
1 
 

 

Non-Coding Genetic Analysis Implicates Interleukin 18 Receptor Accessory Protein 

3′UTR in Amyotrophic Lateral Sclerosis 

 

Authors:  

Chen Eitan1*, Aviad Siany1*, Elad Barkan2, Tsviya Olender1, Kristel R. van Eijk3, Matthieu Moisse4,5, Sali M. K. 

Farhan6,7, Yehuda M. Danino1, Eran Yanowski1, Hagai Marmor-Kollet1, Natalia Rivkin1, Nancy Yacovzada1,2, Shu-

Ting Hung8-10, Johnathan Cooper-Knock11, Chien-Hsiung Yu12,13, Cynthia Louis12,13, Seth L. Masters12,13, Kevin P. 

Kenna3, Rick A. A. van der Spek3, William Sproviero14, Ahmad Al Khleifat14, Alfredo Iacoangeli14, Aleksey Shatunov14, 

Ashley R. Jones14, Yael Elbaz-Alon1, Yahel Cohen1, Elik Chapnik1, Daphna Rothschild2,15,16, Omer Weissbrod2, Gilad 

Beck17, Elena Ainbinder17, Shifra Ben-Dor17, Sebastian Werneburg18, Dorothy P. Schafer18, Robert H. Brown Jr19, 

Pamela J. Shaw11, Philip Van Damme4,5,20, Leonard H. van den Berg3, Hemali P. Phatnani21, Eran Segal2, Justin K. 

Ichida8-10, Ammar Al-Chalabi14,22, Jan H. Veldink3, Project MinE ALS Sequencing Consortium23, NYGC ALS 

Consortium23 and Eran Hornstein1# 

Affiliations: 

1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel. 

2Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot 7610001, Israel. 

3Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, 3584 CG, 

The Netherlands. 

4KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, B-3000 Leuven, 

Belgium. 

5VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium. 

6Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and 

Harvard Medical School, Boston, MA 02114, USA. 

7Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. 

8Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern 

California, Los Angeles, CA 90033, USA.  

9Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 

90033, USA.  

10Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 

90033, USA. 

11Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK. 

12Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 18, 2022. ; https://doi.org/10.1101/2021.06.03.446863doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446863


2 
 

13Department of Medical Biology, University of Melbourne, Parkville 3010, Australia. 

14King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & 

Neuroscience, De Crespigny Park, London, SE5 8AF, United Kingdom. 

15Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA 
16Department of Genetics, Stanford University, Stanford, CA 94305, USA 

17Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel. 

18Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan 

Medical School, Worcester, MA 01605, USA. 

19Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA. 

20University Hospitals Leuven, Department of Neurology, Leuven, Belgium. 

21Center for Genomics of Neurodegenerative Disease, New York Genome Center. 

22King's College Hospital, Denmark Hill, London, SE5 9RS, United Kingdom. 

23A list of Consortiums PIs and affiliations appears in the Supplementary Information.  

*These authors contributed equally to this work 

#Corresponding author. Tel: +972 89346215; Fax: +972 89342108; E-mail: Eran.hornstein@weizmann.ac.il  

  

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 18, 2022. ; https://doi.org/10.1101/2021.06.03.446863doi: bioRxiv preprint 

mailto:Eran.hornstein@weizmann.ac.il
https://doi.org/10.1101/2021.06.03.446863


3 
 

Abstract:  

The non-coding genome is substantially larger than the protein-coding genome but is largely unexplored by 

genetic association studies. Here, we performed region-based burden analysis of >25,000 variants in untranslated 

regions of 6,139 amyotrophic lateral sclerosis (ALS) whole-genomes and 70,403 non-ALS controls. We identified 

Interleukin-18 Receptor Accessory Protein (IL18RAP) 3′UTR variants significantly enriched in non-ALS genomes, 

replicated in an independent cohort, and associated with a five-fold reduced risk of developing ALS. Variant 

IL18RAP 3′UTR reduces mRNA stability and the binding of RNA-binding proteins. Variant IL18RAP 3′UTR further 

dampens neurotoxicity of human iPSC-derived C9orf72-ALS microglia that depends on NF-κB signaling. Therefore, 

the variant IL18RAP 3′UTR provides survival advantage for motor neurons co-cultured with C9-ALS microglia. The 

study reveals direct genetic evidence and therapeutic targets for neuro-inflammation, and emphasizes the 

importance of non-coding genetic association studies. 
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One Sentence Summary: Non-coding genetic variants in IL-18 receptor 3’UTR decrease ALS risk by modifying IL-

18-NF-κB signaling in microglia.  
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[Main Text:] 1 

Introduction 2 

Genomic sequencing technologies facilitate the identification of variants in open reading frames (ORFs). Although 3 

allelic variants in non-coding regions are expected to be numerous 1, 2 they are largely overlooked. 4 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative syndrome, primarily affecting the human motor 5 

neuron system with a strong genetic predisposing component 3, 4. Thus far, mutations in approximately 25 protein-6 

coding genes have been associated with ALS 3, 5-7. Hexanucleotide repeat expansion in an intronic sequence of the 7 

C9orf72 gene is the most common genetic cause of ALS 8-10 and enrichment of variants was recently discovered in 8 

the CAV1 enhancer 11. However, non-coding nucleotide variants in ALS have yet to be systematically explored. 9 

Burden analysis is a genetics approach that is based on the rationale that different rare variants in the same gene 10 

may have a cumulative contribution 12. Therefore, burden analysis allows the identification of genes containing an 11 

excess of rare and presumably functional variation in cases relative to controls. Although de novo mutations in 12 

non-coding regions were recently shown in family-based autism studies 13, variants in non-coding regions are not 13 

routinely included in rare-variant burden association studies. The application of burden analysis to non-coding 14 

regulatory variation is constrained by the availability of whole-genome sequencing (WGS) data, and the ability to 15 

recognize functional variants in non-coding regulatory regions, which is currently far less effective than for 16 

protein-coding genes. 17 

MicroRNAs (miRNAs) are endogenous posttranscriptional repressors that silence mRNA expression through 18 

sequence complementarity. miRNA primarily act on 3′ untranslated regions (3′UTRs) 14, which are non-coding 19 

parts of messenger RNAs (mRNAs) and often regulate degradation and translation 15. miRNA dysregulation has 20 

been implicated in ALS pathogenesis, and ALS-associated RNA-binding proteins, TARDBP/TDP-43 and FUS, 21 

regulate miRNA biogenesis 16-27.  22 

Microglia are the resident immune cells of the central nervous system and are the primary mediators of 23 

neuroinflammation in neurodegeneration 28, 29. In ALS, microglia induce motor neuron death via the classical 24 

nuclear factor-κappa B (NF-κB) pathway 29-35. One suggested mechanism for microglia-induced cytotoxicity is 25 

based on detection of extracellular TDP-43 aggregates and triggering of IL-1beta and Interleukin 18 (IL-18; also 26 

known as: IGIF/IL1F4/IL-1g) signaling 31. Accordingly, IL-18 levels are elevated in ALS patient tissues and biofluids 27 

36-39, supporting a role for IL-18 signaling in the disease’s neuroinflammatory milieu 40. IL-18 also induces NF-κB 28 

signaling by binding and dimerising the two IL-18 receptor subunits, IL18RAP (also known as: AcPL/CD218b/IL-29 
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18R-Beta) and IL18R1 31, 40-48. In turn, NF-κB contributes to microglial inflammation 49, 50, microglial-mediated motor 30 

neuron death 51 and to disease progression 52, 53. 31 

Here, we identified rare variants in miRNAs and 3′UTR of mRNAs, and performed collapsed genetic analysis 54 to 32 

test if these regulatory RNAs are associated with ALS. We discovered an enrichment of rare variants in the IL18RAP 33 

3′UTR and provide experimental evidence for their relevance to human ALS. Therefore, non-coding variant 34 

analysis reveals a genetic and mechanistic link for the IL-18 pathway in ALS and encourages systematic exploration 35 

of non-coding regions to uncover genetic mechanisms of disease.   36 
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Results 37 

To test whether genetic variations in non-coding regulatory regions are associated with ALS, we analyzed regions 38 

of interest in WGS data from the Project MinE ALS sequencing consortium 55 (Supplementary Fig. 1A,B and 39 

Supplementary Tables 1,2). The discovery cohort consisted of 3,955 ALS patients and 1,819 age- and sex-matched 40 

controls, for a total of 5,774 whole-genomes from the Netherlands, Belgium, Ireland, Spain, United Kingdom, 41 

United States, and Turkey (Project MinE Datafreeze 1). We performed a region-based burden test, in which rare 42 

genetic variants with minor allele frequencies (MAF) ≤0.01 are binned together, to weight their contribution to 43 

disease, in 295 non-coding 3′UTRs of candidate genes, linked to sporadic ALS via GWAS 56 or genes encoding RNA-44 

binding proteins (Supplementary Table 3). In addition we tested all autosomal human-pre-miRNA genes (1,750 45 

pre-miRNAs; miRBase v20 57).  46 

As a positive control, we also performed an association analysis of rare variants in the open reading frames of 47 

these 295 genes. For the proteins, we called variants that are predicted to cause frameshifting, alternative splicing, 48 

an abnormal stop codon, or a deleterious non-synonymous amino acid substitution that were detected in ≥ 3 of 7 49 

independent dbNSFP prediction algorithms 58 (Fig. 1A and Supplementary Table 3). In total, 30,721 rare qualifying 50 

variants were identified (Supplementary Table 4). Optimized Sequence Kernel Association Test (SKAT-O) 59 51 

identified a significant excess of deleterious minor alleles in the ALS genes NEK1 (127 cases; 19 controls [3.21%; 52 

1.04%]: P = 8x10-7; P corrected= 2.3x10-4), comparable with a reported prevalence of 3% 60, and in SOD1 (36 cases 53 

[0.91%]; 0 controls: P = 2.6x10-4; P corrected = 3.73x10-2) 61, which is below the reported 2% prevalence 5, 62 (Fig. 1B, 54 

Supplementary Fig. 2A and Supplementary Table 5). Other known ALS genes did not reach statistical significance 55 

(Supplementary Table 3), consistent with reported statistical power limitations of Project MinE WGS data in 56 

assessing the burden of rare variants 63. Our analysis did not consider the C9orf72 hexanucleotide (GGGGCC) 57 

repeat expansion region.  58 

The burden of rare variants did not identify a disease association for any of the autosomal pre-miRNAs in the 59 

human genome, nor for any of the predicted genetic networks based on variants aggregated over specific mature 60 

miRNAs and their cognate downstream 3’UTR targets. This may be because the small size of miRNA genes makes 61 

genetic aggregation studies particularly challenging (Supplementary Fig. 2B,C).  62 

When we tested the burden of variants in 3′UTRs, the strongest association found was for the 3′UTR of IL18RAP 63 

(Fig. 1B, Supplementary Fig. 2D and Supplementary Table 5). This association was higher than expected at random 64 

(P = 1.93x10-5, P corrected =5.41x10-3) and from the association gained for all protein-coding ALS genes in this cohort, 65 
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with the exception of NEK1. Notably, the signal was more prevalent in controls [12/1819, 0.66%] relative to ALS 66 

patients [6/3955, 0.15%], indicating that these variants might act as protective variants against ALS.  67 

IL18RAP 3′UTR also ranked as the top hit by three other algorithms – the Sequence Kernel Association Test (SKAT, 68 

