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Abstract

A longstanding disconnect between the growing number of MHC Class I immunopeptidomic

studies and genomic medicine hinders cancer vaccine design. We develop COD-dipp to

genomically map the full spectrum of detected canonical and non-canonical (non-exonic)

MHC Class I antigens from 26 cancer studies. We demonstrate that patient mutations in

regions overlapping physically identified antigens better predict immunotherapy response

when compared to neoantigen predictions. We suggest a vaccine design approach using

140,966 highly immune-visible regions of the genome annotated by their expression and

haplotype frequency in the human population. These regions tend to be highly conserved,

mutated in cancer and harbor 7.8 times more immunogenicity. Intersecting pan-cancer

mutations with these immune surveilled regions revealed a potential to create off-the-shelf

multi-epitope vaccines against public neoantigens. Here we release COD-dipp, a cancer

vaccine toolkit as a web-application (https://www.proteogenomics.ca/COD-dipp) and

open-source high-throughput resource.
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Introduction

A revolution in cancer vaccines is underway fueled by a better understanding of the immune

response and the breadth of tumor-associated antigens (neoantigens)1. In part, this is due to

the accelerated adoption of MHC Class I antigen profiling (i.e., immunopeptidomics) in

cancer by mass spectrometry. Leveraging these studies for cancer vaccines involves

connecting the wealth of immunopeptidomics data to immunogenomics, where the goal is to

carefully choose effective mutations to develop vaccines2.

The immunopeptidomics community has emphasized linking genomics to proteomics by

attempting to directly detect neoantigens among the unexplained spectra in mass

spectrometry studies3–5. Except, there are known sequence coverage limitations of current

MS-based technologies that limit the detection of neoantigens and therefore the

effectiveness of this approach6,7. Oppositely, genomics has emphasized using MHC binding

predictors8–10 trained from immunopeptidomics and affinity data to propose neoantigens for

vaccines. Although their artificial intelligence architecture offers the most predictive accuracy,

they still suffer from some drawbacks. First, the training datasets lag behind on cutting edge

developments in computational mass-spectrometry that would identify non-canonical

antigens. Second, they do not perform as well on alleles with insufficient data, hence leaving

the majority of the highly polymorphic MHC gene complex alleles with unreliable accuracy11.

Third, an inconsistent accuracy for different peptide lengths. Fourth, a high false positive rate

signifying that a high fraction of peptides is predicted to bind strongly, where in fact they

don't. Indeed, a high proportion of these predicted neoantigens will not be effective for

vaccine design12. Finally, an accurate landscape of the presented immunopeptidome
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remains inaccessible within these predictive models, breaking the flow between the detected

genomic aberrations and their predicted MHC presentation.

From a therapeutic standpoint, cancer vaccines have been designed to target private

neoantigens13 personalized to individual patients’ tumors. This strategy presents a

substantial bottleneck in terms of production and scalability because vaccines must be

tailored to each patient. A more sustainable strategy is to use public neoantigens 14 relying on

recurrent mutations in cancer, to develop antibody and T cell therapies. Thus, a

comprehensive list of such recurring neoantigens broadly presented to the immune system

across the human population is urgently needed. These alternative therapeutic agents could

cover the genomic diversity of presented antigens as well as the multitude of

co-translational15 and post-translational16 aberrations. Such ‘focal public neoantigens’ could

be used to refine the development of multi-epitope vaccines against cancer and could offer a

new line of population-level immunotherapeutics.

Since cancer is a disease of the genome, tracing the physically detected immunopeptidome

back to the genome stands to transform cancer vaccine design, yet remains difficult. To start,

no high-throughput method for capturing the full-breadth of the immunopeptidome including

canonical (exonic and post translationally modified) and non-canonical (intronic, frame

shifted or UTR) peptides) has been put forward. In addition, harmonized analyses have yet

to connect accessibly to the genome-centric bioinformatics community.

Here, we present a comprehensive and well-engineered resource of presented peptidic

antigens (immunopeptidomes) that incorporates the full breadth of neoantigen science17–21.

The immunopeptidome profiles of over 486 samples from 26 published cancer studies22,23

were analyzed using a novel harmonized approach. Assembling a novel catalog of peptides

derived from canonical (exonic or post translationally modified) and non-canonical (intronic,
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frame shifted or UTR) sources uncovered a spectrum of recurrent in-frame antigens and

out-of-frame neoantigens. The genome centric nature of our resource makes the connection

to cancer mutation data simple. Aligning these peptides to the genome revealed a

cartography of over 468,048 unique immunopeptides and proved that mutations in the

corresponding regions are predictive for immunotherapy response. Our pan-cancer analysis

relying on focal public neoantigens suggests which multi-epitope vaccines will make strong

candidates for the next generation of vaccines and T-cell based therapies. We assess the

feasibility of designing poly-epitope vaccines against focal public neoantigens and provide

data, alongside a web-application, to explore and develop these vaccines for broad

spectrum therapeutics. Beyond cancer, the methods introduced here stand to enable

important questions about the status and evolution of the immune-visible genome for the

comparative immunology community.

Results

Immunopeptidomics Mass Spectrometry datasets

We selected 26 immunopeptidomics mass spectrometry studies (Supplementary Table 1) to

create our dataset of antigen presentation in cancer. Samples were analyzed using a

harmonized approach for the characterization of data-dependent acquisition (DDA) mode in

tandem mass spectrometry. These DDA datasets covered several cancer types affecting

brain, lung, skin, liver, blood, colon, ovarian, and breast cancer tissues, (Fig. 1a, methods,

Supplementary Note 1) including cell lines, and disease free normals (Fig. 1b). We filtered

the available data for high-resolution mass spectrometry instruments (Q Exactive

Plus/HF/HFX and Fusion Lumos) to minimize the bias associated with older tandem

mass-spectrometry instrumentation (Fig. 1c). Antibody choice can impact which MHC

molecules are selected for analysis in immunoprecipitation (IP)24. Within our dataset, W6/32
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was the most used monoclonal antibody for HLA class I IP compared to the other antibodies

(BB7.2 and G46-2.6) (Fig. 1d, cf. Supplementary Table 1). The studies cover 5 different

HLA Class I genes with HLA-A, B, and C being the most studied compared to HLA-E, and G

(Fig. 1e).

COD-dipp: A high-throughput pipeline for the interrogation of immunopeptidomics

datasets

We present COD-dipp (Closed Open Denovo - deep immunopeptidomics pipeline), an

open-source high throughput pipeline with novel post-processing steps to deeply interrogate

immunopeptidomics datasets (Fig. 2a). We then use this pipeline to develop a

well-engineered database of canonical and non-canonical MHC Class I peptides, and an

accessible web-application to facilitate their use for vaccine design (Fig. 2b). We chose to

work with DDA datasets, owing to their abundance in the literature. DDA data can be

analyzed using different computational methods to identify the peptides by matching the

acquired MS2 spectra to an amino-acid sequence25 in a process called peptide-spectrum

matching (PSM)26. Closed search, open search, and de novo sequencing are three main

strategies used to identify canonical, post-translationally modified and non-canonical

peptides respectively. We chose one algorithm from each of these categories of PSM

assignment: MS-GF+27, MSFragger28, and deepNovo v220 in order to cover more of the

spectra in all 486 samples. We interfaced the deep neural network (deepNovoV2) with the

closed search algorithm (MS-GF+) to automatically learn the interpretation of mass

spectrometry spectra. Using our novel de novo post-processing we traced these peptides to

canonical and non-canonical sources using carefully tuned short sequence alignments

(Supplementary Note 2; Supplementary Fig. S1).

