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Note 1. Dataset selection

List of keywords used for pride dataset selection. Immunoprecipitation,

Immunopeptidome, Peptidomics, Affinity purification, Mhc, Peptidome, Hla,

Immunopeptidomics, Mhc class i, Ip, Hla peptidome, Hla-b*27, Hla class ii, Neoantigens,

Immunoinformatics, Hla-c, Mhc class 1 ligands, Proteogenomic cryptic mhc lc-msms maps,

Mhc class i antigen presentation pathway, Mhc-i peptides, Mhc i, Immunopeptidome; hla;

lc-ms/ms; netmhcpan; binding prediction, Mhc ii, Mhc-i peptide-loading complex, Mhc affinity

prediction, Mhc-ii peptidomics, Mhc ligandome, Mhc i-associated peptides, Mhc-i, Mhc class

ii, Antigen presentation/ mhc class ii/ immunopeptidome/ peptide editing/ polymorphism,

Mhc-i peptidomics, Shotgun proteomics; immunoprecipitation; meiosis; conserved proteins;

meioc; , Anti-hla immunopurification, Immunopeptidome; hla; lc-ms/ms; netmhcpan; binding

prediction, Personalized immunotherapy, Immunoprecipation, Immunoprecipiation,

Immunoaffinity purification, Immunoprepicipitations, Immunopurification, Antigen

presentation/ mhc class ii/ immunopeptidome/ peptide editing/ polymorphism, Hla-ii, Hla

peptides, Hla-e, Hla-b*51, Hla class i peptides, Ducaf; hla-drb1*03:01, Hla typing, Hla-g, 'Hla

class ι ligandome; hla class ι peptide ligands; high ph reversed phase; strong cation

exchange; pre-fractionation', Hla-b40, Hla binding motifs, Hla-dm, Hla-b27,

Immunopeptidome; hla; lc-ms/ms; netmhcpan; binding prediction, Hla-b*58:01, Hla-b*40:02

peptidome, Hla-dr peptides, Hla-dr, Hla-a, Hla-b57, Hla class i, Hla-i, Hla-a2, Hla-b,

Interferon gamma; proteomic analysis; hla class i;  apm, Hla-i peptides, Hla-ligand,

Hla-b*57:03, Hla-ligandomics, Hla-a*29:02, Hla-dr15, Hla-class i, Hla-restricted peptide



Note 2. Dataset processing

We chose to work with Data-dependent acquisition (DDA) datasets, which were most

abundant in the literature. In DDA, the instrument cycles through first a short MS survey

scan (MS1) of currently n eluting ionized peptides (10 or 20 most intense precursor masses)

and a series of n (~10) MS/MS scans (MS2)1.

Computational methods are used to match the MS2 spectra to an amino-acid sequence2 in a

process called peptide-spectrum matching (PSM)3. Closed-search, Open-Search and de

novo sequencing are three main philosophies for carrying out this assignment and each one

varies on the assumptions made about the contents of the sample. We chose one algorithm

from each of these flavours of PSM assignment: MSFragger4, MS-GF+5 and deepNovov26 in

order to broadly cover the spectra in all 486 samples.

Closed search (Supplementary Fig. 1a) is the most conservative strategy and assumes the

peptides from the sample are derived from a specific set of reference protein sequences

known as the search database. This set of sequences typically comprises a reference

proteome, but can be augmented to include the various mutations identified through

genomics and transcriptomics profiling. In closed search, an alignment attempt is made to

identify peptides to the search database allowing a limited number of post-translational

modifications, which must be specified a priori. In comparison, Open search

(Supplementary Fig. 1b) is a less conservative strategy allowing the identification of

peptides more distantly related to those in the search database. MSFragger4 can identify

post-translational modifications and single amino-acid variations (SAAVs) of the search

database derived peptides by increasing the mass tolerance of the precursor ion tolerance.

Contrasting these database search methods is de novo sequencing (Supplementary Fig.

1c), which assumes nothing about the sequences present in the sample and tries to derive

them from a first-principles analysis of the MS2 spectra7–9.

Each strategy when applied alone suffers from a set of limitations. For instance, a closed

search strategy5 matches MS2 spectra against peptides derived from the protein database

and is the most widely adopted approach. However, it fails to detect even the most

widespread modification known to exist on proteins, unless specifically included into the

parameterization which leads to an exponential increase in computational time. An open

search strategy4 increases the amount of information that can be extracted by considering



multiple post translational modifications (PTMs), by searching for peptides that exhibit a

mass-shift away from the reference proteome. The source of the deviation can then be

localized and attributed to mutations or post-translational modifications. It has not been

widely adopted by the community due to two major bottlenecks previously unaddressed.

