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Abstract

Motivation: A dictionary of k-mers is a data structure that stores a set of n distinct k-mers and supports
membership queries. This data structure is at the hearth of many important tasks in computational biology.
High-throughput sequencing of DNA can produce very large k-mer sets, in the size of billions of strings –
in such cases, the memory consumption and query efficiency of the data structure is a concrete challenge.
Results: To tackle this problem, we describe a compressed and associative dictionary for k-mers, that
is: a data structure where strings are represented in compact form and each of them is associated to a
unique integer identifier in the range [0,n). We show that some statistical properties of k-mer minimizers
can be exploited by minimal perfect hashing to substantially improve the space/time trade-off of the
dictionary compared to the best-known solutions.
Availability: The C++ implementation of the dictionary is available at https://github.com/jermp/sshash.
Contact: giulio.ermanno.pibiri@isti.cnr.it

1 Introduction
A k-mer is a string of length k over the DNA alphabet {A, C,G, T}.
Software tools based on k-mers are in widespread use in Bioinformatics.
Many large-scale analyses of DNA share the elementary need of
determining the exact membership of k-mers to a given set S, i.e., they
rely on the space/time efficiency of a dictionary data structure for k-
mers [Chikhi et al., 2021]. This work proposes such an efficient dictionary.
More precisely, the problem we study here is defined as follows. Given a
large string over the DNA alphabet (e.g., a genome or a pan-genome), let
S be the set of all its distinct k-mers, with |S | = n. A dictionary for S is
a data structure that supports the following two operations:

• for any k-mer g, Lookup(g) returns a unique integer 0 ≤ i < n if
g ∈ S (the “identifier” of g) or i = −1 if g < S;

• for any 0 ≤ i < n, Access(i) extracts the k-mer g for which
Lookup(g) = i.

By means of the Lookup query, the dictionary is able to answer
membership queries in an exact way (rather than approximate) and to
associate satellite information to k-mers (such as abundances). Thanks to
the Access query, the original set S can be reconstructed, meaning that
the dictionary is a self-index for S.

In sequence analysis tasks, it is very often the case that we are given
a pattern P of length |P | ≥ k and we are interested in answering
membership to S for all the k-mers read consecutively from P, that is, for
P[i, i+k), i = 0, . . . , |P |−k. For example, we may decide that the whole
pattern P is present in a genome if the number of k-mers of P that belong
to S is at least θ |P |, for a prescribed coverage threshold θ > 0, such as
θ = 0.8 [Bingmann et al., 2019]. In other words, Lookup queries are often

issued for consecutive k-mers (one being the previous shifted to the right
by one symbol) [Robidou and Peterlongo, 2021, Bingmann et al., 2019].
While it is obviously possible to perform |P | − k + 1 Lookup queries for
a pattern of length |P |, it also seems profitable to answer “Is P[i, i + k) a
member of S?” more efficiently knowing that the previous k-mer shares
k − 1 symbols with P[i, i + k). We regard this latter scenario as that of
streaming queries.

Therefore, our objective is to support Lookup, Access, and streaming
membership queries as efficiently as possible in compressed space. (The
data structure is static: insertions/deletions of k-mers are not supported.)

As a first introductory remark we shall mention that the algorithmic
literature about the so-called compressed string dictionary problem is rich
of solutions, e.g., based on Front-Coding, tries, hashing, or combinations
of such techniques (see the survey by Martínez-Prieto et al. [2016]).
However, these solutions are unlikely to be competitive for the specialized
version of the problem we tackle here because they are relevant for
“generic” strings that usually: (1) have variable length; (2) are drawn
from larger alphabets (e.g., ASCII); (3) do not exhibit particular properties
that can aid compression. Instead, k-mers are fixed-length strings; their
alphabet of representation is very small (just 2 bits per symbol are
sufficient); and since k-mers are extracted consecutively from DNA, two
consecutive strings overlap by k−1 symbols that are redundant and should
not be represented twice in the dictionary. This motivates the study of
specialized solutions for k-mers.

These properties are elegantly captured by the de Bruijn graph
representation of S – a graph whose nodes are the k-mers in S and the
edges model the string overlaps between the k-mers. Using this formalism,
it is possible to reduce the redundancy of the symbols in S by considering
paths in the graph and their corresponding strings, such as the maximal
unitigs (or the maximal stitched unitigs [Rahman and Medvedev, 2020]).
We will better formalize these notions in Section 2.
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For the scope of this work, it is sufficient to point out that: (1) many
algorithms have been proposed to build de Bruijn graphs efficiently [Chikhi
et al., 2016, Khan and Patro, 2021, Khan et al., 2021] from which
these paths can be extracted for indexing purposes; (2) not surprisingly,
essentially all state-of-the-art dictionaries for k-mers – that we briefly
review in Section 3 – are based on the principle of indexing such collections
of paths [Almodaresi et al., 2018, Chikhi et al., 2014, Marchet et al., 2021,
Rahman and Medvedev, 2020]. We also follow this direction.

However, we note that existing dictionary data structures either
represent such paths with an FM-index [Ferragina and Manzini, 2000]
(or one of its many variants), hence retain highly compressed space but
very slow query time in practice or, vice versa, resort on hashing for fast
evaluation but take much more space [Almodaresi et al., 2018, Marchet
et al., 2021]. It is, therefore, desirable to have a good balance between
these two extremes.

For this reason, we show that we can still enjoy the query efficiency
of hashing while taking small space – significantly less space than prior
schemes based on (minimal and perfect) hashing. More specifically, we
show how two statistical properties of k-mer minimizers – precisely,
those of being sparse and skewly distributed in DNA sequences – can
be better exploited to derive an efficient dictionary data structure based on
minimal perfect hashing and compact encodings (Section 4). We evaluate
the proposed dictionary data structure over sets of billions of k-mers,
under different query distributions and modalities, and exhibit a substantial
performance improvement compared to prior solutions for the problem
(Section 5). Our C++ implementation of the dictionary is available at
https://github.com/jermp/sshash.

2 Preliminaries
In this section we give some preliminary remarks to better support the
exposition in Section 3 and 4. Let S be the collection of the n distinct
k-mers extracted from a given, large, string (or set of strings). This string
can be, for example, the genome of an organism. Throughout the paper,
we consider as identical two k-mers that are the reverse complement of
each other.

de Bruijn Graphs and Paths. A (node-centric) de Bruijn graph (dBG)
for S is a directed graph G(S) where the set of nodes is S and a direct
edge from node u to v exists if and only if the last k − 1 symbols of u are
equal to the first k − 1 symbols of v, i.e., u[1, k − 1] = v[0, k − 2]. With a
little abuse of notation, we refer to a path in G(S) or to the string spelled
out by the path (the string obtained by “glueing” all the nodes’ k-mers in
order) interchangeably.

