative110

characterization of spatiotemporal progressionof cancer, and its use formultiscale-spatiotemporal111

model validation for the study of cancer growth mechanisms. The framework presented in Fig. 1112
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(a) (b)

Figure 2. Inferred model parameters and simulation results (a) Violin plots of the marginalized posterior PDFs of the model parameters acrossthe 12 datasets. The black dots represent the median values. (b) Isosurface plot of the experimental and simulated density profiles using theinferred parameters of the initial conditions of a representative dataset. The blue colour-map corresponds to the in-vitro cell density profilesand the green colour-map corresponds to the in-silico cell density profiles.

proposes a novel combination of experimental data from state-of-the-art 3D cell cultures, spatial113

statistical analysis techniques for the quantification of cancer morphology, and a multiscale HDC114

mathematical model for the quantitative description of the mechanisms underlying cancer pro-115

gression. Given the spatial scales (μm up to mm) of the 3D cultures, the choice of HDC models116

instead of purely continuum or discrete models allows us to perform faster calibration on the con-117

tinuum model component, albeit with a lower fidelity compared to the full model, and validation118

on the discrete component. In this work, we present a novel approach for model calibration and119

validation. Instead of splitting the datasets, we perform calibration and validation on the two differ-120

ent levels; calibration on the continuum, and validation on the discrete level. The introduction of121

the spatial pattern analysis not only enables us to validate the hybrid model, but also to interpret122

the observed patterns based on the underlying mechanisms. The rest of the article is organized in123

a Methods section, where we describe the experiments, data processing, the mathematical model,124

the calibration and validation techniques, followed by the Results where we present the calibrated125

model, the validity tests of the full model, as well as a description of the relation betweenmorphol-126

ogy and the underlying mechanisms. Finally, we conclude with the Discussion and Conclusions,127

where we discuss our results compared to relevant literature, the advantages and limitations of128

our study, as well as possible extensions and improvements. The code and data of this work are129

available at https://nmdimitriou.github.io/HyMetaGrowth/.130

Results131

Estimation of the macroscopic model parameters132

The continuum Keller-Segel model was used to generate simulation data. The resulting cell density133

profiles for a given parameter set were compared against the in-vitro estimated cell density profiles134

of a dataset. This process was applied to each of the 12 datasets separately. Approximately 14300135

different sets of model parameters were assessed using the TMCMC method for each of the 12136

datasets. The obtained manifold of the inferred PDFs for one dataset is presented in Appendix 2137

Fig. 1a. Themarginal distributions and the average values along with their corresponding standard138

deviations from the posterior PDFs of the model parameters of these datasets are presented in139

Fig. 2a, and in Appendix 2 Table 1. Most of the estimated model parameters exhibited low uncer-140

tainty compared to range of their respective prior PDFs. The growth rate 𝑠 corresponded to a cell141

doubling time equal to 3.461 ± 0.013 days, (mean ± SEM). The diffusion constants for the cells, 𝐷𝑢,142

and chemotactic agents, 𝐷𝑓 , suggest that diffusion was more dominant compared to advection,143
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especially closer to the end of the experiment (last 3 time-points). This occurs due to the fact that144

the chemotactic signals diffuse in space, hence their gradient towards the bottom becomes less145

steep (Appendix 2 Fig. 1b).146

The parameter 𝑟 was found to have the largest variation and uncertainty across and within147

the datasets, respectively, which implied that its contribution was relatively smaller. To test this,148

we performed global sensitivity analysis of the model parameters with response to the tumour149

volume in 3D space, and the tumour area at the bottom with density values greater than 10−3. The150

resulting rank correlation matrix between the model parameters and the outputs confirmed that151

𝑟 contributed less than the rest of the parameters (Appendix 3).152

Figure 3. Average and standard deviationof Normalized Root Mean Squared erroracross all datasets across 6 time-points.

A visual representation of the in-silico cell density153

profiles, presented in Fig. 2b, using the calibrated pa-154

rameters, shows that the model predictions repro-155

duced the overall behaviour observed in the experi-156

ments, i.e. the biased movement of the cells towards157

the bottom. The Normalized Root Mean Squared Er-158

ror (NRMSE) of the cell density evaluated at each spa-159

tial grid point per time point is presented in Fig. 3, ex-160

cluding day 0, when simulation and experimental data161

were identical.162

Spatial Analysis & HDC Model Validation163

The estimated model parameters were subsequently164

used in the hybrid model (Fig. 7), separately for each165

dataset. The resulting in-silico cellular coordinates166

were analysed and compared to the corresponding in-vitro coordinates of the centroids from the167

segmented fluorescent nuclei of the cells. The quantitative characterization of the spatial distri-168

butions of the cells was performed using the IN, and NN Euclidean distance distributions. The IN169

distance distributions quantify the positioning of the cells relative to one another, while the NN dis-170

tance distributions measure the distances between each cell and their nearest neighbouring cell.171

The resulting IN distance distributions, depicted in Fig. 4a, show that the distributions remained172

relatively stable across all samples and time, for both experiments and simulations, with a charac-173

teristic peak distance at ∼1mm. The cosine similarity test yielded an average similarity value equal174

to 0.9896 ± 0.0109, suggesting high similarity between IN distance distributions from experiments175

and simulations. Their similarity remained high across all time-points, as shown in Fig. 4g. On the176

other hand, the NN distance distributions, presented in Fig. 4b, initially formed wide distributions177

that gradually tended to become narrower around lower neighbourhood radii values with respect178

to time, across all samples, with a characteristic peak at ∼15 μm for the experiments, and ∼10179