Pipeline Components: To identify canonical peptides, MS-GF+ and Scavager29 were used

as the closed search algorithm and to control the False Discovery Rate (FDR) to 1%
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respectively. To find and position post-translational modified peptides (PTMs), MSFragger

and PTMiner30 were used to perform an open search analysis and to control both FDR along

with False Localization Rate (FLR) to 1%. To find peptides from non-canonical sources,

DeepNovoV2 was used for the de novo strategy (methods) in combination with the closed

search PSM level information to train a specific DeepNovoV2 model per sample on

interpreting the raw data. The training step for such deep learning approach is crucial for

learning features of tandem mass spectra, fragment ions, and leverage sequence patterns in

the immunopeptidome to impute over missing MS2 fragments. All high quality de novo

peptides (90% accuracy) were sequentially mapped31 to the human reference proteome and

afterwards to a 3 Frame Translation (3FT) database derived from the coding strand for each

gene in the genome i.e., unspliced transcriptome (cf. methods). 3FT was used for the

detection of peptides from novel sources (i.e., non-canonical peptides) such as introns,

5’UTRs, 3’UTRs, out of frame exons, and junctions spanning any of the previously

mentioned features.

A deep interrogation of immunopeptidomic datasets

Applying the COD-dipp pipeline across the dataset improved the number of peptide

spectrum matches over any one strategy (Fig. 3a), revealing a breadth of canonical,

post-translationally modified, and non-canonical peptides.

Peptides with mass-shifts: post-translational modifications (PTMs)

The robust Bayesian statistical analysis used in PTMiner for open search PTMs30 controls

both False Discovery and False Localization Rates (FDR and FLR). Overall, 4,684,008

PSMs were detected at a 1% FDR + FLR by this strategy (Fig. 3a) and a subset of 5.15%

was found to show PTMs (Fig. 3b). Cysteine (cysteinyl, carbamidomethyl and trioxidation)

and Methionine (oxidation and dioxidation) were the 2 most modified residues (Fig. 3c).
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Interestingly, Cysteine has been reported as under-represented32,33 in comparison to the

proteome and has been treated as a technical bias in the database search parameters

previously. Furthermore, 1.12% of open search MHC Associated Peptides (MAPs) showed

unknown mass shifts illustrated in Fig. 3d as green and red. Eight of the most common

unexplained mass shifts were introduced by non-specific cleavage when combined with

open search (Supplementary Note 3) except (176.02, 176.04] on Cys which remains with

no clear assignable PTM in existing databases34.

Out of frame and intronic neoantigens

Several studies have explored MAPs from non-coding regions of the genome17,35,36 and novel

antigens have been proposed from (I) pseudogenes and lncRNAs37 (II) intragenic

non-coding regions17 through intron retention events35 or non-canonical translation events36.

We developed a novel sequential approach for the specific purpose of detecting non-coding

antigens from annotated genes. Our workflow identified 11,710 unique MAPs within

intragenic non-coding regions. We explored the landscape of non-canonical antigen

presentation in cancer using a rigorous sequential de novo sequencing strategy that made

use of the entire immunopeptidomics dataset independent of matched genomics data

(methods). We ensured that only high-quality spectra were assigned by applying a 90%

accuracy threshold on de novo prediction. Carefully, preference was given for the human

proteome before matching the non-canonical sequence space. Peptides were mapped to

known normal proteins first, then the remaining to a 3 frame translation database based on

the coding pre-mRNA sequences in GRCh38 as shown in (Fig. 2, methods). We did not

examine fully non-coding genomic regions in order to focus on the most likely candidate

peptides in this analysis, despite evidence that these too are translated37. Our de novo

strategy contributed to 15.9% (1,893,527) of all identified spectra (Fig. 3a), with 96.3%

mapping fully to normal exonic sequences (i.e., canonical) and a minority (3.7%) mapping to
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the 3 Frame translation database (i.e., non-canonical) sequences (Fig. 3e).

We assessed the quality of the de novo sequences by examining their DeepNovoV2 score

quality, liquid chromatography retention times conformity, and HLA binding motifs

appropriateness. Both canonical and non-canonical peptides showed a similar de novo

score distribution with a slight shift of non-canonical peptides toward higher scores (Fig. 3f).

The filtering of peptides with less than 3 unique amino acids (i.e., Poly A or poly G peptides)

reduced the FDR (proportion of peptides that mapped to the decoy database) to 0.77% (

) among exonic peptides (Fig. 3g). This filter was applied on𝐹𝐷𝑅 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑜𝑦𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑜𝑦𝑠 + 𝑡𝑎𝑟𝑔𝑒𝑡𝑠

non-canonical peptides as well. As another quality control step, the correlation between the

experimental and predicted retention time of de novo canonical and non-canonical peptides

was checked. Fig. 3h shows an r-squared score of 0.9 for de novo exonic and 0.863 for de

novo non-canonical peptides in a melanoma sample (mel-15 of PXD004894) and an overall

de novo non-canonical r-squared score of 0.88 among all samples. Similarly, de novo

canonical and non-canonical peptides showed an 86% overlap in terms of HLA motifs

indicating that the same MHC Class I haplotypes explain the newly found non-canonical

peptides (Fig. 3i, Supplementary Note 4). All this provides strong evidence that these de

novo peptides are high quality identifications (i.e., correctly predicted complete peptidic

sequences). We found that any non-coding region type within genes can generate

non-canonical peptides (Fig. 3j). Fig. 3k shows that most detected non-canonical peptides

come from introns (58.3%) by either intronic retention or alternative Translation Initiation

Sites (aTIS). Interestingly, we found that 86.29% of the intronic peptides had an upstream

start codon and 40.65% to have a potential upstream Translation initiation site (TIS)38 hinting

at alternative translation as a possible source.
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Integrated search results

Of all 468,048 unique peptides, 25.5% were detected in all 3 strategies, and 19.4% by both

closed search and open search (Fig. 3l). Closed search showed the largest exclusive set of

peptides (16.7%) compared to closed search 15.2% and de novo 12%. All strategies showed

a similar number of mapped locations to the human genome with mostly 1 and 2 reference

locations (Fig. 3m). Of all 85,208 unique protein isoforms, 85.2% (72,633) were detected by

all 3 strategies (Fig. 3n). The low fraction of exclusive proteins reflects the complementary

nature of the strategies. Similarly, the majority of non-canonical peptides identified by de

novo sequencing originated from the same set of proteins of canonical peptides with 86.3%

(24,518) of proteins overlap (Fig. 3o). This implies that non-canonical peptides originate

from the same subset of proteins of canonical ones.