A unary path (or unipath) of length ` in a dBG is a path made up `
nodes that all have in-degree and out-degree equal to 1 except, possibly,
the in-degree of the first node and the out-degree of the last node of the
path. A maximal unary path is a unary path that cannot be extended without
violating the property of being a unary path. Given a maximal unary path of
length `, the corresponding maximal unitig is the string of length `+k −1
spelled out by the path.

We say that Gc (S) is the compacted dBG of G(S) if the nodes of
Gc (S) are the maximal unitigs of G(S). A stitched unitig is obtained
by following a path in Gc (S). A disjoint-node path cover for Gc (S)

is a set of paths where each node belongs to exactly one path. Efficient
heuristic algorithms have been proposed to approximate a disjoint-node
path cover for Gc (S) that is of minimum size (in the number of paths);
see, for example, that by Rahman and Medvedev [2020]. We denote such
a cover with S′. The strings in S′, therefore, form the natural basis for a
space-efficient dictionary because:

• by trying to minimize the number of paths in the cover, the number of
symbols in S′ is less than the number of symbols in S and,

• by being a disjoint-node path cover we are guaranteed that there are
no duplicate k-mers in S′.

In conclusion, we assume from now on that a path cover S′ has been
computed for Gc (S) as the input for our problem.

Minimizers and Super-k-mers. Given a k-mer g, an integer m ≤ k, and
a total order relation R on all k-length strings, the smallest m-mer of g
according to R is called the minimizer of g. R could be, for example, the
simple lexicographic order. Instead, here we use the random order given
by a hash function h, chosen from a universal family1. Therefore, simply
put, the minimizer of g is the m-mer of g that minimizes the value of h.

Minimizers are very popular in sequence analysis, such as for seed-
and-extend algorithms, because of the following empirical property:
consecutive k-mers tend to have the same minimizer [Schleimer et al.,
2003, Roberts et al., 2004]. This means that there are far less distinct
minimizers than k-mers; approximately (k−m+2)/2 times less minimizers
than k-mers (independently of the sequence length), if m is not very small
compared to k [Schleimer et al., 2003, Zheng et al., 2020]. For example, if
k = 31 andm = 20, we should expect to see roughly (31−20+2)/2 = 6.5×
less minimizers than k-mers. Another way of picturing this fact is to say
that we approximately sample a minimizer every (k −m + 2)/2 symbols.

We call a super-k-mer a maximal sequence of consecutive k-mers
having the same minimizer [Li et al., 2013].

Minimal Perfect Hashing. Given a set X of n distinct keys, a function
f that maps bijectively the keys into the integer range {0, . . . , n − 1} is
called a minimal perfect hash function (MPHF) for the set X. The function
is allowed to return an arbitrary value in [0, n) for any key that does not
belong to X, hence it can be realized in small space, in practice 2 − 3
bits/key (albeit log2 e ≈ 1.44 bits/key are sufficient in theory [Mehlhorn,
1982]). Many efficient algorithms have been proposed to build MPHFs
from static sets that scale well to large values of n and retain practically-
constant evaluation time. In this paper, we use PTHash [Pibiri and Trani,
2021a,b] for its very fast evaluation time, usually 2 − 4× better than other
techniques, and good space effectiveness.

3 Related Work
As already anticipated in Section 1, most existing solutions for exact
membership queries are based on indexing the unitigs of the de Bruijn
graph. These approaches have also been summarized in the recent survey
by Chikhi et al. [2021, Section 4.2], hence we give a rather cursory
overview here.

The maximal unitigs can be represented using an FM-index [Ferragina
and Manzini, 2000] for very compact space [Chikhi et al., 2014, Rahman
and Medvedev, 2020]. The practical efficiency of the FM-index mainly
depends on how many samples of the suffix-array are kept in the index.

Other approaches resort on hashing for fast lookup queries. For
example, Bifrost [Holley and Melsted, 2020] uses a hash table of
minimizers whose values are the locations of the minimizers in the unitigs.
The index was designed to be dynamic, hence allowing insertion/removal
of k-mers and consequent re-computation of the unitigs. The dynamic
nature of Bifrost makes it consume higher space compared to static
approaches using compressed hash representations and succinct data
structures, like Pufferfish [Almodaresi et al., 2018] and Blight [Marchet
et al., 2021]. Hence, it is regarded as out of scope for this work.

1 In our implementation, we use an instance of MurmurHash [Appleby,
2016] with a given seed.
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Pufferfish [Almodaresi et al., 2018] associates to each k-mer its
location in the unitigs using a MPHF and a vector of absolute positions.
The authors also proposed a sparse version of the index where the vector of
positions is sampled to improve space usage at the expense of query time.
Blight [Marchet et al., 2021] is also an associative dictionary based on
minimal perfect hashing. It partitions the k-mers by minimizers and builds
a separate MPHF on each partition to improve space usage compared to
Pufferfish. To further reduce space, a k-mer is associated to the segment
of 2b super-k-mers where it belongs to, for a given b ≥ 0. This reduces
the space of the dictionary by b bits per k-mer but a lookup needs to scan
(at most) 2b super-k-mers.

Very importantly, Pufferfish and Blight are optimized for streaming
membership queries.

4 Sparse and Skew Hashing
In this section we describe our main contribution: an exact, associative,
and compressed dictionary data structure for k-mers, supporting fast
Lookup, Access, and streaming queries. From a high-level point of view,
the dictionary is obtained via a careful combination of minimal perfect
hashing and compact encodings: in particular, we show how two important
properties of minimizers – those of being sparse (Section 4.1) and skewly
distributed (Section 4.2) in DNA strings – can be exploited to achieve an
efficient dictionary. Our focus is on supporting fast queries in compressed
space, thus we aim at a good trade-off between dictionary space and query
efficiency.

Recall from Section 2 that the dictionary is built from a collection
of paths covering a de Bruijn graph (for example, the maximal stitched
unitigs), that is: a collection of strings, each of length at least k symbols,
with no duplicate k-mers. For ease of notation, we indicate with p the
number of paths in the collection and with N their cumulative length. The
total number of (distinct) k-mers is, therefore, n = N − p(k − 1).

4.1 Sparse Hashing

The starting point for our development is based on the well-known
empirical property of minimizers in that consecutive k-mers are likely to
have the same minimizer. Thus, instead of working with individual k-mers,
we focus on maximal sequences of k-mers having the same minimizer – the
so-called super-k-mers (see Section 2). Super-k-mers are useful because
of the following two reasons.

• As super-k-mers are likely to span several consecutive k-mers, we
expect to see far fewer super-k-mers than k-mers, roughly (k−m+2)/2
times less for a, sufficiently-large, chosen minimizer length m.
Informally, this property allows a space usage proportional to the
number of super-k-mers, thus sparsifying the dictionary.

• A super-k-mer of length s is a space-efficient representation for its
constituent s − k + 1 k-mers since it takes 2s/(s − k + 1) bits/k-mer
instead of the trivial cost of 2k bits/k-mer.