P = 1.77x10-5; permutated P-value < 10-4), the Combined Multivariate and Collapsing (CMC, P = 8.78x10-4) or 69 

Variable Threshold (VT) with permutation analysis (permutated P-value = 1.75x10-3, suggesting that the 70 

association does not depend on a particular statistical genetics method (Supplementary Fig. 3A-C). Furthermore, 71 

when we tested the burden of variants in miRNA recognition elements (MREs) in 3’UTRs (variants that are 72 

potentially either abrogating conserved miRNA binding sites or creating new miRNA binding sites in 3’UTRs), the 73 

strongest association was also gained for the 3’UTR of IL18RAP (SKAT-O P-value = 3.42x10-5, Supplementary Fig. 74 

3D, see Methods). A diagram of variants in IL18RAP 3’UTR is presented in Supplementary Fig. 3E and a description 75 

of IL18RAP 3′UTR variants in Supplementary Table 6. The top 10 principal components (PCs) of common variant-76 

based ancestry information and sex were included as covariates in the SKAT-O, SKAT, CMC, and VT analyses. 77 

In addition, genome-wide analysis of all known human 3’UTRs (16,809 3’UTRs from RefSeq 64) identified IL18RAP 78 

3’UTR as the most significant 3’UTR associated with ALS in the Project MinE cohort (Fig. 1C). 79 

Finally, we tested if different functional genetic classes were enriched overall for ALS risk/protection variants by 80 

testing the burden of rare variants in all genes pooled together. SKAT-O signal for open reading frames of 295 81 

proteins, the 3’UTR of the same 295 genes, all autosomal pre-miRNA genes [miRBase v20; 57] or networks 82 

composed of all miRNA genes and their cognate set of downstream targets (TargetScan) were all not significant 83 

(P-values of 0.024, 0.59, 0.08, 0.58, respectively). Therefore, results from these burden tests do not implicate any 84 

of the functional class of genomic elements in ALS risk. 85 

Because the number of ALS genomes was ~2.17-fold larger than the number of controls, the data depict a 4.35-86 

fold enrichment in the abundance of variants in controls over cases. IL18RAP 3′UTR potentially-protective variants 87 

reduced the disease odds ratio by five-fold (OR = 0.23; Fig. 2A), and was consistent across independent population 88 

strata (Fig. 2B), whereas NEK1 and SOD1 increased the disease odds ratio (OR = 3.14, 33.89, respectively; Fig. 2A). 89 

To determine if the rare IL18RAP 3′UTR variants are depleted in another ALS cohort, we performed independent 90 

replication studies. Similar results for rare IL18RAP 3’UTR variants were reproduced in the New York Genome 91 

Center (NYGC) ALS Consortium cohort (2,184 ALS genomes), which was studied against: (i) 263 non-neurological 92 

controls from the NYGC; (ii) 62,784 non-ALS genomes from NHLBI's Trans-Omics for Precision Medicine (TOPMed); 93 

and (iii) 5,537 non-ALS genomes from gnomAD. This replication effort yielded a joint analysis P-value = 9.58x10-4 94 

(χ2 with Yate’s correction; OR=0.32; 95% CI: 0.16 – 0.64; Fig. 2C and Supplementary Table 7). Combining this 95 
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cohort with our discovery cohort from Project MinE, yielded a superior joint P-value < 1.00x10-5 (χ2 with Yate’s 96 

correction; OR=0.20; 95% CI: 0.12 – 0.34; Fig. 2C). A meta-analysis of Project MinE datafreeze 1 and 2 7, which 97 

consisted of 5,185 ALS patients and 2,262 age- and sex-matched controls, reproduced the initial signal (P-value = 98 

7.6x10-4). 99 

Together, IL18RAP 3’UTR sequence variants are associated with a lower risk of suffering from ALS, which is 100 

approximately one-fifth of the general population, although it did not reach conventional exome-wide multiplicity-101 

adjusted significance threshold (α ≈2.6x10-6 , ref. 12) in our study. 102 

To investigate the source of the signal in the IL18RAP 3′UTR in a posthoc analysis, we divided the 11 variant 103 

nucleotides into two synthetic sets, of either nine singleton variants (9 variants / 3 controls / 6 patients) or two 104 

variants that were identified solely in controls (2 variants / 9 controls / 0 patients). While the signal of the nine 105 

singleton variants was not statistically significant, analysis of the two control variants, which were identified in 106 

multiple samples, derived an improved significance compared to the original signal (SKAT-O P-value = 4.36x10-6). 107 

Thus, these two rare variants (V1, Chr2:103068691 C>T; V3, Chr2:103068718 G>A) are likely central in generating 108 

the genetic association signal in IL18RAP 3′UTR. 109 

Because of the enrichment of V1 and V3 at the proximal (5’) side of the IL18RAP 3’UTR, we tested if restricting 110 

burden analysis to the 5’ end of the 3’UTR, might boost the association signal. However, the P-values gained from 111 

the 3’UTRs proximal quadrant were comparable to that of the full 3’UTRs in the cohort of 295 3’UTRs (Wilcoxon 112 

matched-pairs P-value > 0.05, Cohen's d effect size = 0.1, Supplementary Fig. 4A,B), suggesting that the apparent 113 

spatial distribution of variants in the case of IL18RAP 3’UTR is a particular case rather than part of a global pattern.  114 

To determine the functional impact of the IL18RAP 3’UTR variants we analyzed IL18RAP expression in 115 

lymphoblastoid cell lines (LCLs) from the UK MNDA DNA Bank 65 that were derived from twelve different 116 

individuals: 4 healthy individuals (without ALS), carrying the canonical IL18RAP 3’UTR sequence (Control; 117 

Canonical IL18RAP 3’UTR); 4 sporadic ALS patients, carrying the canonical IL18RAP 3’UTR sequence (sALS; 118 

Canonical IL18RAP 3’UTR); two healthy individuals, carrying a variant form of IL18RAP 3’UTR (Control; 119 

VariantIL18RAP 3’UTR) and two sporadic ALS patients carrying a variant form of IL18RAP 3’UTR (sALS; 120 

VariantIL18RAP 3’UTR; see Supplementary Table 8 for list of variants). 121 

ALS-derived LCLs carrying the canonical IL18RAP 3’UTR sequence expressed higher levels of IL18RAP (Fig. 3A,B). 122 

In addition, LCLs from both healthy and ALS individuals harboring the IL18RAP 3’UTR variant significantly down-123 

regulated IL18RAP mRNA and protein expression (Fig. 3A,B and Data File S1). Phosphorylation of the nuclear factor 124 

kappa-light-chain-enhancer of activated B cells (p-NF-κB), an established intracellular effector downstream of IL-125 
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18 signaling, was similarly higher in the ALS LCLs with canonical IL18RAP 3’UTR and also significantly reduced in 126 

control and ALS LCLs harboring IL18RAP variants (Fig. 3C,D and Data File S1). Consistent results were obtained 127 

with C9orf72 hexanucleotide expansion ALS LCLs (Supplementary Fig. 5 and Data File S2). Accordingly, variants of 128 

IL18RAP 3’UTR reduced NF-κB activity, relative to the canonical 3’UTR in an NF-κB reporter assay in U2OS cells 129 

(Supplementary Fig. 6). Therefore, variant forms of IL18RAP 3’UTR correlate with reduced expression of the 130 

endogenous IL18RAP and reduced NF-κB signaling.  131 

To further establish the functional relevance of the IL18RAP 3’UTR variants, we edited the genome of human-132 

induced pluripotent cells (iPSCs) donated by ALS patients with C9orf72 repeat expansion (66 NINDS/Coriell Code: 133 

ND10689, ND12099, see Supplementary Table 8) to include two point mutations that recapitulate the most 134 

prevalent variants (Chr2:103068691 C>T (V1) and Chr2:103068718 G>A (V3)) in the IL18RAP 3’UTR sequence (Fig. 135 

4A). The resulting isogenic pair lines all carry C9orf72 repeat expansion and vary by only the presence of the 136 

canonical or a variant IL18RAP 3’UTR.  137 

We explored the receptive cell type involved in IL-18 receptor signaling by profiling dissociated mouse brain cells, 138 

namely, neurons, microglia, and astrocytes. Fluorescence cytometric gating on CD11b+ and CD45+ and IL18RAP 139 

(CD218b) revealed that IL18RAP is mainly expressed on microglia cells (Supplementary Fig. 7A-C). Although IL-18 140 

and IL18RAP expression increases in ALS motor neurons (Supplementary Fig. 8A-C), our observations are 141 

consistent with the accepted notion that the role of IL-18 and other cytokines in disease heavily rests on a chronic 142 

inflammatory state established particularly by microglia 67.  143 

Therefore, we next differentiated the isogenic IL18RAP 3’UTR lines into human microglia following the protocol 144 

of Haenseler et al. 68 (Fig. 4A). iPSC-derived microglia differentiation was validated by immunofluorescence 145 

staining of the microglial-specific marker, TMEM119 (Supplementary Fig. 9). In differentiated human microglia, 146 

we detected a ~5-6 fold downregulation in the levels of the variant IL18RAP protein, as well as in the levels of the 147 

IL18RAP mRNA, relative to the canonical sequence of the isogenic line (Fig. 4B,C and Data File S3). Therefore, the 148 

variants at the 3’UTR regulate IL18RAP mRNA and protein expression and provide a conceivable explanation for 149 

the variant function in human C9-ALS microglia. Next, we investigated the molecular mechanism that controls the 150 

IL18RAP mRNA levels by performing an mRNA stability assay in human microglia. We measured an mRNA 151 

degradation rate that is twice as fast with the rare 3’UTR variants, relative to the canonical sequence, after 152 

inhibition of mRNA transcription by actinomycin D (Fig. 4D). Thus, the mechanism for reduced IL18RAP mRNA 153 

levels is associated with destabilization of IL18RAP mRNA via variants in the 3’UTR.  154 
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We sought the potential trans-acting factors that might differentially bind to the canonical and variant 3’UTRs. To 155 

this end, we performed RNA-pulldown assays and mass spectrometry on in vitro transcribed canonical and variant 156 

forms of the IL18RAP 3’UTRs, V1 and V3 (Fig. 5A diagram of exp. design). Mass spectrometry after pull-down 157 

identified 552 proteins with good confidence (passed all QC filters, found in 50% of the repeats in at least one 158 

experimental group, and were represented by at least 2 unique peptides, Supplementary Table 9), that were 159 

enriched in comparison to the negative control. Principal component analysis demonstrated a clear separation of 160 

proteomes bound by the canonical and variant IL18RAP 3’UTRs (Fig. 5B and Supplementary Table 9). Gene set 161 

enrichment analysis (GSEA) revealed a reduction in the association of double-stranded RNA (dsRNA) binding 162 

proteins, to V1 IL18RAP 3’UTR, relative to the canonical 3’UTR (ELAVL1/Hur; PRKRA, EIF2AK2/PKR; ADAR; ADARB1; 163 

ILF2; ILF3; DHX9; DHX58; DDX58, Fig. 5C,D,E and Supplementary Table 10). These dsRNA binding proteins were 164 

reported in other contexts to play roles in controlling the stability of mRNA 69-75, consistent with the observed 165 

changes to IL18RAP mRNA stability. A similar analysis of the V3 variant was unproductive (Supplementary Fig. 166 