μm for the simulations. These peaks can be interpreted based on the hybrid model hypotheses,180

specifically regarding the cell division where the daughter cells are placed next to each other, and181

the adhesion that prevents migration. The average cosine similarity between NN distance distri-182

butions from experiments and simulations was equal to 0.6184 ± 0.2226. The similarity between183

experimental and simulation NN distance distributions decreased as a function of time, as shown184

in Fig. 4g. The different characteristic peaks in the NN Distance Distributions contributed to the185

decreasing similarity values. We attribute these differences to grid size effects, from which lattice186

cellular automata typically suffer Rejniak and Anderson (2011). An increase of the grid size would187

correct this error. According to the definition of NN distance, it can be viewed as a special case188

of the IN distance. In turn, we would expect that the narrowing of the NN distance distributions189

would destabilize the IN distance distributions. However, the maintenance of their shape can be190

interpreted as a result of the organization of the cells into smaller clusters that maintained a rela-191

tively constant distance, the synchronized division of the cells, as well as their overall accumulation192

towards the glass bottom of the wells with respect to time.193
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(a) (b) (c)

(d) (e)

(f)

(g)

Figure 4. Spatial analysis and comparisons between experiments and simulations (a) Inter-Nucleic Euclidean distance distributions. The title(D#) denotes the time-point in days. (b) Nearest-Neighbour Euclidean distance distributions. (c) Complete Spatial Randomness test; averagevalues of K-function across all samples and the corresponding standard error of mean (SEM). (d) Spatial distributions of cells from the cellularautomaton (blue) and its corresponding experimental dataset (red) with respect to time. (e) Heatmaps of the normalized number of cells acrossthe 𝑧-dimension, and across time. The normalization was performed across the z-dimension. (f) Average number of cells across all datasets withrespect to time for simulations and experiments. (g) Cosine similarity test for IN and NN distance distributions between experimental andsimulation results.
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To investigate the spatial organization of the cells, we performed the CSR test, using Ripley’s194

K-function Dixon (2014). Specifically, we examined whether the cells, represented by their nuclei195

centroids, were randomly distributed in space. The results depicted in Fig. 4c indicate substantial196

differences from a uniform random distribution for both experiments and simulations. For the197

experimental data, we observed clustering for a wide range of neighbourhood radii, as well as an198

increasing dispersion for longer distances across all samples, with respect to time. The results199

from the simulation data did not exhibit significant differences compared to the results from the200

experiments until day 2. Starting on day 9, we observed that the K-function of the experimental201

data indicates more pronounced clustering for smaller values of neighbourhood radii, and more202

pronounced dispersion patterns for longer distances, compared to the K-function of the simulation203

data.204

The spatial distributions of the in-silico cells, and the corresponding experimental dataset are205

presented in Fig. 4d. We observe that both in-silico and in-vitro cells performed a biasedmovement206

towards the bottom, with the in-silico cells characterized also by a more pronounced random mo-207

tion. Similarly, the numbers of cells across the 𝑧-dimension in Fig. 4e exhibit similarities between208

experiment and simulations, even though a relatively small number of cells appears to maintain209

elevated positions. The in-vitro and in-silico number of cells with respect to time, shown in Fig. 4f,210

are in coherence, exhibiting a logistic growth.211

Discussion212

We presented a novel framework that combines 3D cell culture experiments, multiscale models,213

parameter estimation, and spatial validation techniques to examine and quantify the morphology214

and mechanisms of cancer progression. We applied the proposed framework to 3D cultures of215

TNBC cells in Matrigel ECM, and we modeled this behaviour using a multiscale HDC model. The216

parameters of the continuummodel were estimated using Bayesian inference and a TMCMC algo-217

rithm. Our results suggest an overall agreement between the calibratedmodel, and the experimen-218

tal observations. The estimated parameters were used in the HDCmodel for a detailed simulation219

of the spatial distributions of the cells. The results of both experiments and simulations were220

analysed using spatial statistical analysis techniques to quantify the morphology of both in-vitro221

and in-silico cancer progression. In the following paragraphs, we discuss the relation between the222

observed spatial patterns, and the underlying mechanisms, particularly as related to the biased223

movement of the cells towards the bottom.224

Relation between Morphological patterns and Biological mechanisms225

The continuum KS model consists of diffusion, growth, and advection terms that represent the226

randommotion, proliferation, and biased movement of the cells towards the bottom, respectively.227

The estimated diffusion constants (Fig. 2a) suggest that randommotion played a significant role in228

the overall cell movement. Together with the unconstrained migration phase, these parameters229

affected the morphology of the cancer cells, which was reflected by the increased NN distance230

values on day 2 (Fig. 4b). The effect of advection, together with the constrained migration were231

more apparent after day 2 (Fig. 4d). These two parameters reflect the tendency of the cells to232

form clusters and their tendency to move towards the bottom. This effect was also observed in233

the NN distances between days 5 and 14 (Fig. 4b), as well as in the heatmaps of the number of234

cells across different 𝑧-values (Fig. 4e), which shows a comparable number of in-silico and in-vitro235

cells near the bottom. The visualization of the cells (Fig. 4d) shows that not all the in-silico cells236

tended tomove towards the bottom. This is a result of the fast diffusion of the chemotactic signals,237

which led to a more uniform distribution across the 𝑧-dimension compared to day 0 (Appendix238

2 Fig. 1b). The resulting differences in cell attachment to the bottom are also apparent in the239

K-function of the experiments and simulations. The in-vitro cell accumulation resulted in more240

pronounced clustering patterns for smaller neighbourhood radii with respect to time. The increase241

in the adhesionparameterwith respect to time restrictsmigration to the cells that have not reached242
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the bottom, contributing to the resulting NN distances. This parameter contributes also to the243

increased clustering of the in-silico cells shown in Fig. 4c, even though the changes in K-function244

were very small.245

Biased movement and cell sedimentation246

Despite the fact that chemotactic migration has been studied in both biological and mathematical247

levels Roussos et al. (2011b), Bubba et al. (2019), there is very limited discussion on the observed248

behaviour of the cells to move towards the bottom of the culture Liu et al. (2020). In this study,249

we hypothesized that cell sedimentation is a result of active, chemotactic cell migration due to the250

fact that gravity is not sufficient to describe this behaviour. Similarly, Liu et al. (2020) showed that251

if cells are cultured on the interface of two hydrogel structures, then they tend to move across the252