Firstly, a reduced search speed that has been fixed by MSFragger4, and secondly, a lack of

algorithm for post-processing resolved not long ago10–12. Many samples lacked genomics

data, so we present open-search results as a resource, but we note that there are significant

caveats for mutant detection13,14. Likewise, de novo sequencing6,7 which attempts to directly

sequence the MS2 spectrum, hasn’t been embraced due to lack of interpretability, quality

control and post-processing algorithms. We addressed this issue by developing a strategy

consisting of a sequential mapping to the reference, multiple filtering steps for accuracy

control along with quality control checkpoints. These three philosophies of peptide-spectrum

matching have never been combined in a single analysis data due to the lack of scalable

pipelines and computational infrastructures. Used together, these 3 strategies deal with the

remaining unexplained high quality MS/MS spectra. We have now developed a pipeline for

the comprehensive characterization of antigens presented at the cell surface using this

combination of algorithms.



Note 3. Post translational modifications due to

sample preparation or common chemical

derivatives

Some PTMs are confirmatory, representing chemical modification from sample-preparation

methods or are common chemical derivatives. For example, Cysteine

carbamidomethylation is due to a reaction with iodoacetamide, used to block cysteine from

oxidation. Nine out of the 26 studies used iodoacetamide in their lysis buffer. Interestingly,

only one study (PXD006939) considered carbamidomethylation as a variable modification.

This excludes a substantial fraction of cysteine containing peptides and should be

addressed. Upon inclusion in our study we managed to recover 27453 spectra matching

3397 unique peptides to these modifications. Other PTMs like Methionine (M) oxidation

(single most abundant PTM) and dioxidation (methionine sulfone) could be explained as

chemical derivatives. Interestingly, methionine sulfone has been found to occur in-vivo in

Proteus mirabilis15, a gram negative bacteria present in malignant cancers16. Although, it can

result from the use of a strong oxidizing agent17. We also see PTMs that are extremely

common on proteins such as Protein N-terminal acetylation which has different effects on

proteins such as half-life time, folding properties and interactions.

Other mass shifts seen frequently remained unexplained after the open search annotation

step. Particularly, a deviation of -128.1 to -128.08 Dalton on Lysine was detected over 6000

times. In most cases, it was located on the first 2 or last 2 amino acids within peptides (cf.

illustration below). After further quality control, It proved to be an open-search identification

introduced by non-specific cleavage. This was revealed by the open search post processing

algorithm (PTMiner10) that we use. PTMiner, checks for mass shifts introduced by in-source

fragmentation, nonspecific digestion or missed cleavages. It adds/deletes amino acids one

by one (up to 5) from peptide N- or C-termini and checks the altered mass shift. Since Lys

mono isotopic mass is 128.09496 Da, open search assigns a sequence with an additional

Lys and assigns it’s equivalent negative monoisotopic mass as a mass shift. Hence, when

using open search in combination with non-specific cleavage (in the case of

immunopeptidomics) one should correct for mass-shift introduced by non-specific digestion



parameters. For this reason, these mass shifts should not be considered biologically

relevant. The same applies for the unexplained mass shifts below:

● (113.08, 113.1] (P): non-specific digestion explained by an addition of I/L

● (99.06, 99.08] (P): non-specific digestion explained by an addition of V

● (-101.06, -101.04] (T): non-specific digestion explained by a loss of T

● (-128.06, -128.04] (Q): non-specific digestion explained by a loss of Q

● (-128.1, -128.08] (K): non-specific digestion explained by a loss of K

● (-129.06, -129.04] (E): non-specific digestion explained by a loss of E

● (-147.08, -147.06] (F): non-specific digestion explained by a loss of F

Illustration

Illustration: -128.1 to -128.08 Dalton mass shift localization Illustration. Different peptide lengths are
presented on the Y-axis versus the mass shift location within the peptides on the X-axis. The colors
scale represents the percentage of each location within the peptide. The horizontal bar plot shows the
number of peptides for different sequence lengths.