10A). 167 

In accordance, RNA Fold analysis predicted that the canonical 3’UTR sequence consists of a more stable dsRNA 168 

structure than the V1 variant sequence (minimum free energy (MFE) of canonical and variant IL18RAP 3’UTR, -169 

39.9 kcal/mol and -27.8 kcal/mol, respectively) (Fig. 5F and Supplementary Fig. 10B). In light of these results, we 170 

propose that variant-dependent changes to the secondary structure of IL18RAP 3’UTR attenuate the binding of 171 

one or more of the dsRNA proteins and may be involved in controlling the stability of IL18RAP mRNA.  172 

To study the potential protective impact of IL18RAP 3’UTR mutations, we performed survival analyses in a 173 

coculture system of human iPSC-derived isogenic IL18RAP 3’UTR microglia (on a C9orf72 repeat expansion 174 

background) with human iPSC-derived lower motor neurons (i3LMNs; healthy, non-ALS, 76). Time-lapse microscopy 175 

was used to quantify motor neuron survival after microglia activation with a cocktail of LPS and the cytokine IL-18 176 

(experimental design, Fig. 6A). Motor neuron survival was significantly improved in the presence of microglia 177 

harboring the IL18RAP 3’UTR variants relative to microglia harboring the canonical IL18RAP 3’UTR (two 178 

independent isogenic pairs, based on independent patient C9orf72 lines, n=3 independent differentiation 179 

procedures from different passages per line, with 3-8 co-culture wells per passage; Fig. 6B-D, Supplementary 180 

movie and Data File S4). Based on these studies, we conclude that rare variants of IL18RAP 3’UTR increase C9orf72 181 

microglia-dependent motor neuron survival and hence convey a protective property. 182 

To determine whether the mutant IL18RAP 3’UTR is also protective in human patients with ALS, we tested the 183 

association between age of diagnosis and age of death in ALS patients harboring canonical or variants of the 184 

IL18RAP 3’UTR. Of 4216 patients for whom data on the age of diagnosis was available (Project MinE and NYGC 185 
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cohorts), 8 harbored IL18RAP 3’UTR variants. Of 4263 patients for whom the age of death was available, 9 186 

harbored IL18RAP 3’UTR variants. IL18RAP 3’UTR variants are expected to be depleted in ALS genomes, 187 

nonetheless, in those extremely rare patients harboring IL18RAP 3’UTR variants, these were associated with an 188 

older age of death and an older age of diagnosis. On average, the age of death was higher by 6.1 years after the 189 

average for patients with canonical Il18RAP 3’UTR (Permutation P-value = 0.02, Cohen's d effect size = 0.65; Fig. 190 

6E and Supplementary Table 11), and the age of diagnosis was higher by 6.2 years after the average for patients 191 

with canonical IL18RAP 3’UTR (Permutation P-value = 0.05, Cohen's d effect size = 0.62; Fig.6F and Supplementary 192 

Table 11). Thus, variants in IL18RAP 3’UTR are protective against ALS in a tissue culture model and correlate with 193 

survival advantage for patients suffering from the disease. 194 

To study the role of NF-κB signaling in our system, we analyzed NF-κB phosphorylation and the impact on the 195 

transcriptome after microglia activation (Fig. 7A). Western blot analysis revealed reduced levels of phospho-NF-196 

κB in variant IL18RAP 3’UTR relative to isogenic control (Fig. 7B and Data File S5). Reduced phosphorylation is 197 

associated with decreased nuclear localization and transcriptional activity of NF-κB 77-80. In parallel, we conducted 198 

a next-generation sequencing study (Supplementary Table 12, Gene Expression Omnibus accession number: 199 

GSE186757) of the differentially expressed transcriptomes in microglia harboring variant vs. canonical IL18RAP 200 

3’UTR. Over-representation analysis (ORA) of differentially expressed genes (DEGs) revealed downregulation of 201 

the NF-κB signaling pathway in microglia harboring the variant IL18RAP 3’UTR (KEGG Pathway enrichment results: 202 

Ratio = 3.77, FDR P-value = 7.34x10-6; Gene Ontology Biological Process enrichment results: Ratio = 3.48, FDR P-203 

value = 3.70x10-12, Fig. 7C,D and Supplementary Table 13). In addition, an unsupervised study of NF-κB pathway 204 

mRNAs (GO:0007249) demonstrated broad downregulation of pathway-associated mRNAs in microglia with the 205 

variant IL18RAP 3’UTR, relative to the isogenic control (Fig. 7E). Therefore, microglia’s NF-κB transcriptomic 206 

signature depends on signaling via the IL-18 receptor and is attenuated by protective IL18RAP 3’UTR variants.  207 

To test a plausible neurotoxic role for NF-κB downstream of the IL-18 receptor in this system, we next performed 208 

a co-culture survival assay with or without IKK16, a selective IκB kinase (IKK) inhibitor that inhibits NF-κB signaling 209 

81. In human microglia with the canonical IL18RAP 3’UTR, IKK16 significantly ameliorated motor neuron toxicity, 210 

relative to control (carrier alone, Fig. 7F). However, in human microglia with the protective variant IL18RAP 3’UTR, 211 

inhibition of NF-κB had no effect (two independent isogenic pairs, based on independent patient C9orf72 lines 212 

with 3-8 co-culture wells per line, Fig. 7F). This suggests that NF-κB neurotoxic function resides epistatically 213 

downstream of IL18RAP in human microglia. Together, rare variants in IL18RAP 3’UTR diminish NF-κB signaling, 214 

thus increasing C9orf72 microglia-dependent motor neuron survival.  215 

 216 
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Discussion 217 

Data from the Project MinE and NYGC ALS consortia provide unprecedented opportunities for investigating the 218 

role of the non-coding genome in ALS. By performing rare variant aggregation analysis in regulatory non-coding 219 

regions, we demonstrate that variants in the 3′UTR of IL18RAP are enriched in non-ALS genomes, indicating that 220 

these are relatively depleted in ALS. IL18RAP 3′UTR variants reduced the chance of developing ALS five-fold, and 221 

delayed onset and therefore age of death in people with ALS.  222 

These protective variants recall other protective variants that have been reported in the past in protein-coding 223 

regions in Alzheimer’s disease 82-85 and implicated in ALS as well 86, 87. In addition, deleterious variants were 224 

suggested in VEGF promoter/5’UTR and within CAV1/CAV2 enhancers 11, 88. However, the 3′UTR of IL18RAP is a 225 

protective non-coding allele associated with a neurodegenerative disease.  226 

 227 

Elevated levels of the cytokine IL-18 were reported in tissues and biofluids of ALS patients 36-38. Accordingly, we 228 

reveal the upregulation of endogenous IL18RAP in sporadic and C9orf72 lymphoblastoid cells. In addition, we 229 

demonstrate the downregulation of IL18RAP expression in lymphoblastoid cells harboring variant versions of the 230 

IL18RAP 3’UTR. 231 

 232 

We elucidated the regulatory changes affected by the IL18RAP 3′UTR variants by showing destabilization of the 233 

IL18RAP mRNA and downregulation of IL18RAP mRNA levels. Sequence analysis suggests that at least one variant 234 

(V1) potentially reduced the propensity of the 3’UTR to form a double-stranded secondary structure. Accordingly, 235 

unbiased proteomics demonstrated that the 3’UTR harboring the variant fails to bind dsRNA binding proteins that 236 

are known to stabilize mRNAs. Together, this supports a mechanism for reduced IL18RAP signaling involving 237 

changes to mRNA stability and differential binding of stabilizing RNA-binding proteins. 238 

 239 

Neuro-inflammation is prevalent in neurodegeneration, including in ALS 89, and is often characterized by the 240 

activation of microglia 29-35. The cytokine, IL-18, is part of this neuro-inflammatory milieu, promoting receptor 241 

subunit (IL18RAP, IL18R1) dimerization on the membrane of cells 40, and activating intracellular signaling cascades, 242 

including NF-κB.  243 

 244 

By CRISPR editing of two independent C9orf72 lines, from one female and one male patient, we created isogonic 245 

IL18RAP 3’UTR cell lines (canonical or harboring V1 and V3 variants), at the endogenous gene locus. By 246 

differentiating these lines to human microglia, we demonstrated that variants downregulated IL18RAP mRNA and 247 
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protein expression. In addition, tracking of human (wild-type) motor neuron survival, in co-culture with microglia, 248 

over 21 days, demonstrated the neuroprotective effect of microglia carrying the variant IL18RAP 3’UTR.  249 

 250 

Finally, we demonstrate that variant IL18RAP 3’UTR attenuates NF-κB signaling in lymphoblastoid cells and in 251 

microglia. Unbiased next-generation sequencing of microglia RNA demonstrated broad transcriptomic changes, 252 

typical of reduced NF-κB signaling. In addition, inhibition of NF-κB was able to ameliorate motor neuron death 253 

when co-cultured with microglia harboring the canonical IL18RAP 3’UTR. However, inhibition of NF-κB was not 254 

further protective if microglia with variant IL18RAP 3’UTR were present, suggesting an epistatic relationship, 255 

whereby IL18RAP is upstream of NF-κB in this system. We conclude that IL18RAP acts in microglia and controls 256 

the cytotoxicity conveyed to motor neurons, at least in human C9orf72 types of disease. 257 

 258 

The discovery of functional, disease-modifying IL18RAP 3’UTR variants underscores the need to explore the role 259 

of additional non-coding genomic regions in ALS. One limitation of our study is that IL18RAP 3’UTR signal did not 260 

reach the conventional exome-wide multiplicity-adjusted significance threshold (α ≈2.6x10-6 , ref. 12). However, 261 

IL18RAP 3’UTR signal is comparable to that of protein-coding ALS-causing genes, such as SOD1 and NEK1. 262 

Furthermore, the key findings were reproduced in a genome-wide study of all human 3’UTRs and in an 263 

independent replication study. Limitations in the statistical power might have prevented the discovery of other 264 

non-coding variants and may be overcome with larger ALS and control cohorts, which are not currently available. 265 

Additionally, we have focused our tissue culture studies on human C9orf72 microglia. Therefore, the involvement 266 

of IL18RAP 3’UTR in other ALS-associated genetic backgrounds remains to be experimentally explored, as is the 267 

relevance to other neurodegenerative diseases. Finally, the mechanism underlying IL18RAP dose sensitivity is not 268 

fully understood. While we provide evidence that variant IL18RAP 3’UTR endows neuroprotection via dampening 269 

of microglia-dependent neurotoxicity, additional studies should explore the degree to which other cell types, such 270 

as motor neurons and astroglia, are involved. 271 

  272 

In summary, we have identified the IL18RAP 3′UTR as a non-coding genetic disease modifier by burden analysis of 273 

WGS data using ALS case-control cohorts. We show that IL-18 signaling modifies ALS susceptibility and 274 

progression, delineating a neuro-protective pathway and identifying potential therapeutic targets for ALS. 275 

Whereas the 3′UTR of IL18RAP is a protective non-coding allele associated with a neurodegenerative disease, the 276 

increasing wealth of WGS data in Project MinE, NYGC and elsewhere, indicates that the exploration of non-coding 277 

regulatory genomic regions should reveal further disease-relevant genetic mechanisms.  278 
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Methods 279 