Recurrent neoantigens from alternative sources

We further surveyed the recurrence of non-canonical peptides and their degree of ubiquity

across cancer immunopeptidomes. 239 MAPs were recurrently identified in at least 10

samples with at least 2 spectra (Fig. 4). Some recurrent peptides occur exclusively within

cancer types (colon cancer, melanoma, and ovarian carcinoma) while others are shared

across cancer types. Reassuringly, 90.6% were predicted binders by NetMHCPan 4.0 to the

HLA class I supertypes, 12 HLA alleles with binding properties that cover much of the human

population. Strong binders were in the majority 76% (181), while 14.6% (35) were predicted

as weak binders. In comparison, a set of 239 random peptides with random length from 8 to

12 shows only 5.7% strong binders, and 11.7% weak binders to the same 12 HLA types. In

addition, these peptides were detected in colon cancer tissue without the help of HLA

amplification treatments (IFN or TRAM) hinting at a high expression by the MHC class I

system. 20 out of 239 peptides were found downstream of known frameshift mutations in

COSMIC and were associated with low NMD efficacy scores39, which could offer an
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explanation for their origins. 87 out of 239 were exclusively shared between cancer samples

without any occurrence in disease free samples of which 7 were found in COSMIC as

frameshifts. In addition, the presence of some peptides could be explained by cancer

aberrations affecting splice sites.

Prognostic power of the COD-dipp generated antigen library

The assignment of somatic mutations to neoantigens tends to make use of predictive models

of antigen presentation. Genomic mutations are translated to mutated sequences, then MHC

Class I binding is evaluated for patient-specific HLA types using a sliding window to choose

the best nonamer candidates. Here we suggest that neoantigen prediction should be

informed by experimentally detected antigens (methods) and show a significant

improvement over the fully in-silico approach when predicting response to immuno-therapy.

Fig. 5a shows the performance of the homogenous fitness model by Łuksza et al.40 (top row)

when using a typical prediction approach compared to focusing on genomic regions where

antigens have previously been detected in our dataset (bottom row). The incorporation of

mass spectrometry data improved the patient separation into responders (low fitness) and

non-responders (high fitness) in all 3 cohorts. In addition, the 2 cohorts from Rizvi et al.41,

and VanAllen et al.42 showed significance only with the experimental antigens informed

model.

Focal public neoantigens as simplified antigenic library

We define focal public neoantigens as sets of mutations from cancer-relevant hotspots that

intersect with directly observed highly immune-visible regions in the genome. To find them,

we first cataloged immune hotspots at the genome level. Although such hotspots have been

reported before, here we paired them with a novel MHC haplotype deconvolution strategy

(methods, Supplementary Note 4; Supplementary Fig. S2). Hence, hotspots can be

described in terms of their prevalence in the human immunopeptidome, across haplotypes
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and therefore in the population. All identified peptides from all samples were mapped to the

human genome, and genomic coordinates from overlapping peptides were combined to

define immune-visible genomic hotspots (Genomic Immune clusters or GIC, methods,

Supplementary Note 4). Fig. 5b shows that the majority of neoantigens (orange) detected

in the 3 previously mentioned checkpoint blockade immunotherapy cohorts are captured by

focal regions (blue) in both low and high fitness groups. Furthermore, a combination of 1374

epitopes43–45 from studies evaluating the immunogenicity of cancer mutations revealed a

significant 7.8 times (Fig. 5c) increase in T-Cell reactive epitopes within GIC regions

(13/210) when compared to unreactive epitopes (9/1142) (two-sided fisher exact test p

value: 4.98e-6). Antigen binding prediction by NetMHCpan 4.0 of these 1374 epitopes

yielded only 4.8 fold enrichment in immunogenicity (two-sided fisher exact test p value:

3.34e-2). This indicates the value of verified immune-visible regions to identify neoantigens

requiring 3 times less wet lab effort when pursuing T-Cell reactivity experiments. This

simplifies the isolation of neoantigens, highlighting the importance of GICs for vaccine

design. These genomic regions were associated with 3 features: (I) the mean MAPs

expression calculated in Reads Per Million (RPM) (II) the cancer associated mutational

density within the overlapping gene(s) (gene mutational ratio) (III) the percentage of the

world population expressing the region given the deconvoluted HLA types (methods,

Supplementary Note 4). These features capture highly immune-visible genomic regions

relevant to disease without a bias towards their width (Supplementary Fig. S3) and can be

used to derive a score ranging between 0-1, which we call the immune score (methods).

While 11.18% of the coding genome showed immune coverage (by at least 1 unique

peptide). The GIC analysis revealed 140,966 regions of the human genome, that is 3.35% of

the coding genome, being focal points of antigen presentation. Finally, we developed an

‘immune score’ to rank focal regions according to the MHC Class I expression, the

mutational load in cancer, and the population coverage according to the corresponding HLA
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types (Fig. 5d; methods: immune score).

Interestingly, fourteen out of seventeen GICs of the tumor suppressor TP53 have a high

immune score (Fig. 5d, e), indicating that multiple haplotypes converge on the same regions

of this crucial cancer gene, which is consistent with immunogenicity profiles46 for TP53. Four

examples in Fig. 5d illustrate how the diversity and spread of motifs in these genomic

regions differ from region to region, and this relates to population coverage (Supplementary

Note 4 illustration). High scoring GICs (Fig. 5d left side) are relatively more spread in the

motif space in comparison to low scoring GICs (right side). This positive relation between the

immune score and the population coverage is related to the cross-presentation of immune

peptides across multiple HLA types (Supplementary Note 4 illustration). Interestingly,

GICs with high immune score occur in regions of high evolutionary conservation according to

the PHAST score47 (Supplementary Fig. S4), preference towards particular secondary

structure elements (Supplementary Fig. S5), and are equally highly mutated in cancer.

Hence, the MHC system could be restricting presentation to focus on functional sites since

they are mostly conserved throughout evolution.

Feasibility of vaccines based on focal antigen presentation

We wanted to understand the feasibility of vaccine development using these focal regions of

antigen presentation. Using the COSMIC48 database, pan-cancer aberrations were

intersected with immune-visible regions of the genome and ranked by decreasing recurrence

(Fig. 6a). The cumulative population penetrance (i.e., percentage of patients in COSMIC)

increased to reach 38% when incorporating the top 30 mutations (Fig. 6b). Adding all

mutations from these same immune-visible regions increased the population penetrance to

45% but required 2038 unique mutations. We noticed that certain cancer types tended to

have recurrent mutations falling into the focal regions while others did not, indicating
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differences in cancer-specific potentials for vaccination. When the top 10 most recurrent

mutations are considered, Hematopoietic neoplasms show a low vaccine potential, having

low cumulative penetrance (11.9%) for immune-visible recurrent mutations. In comparison,

large intestine (colon) carcinoma was highly immune-visible with 71.4% penetrance (Fig.

6c).

We next developed a vaccine potential score (Supplementary Note 5) for a focal region that

balances recurrence in cancer with additive penetrance. This vaccine potential score takes

into consideration the proportion of people with a particular genetic mutation (penetrance) in

a cancer type along with the immune-visibility on the MHC class I system generally across

the population based on physically measured neoantigens in the current dataset. Fig. 6d

illustrates the possibility to develop either therapeutic vaccines using public neoantigens

across different premalignant and malignant lesions or vaccines against pre-cancerous or

symptomatic benign tumors reported in COSMIC (Supplementary Table 2). The top

malignant cancer candidates for potential vaccines are lung carcinoma, liver carcinoma,

pancreas carcinoma, colon carcinoma, brain glioma, skin malignant melanoma, and thyroid

carcinoma presented as the most attractive targets for therapeutic vaccines.

