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and use the Earth Mover’s Distance, EMD 59,60, to measure the difference between the two 

distributions.  

 

Figure 8. Transforming continuous analogue signals to digital spikes: micro-movement spikes MMS. (A) 

Sample electroencephalographic signal from one channel, zooming into one segment. Sweeping through 

the signal, windows of 5 seconds with 50% overlap are taken to scale each peak value deviated from the 

empirically estimated mean (μV). (B) To that end, for each participant, the original peaks are used to 

empirically estimate the mean amplitude across the session, and obtain, for each point in the time series, 

the absolute deviation from the empirically estimated mean. This series of fluctuations are then used to 

scale out possible allometric effects from e.g., anatomical head differences, using equation 1 in the 

methods. As in the inset, each peak in the segment (segment maximum) is surrounded by points between 

segment minima. Equation 1 is used to obtain the unitless, standardized MMS. (C) The resulting unitless 

quantity is plotted as a series of MMS for two sample states in some window of blocks 1 and 8. (D) The 

peaks (red dots) are gathered into a frequency histogram to obtain the difference, from window to 

window (block by block), using the earth movers’ distance, a similarity metric used in transport problems. 

We then obtain the amount of effort that it takes to transform one frequency histogram into the other. (E) 

Using maximum likelihood estimation (MLE) the best continuous family of probability distributions 

fitting each histogram is obtained. In this case, the shape and scale parameters of the continuous Gamma 

family are estimated for different states of the stochastic process (explained below), as they transition 

from random noise to predictive signal, increasing the signal to noise ratio of the MMS. 
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Figure 9. Pipeline of network connectivity analyses to select hubs for stochastic analyses. (A) The 

electroencephalographic (EEG) activities from twenty channels and approximately ½ hour is sampled at 

256Hz. (B) Two sample leads are used to instantiate the analyses. The pairwise cross-coherence is 

obtained. (C) For each pair, the maximal cross-coherence is obtained, with corresponding phase and 

frequency values at which the maximum is attained. These build three 20x20 matrices to parameterize 

(for each window and across each block of the session) the activity and build adjacency matrices (using 

the maximal cross-coherence matrix.) (D) The maximum clustering coefficient in each window is 

obtained, here represented in schematic form for Blocks 1 and 8 (using windows 19 and 5 for visualization 

purposes.) (E) The MMS are obtained, and the frequency histograms (as in Figure 8) used to obtain, 

pairwise, the EMD matrix. 

 Cross-Coherence Analyses and Network representation 

The cross-coherence between two times series (assumed to be the realizations of unknown 

stochastic processes) is defined as the cross-spectral density between the two series 

normalized by the product of their auto-spectral densities 61. We use cross-coherence to 

quantify the similarity between the MMS series of any two leads in the frequency domain 

(e.g., two leads in Figure 9A and their original waveforms in Figure 9B are used to explain 

the analytical pipeline.) The frequency histograms are shown in Figure 8D for two different 

blocks and different windows. Each window comprises the MMS derived from 5 seconds 

worth of data sampled at 256Hz. The PDFs thus estimated are shown for the windows and 

Blocks 1 and 8 in Figure 8D. Mean frequency of a spectrogram 𝑃(𝑓) is calculated as: 

𝑓𝑚𝑒𝑎𝑛 =
∑ 𝑓𝑗𝑃𝑗     

𝑁

𝑗=1

∑ 𝑃𝑗     
𝑁

𝑗=1

  (2) 
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Where  𝑓𝑗 is the central frequency of the j-th bin of the spectrum and 𝑃𝑗 the corresponding 

value of the power spectral density. N is the total number of bins 62.    

Upon pairwise comparison, we then identify the frequency for which the cross-coherence 

function is maximized. Figure 9C shows the three 20x20 matrices that serve as a 

parameterization of the signals. These include the maximal cross-coherence matrix, the phase 

matrix with each entry representing the value of the phase (or of the frequency, respectively) 

at the maximum cross-coherence value.  