 280 

Human genetic cohorts 281 

All participants contributed DNA after signing informed consent at the submitting sites. Human materials were 282 

studied under approval of the Weizmann Institute of Science Institutional Review Board (Weizmann IRB: 1039-1).  283 

Discovery cohort: Project MinE ALS sequencing consortium Datafreeze 1 includes 3,955 ALS patients and 1,819 284 

age- and sex-matched controls, free of any neurodegenerative disease, for a total of 5,774 quality control (QC) 285 

passing whole-genomes, from the Netherlands, Belgium, Ireland, Spain, United Kingdom, United States, and 286 

Turkey. Rare variant association in cases versus controls was evaluated for regions of interest, when we could 287 

identify ≥2 variants per region, by SKAT-O, SKAT, CMC, and VT in RVTESTS environment 90, with sex and the top 10 288 

principal components (PCs) as covariates. To construct the PCs of the population structure, an independent set of 289 

~450,000 SNPs was sampled from WGS, (MAF ≥0.5%) followed by LD-pruning. Rare genetic variants were included 290 

based on minor allele frequencies (MAF) ≤0.01 within the controls in the current data set. 291 

Replication cohorts: Utilized for testing rare variant alleles (MAF < 0.01) in human IL18RAP 3’UTR (GRCh37/hg19 292 

chr2:103068641-103069025 or GRCh38 chr2:102452181-102452565) from Project MinE datafreeze 2: ~1300 293 

European heritage ALS genomes without middle eastern (Turkish and Israelis) genomes. The New York Genome 294 

Center (NYGC) ALS Consortium (2,184 ALS Spectrum MND and 263 non-neurological control genomes from 295 

European/Americas ancestries), NHLBI's Trans-Omics for Precision Medicine (TOPMed; 62,784 non-ALS genomes) 296 

and gnomAD (5,537 non-ALS genomes; Europeans, non-Finnish, non-TOPMed). Joint analysis in replication cohort 297 

was performed by Chi-square test with Yate’s correction. Meta-analysis was not possible because TOPMed and 298 

gnomAD covariate information is not available.  299 

Quality control procedures in Project MinE genomics 300 

Sample selection, data merging, and sample- and variant level quality control procedures for Project MinE ALS 301 

sequencing consortium genomes are described in full previously 63. Briefly, 6,579 Project MinE ALS sequencing 302 

consortium whole genomes were sequenced on Illumina HiSeq2000 or HiSeqX platforms. Reads were aligned to 303 

human genome build hg19 and sequence variants called with Isaac Genome Alignment Software and variant caller 304 

91. Individual genomic variant call format files (GVCFs) were merged with ‘agg’ tool: a utility for 305 

aggregating Illumina-style GVCFs. Following completion of the raw data merge, multiple QC filtering steps were 306 

performed: (i) setting genotypes with GQ<10 to missing; (ii) removing low-quality sites (QUAL< 30 and QUAL< 20 307 
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for SNPs and indels, respectively); (iii) removing sites with missingness > 10%. (iv) Samples excluded if deviated 308 

from mean by more than 6SD for total numbers of SNPs, singletons and indels, Ti/Tv ratio, het/hom-non-ref ratio, 309 

and inbreeding (by cohort). (v) missingness > 5%, (vi) genotyping-sequence concordance (made possible by 310 

genotyping data generated on the Illumina Omni 2.5M SNP array for all samples; 96% concordance), (vii) depth of 311 

coverage, (viii) a gender check (to identify mismatches), (ix) relatedness (drop samples with >100 relatedness 312 

pairs). (x) Related individuals were further excluded until no pair of samples had a kinship coefficient > 0.05. (xi) 313 

missing phenotype information. Following QC, 312 samples with expended/inconsistent C9orf72 status were 314 

omitted from further analysis. A total of 5,774 samples (3,955 ALS patients and 1,819 healthy controls) passed all 315 

QC and were included in downstream analysis. Per-nucleotide site QC was performed on QC-passing samples only, 316 

for Biallelic sites: variants were excluded from analysis based on depth (total DP < 10,000 or > 226,000), 317 

missingness > 5%, passing rate in the whole dataset < 70%, sites out of Hardy–Weinberg equilibrium (HWE; by 318 

cohort, controls only, p < 1x10-6) and sites with extreme differential missingness between cases and control 319 

samples (Overall and by cohort, p < 1x10-6). Non-autosomal chromosomes and multiallelic variants were excluded 320 

from analysis. 321 

Selection of regions of interest 322 

Discontinuous regions of interest approximating in total ~5Mb, include coding sequences and 3′ untranslated 323 

regions (3′UTRs) of 295 genes (Supplementary Table 3) encoding for proteins that were: (i) previously reported to 324 

be associated with ALS, (ii) RNA-binding proteins including miRNA biogenesis or activity factors [UCSC gene 325 

annotation; 92]. In addition to (iii) all 1,750 autosomal human pre-miRNA genes [miRBase v20; 57]. In addition, 326 

genome-wide analysis of all known human 3’UTRs (RefSeq 64). Variants in regions of interest were extracted from 327 

Project MinE ALS sequencing consortium genomes using vcftools 93 according to BED file containing genomic 328 

coordinates of interest (hg19) ±300 bp that ensures covering splice junctions and sequence (Supplementary Table 329 

14).  330 
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Annotation and burden analysis 331 

After quality control and extraction of regions of interest, we performed functional annotation of all variants. 332 

Indels were left-aligned and normalized using bcftools and multiallelic sites were removed. For variant annotation 333 

we developed a pipeline that calculates the impact of genetic variation in coding regions as well as in 3’UTR and 334 

miRNA regions, using ANNOVAR 94. The frequency of the variants in the general population was assessed by 335 

screening the 1000 Genomes Project, the Exome Aggregation Consortium (ExAC), and NHLBI Exome Sequencing 336 

Project (ESP). For protein-coding ORFs, association analysis of deleterious rare variants was performed, i.e., 337 

frameshift variants, deviation from canonical splice variant, stop gain/loss variants, or a non-synonymous 338 

substitution, as predicted by at least three prediction programs (SIFT, Polyphen2 HVAR, LRT, MutationTaster, 339 

MutationAssessor, FATHMM, MetaLR) in dbNSFP environment [v2.0; 58]. 340 

Non-coding sequence burden analysis included (i) 3′UTRs, (ii) variants in miRNA recognition elements (MREs) in 341 

3’UTRs (Supplementary Table 3): Variants that impaired conserved-miRNA binding sites in 3’UTRs (predicted loss 342 

of function) were called by TargetScan [v7.0; 95]. Newly created miRNA binding sites in 3’UTRs (predicted gain of 343 

function) were called by textual comparison of all possible mutated seeds around a variant to all known miRNA 344 

seed sequences in the genome, (iii) all human pre-miRNAs (mirBase v20 57) and (iv) miRNAs:target gene networks: 345 

mature miRNA sequences (mirBase v20 57) and cognate targets within the 3’UTRs (Supplementary Table 3). Variant 346 

annotation scripts are available at GitHub: https://github.com/TsviyaOlender/Non-coding-Variants-in-ALS-genes-  347 

Mammalian Cell Cultures 348 

Lymphoblastoid cell lines (LCLs) from the UK MNDA DNA Bank 65 were originally derived from sixteen different 349 

individuals: 4 healthy individuals (without ALS), carrying the canonical IL18RAP 3’UTR sequence (Control; 350 

Canonical IL18RAP 3’UTR); 4 sporadic ALS patients, carrying the canonical IL18RAP 3’UTR sequence (sALS; 351 

Canonical IL18RAP 3’UTR); two healthy individuals, carrying a variant form of IL18RAP 3’UTR (Control; Variant 352 

IL18RAP 3’UTR); two sporadic ALS patients carrying a variant form of IL18RAP 3’UTR (sALS; Variant IL18RAP 3’UTR) 353 

and 4 C9orf72 ALS patients, carrying the canonical IL18RAP 3’UTR sequence (C9orf72; Canonical IL18RAP 3’UTR) 354 

(Cell lines listed in Supplementary Table 8; Weizmann IRB: 537-1). LCLs were cultured in RPMI-1640 (Gibco, 355 

21875091) with 20% inactivated fetal bovine serum (FBS, Biological Industries, 04-001-1A), 1% L-glutamine and 356 

1% penicillin-streptomycin (Biological Industries, 03-0311B) at 37°C, 5% CO2. Human Bone Osteosarcoma 357 

Epithelial Cells (U2OS), were maintained in Dulbecco’s Modified Eagle Medium (DMEM, Biological Industries, 01-358 

050-1A) supplemented with 10% FBS, 1% penicillin-streptomycin at 37°C, 5% CO2. Human iPSCs were cultured on 359 

Matrigel (Corning, 354277) coated plated in mTeSR1 medium (Stemcell technologies, 85850) according to the 360 
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manufacturer’s instructions. Briefly, cells were passaged at 70–90% confluent with StemPro accutase (Gibco, 361 

A11105-01) and seeded in mTeSR1 medium supplemented with 10 nM Y-27632 dihydrochloride (Tocris, 1254). 362 

Cells were refreshed with mTeSR1 medium every 24 hours until passaged.  363 

Isolation and Culture of Rat Cortical Astrocytes 364 

All experiments were performed in accordance with relevant guidelines and regulations of the Institutional Animal 365 

Care and Use Committee at Weizmann Institute of Science (IACUC 09491120-1). Primary cortical astrocytes were 366 

isolated and cultured as previously described 96 with several modifications. Briefly, the cerebral cortex of postnatal 367 

day 1 (P1) Sprague-Dawley rat pups was dissected and placed in DMEM/F12 containing 0.5% trypsin (biological 368 

industries, 03-046-5B). After 30 min incubation at 37 °C water bath, the cortical tissues were mechanically 369 

dissociated with pipette into single cells and were seeded on poly-D-lysine (Sigma Aldrich, 7405) coated T75 370 

culture flask in Astrocytes medium (DMEM/F12 (Gibco, 31330) supplemented with 10% FBS, 50U/mL Pen-strep 371 

and 2Mm Glutamax (Gibco, 35050-038)). The confluent cultures were shaken for 4 hours at 200 rpm to remove 372 

microglial cells. Each T75 flask was trypsinized and splited into three new T75 flasks. After 7-8 days the confluent 373 

flasks were trypsinized and were frozen (in 90% FBS, 10% DMSO) until further use.  374 

I3LMNs neuronal differentiation and Syn::GFP+ transduction 375 

Differentiation of hiPSCs into lower motor neurons (i3LMNs, iPSCs containing Doxycycline induced human NGN2, 376 

ISL1, and LHX3 (hNIL)) was performed as described previously 76. Briefly, iPSCs were seeded on day 0 into mTeSR1 377 

medium supplemented with 10 nM Y-27632 dihydrochloride. Few hours after seeding, cells were transduced with 378 

Syn::GFP lentivirus (pHR-hSyn-EGFP, Addgene #114215). 24 hrs. after seeding the cells medium was replaced with 379 

differentiation medium (DMEM/F12 (Gibco, 31330-038) with 1× MEM non-essential amino acids (Gibco, 11140-380 

035), 2mM GlutaMAX (Gibco, 35050-038), 1× N-2 supplement (Gibco, 17502-048), 2 μg/mL Doxycycline (Sigma 381 