Therefore, our refined ambition is to index the super-k-mers of the
input. Although this can simply be achieved by inserting the super-k-mers
into a (minimal and perfect) hash table – i.e., by laying out the super-k-mers
in the order given by a hash function – we claim that his approach is very
wasteful in terms of space. Note that each super-k-mer has a fixed cost of
2(k −1) bits for representing the “tail” of its string (its last k −1 symbols).
If the super-k-mer has length s, this fixed cost is only well amortized (say,
negligibly small) when s is much larger than k − 1. In other words, when
the super-k-mer contains many more k-mers than k − 1. While possible
in same extreme cases (e.g., the same minimizer repeats in sequence), it

is not usually so for the values of k and m used in concrete applications;
actually, a super-k-mer is more likely to contain k −m+ 1 k-mers or less.

If z indicates the number of super-k-mers in the input, then the space
of this simple solution would be, at least, 2+2z(k−1)/n bits/k-mer (extra
space is then needed to accelerate the queries). For example, consider the
whole human genome with k = 31 and m = 20. There are more than
z = 396 × 106 super-k-mer for, roughly, n = 2.5 × 109 distinct k-mers.
Therefore, partitioning the strings according to super-k-mers would cost
at least 11.50 bits/k-mer. As we will better see in Section 5, our dictionary
can be tuned to take 8.28 bits/k-mer overall in this case (or less).

Thus, it is of utmost importance to not break the strings according to
super-k-mers if space-efficiency is a concern. Instead, we identify a super-
k-mer in the strings, whose total length is N , with an absolute offset of
dlog2(N )e bits. To be precise, an offset is the position in [0, N ) of the first
base of a super-k-mer. Since k should be chosen large enough to allow
good k-mer specificity, 2(k − 1) will be much larger than dlog2(N )e in
practice, even for the largest genomes. For example, we use k = 31 in
our experiments, as done in many other works [Almodaresi et al., 2018,
Marchet et al., 2021, Rahman and Medvedev, 2020, Bingmann et al., 2019],
whereas dlog2(N )e is around 30 − 34 for collections with billions of k-
mers (see also Table 2 at pag. 6). The use of absolute offsets can almost
halve the space overhead for the indexing of super-k-mers in such cases.
The space saving is even larger for larger k.

Dictionary Layout and Compression. Based on the above discussion,
we now detail the different components of our dictionary data structure.

1. Strings. The p strings in the input collections are written one after
the other in a vector of 2N bits (2 bits per input base). We also
materialize in a sorted integer sequence of length p the endpoints of the
strings to avoid detection of alien k-mers. This sequence, Endpoints,
is compressed with Elias-Fano [Fano, 1971, Elias, 1974] and takes
p dlog2(N/p)e + 2p + o(p) bits.

2. Minimizers. Let M be the set of all distinct minimizers seen in the
input, with M = |M |, and z the number of super-k-mers. Clearly,
we have z ≥ M because a minimizer can appear more than once in
the input. Given a minimizer r , let us call the bucket of the minimizer
r , Br , the set of all the super-k-mers that have minimizer r . We build
a minimal perfect hash function f forM. The MPHF provides us an
addressable space of size M : the value f (r) ∈ [0,M) is the “bucket
identifier” of r , r ∈ M. We materialize an array Sizes[0,M + 1),
where Sizes[ f (r) + 1] = |Br | is the size of the bucket of r , and
Sizes[0] = 0. We then take the prefix-sums of Sizes, i.e., we replace
Sizes[i] with Sizes[i] + Sizes[i − 1] for all i > 0. Therefore, for a
given minimizer r , now Sizes[ f (r)] indicates that there are Sizes[ f (r)]
buckets before Br in the order given by f .

The function f costs roughly 3 bits per minimizer; the Sizes array
is compressed with Elias-Fano too and takes M dlog2(z/M)e+2M +
o(M) bits.

3. Offsets. The absolute offsets of the super-k-mers into the strings
are stored in an array, Offsets[0, z), in the order given by f . For a
minimizer r such that Sizes[ f (r)] = begin, its |Br | offsets are written
consecutively (and in sorted order) in Offsets[begin, begin + |Br |).
Note that, by construction, Sizes[ f (r)+ 1] − Sizes[ f (r)] = |Br | > 0.
The space for the array is z dlog2(N )e bits.

Summing up the different costs, the dictionary space is then 2N+5M+
z dlog2(N )e + M dlog2(z/M)e + p dlog2(N/p)e + 2p + o(p) + o(M)

bits. Basically all the space is due to the first four terms, 2N + 5M +
z dlog2(N )e + M dlog2(z/M)e, since p is at least (k − 1) times smaller
than N (in practice, much smaller) and lower-order terms are very small.
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Queries and Double Strandedness. Now we describe how the Lookup
and Access queries are supported. We first consider Lookup. Given a k-mer
g, we compute its minimizer r and its bucket identifier as f (r). Then, we
locate the super-k-mers in its bucket Br by retrieving the corresponding
offsets from Offsets[begin, end), where begin = Sizes[ f (r)] and end =
Sizes[ f (r) + 1]. For every offset t in Offsets[begin, end), we scan the
super-k-mer starting from Strings[t] comparing its k-mers to the query g.
If g is not found, we just return −1. Instead, if g is found in position w in
the super-k-mer, we return the “identifier” i of g as i = t − j(k − 1) +w,
where j < p is the number of strings before the one containing the offset
t (this quantity is computed from the Endpoints array).

Note that, by construction, we cannot compute the length of a super-k-
mer from the Offsets array (at least, not efficiently). That is, the offset t only
indicates that a super-k-mer begins at Strings[t]. So we start comparing the
k-mer at Strings[t] but we do not know exactly after how many symbols
we can stop the search. We could re-compute minimizers from the k-mers
read during the scan of Strings to derive this information but we want to
avoid doing so. In fact, we know that a super-k-mer g′ cannot contain
more than k − m + 1 k-mers unless the same minimizer appears again
somewhere in g′[0, 2k − m). Albeit rare, the latter case is possible and it
is handled as follows. If a super-k-mer is longer than 2k −m symbols, it is
split into blocks of 2k −m symbols (except possibly the last one) and we
just pretend that each block is a distinct super-k-mer. Thus, at query time
it is safe to consider a window of min(2k −m, tend − t) symbols, where
tend ≥ t + k is the successor of the offset t in Endpoints (i.e., tend is the
smallest value in Endpoints that is ≥ t). Capping the window to tend − t

symbols if tend − t < 2k − m is necessary to not falsely consider alien
k-mers that are formed at the boundary between two consecutive strings
in the compact vector Strings.

Summing up, we map a k-mer g to its bucket of super-k-mers in
constant time by issuing, approximately, 4 cache misses: 1 to compute f

since we use the PTHash data structure, 3 for the accesses to Sizes and
Offsets. Then we perform at most end−begin cache misses for the accesses
to Strings, plus an extra access to the Endpoints array. Since the scan of
consecutive symbols is very cache-friendly, a Lookup query essentially
pays the cost of the indicated cache misses.