 

Figure 10. Stochastic analyses of the MMS derived from hub’s activities. (A) Upon determination of the 

hubs (taken window by window and block by block, across the session, the MMS of the hub lead is 

obtained and MLE used to determine the parameters of the best continuous family of probability 

distribution functions (PDFs) describing the MMS. In this case the Gamma family. The Gamma shape 

and scale parameters thus estimated, are then plotted with 95% confidence intervals, on the Gamma 

parameter plane. Window by window, and block by block, these stochastic shifts are tracked as a 

trajectory, whereby the magnitude of the shift and its direction are obtained. Figure shows examples of 

the trajectory points obtained across 5-second-long windows for blocks 1 and 8. Colors represent arbitrary 

order. (B) The log-log Gamma parameter plane is obtained to track points according to the quadrants 

spanned by the median shape and median scale, taken across each block. The Right Lower Quadrant RLQ 

contrasts with the Left Upper Quadrant LUQ. These have empirical interpretation. (C) The Gamma 

moments are obtained (see methods) to visualize the points in (B) on a parameter space whereby the 

Gamma mean is represented along x-axis, the variance along the y-axis, the skewness along the z-axis and 

the size of the marker is proportional to the kurtosis. The color corresponds to the direction of the shift, 

where the point lands, red is from the LUQ to the RLQ, or from the RLQ to itself, whereas blue is from 

the RLQ to the LUQ, or from the LUQ to itself. (D) Empirical interpretation of the Gamma plane and the 

quadrants. Along the shape axis, the distributions change from the shape a=1 memoryless exponential to 

the Gaussian range, with skewed distributions with heavy tails in between. Empirically, exponential 

regimes are associated with immature systems, early learning in infancy and disorders or the nervous 

systems, if the noise to signal ratio (scale) is high. Gaussian-like regimes are associated with predictive 

codes, athletes or dancer’s expertise and maturity. Skewed distributions are present across maturational 

stages and typical learning. Along the scale axis, high values represent high noise to signal ratio (see text) 
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which is found in neuropathy, autism, Parkinson’s disease, schizophrenia, and other disorders with 

specificity determined by levels of control (voluntary, involuntary, autonomic, spontaneous.) (E)  The 

EMD is used to track the magnitude of the shift from PDF to PDF, while the direction is tracked by the 

quadrant landing. This curve represents the evolution of the stochastic process and serves to determine 

e.g., critical points of transitions for each block of the session. 

The maximal cross-coherence matrix is used as an adjacency matrix to build a weighted 

undirected graph representation of a network. Network connectivity analyses then are used to 

obtain the maximum clustering coefficient representing the hub within each window of activity 

in a block. Then, the block-by-block activity is tracked in the hubs. For each hub (represented in 

Figure 9D shifting from Block 1 to 8) we obtain the MMS (Figure 9E) and follow with the 

computation of the frequency histogram and EMD metric (as explained in Figure 8). These are 

used to empirically estimate the stochastic process described below 63. 

Empirical Statistical Estimation  

The normalized peaks from the MMS are used to plot a frequency histogram (e.g., Figure 9F) for 

each window within a block and across blocks in each session. We then fit a PDF using MLE (e.g., 

Figure 8D). This is done through the estimation of the Gamma (a) shape and (b) scale parameters 

of the continuous Gamma family of probability distributions. The Gamma family choice comes 

as a result from MLE, whereby it has been found to be the optimal means of representing MMS 

derived from human biorhythmic data 64,65. This has been the case in voluntary motions, in 

spontaneous motions, in involuntary motions, and in autonomic motions  65 derived from EEG 
37,63,66, ECG 30,31, kinematics parameters 9,25,67 and genes expression 68,69. 