Aldrich, D9891-1G.) and 10 nM Y-27632 dihydrochloride). On day 3, cells were split using accutase, counted and 382 

re-seeded on poly-D-Lysine coated dishes containing Rat astrocytes in neuronal medium (B27 Electrophysiology 383 

medium (Gibco, A14137-01) supplemented with 1× MEM non-essential amino acids, 2mM GlutaMAX, 1× N-2 384 

supplement, and 1 μg/mL mouse laminin (Gibco, 23017-015)). Twice a week half of the media was removed, and 385 

an equal volume of fresh media was added.  386 

 387 

 388 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 18, 2022. ; https://doi.org/10.1101/2021.06.03.446863doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446863


 

Generation of IL18RAP 3’UTR rare variant hiPSCs lines 389 

iPSCs were generated by the Ichida lab from human lymphocytes from ALS patients obtained from the National 390 

Institute of Neurological Disorders and Stroke (NINDS) Biorepository at the Coriell Institute for Medical Research. 391 

lymphocytes were reprogrammed into iPSCs as previously described 66. The NINDS Biorepository requires 392 

informed consent from patients.  393 

Human iPSC lines were maintained on irradiated MEFs in hESCs medium [DMEM/F12 (Sigma-Aldrich, D6421) 394 

supplemented with 20% KO Serum Replacement (Gibco, 10828-028,), 1% GlutaMax (Gibco, 35050038), 1% MEM-395 

NEAA (Biological Industries, 01-040-1A), 0.1mM 2-Mercaptoethanol (31350-010, Gibco), 10ng/ml hFGF 396 

(PeproTech, 100-18B)] and passaged twice a week with Collagenase IV (Worthington, LS004188). 397 

CRISPR guides were chosen using several design tools, including: the MIT CRISPR design tool 97 and sgRNA 398 

Designer, Rule set 2 98, in the Benchling implementations (www.benchling.com), SSC 99, and sgRNAscorer 100, in 399 

their websites. 400 

Prior to CRISPR procedure iPSCs were passaged once in feeder-free condition [LDEV Free GelTrex matrix (Gibco, 401 

A1413202), mTESR1 medium (StemCell Technologies, 85850)], dislodged as single cells using StemPro Accutase 402 

(Gibco, A11105-01), washed twice with Opti-MEM (Gibco, 31985-047) and counted. 90ul cells suspension 403 

containing 1M cells was mixed with 10 uL DNA mix: 4 ug pSpCas9(BB)-2A-Puro (PX459) plasmid (Addgene #48139), 404 

0.4 ug gRNA encoding plasmid (pKLV-U6gRNA(BbsI)-PGKzeo2ABFP, derived from pKLV-U6gRNA(BbsI)-405 

PGKpuro2ABFP (Addgene)), 1 ug (8 pmol) ssODN repair template (Supplementary Table 15) (IDT, 400 bases 406 

Megamer DNA Oligonucleotide) and 2.6 ug carrier plasmid DNA. CRISPR reaction components were introduced to 407 

iPSCs by single round electroporation using Nepa21 system (NEPA GENE). 100 uL cells and DNA suspension was 408 

transferred to Nepa Electroporation Cuvette 2 mm gap (Nepa Gene, EC-002). Electroporation conditions: 150 V 409 

Poring pulse; 5 ms Pulse length; 20 V Transfer pulse; 50 ms Pulse length. Electroporated cells were transferred to 410 

two GelTrex coated 100 mm dishes (1K and 10K) in mTeSR medium supplemented with 10 uM ROCK inhibitor 411 

(PeproTech, 1293823) and placed into CO2 incubator for 2 days. 48h past electroporation cells were treated with 412 

0.5 ug/mL Puromycin (Sigma-Aldrich) for 2 consecutive days. Survived cells were maintained until clones 413 

development. Single clones were picked and transferred to 96 well plates. Matured clones were genotyped at the 414 

first passage. Additionally, the top five predicted off-target sites for the guide RNA were sequenced 415 

(Supplementary Table 16). Selected clones containing desired mutations were expanded, cryopreserved, and used 416 

for the downstream experiments. 417 
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Differentiation and culturing of human iPSC-derived microglia 418 

hiPSCs were differentiated to microglia-like cells as previously described 68. Briefly, to form embryoid bodies (EBs), 419 

iPSCs were seeded into 96 well suspension plates in mTeSR1 media supplemented with 50 ng/mL rhBMP4 420 

(Peprotech, 314-BP), 50 ng/mL VEGF (Peprotech, 100-20), 20 ng/mL SCF (Peprotech, 300-07) and 10 nM Y-27632 421 

dihydrochloride. Everyday half of the medium was removed, and an equal volume of fresh media was added. After 422 

four days 12 EBs were transferred into each well of 6 well plate in X-VIVO 15 (Lonza, BE02-060Q) containing 100 423 

ng/mL M-CSF (Peprotech, 300-25), 25 ng/mL IL-3 (Peprotech, 200-03), 2 mM Glutamax, 55 uM 2-mercaptoethanol 424 

(Gibco, 31350-10) and 100 U/mL penicillin/streptomycin (Biological Industries, 03-031-1B). iPSC derived 425 

progenitor microglia (ipMG) were collected weekly from the supernatant and were co-cultured with iPSC derived 426 

neurons in 96 well plates (Greiner, 655090) in neuronal medium containing 10 ng/mL IL-34 (Peprotech,200-34). 427 

EB medium was refreshed weekly. 428 

i3LMNs survival assay 429 

Survival assay was conducted by monitoring eGFP signal of day 5 i3LMNs co-cultured with two independent 430 

CRISPR-edited isogenic iPSC-derived microglia (harboring canonical or variant IL18RAP 3’UTR), with C9orf72 431 

genetic background. Cells were monitored for over 20 days using Incucyte® Live-Cell Analysis System (Sartorius). 432 

Daily longitudinal microscopic tracking was performed following Lipopolysaccharide (LPS, 100 ng/mL) and IL-18 433 

treatment (100 ng/mL). i3LMNs survival assay was performed using three individual replicates for each line, with 434 

3-8 co-culture wells per condition. Twice a week half of the media was removed, and an equal volume of fresh 435 

media containing LPS and IL-18 was added. 436 

Cloning 437 

Full IL18RAP coding sequence (CDS) and 3'UTR sequence (2223bp) in pMX vector was purchased from GeneArt 438 

(Invitrogen, Supplementary Table 15) and subcloned with V5 epitope into pcDNA3. Different mutants, including: 439 

WT IL18RAP CDS + mutant 3’UTR (V1 or V3), and a dominant-negative coding mutant E210A-Y212A-Y214A CDS + 440 

WT 3’UTR (3CDS) 41 created by Transfer-PCR mutagenesis101. Next, WT and mutants full IL18RAP were subcloned 441 

into pUltra vector (a gift from Malcolm Moore, Addgene plasmid #24130, for which mCherry was replaced with 442 

EGFP), downstream of the human Ubiquitin C promoter and EGFP-P2A. Cloning procedures were done via 443 

restriction-free cloning 102. List of primers used for cloning and Transfer-PCR mutagenesis described in 444 

Supplementary Table 16. 445 

 446 
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Transfection 447 

Transfection to U2OS cells at 1.9 cm2 corning plates was performed at 70–80% confluence, 24 hrs. post-plating in 448 

antibiotic-free media, using Lipofectamine 2000, 0.5 µL per well (Thermo Fisher Scientific, Cat# 11668027). Each 449 

well was considered as a single replicate. For NF-κB reporter assay, U2OS cells were induced with/without 450 

recombinant IL-18 (5 ng/mL) 72 hrs. post‐transfection with full coding sequence of IL18RAP coding region + 3'UTRs 451 

(pUltra vector 500 ng / 1.9 cm2 plate), luc2P/NF-κB-RE (pGL4.32 100 ng) luciferase and Renilla luciferase (hRluc 10 452 

ng). Following 6 hrs. cells were harvested for Dual-Luciferase® Reporter Assay (E1960) and luminescence was 453 

quantified using Veritas™ Microplate Luminometer.  454 

RNA extraction, cDNA synthesis, and quantitative real-time PCR. 455 

Total RNA from LCLs was extracted using Direct-Zol RNA MiniPrep (Zymo Research ,R2052) according to 456 

manufacturer instructions. Total RNA from ipMGs was extracted using miRNeasy micro Kit (QIAGEN, 217084) 457 

according to manufacturer instructions. Total RNA was reverse transcribed using High Capacity cDNA Reverse 458 

Transcription Kit (applied biosystem, 4368814) according to manufacturer instructions, except for the mRNA 459 

stability assay, where equal volume of RNA (and not equal amounts of RNA) from each sample was used to 460 

generate cDNA. Quantitative Real-time PCR was performed using TaqMan Universal PCR master Mix (applied 461 

biosystem, 4304437) or KAPA SYBR FAST (Roche, KK4605). Primers and TaqMan probes are shown in 462 

Supplementary Table 16. 463 

Bulk MARS-Seq  464 

200,000 ipMGs harboring variant or canonical IL18RAP 3'UTR (n=4) were treated with 100 ng/mL LPS + 100 ng/mL 465 

IL-18 for 6 hrs. in ipMG media (Advanced DMEM (Gibco, 12491-015) containing 1× N-2 supplement (Gibco, 17502-466 

048), 2mM GlutaMAX (Gibco, 35050-038), 55 uM 2-mercaptoethanol (Gibco, 31350-10), 50 U/mL 467 

penicillin/streptomycin (Biological Industries, 03-031-1B) and 100 ng/mL IL-34 (Peprotech, 200-34). Following 6 468 

hrs. RNA was extracted as described above and a bulk adaptation of the MARS-Seq protocol (Jaitin et al., Science 469 

2014; Keren-Shaul et al., Nature Protocols, 2019) was used to generate 3' RNA-Seq libraries for expression 470 

profiling. Briefly, 50 ng of input RNA from each sample was barcoded during reverse transcription and pooled. 471 

Following Agencourt Ampure XP beads cleanup (Beckman Coulter), the pooled samples underwent second strand 472 

synthesis and were linearly amplified by T7 in-vitro transcription. The resulting RNA was fragmented and 473 

converted into a sequencing-ready library by tagging the samples with Illumina sequences during ligation, RT, and 474 

PCR. Libraries were quantified by Qubit and TapeStation as well as by qPCR for GAPDH gene as previously 475 
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described (Jaitin et al., Science 2014; Keren-Shaul et al., Nature Protocols, 2019). Sequencing was done on a 476 

NovaSeq 6000 system, SP Reagent Kit, 100 cycles (Illumina; paired-end sequencing).  477 

Analysis of the MARS-seq was done using the UTAP pipeline (103; the Weizmann Institute Bioinformatics Unit) to 478 

map the reads to the human genome and to calculate Unique Molecule Identifier (UMI) counts per gene. Reads 479 

were trimmed from their adapter using cutadapt (parameters: -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC 480 

-a “A(10)” –times 2 -u 3 -u −3 -q 20 -m 25) and mapped to hg38 genome (STAR v2.4.2a). The pipeline removes UMI 481 

redundancy and quantifies the 3’ of RefSeq annotated genes (1,000 bases upstream and 100 bases downstream 482 

of the 3’ end). Genes having a minimum of five reads in at least one sample were considered for further analysis. 483 

Differentially expressed (DE) gene detection and count normalization analysis were performed by DESeq2. P-484 

values in the UTAP results were adjusted for multiple testing using the Benjamini and Hochberg procedure. 485 