A detail of crucial importance to discuss is double strandedness. A
k-mer and its reverse complement are considered as identical. This means
that if a k-mer g is not found by the Lookup algorithm, there can still
be the possibility for its reverse complement ĝ to be found in Strings.
Therefore, the actual Lookup routine will first search for g and, only if not
found, will also search for ĝ. This effectively doubles the query time for
Lookup in the worst case. To guarantee that a Lookup will always inspect
one single bucket, we use a different minimizer computation (during both
query and dictionary construction): we select as minimizer the minimum
between the minimizer of g and that of ĝ. In this way, it is guaranteed that
two k-mers being the reverse complements of each other always belong
to the same bucket. This different minimizer selection actually changes
the parsing of super-k-mers from the input during the construction of the
dictionary. We refer to this parsing modality as canonical henceforth, in
contrast to the regular modality we assumed so far. When this modality is
chosen, we expect to see an increase in the number of distinct minimizers
used (on average, the minimizers of g and ĝ have equal probability of
being the minimum one) for a higher space usage, but faster query times.
We will explore the space/time trade-off between the regular and canonical
modalities in Section 5.1.

Lastly, the Access query extracts the k-mer g given its identifier i.
All that is needed is a binary search for i in Endpoints to derive the
offset t corresponding to i. Once the offset t is computed, we return
g = Strings[t , t + k).

It is therefore obvious that the minimizer lengthm controls a space/time
trade-off. Small values of m create fewer and longer super-k-mers, thus
lowering the space for the smaller values of z and M . On the other hand,
m should not be chosen too small to avoid the scan of many super-k-mers
at query time. We will experimentally show the trade-off in Section 5.1.
Next, we take a deeper look at lookup time.

4.2 Skew Hashing

The efficiency of the Lookup query depends on the number of super-k-
mers in the bucket of a minimizer, which we refer to as the “size” of the
bucket. Since a minimizer can appear multiple times in the input strings,
nothing prevents its bucket size to grow unbounded. For example, on the
human genome, the largest bucket size can be as large as 3.6 × 104 for
m = 20 (or even larger for smaller values of m), meaning that a query
inspecting such a bucket would be very slow in practice. To avoid the
burden of these heavy buckets, i.e., to guarantee that a Lookup inspects a
constant number of buckets in the worst case, we exploit another important
property of minimizers: the distribution of the bucket size is (very) skewed
for sufficiently large m. That is, most minimizers appear just once and
relatively few of them repeat many times. Moreover for a fixed value of
n, the distribution of bucket size is essentially independent from a specific
input, rather it depends on k and m. Table 1 shows such distribution for
some useful values of n and k = 31, that is, the percentage of super-k-
mers falling into buckets of size |Br | = 1, 2, 3, . . . (we show the first 5
sizes). The n values in the table mimic the ones used in our experiments
in Section 5. As apparent, for each n, there is a value of m for which
the distribution is very skewed, e.g., most buckets (> 90%) contain just 1
super-k-mer. We want to take advantage of this distribution.

We fix two quantities ` and L, with L > ` ≥ 0. By virtue of the skew
distribution, we have that the number of buckets whose size is larger than
2` is small, as well as the number of k-mers belonging to such buckets.
This allows us to, again, build a minimal perfect hash function to speed up
query processing but only for a small fraction of the total k-mers. For ease
of exposition, in the following we assume that 2L ≤ max, where max is
the largest bucket size (the corner case for 2` ≤ max < 2L is then easy to
obtain).

For ` ≤ i ≤ L, let Si be the set of all the k-mers belonging to buckets
of size {

2i < s ≤ 2i+1 ` ≤ i < L

2L < s ≤ max i = L
.

We build a MPHF fi for each set Si . Now, given a k-mer g ∈ Si , we
know that it belongs to a bucket containing at most 2i+1 super-k-mers.
Therefore, we can store the identifier of the super-k-mer containing g in a
vector, say Pi , of |Si | integers at position fi (g). Importantly, each integer
in Pi requires just i + 1 bits (PL is formed by dlog2 maxe-bit integers).
We point out that, again thanks to the skew distribution, it is very likely to
have |S` | ≥ |S`+1 | ≥ · · · ≥ |SL−1 |. Therefore, for a proper choice of `
and L, we expect this additional skew index component of the dictionary
to take little space, while granting very fast searches.

To make a concrete example, let us consider the human genome and the
skew index with ` = 6 and L = 12. So we form L − ` +1 = 12−6+1 = 7
partitions; each partition is made up of a MPHF and a compact vector.
Each MPHF fi can be tuned to take 2.5 − 3.0 bits/k-mer, whereas we
spend i + 1 bits/k-mer for Pi , i = 6, . . . , 11. As already mentioned,
max = 3.6 × 104 for m = 20, thus we spend dlog2 maxe = 16 bits/k-mer
in the last partition. The crucial point is that we have 0.016% of buckets
that comprise more than 26 super-k-mers, for just 1.86% of the total k-
mers. For this reason, the skew index costs 0.64% of the total dictionary
space (i.e., 0.21 bits/k-mer overall).
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Table 1. Bucket size distribution (%) for k = 31 and some useful values of n,
by varying m.

size / m 11 12 13 14 15 16 17 18 19 20 21

1 16.1 24.0 35.3 51.3 71.6 85.9 92.8 95.6 96.8 97.4 97.7
2 8.7 12.6 15.7 19.7 17.0 10.0 5.2 2.9 2.0 1.6 1.4
3 6.1 8.3 9.4 10.4 5.7 2.2 1.0 0.6 0.5 0.4 0.4
4 4.6 6.0 6.6 6.1 2.3 0.8 0.4 0.3 0.2 0.2 0.2
5 3.8 4.6 5.1 3.7 1.1 0.4 0.2 0.1 0.1 0.1 0.1

(a) n = 0.5 × 109

size / m 11 12 13 14 15 16 17 18 19 20 21

1 13.7 19.8 29.7 42.4 61.5 79.5 89.8 94.4 96.3 97.1 97.5
2 7.5 10.6 14.4 17.7 19.4 13.6 7.3 3.9 2.4 1.7 1.4
3 5.2 7.3 8.8 10.4 8.4 3.7 1.4 0.8 0.5 0.4 0.4
4 4.0 5.5 6.0 7.0 4.1 1.3 0.5 0.3 0.2 0.2 0.2
5 3.2 4.4 4.5 5.0 2.2 0.6 0.3 0.2 0.1 0.1 0.1