A web application for vaccine development: understanding the immune-visibility of

public and private neoantigens

To make the results presented in Fig. 5 and 6 broadly accessible, we have developed a web

application (https://www.proteogenomics.ca/COD-dipp) to facilitate vaccine design by

bridging genomic mutations with physically detected MAPs (Fig. 2b). The portal provides a

“neoantigen analysis” where the user can upload a set of gene mutations or a mutation

calling file (VCF format) and retrieve their equivalent neoantigens templated from physically

detected peptides. A second ‘GIC analysis’ feature is also included to give further
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information about the regions the mutations occur in. Mutations that overlap highly

immune-visible regions, which we have called Genomic Immune Clusters (i.e., GICs) are

returned. In addition, the expression levels, population coverage, enrichment in cancer

mutations as well as the immune score of the immune-visible regions are provided

(methods).

Discussion

The cartography of antigen presentation developed by our open resource arises from a

harmonized analysis of immunopeptidomics data mapped to the human genome. Our

innovations over the most recent trends in computational mass-spectrometry identified a

diversity of peptides mapping to the reference human proteome and its 3 frame translation.

We mapped deviations away from the reference proteome as mass-shifts to reference

peptides and explained significant numbers of these as genetic alterations (Supplementary

Note 6) or PTMs. This approach expands with rigor on preliminary studies which either rely

on proteogenomics for mutation calling3 or focus on the specific isolation and study of

PTMs18. Our cartography is openly accessible as an alignment file directly usable by the

genomics community to suggest focal neoantigens. On top of that, the easy access

web-application, the high-throughput pipeline, and the code for all the analysis extends the

accessibility.

A diversity of peptides with post-translational modifications or from non-canonical

sources

We found that 4% of all MAPs harbor PTMs. The most abundant detections are:

carbamidomethylation, cysteinylation, oxidation, di or tri-oxidation, acetylation (Fig. 3c).

Some PTMs are confirmatory chemical modifications from sample-preparation methods or

common chemical derivatives (Supplementary Note 3). Other PTMs have been reported to

increase immunogenicity of antigenic molecules against diseases49 and protect against
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degradation (Supplementary Table 3). For example, Tri-oxidation of cysteine has a

potential of altering the immune response50, however its interaction mechanism with the HLA

molecules and T cells is still in its infancy51. Additionally, T cells can discriminate

cysteinylated from unmodified cysteine residues51,52. Likewise, N-terminal serine

acetylation is known for multifunctional regulation, acting as a protein degradation signal, an

inhibitor of endoplasmic reticulum (ER) translocation, and a mediator of protein complex

formation. In our study, 96.3% of the cases of serine acetylation took place on P1 of peptides

located at the second amino acid of proteins indicating the involvement of N-terminal

acetyltransferases A after the initiator methionine is removed by methionine

aminopeptidases53. P1 serine acetylation has been shown to protrude out of the HLA-peptide

groove for T cell recognition54. With all the aforementioned, abundant PTMs implicated in

immunogenicity such as serine N-term acetylation, cysteinylation, and tyrosine oxidation

provide insights into immunogenicity and PTM-based vaccines.

The recurrence of non-canonical peptides within cancer types and between cancer types

provides opportunities for vaccination. Several were found downstream of known frameshift

mutations in COSMIC, which could offer an explanation for their origins and 87 out of 239

were cancer exclusive in our data. This includes 2 recurrent non-canonical peptides from an

alternative exonic frame in the TSPO with an upstream splice variant (COSMIC ID:

COSV61568369) that could cause a frameshift. The recurrence of certain non-canonical

peptides in disease free samples is not surprising, since they contain normal tumor-adjacent

tissue (21 samples) that could contain tumor contamination or PBMCs that might have been

exposed to cancer cells and therefore do express neoantigen of non-canonical origins.
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Insights on vaccine and antibody-therapeutic design: Exploring the feasibility of

recurrent and focal public neoantigen vaccines

Currently suggested biomarkers for response to checkpoint blockade immunotherapy

include metrics based on tumor mutational burden and cell surface HLA expression.

However, we now suggest a targeted exome-seq panel based on genomic hotspots of

antigen presentation (The GICs in Fig. 5d) as a library to assess the likelihood of patients to

respond to immunotherapy. Indeed, we have shown the prognostic value of templating

neoantigens from previous physical detections (Fig. 5a) and their utility successfully

shortlisting neoantigens (Fig. 5c). Indeed, we found that focusing on these regions can

drastically simplify (7.8 fold) the identification of T-Cell epitopes. Likewise, this library may be

valuable for informing both personalized and public neoantigens for vaccine development

(Fig. 6) and we provide a simple web server to make this discovery accessible.

When recurrent mutations in COSMIC are intersected with focal hotspots of antigen

presentation, the top 50 focal public neoantigens cover 78,326 patients in COSMIC (Fig.

6a). The development of a multi-epitope vaccine requires further validation to confirm their

presentation on more frequent HLA alleles as well as their immunogenicity. Vaccines

covering more mutations within immune-hotspots could further broaden population

coverage, but the number quickly rises to thousands of mutations with only small gains in

sample coverage.

Concluding remarks: An evolutionary perspective on focal antigen presentation

Our resource focuses on making immune-surveillance accessible from genome and

transcriptome centric view, which may have far reaching implications that remain to be

explored. It turns out that an analysis of recurrently identified peptides in the

immunopeptidome reveals an enrichment of focal points in genes relevant to cancer. Of all
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the peptides detected in our study, 74% fell into focal regions that were conserved across

vertebrate lineages (Supplementary Fig. S4, S5) and enriched in cancer genes

(Supplementary Fig. S3). This would seem to indicate an evolutionary constraint on the

immune system to preserve surveillance of these conserved regions.

Focused antigen presentation could have been converged on through two related

processes. (I) fixing mutations in populations that maximize coverage of these regions by

different haplotypes, or (II) by constraining the HLA molecules themselves to these regions.

Indeed, genomic regions covered by more haplotypes may be constrained to code for

anchor residues that allow broad presentation. Likewise, new HLA haplotypes may be

constrained to maintain the presentation of these anchor regions. If the MHC Class I system

tends to present focal regions important for cancer, then these regions could be prioritized

for multi-epitope vaccines. Regardless of how, it would appear that evolution may have

provided the right environment for the presence of focal regions in cancer genes on which to

develop public and private neoantigen based therapies. These therapies could consist of

multi-epitope vaccines spanning one or several regions that maximize coverage of the

mutation landscape, either against one or multiple cancer types.

The tools and analyses herein may spark a new field of comparative immunology to

understand how immune-surveillance changes due to the onset of diseases like cancer.

Even between species a genome-centric view may help to better understand any

evolutionary origins of genomic hotspots of antigen presentation. These fields would make

use of genome and transcriptome centric AI models that can now be trained from our open

and growing resource.
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Limitations of this study

The biological design of this study permits general claims to be made about neoplasms,

whilst specific biological questions are out of scope. The findings in this paper may not be

applicable for ethnic groups or regions of the world that were not included in the considered

dataset. The mass spectrometry centric dataset limits our finding to the immunopeptidome

fraction that falls into the dynamic range of the current technology. Most studies collected for

analysis were based on immuno-precipitation and W6/32 antibody leading to a potential

sampling bias toward W6/32 hla-types selectivity.