Note 4. Deconvolution of HLA haplotypes

Peptide pairwise distance metric
We used a standard distance metric derived from phylogenetics to measure the distance

between any two peptides. Assumptions of protein evolution models are supposed to closely

match the evolutionary process to provide accurate phylogenetic estimates. The most widely

used models of protein evolution assume evolution to be independent across sites and

reversible according to a Markov model that relies on an instantaneous rate matrix Q. For

any given alignment between two peptides, sites were treated independently and the

likelihood of the exchange between the i’th and j’th amino-acid at each site was calculated

as they would have been estimating exchanges across a branch in a phylogenetic tree:

where t was set to unity (t = 1) reflecting the absence of a branch length.𝑝
𝑖𝑗

=  𝑒𝑥𝑝(𝑄
𝑖𝑗

 ×  𝑡)

Q can be decomposed into a set of stationary frequencies Pi_i for the model as well as a

symmetric substitution matrix S. In short, . Pji represents the stationary or𝑄
𝑖𝑗

 =  𝑆
𝑖𝑗

× 𝑃
𝑖𝑗

equilibrium amino acid frequency of each amino acid i that would arise at any site k if the

Markov process were left evolving for a sufficiently long period of time. We chose the LG

model18 as the basis for our pairwise score function. The model specifies both S and Pi and

was downloaded from the authors’ website

(http://www.atgc-montpellier.fr/download/datasets/models/lg_LG.PAML.txt). We adjusted the

stationary frequencies of the model to reflect the sample-specific amino-acid frequencies in

the immuno-peptidome being studied. This adapts the standard evolutionary model to the

patient-specific intricacies of the amino-acids presented by patient-specific haplotypes

without having to know the MHC haplotype of the patient. Diagonal entries are obtained as

the minus sum of the off-diagonals for the row and are thus proportional to the rate at which

changes leave state i. To ensure that the interpretation of an edge length is the expected

number of substitutions along that edge, Q is then rescaled so that .− Σ(𝑃
𝑖𝑖

 × 𝑄
𝑖𝑖

 ) =  1

When comparing two peptides, a sliding window approach was used to identify the linear

alignment with highest probability arising by multiplying the likelihoods for each amino-acid

exchanged between the aligned sequences. Peptides could technically share the same two

anchor points but have different numbers of amino-acids between these anchors. Others

have considered these peptides to share the same motif19. However, we have deliberately

http://www.atgc-montpellier.fr/download/datasets/models/lg_LG.PAML.txt


chosen to define these different spacings as different motifs by disallowing gaps. We think

this is important, as they would necessarily fit differently into the binding groove, and these

differences may prove valuable later in understanding immunogenicity. Pairwise scores were

calculated between each pair of peptides to create a patient-specific scores matrix.

𝑆𝑐𝑜𝑟𝑒 =  𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 +  ( 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 −  𝐵𝑒𝑠𝑡 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒) × 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦

With ,𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =  Π
1
𝑘𝑒𝑥𝑝(𝑄

𝑖𝑗
)

and𝐵𝑒𝑠𝑡 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =  𝑚𝑖𝑛( Π
1
𝑘𝑒𝑥𝑝(𝑄

𝑖𝑖
),  Π

1
𝑘𝑒𝑥𝑝(𝑄
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 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑛𝑔𝑒𝑟 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
𝑆ℎ𝑜𝑟𝑡𝑒𝑟 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

where, k is the length of the shorter peptide, Q is the substitution matrix, and ij are the amino

acids at a certain position of the first and second peptide respectively.

Peptide Clustering to identify motifs

A UMAP20 manifold was applied separately to each sample pairwise matrix and clusters of

peptides were labeled using Hierarchical Density-Based Spatial Clustering 21 (HDBSCAN).

For each cluster, all peptides of the same length were grouped and all amino acid

frequencies for all positions were computed. Then an euclidean distance per position was

derived (with i being𝐸
𝑖

=
𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠

∑ (𝑓𝑜𝑟𝑔𝑟𝑜𝑢𝑛𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
𝑖

−  𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
𝑖
)2

the position). At least 2 positions with euclidean distances greater than or equal to 0.5 and

0.3 in addition to 20 peptides were required to generate a position specific weight matrix

(PSWM). Motifs were generated using logomaker version 0.8 22 as a visualization of the

PSWM matrices and scatter plots were generated using matplotlib 23.

Clustering of motifs between samples and HLA-type inference

Assessing sets of mutations from cancer-relevant hotspots (focal neoantigens) that intersect

with highly immune-visible regions (public) in the genome requires association between

antigens and HLA haplotypes. Taking into account that 82.5% of the identified high quality

motifs within these regions lacked HLA typing information, motif comparison to deconvolute

HLA-types was carried out by PSWM pairwise alignment using matalign-v4a24, UMAP

transformation and HDBSCAN clustering. Clusters consisted of highly similar motifs coming

from different samples with known mono allelic HLA types (fully labeled), known poly allelic

samples (semi-labeled) and unknown HLA types (unlabeled). HLA type deconvolution was

done at the motif-level. Motifs coming from poly allelic samples were inferred by matching

the closest mono allelic motif within the same cluster. HLA types of Unlabeled motifs coming



from samples with missing HLA typing information were inferred by choosing the closest

mono allelic motif within the same cluster.