(b) n = 1.0 × 109

size / m 11 12 13 14 15 16 17 18 19 20 21

1 11.2 15.6 23.0 33.9 48.2 67.8 83.2 91.3 94.9 96.4 97.1
2 6.1 8.5 12.1 15.3 18.9 18.0 11.4 6.2 3.5 2.3 1.8
3 4.3 5.9 8.1 9.1 10.4 6.7 2.8 1.2 0.7 0.5 0.4
4 3.3 4.5 5.9 6.3 6.5 3.0 1.0 0.4 0.3 0.2 0.2
5 2.7 3.7 4.6 4.8 4.2 1.5 0.5 0.2 0.2 0.1 0.1

(c) n = 2.5 × 109

size / m 11 12 13 14 15 16 17 18 19 20 21

1 8.7 11.2 15.1 23.6 41.4 62.9 78.2 86.9 91.6 94.1 95.4
2 4.8 6.1 8.4 13.5 19.9 19.1 13.7 9.2 6.4 4.7 3.8
3 3.3 4.2 6.0 9.6 11.5 7.7 4.1 2.2 1.3 0.8 0.6
4 2.5 3.3 4.7 7.3 7.2 3.7 1.6 0.8 0.4 0.2 0.1
5 2.1 2.7 3.9 5.9 4.8 2.0 0.8 0.4 0.2 0.1 0.1

(d) n = 5.0 × 109

Using the skew index to accelerate Lookup(g) is simple. As for regular
Lookup, we compute the minimizer r of g and the quantities begin =
Sizes[ f (r)] and end = Sizes[ f (r)+1]. Therefore we know that the bucket of
r has size end−begin ≤ max. Let b = dlog2(end−begin)e. If b ≤ `, then
the bucket is “small” and we proceed as already explained in Section 4.1.
Otherwise we know that g, if present in the dictionary, belongs to some
partition i of the skew index that as per our description above, has MPHF
fi and compact vector Pi (i = b if b ≤ L or i = L otherwise). Thus,
we compute the super-k-mer identifier as q = Pi [ fi (g)] and finally search
for g in the super-k-mer whose offset is Offsets[begin + q]. (Note that if
q ≥ end, then g cannot belong to the dictionary.) In conclusion, although
the skew index performs 2 additional accesses per Lookup, one for fi and
one for Pi , it limits the number of accesses made to Strings to 2` .

(To handle reverse complements, we may have to repeat the process
also for the reverse complement of g, as pointed out previously.)

4.3 Streaming Queries

The Lookup algorithm we have described in the previous section is context-
less, i.e., it does not take advantage of the specific, consecutive, query order
issued by sequence analysis tasks. As already mentioned in Section 1, given
a string P of length |P | ≥ k, we are interested in determining the result of
Lookup for all the k-mers read consecutively from P. We would like to do
it faster than just performing |P | − k + 1 independent lookups. Therefore,
in this section we describe some important optimizations for streaming

lookup queries that work well with the proposed dictionary data structure.
The general idea is to cache some extra information about the result for
the k-mer g = P[i, i + k) to speed up the computation for the next k-mer
in P, say gnx = P[i + 1, i + k + 1).

The algorithm keeps track of the minimizer r of g and the position
j at which the last match was found in Strings, i.e., if g belongs to the
dictionary, then it is located at Strings[j , j + k) for some j. These two
variables make up a state information that is updated during the execution
of the algorithm. Given that consecutive k-mers are likely to share the
same minimizers, we compare r to the minimizer of gnx , say rnx .

• If rnx = r , then we know that gnx belongs to the same bucket Br of
g, thus we avoid recomputing f and spare the accesses to both Sizes
and Offsets. Also, if g was actually found in the dictionary (therefore,
starting at Strings[j]) good chances are that gnx is found at Strings[j+
1]. If so, we refer to the latter matching case as an extension. Intuitively,
if the algorithm “extends” frequently, i.e., most matches in P are
determined by just looking at consecutive k-mers in Strings, then fast
evaluation is retained. If the algorithm does not extend from g to gnx ,
i.e., gnx is not found at Strings[j + 1], then we scan the bucket Br .
Therefore, if present in the dictionary, gnx will be found at some other
position jnx . So we update the state by setting j = jnx .

• If rnx , r , then we proceed as for a regular Lookup query, locating
the new bucket Brnx and searching for gnx . We then set r = rnx .

Of course it can happen that the minimizer r does not belong to the set
of minimizers indexed by the dictionary. Recall from Section 4.1 that we
build the MPHF f for the setM of all the distinct minimizers in the input.
In this case, we are sure that any k-mer g whose minimizer r < M is not
to be found in the dictionary. By definition, however, we are not able to
detect if r < M using the MPHF f . That is, f will still locate a bucket and
all the k-mers in the bucket will have (the same) minimizer different from
r . Therefore, when searching for g, we first compare r with the minimizer
of the first k-mer read in the bucket: if they are different, we know that
r < M and g does not belong to the dictionary. In the case when r < M,
the algorithm still caches the last seen minimizer because if rnx = r then
also rnx < M and gnx cannot belong to the dictionary.

In conclusion, as long as the minimizer is the same, either the algorithm
works locally in the same bucket, or safely skips the computation.

Another convenient information to cache in the state of the algorithm
is the orientation of the last match, that is, whether the last queried k-mer
g was found in the dictionary as g or as its reverse complement ĝ. In
fact, if g was found as g then also gnx is likely to be found as gnx and
extension should be tried in forward direction (say, from lower to higher
offsets in Strings). But if g was found as ĝ, then is more efficient to try
to extend the matching in backward direction, hence effectively iterating
backwards in Strings. In fact, suppose that the whole string P (for ease of
exposition) is present in Strings but in its reverse complement form. Then
the first k-mer g of P will be found as ĝ in last position in the located
“region” of Strings, say at some position j. Any other attempt to extend
the matching in forward direction (from j to j + 1) will then fail and any
subsequent gnx will be searched for by re-scanning the bucket again. That
is, we end up in scanning the bucket for c = |P | − k + 1 times, for at least
O(c2) k-mer comparisons. To prevent this quadratic behavior in case of
reverse complemented patterns, we try to directly extend the matching for
gnx moving from j to j − 1.

Lastly, it is also convenient to optimize the computation of the
minimizers when working on streams. Instead of payingΘ(k−m+1) time
and O(1) space to compute each minimizer, it is possible to spend O(1)
amortized per minimizer and a global working space ofO(k−m+1) using
an adaptation of the best algorithm to solve the sliding window minimum
problem.
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Table 2. Some basic statistics for the datasets used in the experiments, for
k = 31, such as number of: k-mers (n), paths (p), and bases (N ).

Dataset n p N dlog2(N )e

Cod 502,465,200 2,406,681 574,665,630 30
Kestrel 1,150,399,205 682,344 1,170,869,525 31
Human 2,505,445,761 13,014,641 2,895,884,991 32
Bacterial 5,350,807,438 26,449,008 6,144,277,678 33

5 Experiments
In this section we benchmark the proposed dictionary data structure –
which we refer to as SSHash in the following – and compare it against the
indexes reviewed in Section 3. For all our experiments, we fix k to 31 as
used in recent prior work [Almodaresi et al., 2018, Marchet et al., 2021,
Rahman and Medvedev, 2020, Bingmann et al., 2019].