Methods

Dataset selection

Twenty-five studies were selected based on a list of keywords related to immunopeptidomics

(Supplementary Note 1). Low-resolution analyses were eliminated and only MHC related

datasets conducted with at least one of the following instruments Q Exactive, Q Exactive

plus/HF/HFX, LTQ orbitrap velos, LTQ orbitrap elite, Orbitrap Fusion, Orbitrap Fusion Lumos

were kept (Supplementary Table 1). An additional study55 was considered from the

massive.ucsd.edu database as it incorporated 95 HLA-A, -B, -C and -G mono-allelic cell

lines.

Proteomic database generation

A protein database was downloaded using ENSEMBL (RRID:SCR_002344) r94 biomart,

decoy sequences were appended by reversing the target ones and 116 contaminant proteins

were added56.

As peptides with intronic and out-of-frame reading frames have been previously reported17,36,

a pre-mRNA 3 frame translation database (3FTDB) was generated for protein coding genes
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based on ENSEMBL (RRID:SCR_002344) r94 using the AnnotationHub and biostrings R

packages.

Mass spectrometry computational analysis

The proprietary RAW files acquired from the instruments selected were converted to mzML

and mgf format using MSConvert (ProteoWizard version 3.0.19295.c8b8b470d,

RRID:SCR_012056) with the TPP compatibility and peakPicking filter on.

Database search strategies

PTM calling considered a 1% False Localization Rate (FLR) of mass shifts on peptides at

specific amino acids (PTMiner) as well as a global False Discovery rate (FDR) of 1%.

Similarly closed search (for identifying canonical peptides) was restricted to 1% FDR using

Scavager. MSFragger v2.2 search engine was used to conduct the open search analysis

against the ENSEMBL (RRID:SCR_002344) r94 biomart protein database in combination

with PTMiner v1.1.2 to apply a transfer False Discovery Rate (FDR) and a False Localization

Rate of 1% (FLR, the rate of falsely localizing the site of modification). MS-GF+ v2019.04.18

(RRID:SCR_015646) was used for closed search against the protein database in

combination with Scavager to apply an FDR of 1%. Both database search strategies

considered 8 to 25 amino acid peptide lengths, unspecific cleavage and no fixed

Post-Translational Modifications (PTMs).

De novo analysis

DeepNovo (v2)19,20 is a neural network based de novo peptide sequencing model that

integrates Convolutional Neural Networks (CNNs) and Long short-term memory (LSTM)

architectures to extract features from both the spectrum and the language of presented

peptides. DeepNovo has demonstrated improved performance to the state-of-the-art de

novo sequencing algorithms by large margins. The model can be tuned on a restricted
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peptide space to improve performance, and models were trained for each sample using

spectra from closed search analysis. Validation and test sets were also derived from the

closed search results. The trained models were used to perform de novo (predict) on the

remaining unmatched spectra. de novo sequences with at least 90% accuracy were

considered by thresholding the de novo prediction score considering the performance

analysis on the test set.

de novo peptide annotation

de novo peptides coming from canonical human proteins were identified by a BLAT31

alignment against the protein target-decoy database. Sequences perfectly matching any

protein sequence were considered exonic (1 mismatch allowed for isobaric amino acids

Leucine and Isoleucine). All the remaining sequences unexplained by proteins were

considered as potential non-canonical peptides and were aligned against the pre-mRNA 3

frame translation database. Stringently, peptides perfectly matching a 3 frame translation

(3FT) sequence were required to have at least 3 mismatches with any known protein

sequence before being considered non-canonical. Since PSMs can be assigned without

complete sequencing accuracy, requiring a 3 amino acid difference alongside the 90%

accuracy cutoff above, increases confidence that the peptides assigned fall far outside the

standard human reference. Remaining de novo peptides without any canonical or

non-canonical annotation were labeled as ‘unmapped peptides’ and discarded.

Alignment of immunopeptides on the genome

Closed search, open search and de novo exonic spectra were converted to an mzTAB

format and converted to proBAM format57 using an inhouse maintained fork of

proBAMconvert58 to generate a proBAM format. de novo non-canonical spectra were

converted to proBAM using the pysam python (RRID:SCR_001658) package59 according to

the Proteomic Standard Initiative (PSI) specifications.
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Deconvolution of haplotypes

We aimed to characterize the landscape of focal neoantigens across tumors by overlapping

the peptides discovered by our pipelines to the genome, and kept track of sample

haplotypes in order to understand the population penetrance of each region. The compiled

dataset was missing HLA-type information for 32.9% of samples and a further 52.5% were

poly-allelic making complicated our understanding of the immunopeptidomes characterized

and our discussion around focal points of antigen presentation. We focused on comparing

HLA peptide binding motifs at the sample level in order to interpret and compare samples,

and associated samples to haplotypes based on the binding motifs they contained. For each

immunopeptidomics sample, we deconvolved haplotypes based on samples with known

MHC haplotype (Supplementary Fig. S2, Supplementary Note 4).

We developed a method to visualize immunopeptidomics samples and to pool sets of

sequences together representing ‘motifs’ related to the interaction interface between

antigens and HLA molecules (Supplementary Note 4). UMAP projections of the

immunopeptidomes (Supplementary Fig. S2a) revealed clear clusters of peptides in each

sample that were inspected by generating Position Specific Weight Matrices (PSWMs), a

commonly used representation of motifs (patterns) in biological sequences (Supplementary

Fig. S2b). Clusters with at least 1 high and 1 mild conservation site were considered and

labeled as high quality binding motifs. Thus for each sample, we were able to produce a set

of confident ‘motifs’ denoted by a 20Xn vector representation of the PSWMs. In total we

identified 6993 PSWMs across all samples (Supplementary Table 4).

We then developed a strategy to cluster, visualize and compare the motifs identified across

all samples, which we dub the motif-binding landscape. To this end, we characterized the
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motif landscape by tracing similarities between all 6993 PSWMs from different samples

using matalignerv4a to align matrices (Supplementary Fig. S2c). 248 Highly similar HLA

Class I motif clusters were identified and covered 76.7% (5662) PSWMs.

Taking into account that 82.5% of the identified high quality motifs lacked HLA typing

information, we developed a strategy to deconvolute HLA-types based on motif comparison.

Hence, HLA type deconvolution was carried out by comparison against intra-cluster motifs

coming from mono-allelic samples (Supplementary Fig. S2d, Supplementary Note 4). This

imputation strategy increased the labeled motifs fraction to 85% (5943). The remaining 15%

of motifs were either isolated in clusters without any mono allelic origin motif or were not

assigned in clusters (Supplementary Table 4).