interface instead of settling on the bottom. Thus, passive movement due to gravity may not be253

sufficient to explain this biased movement, and cell sedimentation due to chemotactic migration254

remains a probable hypothesis.255

The selectedmathematical model was able to reproduce this biasedmovement, and the overall256

framework allowed us to quantify the movement in terms of both spatial patterns and underlying257

mechanisms. The proposed computational part of the framework allowed us to investigate the258

mesoscopic scale (μm to mm) taking into account between 1000 and 18000 cells in 3D, exhibiting259

goodperformance in termsof processing times. The analysis showed that not all of the in-silico cells260

followed the chemotactic gradient. This phenomenon was also observed by Tweedy et al. (2016),261

but for a different reason. Their study showed that self-generated gradientsmay favour the leading262

wave of cells, because they break down chemoattractants; thus, the cells behind the front do not263

sense a gradient andmove randomly. This phenomenonwas not visible in our experiments, due to264

additional factors that contributed to the biasedmovement of the cells towards the bottom. These265

include the compression and degradation of Matrigel, as well as vibrations during the transfer of266

the samples to the microscope. These factors were not considered in the model; however, the267

proposed framework provides a promising tool for the study of models of higher complexity.268

Future perspectives269

The proposed framework enabled us to relate the underlying mechanisms of cancer progression270

with the observed morphological patterns. Future improvements may include incorporating a271

model term for the quantification of the effect of ECM degradation that may be responsible for the272

introduction of possible biases. The proposed framework can also be used to study the growth273

patterns of heterogeneous cell populations such as cancer cells and fibroblasts, as well as, study274

cancer progression in the presence of therapy. Importantly, potential differences in themorpholog-275

ical patterns in the presence and absence of therapy can be used to design therapeutic strategies276

that control not only the tumour size, but also their morphological patterns to minimize invasion.277

Overall, the presented framework yields great promise for a more complete quantitative under-278

standing of the organization and progression of cancer.279

Methods and Materials280

Experiments281

Cell preparation282

Triple Negative Breast Cancer (TNBC) cells from theMDA-MB-231 cell line with nuclear GFP (histone283

transfection), were thawed and cultured at 5% CO2, 37 °C in DMEM (Gibco) at pH 7.2 supplemented284

with 10% fetal bovine serum (Wisent Bioproducts), 100 U/mL penicillin, 100 μg/mL streptomycin,285

and 0.25 μg/mL, and amphotericin B (Sigma) in T-75 flasks (Corning). The cells were passaged286

before reaching 85% confluence. Three passages were performed before the 3D cultures; cells287

were rinsed twice with DPBS and trypsin-EDTA (0.25%-1X, Gibco) was used to harvest them.288
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(a)

(b) (c) (d) (e) (f)
5 m

(g) (h) (i) (j) (k)

Figure 5. 3D cell cultures and nucleic segmentation. (a) Schematic representation of the cell/Matrigelgeometry at day 0 of the experiment. Slices at 𝑍 ≈ 100 𝜇𝑚 from the bottom of the plate on days (b) 5, (c) 7, (d)9, (e) 12, (f) 14. Scale bar: 500 μm. (g) Zoomed image of two cells on day 9. (h) Interpolation result resultingfrom (h). (i) Marker Controlled Watershed segmentation. (j) Nuclei splitting with Distance Based Watershedsegmentation. (k) Rescaling back to original image size.

3D cell cultures289

A cell-Matrigel (Corning) suspension was created using 0.25 mL of Matrigel (4 °C) and 5 × 104 MDA-290

MB-231/GFP cells. Droplets of 5 μL cell-Matrigel mixture were manually deposited onto a high291

performance #1.5 glass bottom 6-well plate (0.170±0.005 mm) (Fisher Scientific) (Fig. 5a). In total,292

12 datasets were produced with 7 samples on days 0, 2, 5, 7, 9, 12, 14 each. (Fig. 5b-5f).293

Imaging and Data preparation294

Data acquisition was performed every 2-3 days for a total of 15 days using a confocal microscope295

(Nikon A1R HD25) coupled with a cell-culture chamber. The dimensions of the 3D cultures were ap-296

proximately 2.5×2.5×0.9mm3. Cell localizationwasmade possible by theGFP fluorophore that was297

present in cell nuclei. The fluorescent nuclei were segmented using an image processing and seg-298

mentation pipeline Dimitriou et al. (2021). The preprocessing of the image stacks included: (i) im-299

age denoising using the Poisson Unbiased Risk Estimation-Linear Expansion of Thresholds (PURE-300

LET) technique Luisier et al. (2010), (ii) intensity attenuation correction across the 𝑧-dimension Biot301

et al. (2008), (iii) background subtraction using the rolling ball algorithm Sternberg (1983) andman-302

ual thresholding of low intensity values using High-Low Look Up Tables (HiLo LUTS), and (iv) cubic303

spline interpolation of the 𝑥𝑦-planes of the image stacks. The segmentation of the nuclei was per-304

formed usingMarker ControlledWatershed segmentation and a classic Distance BasedWatershed305

segmentation to split fused nuclei (Fig. 5g-5k). The segmented nuclei were then mapped to a 3D306

Cartesian space by detecting their centroid locations using a 26-connected neighbourhood tracing307

algorithm implemented in MATLAB MATLAB (2018). The final step was the calculation of spatial308

density profiles of the cells represented by their centroids, using the Kernel Density estimation309

via the Diffusion method Botev et al. (2010). Density calculation was performed using a grid of310

size 167 × 167 × 61 such that each cell approximately occupied one grid point. The density matri-311

ces were interpolated, using linear interpolation, to match the spatial grid size of the simulations312