Our implementation of SSHash is written in C++17 and available at
https://github.com/jermp/sshash. For the experiments we report here, the
code was compiled with gcc 11.2.0 under Ubuntu 19.10 (Linux kernel
5.3.0, 64 bits), using the flags -O3 and -march=native. We do not
explicitly use any SIMD instruction in our codebase.

We use a server machine equipped with an Intel i9-9940X processor
(clocked at 3.30 GHz) and 128 GB of RAM. Each processor has two private
levels of cache memory: 2 × 32 KiB of L1 cache (32 KiB for instructions
and 32 KiB for data); 1 MiB for L2 cache. The third level of cache is shared
among all processors and spans≈19 MiB. All cache lines are 64-byte long.

The reported timings were collected using a single core of the
processor. All dictionaries were fully loaded in internal memory before
running the experiments. The SSHash dictionaries were also built entirely
in internal memory.

Datasets. We downloaded some DNA collections (in .fasta format) and
built the compacted de Bruijn graph using the tool BCALM (v2) [Chikhi
et al., 2016], without any k-mer filtering, to extract the maximal unitigs.
We then run the tool UST [Rahman and Medvedev, 2020] to compute the
corresponding path covers. Table 2 reports the basic statistics of the path
covers. In particular we used the DNA of the following organisms.

• Cod: the whole genome of the atlantic cod (Gadus Morhua);
• Kestrel: the whole genome of the common kestrel (Falco Tinnunculus);
• Human: the whole GRCh38 human genome (Homo Sapiens);
• Bacterial: a collection of more than 8000 bacterial genomes

from Almodaresi et al. [2018].

At the code repository https://github.com/jermp/sshash we provide
further instructions on how to download and prepare the datasets for
indexing.

5.1 Tuning

Before comparing SSHash against other dictionaries, we first benchmark
SSHash in isolation to fix a suitable choice form and quantify the impact of
the different parsing modalities (regular vs. canonical) that we introduced
in Section 4.1. Following our discussion in Section 4.2, we use ` = 6 and
L = 12 for all SSHash dictionaries.

To measure query time, we use 106 queries and report the mean
between 5 measurements. For positive lookups, i.e., those for k-mers
present in the dictionary, we sampled uniformly at random 106 k-mers
from each collection and use them as queries. Very importantly, 50%
of them were transformed into their reverse complements to make sure
we benchmark the dictionaries in the most general case. For negative
lookups, we simply use randomly generated k-mer strings. For Access,
we generated 106 integers uniformly at random in the range [0, n) for
each collection and extract the corresponding k-mer strings.

Table 3. Space in bits/k-mer (bpk) and average Lookup time (indicated by
Lkp+ for positive queries; by Lkp− for negative) in ns/k-mer for regular and
canonical SSHash dictionaries by varying minimizer lengthm. For each dataset,
we indicate promising configurations in bold font.

Dataset
m m m m

bpk Lkp+ Lkp− bpk Lkp+ Lkp− bpk Lkp+ Lkp− bpk Lkp+ Lkp−

Cod 15 16 17 18

regular 6.60 1761 1267 6.82 2990 1187 6.98 1594 1158 7.21 1223 1158
canonical 7.68 945 768 7.92 834 690 8.18 786 672 8.47 755 658

Kestrel 16 17 18 19

regular 6.19 1153 1323 6.48 1042 1265 6.79 1005 1245 7.12 997 1240
canonical 7.30 882 781 7.68 790 722 8.09 743 696 8.51 730 691

Human 17 18 19 20

regular 7.44 2197 1668 7.67 1790 1573 7.95 1690 1547 8.28 1471 1530
canonical 8.76 1150 936 9.04 1054 881 9.39 990 854 9.80 958 838

Bacterial 18 19 20 21

regular 7.42 1535 1867 7.80 1425 1813 8.22 1389 1780 8.70 1368 1774
canonical 8.75 1129 1043 9.22 1051 995 9.75 1028 947 10.34 998 956

We first recall that the time for Access (and thus, that of iteration)
does not depend on m nor `. The average Access time is, instead, affected
by the size of the data structure, i.e., by n and p: Access is on average
2 − 3× faster than Lookup since the wanted string is accessed directly,
rather than searched for in the dictionary. Iterating thorough all k-mers
in the dictionary is very fast and even independent from n: on average, it
costs 20 − 22 ns/k-mer. Therefore, for the rest of this section we entirely
focus on lookup time.

With the help of Table 1 at pag. 5 we choose some suitable ranges of
m for the different dataset sizes. The space/time trade-off by varying m in
such ranges, for both regular and canonical parsing modalities, is shown
in Table 3. As we discussed in Section 4.1 and apparent from the table, m
controls a trade-off between dictionary size and lookup time: the smaller
the m value, the more compact the dictionary, but the slower the dictionary
as well (and vice versa). While it is difficult to precisely tell by how much
the space will grow when moving from m to m + 1, we see that the space
grows by ≈ 0.3 − 0.4 bits/k-mer, for both regular and canonical parsing.
The canonical parsing modality costs ≈ 1.0−1.5 bits/k-mer more than the
regular one for the same value of m because more distinct minimizers are
used. However, the canonical version improves lookup time significantly
(especially for negative queries), by a factor of 1.4 − 2.0× on average,
because only one bucket per query is inspected in the worst case rather
than two by the regular modality.

Since we seek for a good balance between dictionary space and lookup
time, in the light of the results reported in Table 3, we choose:

• for Cod and Kestrel: m = 17 with regular parsing; m = 16 with
canonical parsing;

• for Human and Bacterial: m = 20 with regular parsing; m = 19 with
canonical parsing.

The bold font in the table highlights these configurations; in the following,
we assume these values of m are used and omit the indication from the
tables. In general, we observe that a good value for m satisfies 4m > N ,
such as m = dlog4(N )e + 1 or m = dlog4(N )e + 2. In other words, m
should be chosen as to have – at least – as many possible minimizers as
the number of bases in the input.

It is also interesting to report how the space is subdivided into the
different dictionary components. Fig. 1 shows an example of space
breakdown for both regular and canonical dictionaries built from the
Human dataset. Very similar breakdowns are obtained for the other
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Offsets Strings Minim. Skew Index Other

0.2960.2060.407

2.312

5.063

(a) regular – 8.28 total bits/k-mer

Offsets Strings Minim. Skew Index Other

0.3290.3660.434

2.312

5.951

(b) canonical – 9.39 total bits/k-mer

Fig. 1. Space breakdowns for the Human dataset, for both regular (a) and canonical (b)
dictionaries. The numbers above each bar indicate the bits/k-mer spent by the respective
components.

datasets. As expected, the most space-consuming component in the
dictionary is the Offsets component (60 − 61% of the total space). Hence,
any effort to make SSHash more compact should be spent in making this
component more light-weight. In this regard we recall that, because of the
skew distribution of bucket size, most of the offsets’ space is due to buckets
of size 1: hence, Offsets is an array made by integers in the range [0, N )
essentially shuffled at random by the minimizers’ MPHF. Therefore, our
choice of spending dlog2 N e bits per offset is basically optimal for such
distribution. Lastly, the space difference between a regular and a canonical
dictionary almost entirely resides in the Offsets component given that more
minimizers are used, thus realizing a denser sampling.