Focal regions of antigen presentation

The detection of peptides overlapping a core genomic region (focal region) from patients

with alternative HLA allotypes increases the presentation likelihood of mutations

(neoantigens) in this region. Hence, peptides identified by open search, closed search and

de novo (canonical + non-canonical) were aligned to the genome and pooled. Genomic

immune clusters (GIC) were defined as overlapping peptides with a maximum distance of 24

nucleotides. 3 features per GIC were derived (1) Expression in reads per million (RPM):

(2) population coverage:𝐺𝐼𝐶(𝑖) 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐺𝐼𝐶𝑖 𝑥 106

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

as a percentage of the world population that could be presented by considering at least 1

peptide from the cluster. This was calculated from the HLA types that the peptides in a

specific GIC belong to60 (3) Gene mutational ratio (GMR): overlapping genes of each GIC

were split into tiles of length 9 forming a set with .𝑇 =  {𝑡𝑖𝑙𝑒(1),  …,  𝑡𝑖𝑙𝑒(𝑙)} 𝑙 =  𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
9

COSMIC mutations were counted in each tile then divided by the maximum count in with𝑇
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. MGR(i) was defined as the maximum of t, a𝑡𝑖𝑙𝑒 (𝑛) 𝑟𝑎𝑡𝑖𝑜 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑠𝑚𝑖𝑐 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑖𝑙𝑒 (𝑛)
𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑇)

subset of (t ⊂ T), consisting of tiles overlapping with the genomic immune cluster (i).𝑇

Immune score

The 3 genomic immune cluster features (expression in RPM, population coverage, gene

mutational ratio) were normalized using the powerQuantile method. An immune score was

derived for each genomic immune cluster by multiplying the 3 normalized features producing

an immune score ranging from 0 to 1. A high immune score reflects an increased MHC class

I presentation, coverage of the world population, and relevance in cancer.

Prognostics to immunotherapy response

Patients from 2 melanoma42,61 and 1 small cell lung cancer41 cohort were used to predict a

response to immunotherapy. Genomic mutations from all patients overlapping the genomic

coordinates of the mass spectrometry detected MHC peptides were kept. Neoantigens were

generated by first introducing patient specific mutations to the WT genomic sequence of the

MHC peptides followed by in-silico translation. NetMHCPan 4.0 was used to predict the

binding of the wild type and mutated (neoantigen) immunopeptides using patients’ specific

HLA Alleles. Both weak and strong binders NetMHCpan predictions were kept excluding all

non binders. The Homogenous full AxR fitness model by Łuksza et al.40 was used for

predicting response to immunotherapy. Survival plots and log rank tests were calculated

using lifelines62 to compare the impact of a full in-silico versus mass spectrometry informed

neoantigen framework on predicting response to immunotherapy.

The pipeline architecture and technical details

Considering the complex nature of the immunopeptidomic database searches (unspecific

cleavage) compared to proteomics (mostly tryptic cleavage) we implemented a pipeline with
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scalability in mind. The implementation is under snakemake v5.4.5, a pipeline manager,

offering compatibility with most popular cluster workload managers such as SLURM.

Therefore, a study with multiple patients would still take from 10 to 12 hours to complete on

a cluster thanks to the parallel computations. In addition, the use of Conda, a package

manager, allows the pipeline to automatically create software environments making it easily

reproducible on other machines. For instance, the analysis of the pride dataset PXD004894

(i.e., 25 patients) comprised of 140 raw files took over 12 hours (real time) and around

28892 computational hours (~5000 GPU hours for DeepNovoV2, ~7000 CPU hours for

MS-FG+, ~16800 CPU hours for MSFragger, ~92 CPU hours for Scavager).

Code and data availability

1. The web portal: as an interface for easy neoantigen analysis and GIC analysis

described earlier (www.proteogenomics.ca/codipp).

2. The COD-dipp code: intended for High Performance Computing (HPC) will be made

available as a snakemake pipeline on a git upon peer-review.

3. The full mass spectrometry processed library will be made available on figshare upon

peer-review.

Author Contributions

J.A and G.B. conceived of and initiated the project. J.A and S.K. coordinated and supervised

the project. The first draft of the manuscript was written by G.B, J.A. G.B. collected the

online studies, developed the computational approach and software, processed the data,

made the figures and coordinated the manuscript. J.A and G.B developed the statistical

methodology for the analysis. The manuscript was sent for revision and approval by all

authors. A.L, C.B, F.M.Z, C. P., H.A, A.R, D. J. H, T.R.H, S.S part of the KATY consortium as

well as T.W, M.Par, R.O, P.B and K.L. contributed to the writing of the manuscript. G.B, D.P,

25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.13.475872doi: bioRxiv preprint 

http://www.proteogenomics.ca/codipp
https://doi.org/10.1101/2022.01.13.475872
http://creativecommons.org/licenses/by-nc-nd/4.0/


K.W., A.P, D.R.G, R.F., S.K, J. A. A. The International Centre for Cancer Vaccine Science

contributed both the processing of the data and the writing of the manuscript.

Funding

The APC was funded by the International Centre for Cancer Vaccine Science, University of

Gdansk. C.B. received support from the GRAL LabEX (ANR-10-LABX-49-01) with the frame

of the CBH-EUR-GS (ANR-17-EURE-0003). H.A is supported by the Swedish Cancer

Society (grant 2018/694). C.P is supported by FCT through the LASIGE Research Unit

(UIDB/00408/2020 and UIDP/00408/2020). KATY Consortium is supported by the EU

programme Horizon 2020/H2020-SCI-FA-DTS-2020-1 (contract number 101017453).

Acknowledgments

The International Centre for Cancer Vaccine Science project is carried out within the

International Research Agendas programme of the Foundation for Polish Science

co-financed by the European Union under the European Regional Development Fund.

Authors would also like to thank the CI-TASK, Gdansk and the PL-Grid Infrastructure,

Poland for providing their hardware and software resources.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Saxena, M., van der Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic cancer

vaccines. Nat. Rev. Cancer 21, 360–378 (2021).

2. Liu, X. S. & Mardis, E. R. Applications of Immunogenomics to Cancer. Cell 168, 600–612

(2017).

26

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.13.475872doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.475872
http://creativecommons.org/licenses/by-nc-nd/4.0/


3. Bassani-Sternberg, M. et al. Direct identification of clinically relevant neoepitopes

presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7,

13404 (2016).

4. Newey, A. et al. Immunopeptidomics of colorectal cancer organoids reveals a sparse

HLA class I neoantigen landscape and no increase in neoantigens with interferon or. J.

Immunother. Cancer 7, 309 (2019).

5. Khodadoust, M. S. et al. Antigen presentation profiling reveals recognition of lymphoma

immunoglobulin neoantigens. Nature 543, 723–727 (2017).

6. Ruggles, K. V. et al. An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic

Mutations and Novel Splicing Events in Cancer. Mol. Cell. Proteomics 15, 1060–1071

(2016).

7. Alfaro, J. A. et al. The emerging landscape of single-molecule protein sequencing

technologies. Nat. Methods 18, 604–617 (2021).

8. Jurtz, V. et al. NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions

Integrating Eluted Ligand and Peptide Binding Affinity Data. J. Immunol. 199, 3360–3368

(2017).

9. O’Donnell, T. J., Rubinsteyn, A. & Laserson, U. MHCflurry 2.0: Improved pan-allele

prediction of MHC class I-presented peptides by incorporating antigen processing. Cell

Syst. 11, 42–48 (2020).

10. Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res.

47, D339–D343 (2019).

11. Paul, S. et al. HLA Class I Alleles Are Associated with Peptide-Binding Repertoires of

Different Size, Affinity, and Immunogenicity. J. Immunol. 191, 5831–5839 (2013).

12. Aranha, M. P. et al. Combining Three-Dimensional Modeling with Artificial Intelligence to

Increase Specificity and Precision in Peptide–MHC Binding Predictions. J. Immunol.