Denovo peptide motif similarity

PSWM representations are useful to score the similarity between motifs (pattern) and any

biological sequence (immunopeptides) having the same length as the matrix. Hence, we

scored both denovo exonic and denovo cryptic immunopeptides against the set of all motifs

(6993 PSWMs from all 429 samples). Fig. 3i shows the normalized scores (the higher the

score, the better the similarity) of denovo exonic and denovo cryptic sequences against all

motifs. Both exonic and cryptic showed a skew towards higher scores reflecting a high

similarity to HLA class I binding motif patterns. We already expected the denovo exonic

peptides to show a high similarity to the set of HLA motifs knowing that they were used to

generate the motifs themselves. However, a high similarity of denovo cryptic peptides

indicates a biological relevance/binding potential of these peptides to the HLA class I

system. Moreover, denovo exonic and denovo cryptic showed a 86% score distribution

similarity (shared AUC) confirming, once again, that the identified cryptic peptides are of high

quality HLA binders.



Illustration

Illustration: a) Hierarchical Density-based Spatial Clustering of Applications with Noise (HDBSCAN)
scatter plot after UMAP projection capturing the similarity between 6993 PSWMs (matrix
representation of a motif) and assigning them into motif cluster represented by the contour lines. b)
Motif clustering visualization with motifStack25 showing the HLA anchor sites similarity. c) median
number of HLA molecules for focal neoantigen regions (GICs) falling in the given population coverage
percentage bins. As the population coverage increases the median number of HLA molecules per GIC
increases as well. Hence, the triple correlation between MHC peptides expression, population
coverage and number of HLA molecules per GIC infers that MHC expression and population
coverage are correlated due to HLA cross-presentation.



Note 5. A score for vaccine potential

We developed a vaccine potential score for a focal region that balances recurrence in cancer

with additive penetrance .𝑣𝑎𝑐𝑐𝑖𝑛𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =  
𝑖

50

∑(𝑖𝑚𝑚𝑢𝑛𝑒 𝑠𝑐𝑜𝑟𝑒 𝑥 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑛𝑐𝑒)𝑖

Here, penetrance is the proportion of patients with a particular genetic variant who belong to

a certain cancer type, additive pentrance being the increase of penetrance with each added

mutation and ‘i’ presenting the ith most recurrent mutation for a specific cancer type.

This vaccine potential score takes into consideration the penetrance of mutations in a cancer

type along with the immune-visibility on the MHC class I system generally across the

population based on physically measured neoantigens in immunopeptidomics studies

detailed in the illustration below.



Illustration

Illustration: schematic representation of the vaccine potential score on the left, taking into
consideration the additive penetrance (red) and immune visibility score (cyan) of each added mutation
to a multi-epitope vaccine. On the right, scatter of vaccine potential score versus global maximum
TMB and Immune-visible TMB showing no relation between TMB and vaccine potential score.



Note 6. Single amino acid variants in the

immunopeptidome

Cancer is a disease of the genome, sculpted by the immune-system, which the tumour must

avoid as it develops. However, the way these aberrations act on the immune-visible

proteome is not trivial, and aberrations characterized by genomics can miss the

heterogeneity of the tumour. For example, there can be post-transcriptional errors in

mutation. Studies have demonstrated that the protein translation process from genetic

material is prone to error. Misincorporation of amino acids during translation is estimated to

occur once in every 5,000 codon on average26,27. These sorts of deviations, which would be

absent from genomic evidence, elude typical MS-proteogenomics workflows that focus

deeply on genomic evidence for mutation. In our analysis, since not all samples had

matching genomics, we emphasized using open-search strategies to identify point mutations

in reference proteins. The false discoveries related to using this methodology have been

described10, and we provide spectra for the mutations we have called. Our analysis has

yielded multiple recurrent single amino acid variants across samples categorized as known

polymorphisms, implicated in cancer or yet unreported. However, these variants lack support

by exome sequencing due to the nature of our cohort and the broad view of focal

neoantigens we aimed to analyze. Indeed, sequence coverage of typical MS closed search

strategies is low28 and known to miss mutations. On top of that, technical aspects may arise

when considering a restricted search space of known proteins that doesn’t exhaustively

cover the MHC associated peptides. Hence, sequences originating from non-coding regions

with a 1 amino acid difference with known proteins can mistakenly get categorized as

SAAVs. Besides, the error-prone nature of mass spectrometry spectral matching can lead to

false identifications.