The second most space-consuming component is Strings (28 − 32%
of the total space), which costs 2N/n bits/k-mer regardless of the parsing
modality. While it could be possible to obtain better compression for
Strings using a compressor for DNA (we only need to sequentially
decompress a super-k-mer at lookup time) [Manzini and Rastero, 2004],
we do not consider this as a promising option to explore given that most of
the dictionary space is spent elsewhere (and given the slowdown in query
processing that would follow). Both the MPHF on the minimizers (Minim.)
and the skew index take a small fraction (6− 8%) of the total space. Other
costs include those for representing the endpoints of the paths (Endpoints
array) and size of the buckets (Sizes array): these costs are small, especially
thanks to the use of the Elias-Fano encoding.

5.2 Comparison Against Other Dictionaries

In this section we compare SSHash against the following state-of-the-art
dictionaries that we briefly reviewed in Section 3:

• dBG-FM [Chikhi et al., 2014] – An implementation of the popular
FM-index [Ferragina and Manzini, 2000] tailored for DNA. This
implementation is widely used as an exact membership data structure
for k-mers [Chikhi et al., 2014, Rahman and Medvedev, 2020], also
in the ABySS assembler [Simpson et al., 2009, Jackman et al., 2017].

Table 4. Dictionary space in total GB and average bits/k-mer (bpk).

Dictionary
Cod Kestrel Human Bacterial

GB bpk GB bpk GB bpk GB bpk

dBG-FM, s = 128 0.22 3.48 0.44 3.07 – – – –
dBG-FM, s = 64 0.27 4.38 0.55 3.86 – – – –
dBG-FM, s = 32 0.39 6.16 0.78 5.43 – – – –

Pufferfish, sparse 1.75 27.80 3.69 25.66 8.87 28.32 18.91 28.28
1.49 23.70 3.37 23.40 7.50 23.96 16.09 24.06

Pufferfish, dense 2.69 42.76 5.97 41.54 14.11 45.04 30.70 45.89
2.43 38.66 5.65 39.28 12.74 40.68 27.88 41.68

Blight, b = 4 0.91 14.53 2.16 15.00 5.04 16.11 11.40 17.04
Blight, b = 2 1.04 16.57 2.45 17.04 5.67 18.12 12.74 19.05
Blight, b = 0 1.17 18.61 2.74 19.06 6.32 20.17 14.12 21.11

SSHash, regular 0.44 6.98 0.93 6.48 2.59 8.28 5.50 8.22
SSHash, canonical 0.50 7.92 1.00 7.30 2.94 9.39 6.17 9.22

We tested the index by sampling one position of the suffix-array every
s positions, for s = 32, 64, 128.

• Pufferfish [Almodaresi et al., 2018] – An index based on minimal
perfect hashing and optimized for streaming membership queries. We
test both the dense and sparse versions of the index. The sparse version
was obtained with parameters s = 9 and e = 4 as used in the original
paper.

• Blight [Marchet et al., 2021] – An associative index also based on
minimal perfect hashing and minimizers. We test the index with
sampling rate b = 0, 2, 4 and minimizer length m = 10 as suggested
in the paper. We recall that a sampling rate of b > 0 reduces the index
space by b bits/k-mer at the expense of query time.

We use the C++ implementations from the respective authors; links to the
respective GitHub libraries are provided in the References. All sources
were compiled using the same compilation flags as used for SSHash.

We first consider the space taken by the different tested dictionaries
and reported in Table 4. The space of SSHash is significantly better than
that of the other approaches based on minimal perfect hashing, roughly:
2−2.5× (or more) better than Blight, and 3−5× better than Pufferfish. This
is so primarily because these approaches build a MPHF for the entire set
of k-mers, hence associate a positional information (e.g., in the reference
genome) to each k-mer in the input. We point out that, unlike for Blight,
this is expected for Pufferfish dense since it was exactly designed for the
purpose of reference mapping. (The shaded rows in Table 4 account for
the space needed by Pufferfish to only support Lookup, i.e., discarding the
color information in its colored de Bruijn graph structure.)

The dBG-FM index is, not surprisingly, the most compact2,
thanks to the compression of the powerful Burrows-Wheeler transform
(BWT) [Burrows and Wheeler, 1994]. While dBG-FM is several times
smaller than Pufferfish and Blight, note that its smallest version tested (for
s = 128) is only essentially 2× smaller than regular SSHash and this gap
diminishes at higher sampling rates. For example, dBG-FM for s = 32 is
only 13 − 17% smaller than regular SSHash. However, SSHash answers
lookup queries much faster than dBG-FM as shown in Table 5. The lookup
timings for dBG-FM reported in the table were collected with the same
methodology used for SSHash (see the beginning of Section 5.1). A lookup
query in the dBG-FM index is implemented as a classic count query on
a FM-index (see the paper by Ferragina and Manzini [2000] for details)
which, for a pattern of length k, generates at least k cache-misses. This cost

2 We were unable to build the index correctly on the larger Human and
Bacterial datasets.

.CC-BY-NC 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted January 18, 2022. ; https://doi.org/10.1101/2022.01.15.476199doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.15.476199
http://creativecommons.org/licenses/by-nc/4.0/


8 G. E. Pibiri

Table 5. Average Lookup time in ns/k-mer for SSHash and the dBG-FM index.

Dictionary
Cod Kestrel

Lkp+ Lkp− Lkp+ Lkp−

dBG-FM, s = 128 22,980 16,501 23,934 16,764
dBG-FM, s = 64 15,013 10,919 15,929 11,462
dBG-FM, s = 32 11,386 7929 11,703 8073

SSHash, regular 1594 1158 1042 1265
SSHash, canonical 834 690 882 781

is even higher for the handling of reverse complements that may induce
two distinct count queries.

We also point out that the dBG-FM index needs to build the BWT of
the input prior to indexing. This step can be very time consuming for large
collections such as the ones of practical interest. That is, another important
advantage of schemes based on minimal perfect hashing compared to
BWT-based indexes is that they require significantly less time to build.
In this regard, we report that the construction time of SSHash, using
a single processing thread, is very competitive with that of Pufferfish
and Blight. For example, Blight takes 25 minutes to index the Human
dataset with a single core, whereas SSHash takes just 13 minutes. However
we remark that the construction of SSHash is not yet optimized to use
multi-threading nor external memory. For this reason we do not explicitly
compare construction times in this version of the work.