205, 1962–1977 (2020).

27

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.13.475872doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.475872
http://creativecommons.org/licenses/by-nc-nd/4.0/


13. Blass, E. & Ott, P. A. Advances in the development of personalized neoantigen-based

therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).

14. Pearlman, A. H. et al. Targeting public neoantigens for cancer immunotherapy. Nat.

Cancer 2, 487–497 (2021).

15. Mordret, E. et al. Systematic Detection of Amino Acid Substitutions in Proteomes

Reveals Mechanistic Basis of Ribosome Errors and Selection for Translation Fidelity.

Mol. Cell (2019).

16. Smith, L. M. et al. Proteoform: a single term describing protein complexity. Nat. Methods

10, 186–187 (2013).

17. Laumont, C. M. et al. Noncoding regions are the main source of targetable

tumor-specific antigens. Sci. Transl. Med. 10, (2018).

18. Kacen, A. et al. Uncovering the modified immunopeptidome reveals insights into

principles of PTM-driven antigenicity. 2021.04.10.438991

https://www.biorxiv.org/content/10.1101/2021.04.10.438991v2 (2021)

doi:10.1101/2021.04.10.438991.

19. Tran, N. H., Zhang, X., Xin, L., Shan, B. & Li, M. De novo peptide sequencing by deep

learning. Proc. Natl. Acad. Sci. 114, 8247 (2017).

20. Qiao, R. et al. DeepNovoV2: Better de novo peptide sequencing with deep learning.

(2019).

21. Minati, R., Perreault, C. & Thibault, P. A Roadmap Toward the Definition of Actionable

Tumor-Specific Antigens. Front. Immunol. 11, 583287 (2020).

22. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019:

improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

23. Wang, M. et al. Assembling the Community-Scale Discoverable Human Proteome. Cell

Syst. 7, 412-421.e5 (2018).

24. Schumacher, F.-R. et al. Building proteomic tool boxes to monitor MHC class I and class

28

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.13.475872doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.475872
http://creativecommons.org/licenses/by-nc-nd/4.0/


II peptides. PROTEOMICS 17, 1600061 (2017).

25. Li, S. & Tang, H. Computational methods in mass spectrometry-based proteomics. in

Translational Biomedical Informatics 63–89 (Springer, 2016).

26. Alfaro, J. A. Detecting Protein Variants within Mass Spectrometry Datasets. (2018).

27. Kim, S. & Pevzner, P. A. MS-GF+ makes progress towards a universal database search

tool for proteomics. Nat Commun 5, (2014).

28. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I.

MSFragger: ultrafast and comprehensive peptide identification in mass

spectrometry–based proteomics. Nat. Methods 14, 513 (2017).

29. Ivanov, M. V., Levitsky, L. I., Bubis, J. A. & Gorshkov, M. V. Scavager: A Versatile

Postsearch Validation Algorithm for Shotgun Proteomics Based on Gradient Boosting.

PROTEOMICS 19, 1800280 (2019).

30. An, Z. et al. PTMiner: Localization and Quality Control of Protein Modifications Detected

in an Open Search and Its Application to Comprehensive Post-translational Modification

Characterization in Human Proteome*. Mol. Cell. Proteomics 18, 391–405 (2019).

31. Kent, W. J. BLAT---The BLAST-Like Alignment Tool. Genome Res. 12, 656–664 (2002).

32. Bassani-Sternberg, M. et al. Deciphering HLA-I motifs across HLA peptidomes improves

neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput.

Biol. 13, e1005725–e1005725 (2017).

33. Koumantou, D. et al. Editing the immunopeptidome of melanoma cells using a potent

inhibitor of endoplasmic reticulum aminopeptidase 1 (ERAP1). Cancer Immunol.

Immunother. 68, 1245–1261 (2019).

34. Creasy, D. M. & Cottrell, J. S. Unimod: Protein modifications for mass spectrometry.

PROTEOMICS 4, 1534–1536 (2004).

35. Smart, A. C. et al. Intron retention is a source of neoepitopes in cancer. Nat. Biotechnol.

36, 1056–1058 (2018).

29

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.13.475872doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.475872
http://creativecommons.org/licenses/by-nc-nd/4.0/


36. Ruiz Cuevas, M. V. et al. Most non-canonical proteins uniquely populate the proteome or

immunopeptidome. Cell Rep. 34, 108815 (2021).

37. Xiang, R. et al. Increased expression of peptides from non-coding genes in cancer

proteomics datasets suggests potential tumor neoantigens. Commun. Biol. 4, 496

(2021).

38. Zhang, S., Hu, H., Jiang, T., Zhang, L. & Zeng, J. TITER: predicting translation initiation

sites by deep learning. Bioinformatics 33, i234–i242 (2017).

39. Lindeboom, R. G. H., Vermeulen, M., Lehner, B. & Supek, F. The impact of

nonsense-mediated mRNA decay on genetic disease, gene editing and cancer

immunotherapy. Nat. Genet. 51, 1645–1651 (2019).

40. Łuksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint

blockade immunotherapy. Nature 551, 517–520 (2017).

41. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in

non–small cell lung cancer. Science 348, 124–128 (2015).

42. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic

melanoma. Science 350, 207–211 (2015).

43. Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers.

Science 350, 1387–1390 (2015).

44. Chudley, L. et al. Harmonisation of short-term in vitro culture for the expansion of

antigen-specific CD8+ T cells with detection by ELISPOT and HLA-multimer staining.

Cancer Immunol. Immunother. 63, 1199–1211 (2014).

45. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the

peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

46. Malekzadeh, P. et al. Neoantigen screening identifies broad TP53 mutant

immunogenicity in patients with epithelial cancers. J. Clin. Invest. 129, 1109–1114

(2019).

30

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.13.475872doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.475872
http://creativecommons.org/licenses/by-nc-nd/4.0/


47. Siepel, A. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast

genomes. Genome Res. 15, 1034–1050 (2005).

48. Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids

Res. 47, D941–D947 (2019).

49. Ojha, R. & Prajapati, V. K. Cognizance of posttranslational modifications in vaccines: A

way to enhanced immunogenicity. J. Cell. Physiol. jcp.30483 (2021)

doi:10.1002/jcp.30483.

50. Trujillo, J. A. et al. The Cellular Redox Environment Alters Antigen Presentation. J. Biol.

Chem. 289, 27979–27991 (2014).

51. Parker, R. et al. Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome

presented by HLA class II on dendritic cells. Cell Rep. 35, 109179 (2021).

52. Sturm, T. et al. Mild Acid Elution and MHC Immunoaffinity Chromatography Reveal

Similar Albeit Not Identical Profiles of the HLA Class I Immunopeptidome. J. Proteome

Res. 20, 289–304 (2021).

53. Starheim, K. K., Gevaert, K. & Arnesen, T. Protein N-terminal acetyltransferases: when

the start matters. Trends Biochem. Sci. 37, 152–161 (2012).

54. Sun, M. et al. Nα-Terminal Acetylation for T Cell Recognition: Molecular Basis of MHC

Class I–Restricted N α -Acetylpeptide Presentation. J. Immunol. 192, 5509–5519 (2014).