Thresholds for significant DE genes: padj < 0.01, |log2FoldChange| >= 0.585, baseMean > 20. This assay was done 486 

with critical advice from Dr. Hadas Keren-Shaul from the Genomics Sandbox unit at the Life Science Core Facility 487 

of Weizmann Institute of Science. 488 

Cell lysis and Western blot 489 

LCLs were washed in PBSx1, centrifuged at 800 × g for 5 min at 4°C, pelleted, and lysed in ice-cold RIPA buffer 490 

(Supplementary Table 17) supplemented with cOmplete™ Protease Inhibitor Cocktail (Roche, 4693116001) and 491 

PhosSTOP™ (Roche, 4906837001). The lysates were cleared by centrifugation at 15,000 × g for 10 min at 4°C. 492 

Protein concentrations quantified with Protein Assay Dye Reagent (Bio-Rad, 500-0006), resolved at 30-50μg of 493 

total protein/well by 8-10% polyacrylamide / SDS gel electrophoresis at 100-120 V for 70 min. After gel 494 

electrophoresis proteins were transferred to nitrocellulose membrane (Whatmann, 10401383) at 250 mA for 70 495 

min. Membranes were stained with Ponceau (Sigma, P7170), blocked for 1 hour at RT with 3% Bovine albumin 496 

fraction V (MPBio 160069) or 5% milk protein in PBST (PBS containing 0.05% TWEEN-20), and then incubated with 497 

primary antibodies (see Supplementary Table 18) O.N. at 4°C with rocking in antibody-Solution [5% albumin, 0.02% 498 

sodium azide, 5 drops of phenol red in 0.05% PBST]. Following primary antibody incubation, membranes were 499 

washed 3 times for 5 min at RT with 0.05% PBST then incubated for 1 hour at RT with horseradish peroxidase 500 

(HRP)-conjugated species-specific secondary antibodies, washed 3 x 5 min in 0.05% PBST at RT, and visualized 501 

using EZ-ECL Chemiluminescence (Biological Industries, 20500-120) by ImageQuant™ LAS 4000 (GE Healthcare Life 502 

Sciences). Densitometric analysis was performed using ImageJ (NIH). 503 

 504 
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In-Vitro Transcription of biotinylated IL18RAP 3’UTR 505 

To identify the potential trans-acting factors that might differentially bind to the canonical and variant 3’UTRs an 506 

RNA-pulldown and mass spectrometry assay was performed on in vitro transcribed canonical and variant forms 507 

of the IL18RAP 3’UTRs, V1 and V3. Briefly, The canonical, V1 and V3 biotinylated-IL18RAP 3’UTR sequences 508 

(384nt), and the negative control (ultrapure water only), were produced by using in vitro transcription HiScribe™ 509 

T7 ARCA Kit (NEB, E2060S) following the manufacturer instructions. Briefly, 300 ng of purchased DNA template 510 

(50 ng/uL) (Twist, Supplementary Table 15) was incubated with unlabeled ATP/GTP/CTP and 5% biotin-labelled 511 

UTP, at 37oC for 3 hrs. Next, DNase treatment was performed by incubating the reactions at 37oC for 30 min and 512 

was followed by incubation at 65oC for 10 min to terminate the reaction. The RNA products were purified by an 513 

RNA cleanup purification kit (Zymo Research, R1015). The concentrations of the purified RNA samples were 514 

measured by nanodrop and the expected length was analyzed by TapeStation.  515 

Pull Down of IL18RAP 3’UTR RNA-associated proteins 516 

LCL cell pellets were suspended and lysed in RIPA buffer followed by centrifugation at 15,000xg for 10 min at 4oC. 517 

The concentrations of the cleared supernatants were measured by Bradford assay. 1 mg lysate per sample was 518 

incubated with Pierce streptavidin magnetic beads (Thermo Scientific, 88817) for 30 min at 4oC in rotation, to pre-519 

clear the lysates from endogenous biotinylated-proteins. To bind IVT products (WT, V1, V3 and negative control; 520 

n=6 repeats/group) to the beads, new prepared binding Pierce streptavidin magnetic beads were incubated by 521 

rotation with equal amounts of IVT products for 30 min at 4oC (100 uL beads/10 pmol RNA product). After 30 min, 522 

the tubes of incubated IVT products with beads were washed three times, and then the cleared lysate was added 523 

equally to each tube and incubated for 30 min at 4oC. In the next step, the samples were washed three times by 524 

magnetizing the beads and resuspended by vortex with a high salt buffer. The bound beads were magnetized and 525 

suspended in 20 ul RNase-free PBSx1 for on-bead digestion procedure.  526 

Liquid Chromatography and Mass Spectrometry 527 

The resulting peptides were analyzed using nanoflow liquid chromatography (nanoAcquity) coupled to high 528 

resolution, high mass accuracy mass spectrometry (Q-Exactive HF). Each sample was analyzed on the instrument 529 

separately in a random order in discovery mode.  530 

 531 

 532 
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Raw proteomic data processing 533 

Raw MS data were processed using MaxQuant version 1.6.6.0 (Cox and Mann, 2008). Database search was 534 

performed with the Andromeda search engine (Cox and Mann, 2011; Cox et al., 2011) using the human Uniprot 535 

database, appended with common lab protein contaminants. Forward/decoy approach was used to determine 536 

the false discovery rate and filter the data with a threshold of 1% false discovery rate (FDR) for both the peptide-537 

spectrum matches and the protein levels. The label-free quantification (LFQ) algorithm in MaxQuant (Cox et al., 538 

2014) was used to compare between experimental samples. Additional settings included the following 539 

modifications: Fixed modification- cysteine carbamidomethylation. Variable modifications- methionine oxidation, 540 

asparagine and glutamine deamidation, and protein N-terminal acetylation. 541 

Proteomics statistical analysis 542 

ProteinGroups output table was imported from MaxQuant to Perseus v.1.6.2.3 environment (Tyanova et al., 543 

2016). Quality control excluded reverse proteins, proteins identified only based on a modified peptide, and 544 

contaminants. Non-specific streptavidin-bead binders were excluded by the following procedure: LFQ Intensity 545 

values were log2 transformed, and two outlier samples were excluded from further analysis. Missing values were 546 

imputed by creating an artificial normal distribution with a downshift of 1.8 standard deviations and a width of 547 

0.4 of the original ratio distributions. Student’s t-test with S0 = 0.1 was performed with FDR P-value ≤ 0.05 548 

between the experimental groups (Canonical, V1 and V3) and the negative control group, which was defined as a 549 

single control group. Proteins that passed all QC filters were separated for each of the experimental groups and 550 

compared to the negative control samples (ultrapure water). The statistically significant-associated proteins were 551 

filtered to retain only proteins that were found in 50% of the repeats in at least one experimental group and were 552 

represented by at least one unique peptide. The enriched proteins were subjected to student’s t test between 553 

every two groups (canonical vs. V1 and canonical vs. V3), with S0 = 0.1, FDR P-value ≤ 0.05 and fold-change 554 

threshold >2.  555 

Processing of Mouse Brain Samples for Flow Cytometry 556 

Wild-type C57BL/6 mice were euthanized with CO2 and perfused with PBS through the left ventricle of the heart. 557 

Dissected mouse cortex was cut into smaller pieces using scissors and digested in 0.5 mg/mL Collagenase IV 558 

(Worthington Biochemical), 10 µg Deoxyribonuclease (Sigma-Aldrich), 10% HI-FBS, RPMI1640 (Gibco) at 37oC for 559 

30 minutes with continuous agitation. Digested samples were gently triturated for 1 minute and the enzymatic 560 

reaction was stopped by adding 1 mM EDTA in PBS. The homogenate was filtered through a 100 µm cell strainer 561 

and centrifuged at 400 x g for 8 minutes at 4oC to pellet the cells and myelin. This was followed by myelin removal 562 
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step by gradient centrifugation with 30% Percoll (Sigma-Aldrich) in PBS (700 x g for 20 minutes at 21oC; without 563 

brakes during deceleration). After myelin (the top white layer) separation, the middle transparent layer was 564 

collected, washed in PBS, and centrifuged at 400 x g for 8 minutes at 4oC to pellet the cells.  565 

Cells pellets were incubated with Mouse Fc block (BD Biosciences 553142), Fixable Viability Stain 620 (BD 566 

Biosciences 564996) and the following antibody mixture in PBS at 4oC for 30 minutes: BV421 Rat Anti-CD11b (BD 567 

Biosciences 562605), BV510 Hamster Anti-Mouse TCR β Chain (BD Biosciences 563221), BV711 Rat Anti-Mouse 568 

Ly-6G (BD Biosciences 563979), APC-Cy7 Rat Anti-Mouse CD45 (BD Biosciences 557659), and Polyclonal Goat IgG 569 

Anti-Mouse IL-18Rβ (R&D Systems AF199). Samples were then washed with PBS and incubated with Alexa Fluor 570 

647 Donkey Anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody (Invitrogen A-21447) in PBS at 4oC for 30 571 

minutes. Surface-stained samples were washed with PBS and fixed and permeabilized with BD 572 

Fixation/Permeabilization solution (BD Biosciences 554714) at 4oC for 30 minutes, followed by intracellular 573 

staining with Alexa Fluor 488 Anti-NeuN Antibody (EMD Millipore MAB377X) and eFluor 570 Anti-GFAP 574 

(eBioscience 41-9892-82) in BD Perm/Wash Buffer (BD Biosciences 554714) at 4oC for 30 minutes. Cells were 575 

washed with BD Perm/Wash Buffer and resuspended in PBS for analysis with a FACSymphony (BD Biosciences). 576 

Data were collected as FCS files and analyzed with FlowJo v10 software (BD Biosciences). Antibody specificity was 577 

assessed using relevant isotype control antibodies and fluorescence minus one. Compensation was adjusted using 578 

single-stained samples.  579 

The expression of IL-18RAP (IL-18Rβ) was expressed as Mean Fluorescence Intensity (MFI) or % frequency after 580 

gating for the following cell types: immune cells (CD45hi), microglia (MG: CD45int CD11hi), neurons (CD45- CD11b- 581 

NeuN+), and astrocytes (CD45- CD11b- GFAP+). Animal procedures were approved by the Walter and Eliza Hall 582 

Institute Animal Ethics Committee (Ethics application: 2020.017). 583 

 584 

Statistical analysis  585 

Statistics performed with Prism Origin (GraphPad). Shapiro-Wilk test was used to assess normality of the data. 586 

Pairwise comparisons passing normality test were analyzed with Student’s t-test, whereas the Mann-Whitney test 587 

was used for pairwise comparison of nonparametric data. Multiple group comparisons were analyzed using 588 

ANOVA with post hoc tests. For age of diagnosis and age of death a Permutation Test was used (a Monte-Carlo 589 

simulation test on the t-test between ALS patients harboring canonical or variants of the IL18RAP 3’UTR). 590 