We now consider streaming membership queries to compare SSHash’s
query time to that of Pufferfish and Blight. Pufferfish and Blight are
optimized to answer these kind of stateful queries, as exposed by their
public software API. To query the dictionaries, we use some reads (in
.fastq format) downloaded from the European Nucleotide Archive (ENA),
and related to each dataset:

• for Cod: run accession SRR12858649 with 2,041,092 reads, each of
length 110 bases;

• for Kestrel: run accession SRR11449743 with 14,647,106 reads, each
of length 125 bases;

• for Human: run accession SRR5833294 with 34,129,891 reads, each
of length 76 bases;

• for Bacterial: run accession SRR5901135 with 4,628,576 reads of
variable length (a sequencing run of Escherichia Coli).

All dictionaries are fully loaded into memory before running the queries.
We lookup for every k-mer read in sequence from the query files, adopting
the same benchmark methodology used in both Pufferfish’sand Blight’s
papers. For the Human and Bacterial datasets we also use the same reads
as query files. For all the indexes, we just count the number of returned
results rather than saving them to a vector. The result is reported in Table 6.

In general terms, we see that SSHash is either comparable to or faster
(by 2 − 3×) than Pufferfish and Blight. This holds true for both high-hit
workloads (> 70% hits, i.e., k-mers present in the dictionary) and low-hit
workloads (< 1% hits). It is important to benchmark the dictionaries under
these two different query scenarios as both situations are meaningful in
practice. (In our experiments, low-hit workloads are obtained by querying
the dictionaries using a different query file as indicated in Table 6.) Indeed,
observe that while Pufferfish’s performance is robust under both scenarios,
Blight’s query time significantly degrades when most queries are negative,
especially for b > 0. Also regular SSHash is almost 2× slower for low-hit
workloads compared to high-hit workloads. This is expected, however,
because almost all queries are exhaustively inspecting two buckets per k-
mer as we explained in Section 4.1. Note that its performance is anyway
better than Blight’s and not much worse than Pufferfish’s (dense variant).

Table 6. Query time for streaming membership queries for various dictionaries.
The query time is reported as total time in minutes (tot), and average ns/k-mer
(avg). We also indicate the query file (SRR number) and the percentage of hits.
Both high-hit (> 70% hits) and low-hit (< 1% hits) workloads are considered.

Dictionary

Cod Kestrel Human Bacterial

SRR12858649 SRR11449743 SRR5833294 SRR5901135

81.37% hits 74.60% hits 91.65% hits 87.79% hits

tot avg tot avg tot avg tot avg

Pufferfish, sparse 0.6 214 14.1 609 17.0 651 9.1 691
Pufferfish, dense 0.2 92 8.5 368 10.5 402 5.3 404

Blight, b = 4 2.1 766 32.5 1400 27.3 1041 11.4 864
Blight, b = 2 1.2 453 16.6 714 17.5 670 8.6 648
Blight, b = 0 0.8 282 10.8 464 11.5 440 5.8 434

SSHash, regular 0.5 166 6.2 267 8.2 311 3.0 223
SSHash, canonical 0.3 111 5.1 219 6.7 253 2.4 184

(a) high-hit workload

Dictionary

Cod Kestrel Human Bacterial

SRR11449743 SRR12858649 SRR5901135 SRR5833294

0.659% hits 0.484% hits 0.002% hits 0.086% hits

tot avg tot avg tot avg tot avg

Pufferfish, sparse 14.6 627 0.9 312 11.3 855 25.5 975
Pufferfish, dense 8.7 374 0.2 92 5.8 435 13.6 518

Blight, b = 4 72.2 3112 6.6 2407 35.7 2704 253.2 9675
Blight, b = 2 45.9 1978 3.0 1115 19.1 1445 117.7 4498
Blight, b = 0 18.1 780 1.8 655 14.4 1088 32.2 1232

SSHash, regular 10.7 463 0.9 314 6.2 463 14.3 544
SSHash, canonical 5.1 220 0.4 155 2.5 183 6.4 244

(b) low-hit workload

The canonical version of SSHash protects against this behavior in case of
low-hit workload and, in fact, is generally the fastest dictionary.

Another meaningful point to mention is that SSHash does not allocate
extra memory at query time, i.e., only the memory of the index – as reported
in Table 4 – is retained (the memory for the state information maintained
by the streaming algorithm described in Section 4.3 is constant). Pufferfish
also does not allocate extra memory. Blight, instead, consumes more
memory at query time than that required by its index layout on disk. For
example, to perform the queries on the Human dataset in Table 6a, Blight
with b = 0 uses a maximum resident set size of 7.51 GB compared to
the 6.32 GB taken by its index on disk (23.98 vs. 20.17 bits/k-mer). This
effect is even accentuated for higher b values.

6 Conclusions and Future Work
We have studied the compressed dictionary problem for k-mers and
proposed a solution, SSHash, based on a careful orchestration of minimal
perfect hashing and compact encodings. In particular, SSHash is an
exact and associative k-mer dictionary designed to deliver good practical
performance. From a technical perspective, SSHash exploits the sparseness
and the skew distribution of k-mer minimizers to achieve compact space,
while allowing fast lookup queries.

We tested SSHash on collections of billions of k-mers and compared it
against other indexes, under different query workloads (high- vs. low- hit)
and modalities (random vs. streaming). Our implementation of SSHash is
written in C++ and open source.
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Compared to BWT-based indexes (like the dBG-FM index), SSHash is
more than one order of magnitudes faster at lookup for only 2× larger space
on average. Compared to prior schemes based on minimal perfect hashing
(like Pufferfish and Blight), SSHash is significantly more compact (2 −
5× depending on the configuration) without sacrificing query efficiency.
Indeed, SSHash is also the fastest dictionary for streaming membership
queries. For these reasons we believe that SSHash embodies a superior
space/time trade-off for the problem tackled in this work.

Several avenues for future work are possible. We mention some
promising ones. First, we will engineer the dictionary construction to
use multi-threading and external memory. Parallel query processing is
also interesting; since SSHash is a read-only data structure, its queries
are amenable to parallelism. We could also add support for other types
of queries, such as navigational queries [Chikhi et al., 2014]. Another
promising direction could adapt the SSHash data structure to also store
the abundances of k-mers, which is a separate but related problem in
the literature [Shibuya et al., 2021, Italiano et al., 2021]. Based on the
observation that consecutive k-mers tend to have the same or very similar
abundance [Italiano et al., 2021], we expect to add a small extra space to
SSHash to store this information. In this paper we focused on minimizers
for their simplicity and practical efficiency but one could also explore the
effects of replacing the minimizers with other types of string sampling
mechanisms [Loukides and Pissis, 2021, Sahlin, 2021]. Lastly, we also
plan to study the approximate version of the dictioanary problem where it
is allowed to tolerate a prescribed false positive rate.
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