(480 × 480 × 176).313

Multiscale HDC Model314

Chemotactic hypothesis315

Previous studies Liu et al. (2020) have shown that cells in 3D cultures using hydrogel matrices such316

as Collagen I or Matrigel tend to move towards the bottom of the space. We hypothesized that this317

behaviour occurs due to three main reasons; first, the MDA-MB-231 cells are naturally adherent318

cells, hence the cells tend to remain attached to each other to function properly; second, at the319

beginning and throughout the course of the experiment, the cells secrete chemotactic signals that320

enable cell migration and tend to bring the cells closer to each other; third, the cells that are closer321

to the glass bottom secrete signals at the beginning of the experiment creating a chemotactic gra-322

9 of 24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2022. ; https://doi.org/10.1101/2021.11.16.468856doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468856
http://creativecommons.org/licenses/by-nc-nd/4.0/


dient decreasing from the bottom towards the top of the space. The rationale behind the third323

hypothesis is that the glass is a surface that favours cell attachment, hence the cells that are closer324

to this surface secrete these signals to indicate it as a site of preference. This hypothesis is sup-325

ported by recent findings on self-generated chemotactic gradients Tweedy et al. (2020); Tweedy326

and Insall (2020); Tweedy et al. (2016); Susanto et al. (2017) with the difference that we assumed327

that the chemoattractants stem from the cells and they do not pre-exist in the 3D space.328

Continuum model329

To examine this hypothesis, we used a systemof two Keller-Segel (KS) type equations for cancer cell
density and chemotactic agent density respectively, which additionally takes into account random
motion of cancer cells and chemotactic agents, logistic growth of cancer cells, as well as the in-
crease of chemotactic agents depending on their current concentration in space and the presence
of cancer cells. The spatiotemporal evolution of cancer cell, 𝑢, and chemotactic agent, 𝑓 , densities
are obtained by the following PDEs:

𝜕𝑢
𝜕𝑡

= 𝐷𝑢∇2𝑢 + 𝑠𝑢(1 − 𝑢) − 𝜒∇ ⋅ [𝑢(1 − 𝑢)∇𝑓 ] , in Ω (1)
𝜕𝑓
𝜕𝑡

= 𝐷𝑓∇2𝑓 + 𝜌𝑓𝑢(1 − 𝑢), in Ω (2)
∇𝑢 ⋅ 𝑛 = ∇𝑓 ⋅ 𝑛 = 0, in 𝜕Ω (3)

where 𝐷𝑢, 𝐷𝑓 are the diffusion constants, and 𝑠, 𝜌 are the growth constants of the cell and signal330

densities, respectively, and 𝜒 is the advection constant of the cells. The right hand side of (1) con-331

sists of three terms; the diffusion term 𝐷𝑢∇2𝑢 that represents the random motion and expansive332

growth of the cancer cells, the growth term 𝑠𝑢(1 − 𝑢) that increases the density of the tumour in333

a logistic manner, and the nonlinear advection term −𝜒∇ ⋅ [𝑢(1 − 𝑢)∇𝑓 ] that represents the biased334

movement of the cells towards the directionwhere the gradient of the chemotactic signal density in-335

creases.336

Figure 6. Initial conditions of the continuummodel from one of the 12 datasets. The bluecolour map represents the cell density profile, 𝑢,and it is directly obtained from the experimentaldata. The green colour map represents thechemotactic agents density profile, 𝑓 and it iscalculated using (4).

The (1−𝑢) factor in the advection termwas added337

to avoid unwanted overcrowding of the cells that338

may lead to spikes of cell density Hillen and339

Painter (2001). In (2), the evolution of the signal340

density depends on the diffusion of the signal in341

3D space, represented by𝐷𝑓∇2𝑓 and the produc-342

tion of signals depending on the current signal343

density and cell density in space, 𝜌𝑓𝑢(1 − 𝑢). Sim-344

ilarly, (1 − 𝑢) limits the signal when overcrowding345

takes place. The spatial domain Ω had the same346

size as the experimental data, 2.5×2.5×0.917347

mm3, and it was represented by 480×480×176348

grid points. We considered no-flux Neumann349

boundary conditions (B.C.) in (3), where 𝑛 is the350

outward unit normal to 𝜕Ω.351

The initial conditions (I.C.) for this problem
were chosen based on the experimental data
and the chemotactic hypothesis. Specifically, the
initial cell density profiles of the simulationswere
chosen to be the spatial cell density profiles of
day 0 of the experiment (Fig. 6). The I.C. for the

chemotactic signals were based on the fact that the cells were, initially, uniformly distributed in
the 3D space, and separated from each other. Cells attached to the bottom glass were assumed
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to chemotactic secrete agents first, which in turn promoted the secretion of these agents by the
above floating cells as described in (4).

𝑓 (𝑥, 𝑦, 𝑧, 𝑡 = 0) = 𝑒
(

− 𝑧
0.26 (mm)

)

I(𝑢), I(𝑢) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑢 > 0

0, if 𝑢 = 0
(4)

Numerical methods352

We used the operator-splitting technique to approximate the diffusion, advection, and reaction op-353

erators. The diffusion termswere approximated by the Alternating Direction Implicit (ADI) Douglas-354

Gunn (DG) method Douglas and Gunn (1964). The advection term was approximated by the ex-355

plicit Lax-Wendroff (LxW)method Lax andWendroff (1960), coupled with theMonotonic Upstream-356

Centered Scheme for Conservation Laws (MUSCL) flux limiter van Leer (1979). The integration in357

timewas performed using the Strang splitting scheme Strang (1968). At every time-step, the Strang358

splitting scheme evolves the advection and reaction terms by 0.5d𝑡, then the diffusion operator by359

d𝑡, and again the advection and reaction operators by 0.5d𝑡. The accuracy of this scheme is second-360

order for both space and time. The proposed numerical scheme was implemented on GPUs using361

the CUDA/C programming language. Each simulation required approximately 1-5 minutes to com-362

plete in a V100-16GB Nvidia GPU (Appendix 1).363

Hybrid model364

We hybridized the KS model based on the technique presented in Anderson (2003, 2005). Specifi-
cally, we discretized (1) using the forward time central differences scheme (FTCS) using the approx-
imations found in Franssen et al. (2019):