Statistical P-values <0.05 were considered significant. Data are shown as scatter dot plot with mean and SEM, box 591 

plots, or as noted in the text. 592 
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Fig.1 - Eitan et al. (Hornstein)
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Fig. 1. Region-based rare-variant association analysis reveals association of IL18RAP 3’UTR with ALS. (A) Diagram 720 

of study design. Collapsed region-based rare-variant (MAF ≤0.01) association analysis was performed on: (i) 295 721 

candidate protein-coding genes (Supplementary Table 3), encoding for ALS-relevant proteins or proteins 722 

associated with miRNA biogenesis/activity. Variants were included if predicted to cause frameshifting, alternative 723 

splicing, an abnormal stop codon, or a deleterious non-synonymous amino acid substitution, in ≥ 3 of 7 724 

independent dbNSFP prediction algorithms; (ii) variants in 3′‐untranslated regions (3′UTRs) of the 295 genes 725 

(Supplementary Table 3); (iii) all known autosomal pre-miRNA genes in the human genome; and (iv) predicted 726 

networks, comprised of aggregated variants detected in a specific mature miRNA sequence and its cognate down-727 

stream 3’UTR targets. (B) QQ plot of obtained and expected P-values for the burden of rare variants (log scale), 728 

gained by collapsed region-based association analysis of all genomic regions described in (A). Data were obtained 729 

from 3,955 ALS cases and 1,819 controls (Project MinE). Features positioned on the diagonal line represent results 730 

obtained under the null hypothesis. Open-reading frames of 10 known ALS genes (blue). IL18RAP 3′UTR (red). 731 

Genomic inflation λ = 1.2. (C) QQ plot of obtained and expected P-values for the burden of rare variants (log scale), 732 

gained by collapsed region-based association analysis for all known human 3’UTRs (RefSeq). The IL18RAP 3′UTR 733 

(red) is the most significant 3’UTR associated with ALS. P-values, calculated with Optimized Sequence Kernel 734 

Association Test, SKAT-O (genomic inflation λ = 0.97).   735 
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Fig.2 - Eitan et al. (Hornstein)
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Fig 2. Odds of ALS are reduced with rare variants in the IL18RAP 3’UTR. (A) Odds ratio (OR) estimates with 95% 736 

confidence intervals (CI) for NEK1 (coding), SOD1 (coding) and IL18RAP (3'UTR). P-values corrected for false 737 

discovery rate (FDR). (B) Stratification of data pertaining to IL18RAP 3'UTR in seven geographically-based sporadic 738 

ALS sub-cohorts and forest plot (OR on log scale with whiskers for 95% CI). NEK1 (grey) and SOD1 (blue) signals 739 

are from combined data of all cohorts. Vertical dotted line denotes OR=0.23. (C) Stratification of IL18RAP 3'UTR 740 

variants data across discovery and replication cohorts and joint analysis thereof; Forest plot (OR on log scale with 741 

whiskers for 95% CI). Vertical dotted line denotes OR=0.2. P-values, calculated with SKAT-O or Chi-squared test 742 

with Yate’s correction.  743 
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Fig. 3. IL18RAP 3’UTR variant correlates with attenuated IL-18 - NF-κB signaling in human lymphoblastoid cells. 744 

(A) IL18RAP mRNA expression (qPCR normalized to IPO8 mRNA levels) and (B) IL18RAP or (C) p-NF-κB protein 745 

expression (Western blots, normalized to Tubulin). Scatter dot plot with mean and SEM. (D) Representative blots 746 

processed with anti-IL18RAP, anti p-NF-κB and anti-Tubulin antibodies. Extracts from twelve different human 747 

lymphoblastoid cell lines (listed in Supplementary Table 8): Four lines of healthy individuals (without ALS), carrying 748 

the canonical IL18RAP 3’UTR sequence (Control; Canonical IL18RAP 3’UTR, black); Four sporadic ALS patients, 749 

carrying the canonical IL18RAP 3’UTR sequence (sALS; Canonical IL18RAP 3’UTR, red); Two healthy individuals, 750 

carrying a variant form of IL18RAP 3’UTR (Control; Variant IL18RAP 3’UTR, light blue) and two sporadic ALS 751 

patients carrying a variant form of IL18RAP 3’UTR (sALS; Variant IL18RAP 3’UTR, navy blue). One-way ANOVA 752 

followed by Newman-Keuls multiple comparisons test, was conducted based on the mean value of three 753 

independent passages for each of the twelve human lymphoblastoid cell lines. * P<0.05; ** P<0.01; *** P<0.001. 754 
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Fig. 4. IL18RAP 3’UTR variant destabilizes IL18RAP mRNA in CRISPR-edited isogenic iPSC-derived microglia, with 768 

C9orf72 genetic background. (A) Diagram of experimental design. (1) Genome editing with CRISPR Cas9 of point 769 

mutations that recapitulate the most prevalent variants (Chr2:103068691 C>T (V1) and Chr2:103068718 G>A (V3)) 770 

in the IL18RAP 3’UTR sequence in human induced pluripotent stem cells (iPSCs) donated by ALS patients with a 771 

C9orf72 repeat expansion (66 NINDS/Coriell Code: ND10689, ND12099, Supplementary Table 8). The two 772 

independent isogenic pairs of cell lines both carry the C9orf72 repeat expansion and vary only by the presence of 773 

the canonical or a variant IL18RAP 3’UTR. (2) The four IL18RAP 3’UTR lines (two isogenic pairs) were differentiated 774 

into human microglia 68. Dot plots of IL18RAP (B) protein levels (by Western blot analysis, normalized to GAPDH, 775 

N=3, Data File S3) and (C) mRNA (by qPCR, normalized to IPO8 mRNA N=3) in differentiated human microglia. (D) 776 

IL18RAP mRNA degradation rate studied in human isogenic microglia at 0, 4 and 6 hrs after introduction of a 777 

transcriptional block with actinomycin D (7.5 μg/mL, Sigma-Aldrich A9415) (by qPCR, normalized to average of 778 

IPO8 and GAPDH mRNA expression, n = 4 independent wells per time point with two technical duplicates). Variant 779 

3’UTR destabilizes the IL18RAP mRNA relative to the canonical sequence. Scatter dot plot with mean and SEM. 780 

Two sided t-test P- values * <0.05, ** <0.01, **** <0.0001. 781 
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Fig. 5. Reduced association of double-stranded RNA binding proteins to variant IL18RAP 3’UTR. (A) Diagram of 793 

mass spectrometry of RNA binding proteins pulled-down by IL18RAP 3’UTR sequences (canonical, V1 and V3). (B) 794 

Principal-component analysis (PCA) of IL18RAP 3’UTR-associated proteomes pulled down by the canonical (grey, 795 

N=6 experimental repeats), V3 (orange, N=5), and V1 (blue, N=5) biotin-tagged, in-vitro transcribed oligos. (C) 796 

Volcano plot of protein abundance associated with the canonical relative to variant (V1) IL18RAP 3’UTR (x-axis 797 

log2 scale), analyzed by MS. Y-axis depicts P-values (−log10 scale). Proteins significantly enriched in association 798 

with canonical/variant 3’UTR are colored (grey/blue). Double-stranded RNA-binding proteins (dsRBPs) are 799 

demarcated by a purple oval. Features above the horizontal dashed line demarcate proteins with adjusted p < 800 

0.05, in student’s t-test with FDR correction to multiple hypotheses. Vertical dashed lines are of 2 or ½ fold change. 801 

A non-significant data point of KIF13B (P-value = 0.08) is not shown for clarity of the illustration (Supplementary 802 

Table 9) (D) Volcano plot of normalized enrichment score of the Gene Ontology (GO) molecular function gene sets 803 

from GSEA analysis of differentially expressed proteins (canonical vs. V1 IL18RAP 3’UTR). Reduced association of 804 

double-stranded RNA binding proteins (GO:0003725; purple) with V1 IL18RAP 3’UTR, relative to the canonical 805 

3’UTR. All gene sets are described in Supplementary Table 10. (E) Profile of GSEA enrichment score and positions 806 

of the 10 double-stranded RNA binding proteins (purple) within all differentially expressed proteins, ranked from 807 

most enriched in canonical 3’UTR to most depleted protein (Supplementary Table 10; WebGestalt 104). (F) 808 

Prediction of 3’UTR secondary structure by RNA Fold 105 suggests a more stable dsRNA structure of canonical 3’UTR 809 

(green), with lower minimum free energy (MFE) than that of the sequence harboring a V1 variant (red). 810 
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Fig. 6. Variant IL18RAP 3’UTR are protective in human microglia and in patients with ALS. (A) Diagram of 820 

experimental design. Co-culture of human iPSC-derived transcription factor-induced motor neurons (i3LMNs) that 821 

express GFP driven by the synapsin (Syn) promoter (healthy, non-ALS, 76) and human iPSC-derived isogenic 822 

IL18RAP 3’UTR microglia (on a C9orf72 repeat expansion background). Time-lapse microscopic analyses of i3LMNs 823 

survival, after microglia activation with a cocktail of LPS and the cytokine IL-18. (B,C) i3LMNs survival over 20 days 824 

in the presence of microglia harboring variant (blue) or canonical (grey) IL18RAP 3’UTR (two independent isogenic 825 

pairs, based on independent patient C9orf72 lines, n=3 independent differentiation procedures from different 826 

passages per line, with 3-8 co-culture wells per passage). (B) Survival plot of i3LMNs in a representative experiment 827 

for each isogenic pair (Two-way ANOVA) and (C) Box plot depicting the percentage of i3LMNs survival on day 20 828 

of co-culture, median, upper and lower quartiles of all experiments. Two independent isogenic pairs, based on 829 

independent patient C9orf72 lines, n=3 independent differentiation procedures from different passages per line, 830 

with 3-8 co-culture wells per passage. Two-way ANOVA followed by Tukey’s multiple comparison test. (D) 831 

Representative micrographs of fluorescent i3LMNs after 20 days of culture with C9-ALS microglia. (E). Association 832 

of age of death (9 patients with protective 3’UTR variants /4263 patients with available phenotypic data in Project 833 

MinE and NYGC cohorts, or (F) age of diagnosis (8/4216 patients). IL18RAP variant is associated with delayed age 834 

of death (+6.1 years, Permutation P-value = 0.02, Cohen's d effect size = 0.65) and age of diagnosis (+6.2 years, 835 

Permutation P-value = 0.05, Cohen's d effect size = 0.62), relative to the mean age of all Project MinE and NYGC 836 

ALS patients. Box plots depicting median, upper and lower quartiles, and extreme points. * P<0.05, ** P<0.01, 837 

*** P<0.001, **** P<0.0001. 838 
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Fig. 7. Variant IL18RAP 3’UTR dampens neurotoxic NF-κB signaling in human microglia. (A) Diagram of 848 

experimental design. Four IL18RAP 3’UTR lines (two isogenic pairs) were differentiated into human microglia 68 849 

and analyzed for phosphorylated NF-κB protein levels, transcriptomics, and neuronal survival in co-culture 850 

with/without IKK16, following activation with a cocktail of LPS and the cytokine IL-18, for 0.5h, 6h and 20 days, 851 

respectively. (B) Western blot analysis revealed reduced levels of phosphorylated NF-κB in variant IL18RAP 3’UTR 852 

relative to isogenic control. Scatter dot plot with mean and SEM (Two sided t-test P-value *** <0.001, N=3, Data 853 

File S5). mRNA extracted from human microglia was subjected to a next generation sequencing study with 854 

downstream bioinformatics studies (C-E). Over-representation analysis (ORA) within (C) KEGG Pathways and (D) 855 

Gene Ontology biological processes, of the differentially expressed transcriptome in microglia harboring variant 856 

vs. canonical IL18RAP 3’UTR. Bar graph depicting the Ratio of enrichment for significantly enriched pathways (FDR 857 