In spite of the significant role of SAAVs in cancer and their prominent role in variant

detection, their identification hasn’t been very encouraging. For example, previous studies

illustrate a recall of 0.49% of all non-silent genomic mutations in colorectal cancer29 and

0.2% in melanoma30 could be due to either a sensitivity limitation of the current technology28.

Therefore, we prioritized discussing other sources of neoantigens in the main text by



considering post-translationally-modified peptides, and novel open reading frames. However,

the data for mutations is there and ready to explore.



Supplementary Figure S1

Fig. S1: (a) Closed search approach (supervised approach) requires a reference protein sequence
database containing proteins expected within the sample. These protein databases are in silico
digested and peptides falling within a certain error tolerance of the m/z window used to acquire the
MS2 (the MS1 search error tolerance) are chosen as candidate peptide assignments. Each candidate
peptide is then scored against the spectrum, using an algorithm-specific methodology and the
candidate with the highest score is assigned as the sequence of the MS2 spectrum. (b) Open search
strategy (semi-supervised approaches) widens the MS1 search error tolerance in order to identify
peptides that would have been missed due to the mass-shifts caused by mutations and
post-translational modification (c) de novo strategy (unsupervised approach) attempts to annotate
spectra without a reference proteome by predicting a peptide sequence by directly reading the MS2
spectra.



Supplementary Figure S2

Fig. S2: Computational methods schematic (a) Sample-wise immune peptide clustering strategy
using a pairwise comparison based on the LG substitution model (b) Quality control of resulting
peptide clusters by motif inspection and filtering based on an euclidean distance metric. (c)
Construction of intra-sample peptide binding motif landscape. Motifs were compared by Matalign-v4a
and clustered by HDBSCAN to capture highly similar motifs . Similar motifs coming from different
samples were developed by motif alignment. (d) Deconvolution of HLA types from motif data
originating from polyallelic samples by comparison to mono allelic samples.(e) Identification of focal
points of antigen presentation on the MHC class I system (genomic clusters) with a corresponding
Immune Score (IC).



Supplementary Figure S3

Fig. S3: GIC features analysis. (a) Correlation plot between Genomic immune clusters (GICs)
features and the width of the regions. This shows no correlation between any of Expression, Max
mutational gene density and Population coverage with the region width. (b) Quadrant analysis (8
quadrants) regarding genes harboring mutations causally implicated in cancer (Cancer Gene Census
genes or CGCg) and the Immune Score (IC). The heat map shows a pairwise correlation where
GCGg ratio is defined as the number of CGCg / the number of genes. The relation between IC and
CGCg ratio is depicted more accurately by the linear plot on the right. Quadrant (0,-2; 0,-2; 0,-2)
shown as ‘x’ is considered an outlier restricting the analysis to an immune score range of 0.3 to 1.



Supplementary Figure S4

Figure S4: Genomic immune clusters (GICs) mean conservation score (phastCons) versus
non-covered Exonic regions split into chunks of 42 nucleotides (average GIC width). a) mean
conservation score of GICs versus exonic regions split into chunks of 42 nucleotides showing a
tendency of GICs to exist in conserved regions. b) Q-Q plot showing two sets of quantiles against one
another. If both sets of quantiles came from the same distribution, we should see the points forming a
line that’s roughly straight (dashed line). This plot shows a skew of GICs toward high mean
conservation values (evolutionarily conserved regions).



Supplementary Figure S5

Figure S5: Residue level analysis of the immunopeptidome’s secondary structure
composition. Predicted structures of all human proteins by Alphafold231 were used to assign a
residue level (amino acid) secondary structure using dssp32,33. A log ratio was derived reflecting the
enrichment/depletion of secondary structures in the immunopeptidome in comparison to the
proteome. Panels (a to e) present different peptide length groups (8 to 12 respectively). (a) length 9
peptides show a depletion of (Isolated β-bridge residue) on position 4 and 5, enrichment in Π-helix
position 6 to 9, overall enrichment in α-helix and general depletion of the "other" structure. (b-e) show
enrichment in 3-10 helix instead of α-helix (3-10 helix is more tightly wound, longer, and thinner than
an α helix with the same number of residues). Perhaps, longer peptides tend to have longer helixes
able to bend in the middle and bind. Also, the dominance of length nine peptides might be the result of
their α-helix stability. In general, immuno-peptides seem to originate from structured regions of the
proteome.

Note: the residues secondary structures here are relative to their location in proteins and do

not reflect how they fold after proteasome cleavage.
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