𝑢𝑛+1𝑖,𝑗,𝑘 = 𝑢𝑛𝑖,𝑗,𝑘𝑃0 + 𝑢𝑛𝑖+1,𝑗,𝑘𝑃1 + 𝑢𝑛𝑖−1,𝑗,𝑘𝑃2 + 𝑢𝑛𝑖,𝑗+1,𝑘𝑃3 + 𝑢𝑛𝑖,𝑗−1,𝑘𝑃4 + 𝑢𝑛𝑖,𝑗,𝑘+1𝑃5 + 𝑢𝑛𝑖,𝑗,𝑘−1𝑃6 (5)
where the grouped terms 𝑃𝑖, 𝑖 = 0, ..., 6 denote probabilities of the cells of remaining stationary (𝑃0)365

or moving back (𝑃1), front (𝑃2), left (𝑃3), right (𝑃4), down (𝑃5), up (𝑃6), defined as366

𝑃0 = 1 −
6𝐷𝑢d𝑡
d𝑥2

𝑃1,2 =
𝐷𝑢d𝑡
d𝑥2

∓
𝜒d𝑡
4d𝑥2

(𝑓𝑖+1,𝑗,𝑘 − 𝑓𝑖−1,𝑗,𝑘)

𝑃3,4 =
𝐷𝑢d𝑡
d𝑥2

∓
𝜒d𝑡
4d𝑥2

(𝑓𝑖,𝑗+1,𝑘 − 𝑓𝑖,𝑗−1,𝑘)

𝑃5,6 =
𝐷𝑢d𝑡
d𝑥2

∓
𝜒d𝑡
4d𝑥2

(𝑓𝑖,𝑗,𝑘+1 − 𝑓𝑖,𝑗,𝑘−1)

(6)

Since the cells were approximately 15 μm in size and the spatial grid points had a distance of 5.2367

μm between each other, we assumed that each cell occupied 3 grid points in each direction. To368

account for this, we modified (5) and (6) by changing the indices that point to a direction to two369

grid points instead of one, i.e. i±2 instead of i±1 etc. The moving probabilities were then passed370

to a cellular automaton that updated the position and state of each cell.371

The cellular automaton (CA) is presented in Fig. 7a. The CA takes into account three cellular372

states; alive, quiescent and dead. At every time step it checks if a cell can undergo spontaneous373

death based on the probabilities shown in Fig. 7b, and updates the age of the alive cells. The374

spontaneous death probabilitywas increased after day 10. This hypothesiswas based on increased375

cell crowding, which resulted in a potential shortage of nutrients or accumulation of metabolic376

waste products. The CA checks if any cell has reached the proliferation age that is determined377

based on the estimated parameter 𝑠 (days)−1 of the continuummodel. We estimated the doubling378

time from the exponential phase of growth, 𝑒𝑠𝑡, and the resulting formula 𝑡double = ln 2∕𝑠. If a cell is379

ready to divide, the algorithm separates into two processes based on cell position in space. If the380

cell is attached on the glass and there is sufficient space, then the division will be performed on the381
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becomes
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(b) (c)
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Figure 7. (a) Flowchart of the cellular automaton. (b) Migration, adhesion, and cell death probability parameters of the cellular automaton werechanged over time. (c) Cells settled at the bottom (z=20 μm), and (d) cells floating at z=580 μm on day 2. Cells settled on the bottom had stellarshapes, while cells floating in the Matrigel had rounder shapes. (e) Cells floating at z=260 μm on day 7. Some floating cells changed to stellarshapes resembling those attached on the bottom, as shown in panel (c).

glass; otherwise, the cell will divide in any direction of the 3D space if there is sufficient space. On382

the other hand, if there is not sufficient space, the cell becomes quiescent. If the cell is not ready383

to divide, the CA turns to a migration program.384

The first condition for migration considers an adhesion parameter, defined as the number of385

neighbours that surround a cell, and the second is the state of the cell. We hypothesized that the386

number of neighbours required for cell migration increases over time (Fig. 7b), due to the fact that387

the initial distribution of cells in the 3D space is sparse; hence they migrate, freely, to search for388

other cells to attach. However, as cell clustering occurs due to cell division or cell contact, migra-389

tion becomes less frequent since the cells become more attached to each other. If a cell satisfies390

these conditions, the algorithm checks the position of the cell. If a cell is settled on the bottom391

of the space or is connected with a cell located on the bottom, it cannot migrate; otherwise, the392

cell can migrate in 3D space given the moving probabilities 𝑃0, ..., 𝑃6. These two, constrained and393

unconstrained, migration phenotypes resemble epithelial and mesenchymal phenotypes, respec-394

tively, and the transition between them can be found in the literature asmesenchymal to epithelial395

transition (MET) Gunasinghe et al. (2012). Indeed, changes in cellular morphology were observed396

between cells settled on the bottomand cells floating in theMatrigel. In Fig. 7c, 7dwe observe float-397

ing cells during the early days of the experiment with round shapes. However, at later time-points398

(Fig. 7e), we observed stellar shapes for the floating cells probably, due to increased adhesion399

between them.400

Bayesian Inference for calibration of the continuummodel401

The Keller-Segel model, 𝑀 , (Eq (1)-(3)) includes a set of parameters 𝜃 =
{

𝐷𝑢, 𝑠, 𝜒,𝐷𝑓 , 𝑟
} that are

considered unknown. We used their Probability Distribution Functions (PDF) and the calculated
densities from the 3D cell culture data,D , to assess themost probable parameter values according
to Bayes’ rule

ℙ(𝜃|D ,𝑀) ∝ ℙ(D|𝜃,𝑀)ℙ(𝜃) (7)
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where ℙ(𝜃|D ,𝑀) is the posterior PDF of the model parameters 𝜃 given the observed data D and
themodel𝑀 , ℙ(D|𝜃,𝑀) is the likelihood of the observed dataD given themodel𝑀 and the param-
eters 𝜃, and ℙ(𝜃) is the prior PDF. We assume uninformative, uniform distributions for the model
parameter prior PDFs. The experimental data consisted of 12 datasets and each of them had sam-
ples collected at 7 time-points. The datasets were assumed to be independent and the model was
evaluated for each dataset separately. The likelihood was defined as