≤ 0.05) are shown (Supplementary Table 13; WebGestalt 104). (E) Unsupervised study of the NF-κB transcriptomic 858 

signature (GO:0007249 pathway-associated mRNAs) in microglia with the variant relative to the isogenic canonical 859 

IL18RAP 3’UTR. (F) Time-lapse microscopic analyses of co-cultured human i3LMNs (healthy, non-ALS, 76) with 860 

human iPSC-derived isogenic IL18RAP 3’UTR microglia (on a C9orf72 repeat expansion background), activated with 861 

a cocktail of LPS and the cytokine IL-18, without (carrier alone, DMSO), or with IKK16 (200nM), a selective IκB 862 

kinase (IKK) inhibitor that inhibits NF-κB signaling 81. IKK16 significantly ameliorates motor neuron death, relative 863 

to control only in the context of canonical IL18RAP 3’UTR, but did not further contribute to rescue in human 864 

microglia with the protective variant IL18RAP 3’UTR (two independent isogenic pairs, based on independent 865 

patient C9orf72 lines with 3-8 co-culture wells per line). Two-way ANOVA P-value * <0.05. 866 
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Supplementary Fig. 1. Study design. (A) Flow chart of approach for discovery of region-based rare-variants in 871 

non-coding genomic regions via association studies and (B) diagram depicting regions of interest comprising of 872 

1,750 autosomal human pre-miRNA genes, 295 open reading frames encoding for proteins of interest, and 295 873 

3′UTRs. 874 
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Supplementary Fig. 2. Region-based rare-variant association analyses. (A-D) QQ plot of obtained and expected 877 

P-values for the burden of rare-variants (log scale) gained by collapsed region-based association analysis of 878 

different genomic regions, comprised of (A) 295 candidate protein-coding regions listed in Supplementary Table 879 

3. These ORFs encode for ALS-relevant proteins or proteins that are associated with miRNA biogenesis or activity. 880 

Variants were depicted if predicted to cause frameshifting, alternative splicing, abnormal stop codon or a 881 

deleterious non-synonymous amino acid substitution, in ≥ 3 of 7 independent dbNSFP prediction algorithms 882 

(genomic inflation λ = 0.96), (B) All known pre-miRNA genes in the human genome (genomic inflation λ = 1.31), 883 

(C) predicted networks, comprised of aggregated variants detected on a specific mature miRNA sequence and its 884 

cognate downstream 3’UTR targets (genomic inflation λ = 1.16), and (D) variants in 3′UTRs of the same 295 genes 885 

listed in Supplementary Table 3 (genomic inflation λ = 1.08). Data was obtained from 3,955 ALS cases and 1,819 886 

controls (Project MinE). Features positioned on the diagonal line represent results obtained under the null 887 

hypothesis. Open-reading frames of 10 known ALS genes (blue). IL18RAP 3′UTR (red). P-values, calculated with 888 

SKAT-O.  889 
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Supplementary Fig. 3. 3′UTR-based rare-variant association analysis, using different algorithms, and illustration 890 

of rare variants identified in the IL18RAP 3′UTR. (A-D) QQ plot of obtained and expected P-values for the burden 891 

of rare variants (log scale) gained by collapsed region-based association analysis of genomic regions comprised of 892 

295 3′UTRs listed in Supplementary Table 3, in the Project MinE cohort (3,955 ALS cases and 1,819 non-ALS 893 

controls). Features positioned on the diagonal line represent results obtained under the null hypothesis. IL18RAP 894 

3′UTR (red) is the most significant 3’UTR associated with ALS using different algorithms: (A) Sequence Kernel 895 

Association Test, SKAT (genomic inflation λ = 1.02), (B) Combined Multivariate and Collapsing, CMC (genomic 896 

inflation λ = 1.34), (C) Variable Threshold with permutation analysis, VT (genomic inflation λ = 1.03). (D) IL18RAP 897 

3′UTR also ranked as the top hit when aggregating variants abrogating or gaining miRNA recognition elements 898 

(MREs) in 3’UTRs (genomic inflation λ = 1.04). (E) Schematic of the IL18RAP transcript and 3′UTR (5’ to 3′) showing 899 

the number of control (upper) or ALS (lower) samples in which variants (black arrow) were identified in the Project 900 

MinE discovery cohort (Supplementary Table 6). 901 
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Supplementary Fig. 4. Restricting burden analysis to the proximal part of 3’UTRs does not improve the 915 

association signal. (A) Scatter plot with SKAT-O P-values (log scale) calculated for the burden of rare variants 916 

gained by collapsed region-based association analysis of the full 3’UTRs on the x-axis versus the 3’UTRs proximal 917 

quadrant on the y-axis, for the 295 3′UTRs listed in Supplementary Table 3, in the Project MinE cohort (3,955 ALS 918 

cases and 1,819 non-ALS controls) (Pearson correlation coefficient (r=0.61) and P-value ****<0.0001). The 45-919 

degree diagonal line represents a perfect correlation of r=1. IL18RAP 3′UTR (red). (B) A Difference plot showing 920 

the difference between the two P-value measurements (3’UTRs proximal quadrant minus the full 3’UTRs). The 921 

bias (difference between means) is only 0.03. Overall the P-values gained from the 3’UTRs proximal quadrant were 922 

comparable to that of the full 3’UTRs in the cohort of 295 3’UTRs. Box plots depict median, upper and lower 923 

quartiles, and extreme points (Wilcoxon matched-pairs P-value > 0.05, Cohen's d effect size = 0.1). Hence, the 924 

apparent spatial distribution of variants in IL18RAP 3’UTR seems to be a particular case, rather than part of a 925 

global pattern. 926 
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Supplementary Fig. 5. IL18RAP and p-NF-κB expression is elevated in lymphoblastoid cells from patients with 940 

the C9orf72 repeat expansion. (A) IL18RAP mRNA expression (qPCR normalized to IPO8 mRNA levels) and (B) 941 

IL18RAP or (C) p-NF-κB protein expression (Western blots, normalized to Tubulin). Extracts from eight different 942 

human lymphoblastoid cell lines (listed in Supplementary Table 8): Four lines of healthy individuals (without ALS) 943 

carrying the canonical IL18RAP 3’UTR sequence (Control; Canonical IL18RAP 3’UTR, black) and four C9orf72 ALS 944 

patients carrying the canonical IL18RAP 3’UTR sequence (C9orf72; Canonical IL18RAP 3’UTR, red). (D) 945 

Representative blots processed with anti-IL18RAP, anti p-NF-κB and anti-Tubulin antibodies. Mann-Whitney test 946 

(A) or one-sided student’s t-test with Welch's correction on log-transformed data (B,C), was conducted based on 947 

the mean value of three independent passages for each of the eight human lymphoblastoid cell lines. Scatter dot 948 

plot with mean and SEM. ** P<0.01. 949 
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Supplementary Fig. 6. IL18RAP 3’UTR variant attenuates IL-18 - NF-κB signaling in U2OS cells. Diagram (A) and 964 

quantification (B) of NF-κB reporter assays in human U2OS cell line. To determine the ability of the IL18RAP 965 

variants V3 and V1 to induce NF-κB activity, U2OS cells were co-transfected with different IL18RAP coding region 966 

(CDS) and 3’UTR constructs (GFP, Canonical, V3, V1, n=9; 3CDS, n=4), along with an NF-κB activity reporter that 967 

drives luciferase (Luc2P) transcription via five copies of the NF-κB response element. NF-κB signaling was induced 968 

by adding human recombinant IL-18 to the medium. Variants V3 and V1 of the IL18RAP 3’UTR reduced NF-κB 969 

activity by ~10% and ~21%, respectively, relative to the WT IL18RAP 3’UTR. GFP vector and a dominant-negative 970 

coding mutant E210A-Y212A-Y214A CDS + WT 3’UTR (3CDS) 41, served as controls. Luciferase expression was 971 

normalized to transfected U2OS cells that were not induced with human recombinant IL-18. One-way ANOVA 972 

followed by Dunnett’s multiple comparison test was performed on square root-transformed data. Box plots depict 973 

median, upper and lower quartiles, and extreme points. * P<0.05; *** P<0.001. The experiment was repeated 974 

independently three times with similar results. 975 
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Supplementary Fig. 7. IL18RAP is mainly expressed on mouse microglia cells. (A-C) Flow cytometry was used to 989 

characterize IL18RAP expression levels in dissociated wild-type mouse cortex cells. The expression of IL-18RAP (IL-990 

18Rβ) was expressed as Mean Fluorescence Intensity (MFI) and % frequency after gating for the following cell 991 

types: immune cells (CD45hi), microglia (MG: CD45int CD11hi), neurons (CD45- CD11b- NeuN+), and astrocytes 992 

(CD45- CD11b- GFAP+). FACS analysis reveals that IL18RAP is mainly expressed on microglia cells. A scatter dot 993 

plot with mean and SEM values for the median fluorescence intensity (MFI) and percentage of IL18RAP+ cells is 994 

shown. One-way ANOVA followed by Tukey’s multiple comparison test. ** P<0.01, *** P<0.001, **** P<0.0001. 995 
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Supplementary Fig. 8. Evaluation of IL18RAP and IL-18 mRNA expression in motor neurons of patients with ALS. 1013 

(A-B) mRNA expression of IL18RAP (A) and IL-18 (B), as reads per kilobase million (RPKM), from NGS study of laser 1014 

capture microdissection–enriched surviving motor neurons from lumbar spinal cords of patients with sALS with 1015 

rostral onset and caudal progression (n = 12) and non-neurodegeneration controls (n = 9; 106 GSE76220). Two-1016 

sided Student’s t test with Welch's correction on log-transformed data. (C) IL-18 mRNA expression, as log2-1017 

normalized counts, from NGS study of induced ALS motor neurons (n = 4 different donors in duplicates) or non-1018 

neurodegeneration controls (n=3 different donors in duplicates; 107 DESeq analysis). Box plots depict median, 1019 

upper and lower quartiles, and extreme points. *P < 0.05; **P < 0.01.  1020 
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Supplementary Fig. 9. iPSC-derived microglia express the microglial-specific marker, TMEM119. 1037 

Immunofluorescence staining of TMEM119 (green) and DAPI (blue), in two different C9orf72 iPSC-derived 1038 

progenitor microglia lines. Lens, ×20; scale bar, 100 μm. 1039 
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Supplementary Fig. 10. Differentially bound RNA binding proteins to variant 3’UTR (V3) relative to canonical 1059 

3’UTR. (A) Volcano plot of protein abundance associated with the canonical relative to variant (V3) IL18RAP 3’UTR 1060 

(x-axis log2 scale), analyzed by MS. Y-axis depicts P-values (−log10 scale). Proteins significantly enriched in 1061 

association with canonical/variant 3’UTR are colored (grey/orange). Features above the horizontal dashed line 1062 

demarcate proteins with adjusted p < 0.05, in student’s t-test with FDR correction to multiple hypotheses. Vertical 1063 

dashed lines are of 2 or ½ fold change (Supplementary Table 9). (B) Prediction of 3’UTR secondary structure by 1064 

RNA Fold 105, suggests a minor change to the structure of the sequence harboring a V3 variant (red), relative to 1065 

the canonical 3’UTR (green). 1066 
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