55. Abelin, J. G. et al. Mass Spectrometry Profiling of HLA-Associated Peptidomes in

Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity 46, 315–326

(2017).

56. da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for shotgun proteomics data

analysis. Nat. Methods 17, 869–870 (2020).

57. Menschaert, G. et al. The proBAM and proBed standard formats: enabling a seamless

integration of genomics and proteomics data. Genome Biol. 19, 12 (2018).

58. Olexiouk, V. & Menschaert, G. proBAMconvert: A Conversion Tool for proBAM/proBed.

31

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.13.475872doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.475872
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Proteome Res. 16, 2639–2644 (2017).

59. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,

2078–2079 (2009).

60. Bui, H.-H. et al. Predicting population coverage of T-cell epitope-based diagnostics and

vaccines. BMC Bioinformatics 7, 153 (2006).

61. Snyder, A. et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma.

N. Engl. J. Med. 371, 2189–2199 (2014).

62. Davidson-Pilon, C. lifelines: survival analysis in Python. J. Open Source Softw. 4, 1317

(2019).

32

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2022.01.13.475872doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.475872
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures

Figure 1: Included immunopeptidomic datasets. (a) Different types of cancers considered in this
study. (b) Number of cell lines (blue) patient tissues (orange) and patient pools (green) per lesion type
(c) Mass spectrometry instruments considered (instrument name: number of studies) (d) Antibodies
used for Immuno-precipitation (IP) (e) Overall number HLA subtypes per HLA type
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Figure 2: COD-dipp: A new high-throughput pipeline for a deep interrogation of
immunopeptidomic datasets. (a) Three strategies of peptide spectrum assignment were combined:
closed search (for canonical peptides), open search (for PTMs), and de novo (for canonical and
non-canonical peptides). False localization rates for PTMs and False discovery rates for peptide
calling were carefully controlled to 1%. An approach to find non-canonical peptides developed here
uses a denovo sequencing model trained for each sample using the quality controlled
peptide-spectrum matches from closed search. Results were split into 3 groups: training and testing to
account for overfitting and a validation group to approximate the accuracy per sample. Denovo
peptides whose sequence was known with an accuracy of at least 90% were sequentially mapped
against the Human proteome (HP) and a 3 Frame Translation (3FT) database. Since Leucine and
Isoleucine are difficult to discriminate by MS, sequences with at most 1 leucine/isoleucine mismatch to
any known protein were labeled “canonical peptides”. Similarly, peptides mapping to the 3FT
database considered up to 1 leucine/isoleucine mismatch but were also stringently required to be at
least 3 amino acids different from any known protein sequence before being considered
non-canonical. (b) The resulting COD-dipp antigen library contains fields across the central dogma
(genome, transcriptome, proteome). The COD-dipp web application allows for the development of
physically templated neoantigens alongside additional statistics starting from public or patient-specific
mutations to facilitate vaccine design.
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Figure 3: The revealed landscape of canonical, post-translationally modified and
non-canonical peptide antigens. (a) mass spectrometry peptide-spectrum match count per strategy.
(b) Overview of Post-Translational Modifications identified by open search. (blue: spectra without
PTMs, orange: spectra with a known UNIMOD PTM localized on a specific amino acid on the peptide.
Green: The mass-shift is localized but the known PTM options do not fit the residue modified. red:
Otherwise. (c) Top annotated PTMs reported by modification type. (d) Most common partially
annotated (green) or unannotated (red) mass shifts. (e) de novo identified spectra from canonical
(dark gray) and non-canonical (light gray) sources. (f) Similar de novo score distribution of canonical
and non-canonical spectra. (g) The use of target (blue) and decoy (red) frequencies to set a lower
bound on the number of unique amino acids (minimum of 3) in an identified de novo peptide. (h)
Correlation quality between predicted and experimental retention time for closed search and de novo
peptides. (i) Peptides identified from de novo sequencing score similarly with motifs identified in the
study regardless of their canonical or non-canonical origin. (j) Distribution of non-canonical peptides
into 5 categories of their origin. (k) Fraction of intronic peptides explained by the presence of an
upstream start codon and predicted translation initiation sites. (l) Overlap of peptide identifications
between strategies. (m) Fraction of peptides uniquely or multiply mapped to the genome per strategy.
(n) Overlap of proteins identified between strategies. (o) Zoom in on the protein isoforms overlap
between the de novo spectra from canonical and non-canonical sources.
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Figure 4: Recurrent non-canonical peptides in cancer. Heatmap showing the extent of shared
non-canonical peptides (from de novo sequencing) across samples grouped by cancer type.
Recurrent peptides were defined as sequences detected at least 2 times per sample and in at least 10
samples. In total 239 peptides from non-canonical sources passed this threshold. Each vertical row
represents a recurrent non-canonical peptide and the gray to black intensity reflects the log10 spectra
count for each peptide.
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Figure 5: MHC Class I focal regions better predict immunogenicity and show diverse potential
as vaccine targets. (a) Survival analysis of 3 cohorts using the “homogenous” fitness model from
Łuksza et al. Patients are grouped into low fitness (immunotherapy responders) and high fitness
(non-responders). Top row shows patient survival using only in-silico neoantigen prediction. Mutations
in physically detected regions better predict overall survival (bottom row). (b) The majority of
neoantigens (orange) lie in focal regions (blue) in low and high fitness groups. (c) a 7.8 fold
enrichment in T-Cell reactivity within GICs versus outside GICs when using a combination of 1374
epitopes43–45. (d) The 140,966 focal regions of antigen presentation (Genomic immune clusters; GIC)
differ in terms of antigen expression, mutational frequency in cancer (gene mutational ratio) and
population coverage. As an example, focal regions in TP53 (black dots) have different properties in
different regions. The 4 surrounding panels show the shared antigen presentation motif landscape
across 486 samples (projected by UMAP). Each focal region presents peptides arising from different
binding motifs and are therefore associated with different MHC-haplotypes so the breadth of coverage
in motif space relates to population coverage of the immune-visible genomic region (methods) (e)
Genomic coordinates for TP53 (on the left) highlighting immune clusters are according to the immune
scores (IC) along with a zoom-in (right).
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Figure 6: The tractability of building multi-epitope vaccines based on focal regions of antigen
presentation. (a) Genomic immune cluster (GIC) analysis by intersecting focal regions (GICs) with
cancer mutations from COSMIC database in a pan cancer (cf. panel b) and cancer specific fashion
(cf. panels c and d). (b) Global analysis of the focal public neoantigen penetrance (proportion of
people with a specific mutation in COSMIC) in all cancer types. Top bar plot shows the immune
visibility scores for the 30 most recurrent aberrations in COSMIC. Bottom bar plot shows a cumulative
penetrance calculated from the proportion of patients covered with each added mutation. (c) An
example of a cancer with low vaccine potential (LHS: haematopoietic neoplasm) compared with one
with high vaccine potential (RHS: colon carcinoma). A high vaccine potential is reflected by a high
penetrance of immune-visible and low penetrance of immune hidden recurrent mutations. (d) Scope
of vaccine potential across malignant, pre-malignant, and benign lesions. On the left, Immune-visible
versus immune hidden mutational penetrance along with a relative score of vaccine potential on the
right for each of visualized tumors found in COSMIC. Each cancer type was defined by the primary
site and primary histology of the tissue.
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