𝐿(𝜃;𝐝) =
𝑛

∏

𝑖=1

1

𝜎𝑑
√

2𝜋
exp

(

−
(𝑑𝑖 − 𝑞𝑖(𝜃))2

2𝜎2
𝑑

)

(8)
where 𝑛 is the number of spatial grid points, 𝐝 the density profile of the corresponding sample in402

a dataset, 𝑑𝑖, 𝑞𝑖 the density values of the experimental sample and simulation result, respectively,403

at the grid point 𝑖, and 𝜎𝑑 the variance of the distribution of the likelihood.404

We used a Transitional Markov Chain Monte Carlo (TMCMC) algorithm implemented in theΠ4U
package Hadjidoukas et al. (2015). The TMCMC algorithm iteratively constructs series of interme-
diate posterior PDFs

ℙ𝑗(𝜃|D ,𝑀) ∝ ℙ(D|𝜃,𝑀)𝜌𝑗ℙ(𝜃) (9)
where 𝑗 = 0, ..., 𝑚 is the index of the Monte Carlo time series (generation index), and 𝜌𝑗 controls the405

transition between the generations, and 0 < 𝜌0 < 𝜌1 < ⋯ < 𝜌𝑚 = 1. The TMCMCmethod can utilize a406

large number of parallel chains that are evaluated in each Monte Carlo step to reach a result close407

to the true posterior PDF.408

Since the ratio of model parameters to time-points is small (5:7) for the continuum model, we409

used all the time-points for the calibration of the continuum model. Validation was performed us-410

ing the hybrid (discrete-continuum) model using the spatial statistical measures described below.411

Spatial Analysis - HDC Model Validation412

Complete Spatial Randomness Test of Spatial Cell Distributions413

The Complete Spatial Randomness (CSR) test examines whether the observed spatial point pat-
terns, in our case the centroids of the nuclei, can be described by a uniform random distribution
de Back et al. (2019). The CSR test was performed using Ripley’s K-function and the spatstat Bad-
deley et al. (2004) package of R R Core Team (2020). The 𝐾-function Dixon (2014) is defined as the
ratio between the number of the events, i.e. locations of points, 𝑗 within a distance 𝑡 from the event
𝑖, over the total number of events 𝑁 , in the studied volume 𝑉

𝐾(𝑡) = 1
𝜆̂

∑

𝑖

∑

𝑗≠𝑖
𝐼(𝑑𝑖𝑗 < 𝑡), 𝐼(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑥 = true
0, otherwise (10)

where 𝜆̂ = 𝑁∕𝑉 denotes the average density of events, 𝑁 , in the studied volume 𝑉 , 𝑑𝑖𝑗 is the dis-414

tance between events 𝑖 and 𝑗, and 𝑡 is the search radius. The 𝐾-function was calculated for all415

datasets and compared against complete spatial randomness following a Poisson process 𝐾(𝑡) =416

4𝜋𝑡3∕3 Dixon (2014) for three spatial dimensions. Isotropic edge correction was applied in the cal-417

culation of the 𝐾-function. The volume used for the calculation was the same with that used in the418

simulations, i.e. 2.5 × 2.5 × 0.917mm3. To assess the uncertainty of the random variable 𝐾 , we pro-419

duced a CSR envelope by generating 100 random distributions and calculating the 𝐾-function for420

each of them. The envelope was created by keeping the minimum and maximum values of the re-421

sulting𝐾 values. A substantial upward separation of the observed 𝐾-function from the theoretical422

random 𝐾-function denotes clustered patterns, while a downward separation denotes dispersed423

patterns de Back et al. (2019). Both separation types suggest non-randomness of the examined424

spatial distribution.425
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Characterization of the Spatial Cell Distributions426

The Inter-Nucleic (IN) Distance Distribution for a given sample was calculated by the pairwise Eu-
clidean distances between all nuclei. Given two nuclei 𝑖 and 𝑗 with centroid positions 𝐩𝐢 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)and 𝐩𝐣 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) respectively, their pairwise Euclidean distance is given by

𝐷𝑖𝑗 =
√

(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2, 𝑖, 𝑗 = 1...𝑁, 𝑖 ≠ 𝑗 (11)
where 𝑁 the total number of nuclei.427

The Nearest-Neighbour (NN) Distance Distribution for a given sample was calculated using the428

distances between the nearest neighbours of the nuclei. The nearest neighbour distance for a429

given nucleus 𝑖 is given by the minimum IN Distance between the nucleus 𝑖 and all the other nuclei430

of the sample, i.e. 𝐷𝑖
𝑁𝑁 = min𝑖,𝑗{𝐷𝑖𝑗}, 𝑗 ∈ [1, 𝑁], 𝑗 ≠ 𝑖.431

The comparisons between the in-vitro and in-silico IN and NN distance distributions were per-432

formed using the cosine similarity test Han et al. (2012), in MATLABMATLAB (2018) (Appendix 4).433
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Appendix 1
Numerical methods
ADI Douglas-Gunn (DG) for the diffusion operator
The ADI-DG scheme Douglas and Gunn (1964) is a multi-step method and can be applied to the
diffusion term as follows

(

1 − 1
2
𝑣𝛿2𝑥

)

𝑢𝑛,∗ = (1 + 1
2
𝑣𝛿2𝑥 + 𝑣𝛿2𝑦 + 𝑣𝛿2𝑧)𝑢

𝑛 (12)
(

1 − 1
2
𝑣𝛿2𝑦

)

𝑢𝑛,∗∗ = 𝑢𝑛,∗ − 1
2
𝑣𝛿2𝑦𝑢

𝑛 (13)
(

1 − 1
2
𝑣𝛿2𝑧

)