The plane spanned by the shape and the scale parameters of each Gamma PDF derived from the 

MMS in each window, are then plotted with 95% confidence intervals as points along a trajectory, 

on the Gamma parameter plane. For example, Figure 10A shows the progression of such points 

(block 1 on the top panel and block 8 on the bottom panel.) Different colors represent different 

order, such that within a block, a distribution with high shape value (symmetric) and low scale 

value (low NSR) may shift to a location with low shape value (towards the memoryless 

exponential regime) and high scale value (towards noisy regimes.) Likewise, from block to block, 

these transitions occur in random order. To track the stochastic behavior of the trajectory and 

characterize the transitions, we quantify the amplitude of the change and its direction. First, we 

take the median of the shape values and the median of the scale values and draw a line across 

each axis, to break the Gamma parameter plane into quadrants. On a log-log scale, we then plot 

the points and divide them into those in the Right Lower Quadrant (RLQ) and those in the Left 

Upper Quadrant (LUQ) as in 22. This division is also tracked on the Gamma moments space of 

Figure 10C, where we project the points of the Gamma parameter plane as the estimated moments 

of the distribution and show their corresponding shifts on this parameter space. This 

visualization has empirical interpretability from having characterized thousands of participants 

across the human lifespan and across diseases and disorders of the nervous systems. This 

empirical interpretation is shown on panel 10D. Here we see that along the shape axis, 

distributions shift from the memoryless exponential to distributions with heavy tails, to 

symmetric distributions. Along the scale axis, we move from low NSR, to high NSR. Because 

there is a tight linear fit to the log-log scatter, knowing the shape, we can then infer the scale (and 

vice versa.) As such, we reduce the number of parameters of interest to one, as we can use one of 
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the Gamma parameters to make inferences about the state of the process. As the stochastic 

signatures shift from moment to moment, we can track both the direction and the magnitude of 

the shift. To track the direction, we use the quadrant’s location. To track the magnitude of the 

shift, we use the EMD as a similarity metric (proper distance metric) that informs us of the amount 

of “work” that it takes to change one frequency histogram into the other 70, as we track window 

by window, the activity of the hubs within a block. This metric approach enables us to probe 

multiple directions of change (owing to variable stimuli) and select the direction which causes 

the maximal change at each step (i.e., if we were to move along a desirable target-driven gradient 

of an objective function as in 39 in the case of error correction, or just explore without a desired 

target.) 

 

The general formula for the PDF of the gamma distribution is shown below (equation 3), where 

a is the shape parameter and b is the scale parameter.  

( )
( )

11
x

a b
a

f x x e
a b

−
−=


  (3) 

The moments (μ, σ, skewness, kurtosis) are a b , 2a b , 2
a

, 6
k

respectively. For this reason, 

2a b
NSR b

a b






= = =


is the scale which we track as part of the evolution of the stochastic signatures. 

Figure 10E shows the rate of change of these transitions within block 1 (left) and block 8 (right.) 

The color of the dot represents the landing direction of the stochastic shift (from LUQ to RLQ, 

red, or from RLQ to LUQ, blue; they also represent landing on the same quadrant, red is for RLQ 

to RLQ and blue for LUQ to LUQ, but we could also carve out these cases separately to assess 

stationarity per unit time in each quadrant) while the EMD (y-axis) represents the magnitude of 

the shift. Following our empirical interpretation panel 11D, when the points are primarily red, 

the distributions are skewed to symmetric (towards the Gaussian range of the Gamma family.) 

When the points are primarily blue, the distributions are skewed to memoryless random (with 

a=1 at the memoryless exponential limit.) In the former case, the signal to noise ratio (1/b) is higher 

and the process more predictive. In contrast, at the other extreme, the process is memoryless, 

more random and with lower SNR. It is possible to track this evolution for each participant, across 

trials of a block, or across blocks of a session, i.e., locally and / or globally. Figure 11 shows the 

global analyses used in Figure 7, further discussed in the Supplementary Figures 1-3. 
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Figure 11. Global analyses by pooling the MMS across trials and blocks (A) and taking 5-second-long windows with 

50% overlap (B) to obtain frequency histograms that can be compared using the EMD metric (C). (D) Sweeping 

through the full trajectory of a condition gives the EMD sequence to obtain the peaks in red and gather them into a 

frequency histogram tracking the fluctuations in amplitude of the EMD variation (i.e., how the distribution change 

shape and dispersion) and the rate at which these changes occur as the inter peak interval intervals measuring the 

distances as well across peaks representing the PDF transitions. These histograms are used in MLE estimation of the 

distribution parameters best describing this global process. 
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