𝑢𝑛+1 = 𝑢𝑛,∗∗ − 1
2
𝑣𝛿2𝑧𝑢

𝑛 (14)
where, 𝑣 = 𝐷𝑢d𝑡

2ℎ2
, ℎ is the spatial grid step, assuming ℎ = dx = dy = dz, 𝛿2𝑥, 𝑦, 𝑧 are the central differenceoperators for the second derivatives in 𝑥, 𝑦, 𝑧 respectively, and 𝑢𝑛,∗, 𝑢𝑛,∗∗ are the intermediate values

of 𝑢.
Explicit Lax-Wendrof (LxW) with Monotonic Upstream-Centered Scheme for Conserva-
tion Laws (MUSCL) flux limiter for the advection operator
The explicit LxW-MUSCL Lax andWendroff (1960); van Leer (1979) method applied to the advection
term can be written as follows

𝑢𝑛+1𝑖,𝑗,𝑘 = 𝑢𝑛𝑖,𝑗,𝑘 + 𝜒 d𝑡
ℎ
(𝐹𝑖−1∕2 − 𝐹𝑖+1∕2 + 𝐹𝑗−1∕2 − 𝐹𝑗+1∕2 + 𝐹𝑘−1∕2 − 𝐹𝑘+1∕2) (15)

Here, 𝐹𝑖±1∕2 are defined as follows
𝐹𝑖−1∕2 = (𝑢∇𝑓 )𝑖−1 + 𝜙−

1
2
sign((∇𝑓 )𝑖)(1 − 𝑐)[𝑢𝑖(∇𝑓 )𝑖 − 𝑢𝑖−1(∇𝑓 )𝑖−1] (16)

𝐹𝑖+1∕2 = (𝑢∇𝑓 )𝑖 + 𝜙+
1
2
sign((∇𝑓 )𝑖)(1 − 𝑐)[𝑢𝑖+1(∇𝑓 )𝑖+1 − 𝑢𝑖(∇𝑓 )𝑖] (17)

where 𝑐 = 𝜒 dt
ℎ
,

(𝑢∇𝑓 )𝑖 = 𝑢𝑖 max(0, (∇𝑓 )𝑖) − 𝑢𝑖+1 max(0,−(∇𝑓 )𝑖+1) (18)
(𝑢∇𝑓 )𝑖−1 = 𝑢𝑖−1 max(0, (∇𝑓 )𝑖−1) − 𝑢𝑖 max(0,−(∇𝑓 )𝑖) (19)

and
(∇𝑓 )𝑖 =

𝑓𝑖 − 𝑓𝑖−1

ℎ
, (∇𝑓 )𝑖−1 =

𝑓𝑖−1 − 𝑓𝑖−2

ℎ
, (∇𝑓 )𝑖+1 =

𝑓𝑖+1 − 𝑓𝑖

ℎ
(20)

The 𝜙± are the flux limiter variables and are defined as follows
𝜙± = 𝜙(𝑟𝑖±1∕2) = max(0,min(2𝑟𝑖±1∕2,

1
2
(𝑟𝑖±1∕2 + 1), 2)) (21)

where,
𝑟𝑖−1∕2 =

𝑢𝐼 − 𝑢𝐼−1
𝑢𝑖 − 𝑢𝑖−1

, 𝑟𝑖+1∕2 =
𝑢𝐼+1 − 𝑢𝐼
𝑢𝑖+1 − 𝑢𝑖

(22)
and 𝐼 = 𝑖 − sign((∇𝑓 )𝑖). The same procedure is repeated for 𝐹𝑗±1∕2 and 𝐹𝑘±1∕2. The LxW-MUSCL
method is conditionally stable. Hence, the size of the time-step should satisfy theCourant-Friedrichs-
Lewy (CFL) condition, d𝑡 ≤ 1

3
ℎ

𝜒 max((∇𝑓 )𝑖,𝑗,𝑘)
.
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Strang splitting
The Strang splitting technique Strang (1968) to preserve second-order accuracy in time is the fol-
lowing; For each time-step:

1. evolve the explicit term (advection) for a time-step d𝑡∕2,
2. evolve the implicit term (diffusion) for a time-step d𝑡,
3. evolve the explicit term (advection) for a time-step d𝑡∕2.

Since we use two numerical methods; an implicit and an explicit, we can use two different time
steps. The LxW-MUSCLmethod is conditionally stable and we choose a time-step based on the CFL
condition d𝑡 ≤ ℎ

𝜒 max((∇𝑓 )𝑖,𝑗,𝑘)
. The time-step is adaptive and has to be re-evaluated in every time-step,

because it depends on max((∇𝑓 )𝑖,𝑗,𝑘), which is also also dynamic. On the other hand, the ADI-DG
is unconditionally stable, hence a larger time-step can provide sufficiently smooth solutions. We
selected the time-step for the ADI-DG as ℎ2∕max(𝐷𝑢, 𝐷𝑓 ), a value that would violate the Neumann
stability condition in the case of an explicit central differences scheme. The twodifferent time-steps
require a modification of the Strang splitting to the following form; For each implicit time-step:

1. evolve the explicit term for j steps until∑𝑗 d𝑡exp = d𝑡imp∕2,2. evolve the implicit term for d𝑡imp,3. evolve the explicit term for j steps until∑𝑗 d𝑡exp = d𝑡imp∕2.
where d𝑡exp and d𝑡imp are the time-steps for the LxW-MUSCL and ADI-DG methods, respectively.

The implementation of the numerical schemes was performed in CUDA/C language NVIDIA
(2021). More information on implementation can be found on the documentation of the code
available at https://nmdimitriou.github.io/HyMetaGrowth/.
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(a) (b)

Appendix 2 Figure 1. Model Calibration (a) Model parameter inference for a representative dataset using the TMCMC method. Above diagonal:Projected TMCMC samples of the posterior distribution in 2D space. Diagonal: Marginals of the joint posterior obtained via kernel densities.Below diagonal: 2D projected densities of the posterior obtained using 2D kernel densities. (b) Changes in the gradient of chemotactic signalsover time. The gradient became less steep, suggesting that chemotactic migration diminished with respect to time.

Appendix 2
Continuummodel calibration
The obtained manifold of the inferred PDFs of the model parameters for one dataset using the
TMCMC method is presented in Appendix 2 Fig. 1a. In Appendix 2 Fig. 1b we observe the changes
of the chemotactic signalling gradient at two different. The gradient became less steepwith respect
to time, thus making chemotactic migration less pronounced at later time-points, compared to
earlier time-points. The average and standard deviation of the inferred model parameters across
the 12 datasets are presented in Appendix 2 Table 1.
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Appendix 2 Table 1. Average and standard deviation of the inferred parameter values of the continuum KS model across all datasets.
Dataset 𝐷𝑢 ∈ [10−3, 8] ×

10−3 (𝑚𝑚2𝑑−1)
𝑠 ∈ [2, 5] × 10−1(𝑑−1) 𝜒 ∈ [0, 5] ×

10−2(𝑚𝑚2𝑑−1)
𝐷𝑓 ∈ [10−3, 8] ×
10−3 (𝑚𝑚2𝑑−1)

𝑟 ∈ [0, 0.5] ×
10−1(𝑑−1)

1 7.55 ± 0.28 2.001 ± 0.001 0.050 ± 0.031 2.36 ± 0.69 1.96 ± 0.95
2 7.86 ± 0.15 2.001 ± 0.001 0.081 ± 0.058 6.54 ± 0.57 0.96 ± 0.49
3 7.61 ± 0.27 2.001 ± 0.001 0.096 ± 0.071 2.36 ± 1.22 2.88 ± 1.31
4 7.65 ± 0.23 2.001 ± 0.001 0.046 ± 0.042 2.00 ± 0.73 4.06 ± 1.02
5 7.50 ± 0.40 2.002 ± 0.001 0.300 ± 0.144 4.31 ± 0.84 6.76 ± 1.43
6 5.63 ± 0.09 2.005 ± 0.000 0.051 ± 0.001 1.47 ± 0.24 5.89 ± 0.14
7 7.75 ± 0.17 2.002 ± 0.002 0.276 ± 0.124 6.34 ± 1.40 3.12 ± 2.45
8 7.63 ± 0.10 2.008 ± 0.001 0.214 ± 0.038 2.91 ± 0.31 4.37 ± 0.40
9 7.68 ± 0.26 2.002 ± 0.002 0.040 ± 0.032 2.97 ± 1.03 2.76 ± 1.36
10 7.42 ± 0.45 2.004 ± 0.003 0.044 ± 0.049 2.86 ± 1.20 7.25 ± 2.13
11 7.63 ± 0.31 2.004 ± 0.002 0.066 ± 0.045 2.09 ± 1.20 4.63 ± 1.32
12 7.72 ± 0.21 2.002 ± 0.001 0.052 ± 0.045 2.07 ± 0.76 5.02 ± 1.25
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Appendix 3
Global sensitivity analysis

Appendix 3 Figure 1. Global sensitivityanalysis of the model parameters withrespect to the tumour volume with densityvalues greater than 10−3 (Output 1), andarea of tumour found at the bottom
𝑥𝑦−plane with density values greater than
10−3 (Output 2). The partial correlationmatrix shows that the chemotactic signalproduction rate, 𝑟, was less correlated tothe output. Hence it exhibited lesscontribution compared to the rest of theparameters.

The results obtained from the calibration of the con-
tinuum spatiotemporal model against the experimen-
tal data using TMCMC algorithm indicated increased
variability of the chemotactic signal production rate, 𝑟,
across the samples. This may indicate decreased sen-
sitivity of the parameter 𝑟 to the final output. To ex-
amine this hypothesis, we performed global sensitivity
analysis for the model parameters with respect to the
model output. The sensitivity analysis was performed
using the Latin Hypercube Sampling (LHS) method
Adams, B.M., Bohnhoff,W.J., Dalbey, K.R., Ebeida, M.S.,
Eddy, J.P., Eldred, M.S., Frye, J.R., Geraci, G., Hooper,
R.W., Hough, P.D., Hu, K.T., Jakeman, J.D., Khalil, M.,
Maupin, K.A., Monschke, J.A., Ridgway, E.M., Rushdi,
A.A., Stephens, J.A., Swiler, L (2014). The model pa-
rameters (input) were examined with respect to the
tumour volume with density values greater than 10−3

(Output 1), as well as the area of tumour found at
the bottom of the space with density values greater
than 10−3 (Output 2). The sampled parameter space
remained the same as the one used for the calibration.
In total, 512 samples were produced, and the relation
of the model response to the input was calculated us-

ing the Partial Rank Correlation Matrix between input and outputs 1 and 2. The results depicted
in Apendix 3 Fig. 1 denote that the chemotactic signal production rate, 𝑟 was less correlated to
both outputs, making 𝑟 less sensitive compared to the rest of the parameters. Additionally, we
observed that the advective constant, 𝜒 , and the tumour growth rate, 𝑠, were positively correlated
to both outputs, hence they contributed to tumour clustering. In contrast, the diffusion constants
𝐷𝑓 , 𝐷𝑢 were negatively correlated with both outputs, and they contributed to the dispersion of thetumour. Both observations are consistent with respect to the function of the model.
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Appendix 4
Cosine similarity test
The similarity between in-vitro and in-silico INDistanceDistributionswas estimated using the cosine
similaritymeasureHan et al. (2012). The cosine similaritymeasure emerges from the Euclidean dot
product, whereby the similarity of two given vectors 𝑎, 𝑏⃗, is defined as sim(𝑎, 𝑏⃗) ∶= cos(𝑎, 𝑏⃗) = 𝑎⋅𝑏⃗

||𝑥⃗||2||𝑦||2
,

where ||⋅||2 the Euclidean norm. The similaritymeasure can take values between -1 and 1 indicating
exactly opposite and identical vectors respectively. A similarity value of zero denotes orthogonal
vectors. Increasing values between 0 and 1 denote low, intermediate and high similarity.
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