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ABSTRACT

Estimating uncertainty in model predictions is a central task in quantitative biology. Bi-
ological models at the single-cell level are intrinsically stochastic and nonlinear, creating
formidable challenges for their statistical estimation which inevitably has to rely on approx-
imations that trade accuracy for tractability. Despite intensive interest, a sweet spot in this
trade off has not been found yet. We propose a flexible procedure for uncertainty quantifica-
tion in a wide class of reaction networks describing stochastic gene expression including those
with feedback. The method is based on creating a tractable coarse-graining of the model that
is learned from simulations, a synthetic model, to approximate the likelihood function. We
demonstrate that synthetic models can substantially outperform state-of-the-art approaches on
a number of nontrivial systems and datasets, yielding an accurate and computationally viable
solution to uncertainty quantification in stochastic models of gene expression.

Keywords Bayesian Inference · Uncertainty Quantification · Chemical Master Equation · Synthetic Likeli-
hoods · Stochastic Modelling

1 Introduction

The stochasticity of biological processes at the single-cell level is one of the major paradigm shifts of twenty-
first century biology [1–3]. Modern experimental methods, ranging from advanced microscopy to single-cell
sequencing [4–6], have confirmed and detailed the pervasiveness of stochasticity in cellular biology. While
these discoveries open new perspectives on the fundamental functioning of living systems, they also create
novel challenges towards the development of mathematical models of biological processes, accentuating the
role of statistical inference and uncertainty quantification in any modelling effort.
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Biological variability is the result of many concomitant processes. A major source of noise (intrinsic noise)
stems from the random timing of chemical reactions and is particularly important for reaction systems involv-
ing a small number of molecules of a certain species, as in many gene regulatory systems. The Chemical Master
Equation (CME) [7] has been broadly adopted as a general framework to describe the intrinsic stochastic dy-
namics of chemical reaction networks [8]. While the CME benefits from an elegant mathematical formulation,
its exact analytical solution is only known in a few instances [8]; on the other hand, the Stochastic Simulation
Algorithm (SSA) [9] provides a Monte Carlo method to perform simulations of systems described by the CME.

Bayesian inference, the gold standard for capturing model and parameter uncertainty, relies on the likelihood
function p(xobs |θ) to estimate parameters θ given observations xobs. For biochemical reaction networks,
computing the likelihood requires a closed form expression for the solution of the CME, which is generally
unavailable: while the forward problem of generating samples from the CME can be solved efficiently using
the SSA, the backward problem of computing the probability of samples cannot. As a consequence Bayesian
inference for biochemical reaction networks often relies on a variety of approximations to the likelihood function
[8, 10].
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Figure 1: Bayesian inference using synthetic models. a: Given a parameter set θ, stochastic simulations of
the original model are run to obtain samples Dsim. The synthetic model is picked from a parametric family of
candidates and fit to the simulated samples. Our synthetic model is a finite-state Markov model with negative
binomial output distributions for each state. b: Synthetic models (dashed box) provide an approximation to
the likelihood p̂syn(xobs |θ) that can be plugged into standard MCMC algorithms for parameter inference and
Bayesian model selection. c: Synthetic models based on negative binomial output distributions typically provide
better fits to data than Gaussian approximations
.

Among the most well-known of these are the Finite State Projection (FSP) [11], continuum approximations
[7, 12], and moment equations [13]. The FSP solves the CME on a finite truncation of the state space, whose
size typically grows exponentially in the number of species; in practice this approach relies on computationally
intensive approximations [14–16] for more complex systems. Continuum approximations to the CME based
on stochastic differential equations, such as the Chemical Langevin formalism [12] and the Linear Noise Ap-
proximation [7] are limited to systems with small noise and in the case of the latter, Gaussian copy number
distributions. Moment equations can be derived from the CME and used to construct an approximate likelihood
function [17]; for systems with bimolecular reactions the moment equations have to be “closed” by a process
called moment-closure, which yields approximate solutions of highly variable quality [13]. These approaches,
termed Moment-Based Inference (MBI), are commonly used in practice [17–23] and usually very scalable, but
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the error introduced by the approximations can be difficult to quantify. Recent work [23–25] has pointed out that
these methods can perform poorly for some systems, leading to biased or overly uncertain parameter estimates.

An alternative to analytical approximations of the CME is provided by simulator-based inference [26], which
relies on simulations of the original model to estimate the likelihood using Monte Carlo methods. This family of
methods only requires the ability to perform simulations of the model, which for biochemical reaction networks
can be readily obtained using the SSA. Simulator-based approaches are mostly model-agnostic and can be
easily adapted to many different problems, but due to their generality they typically require many simulations
to produce a fully data-driven approximation of the likelihood.

Perhaps the best-known simulator-based inference method is Approximate Bayesian Computation (ABC) [27,
28]. ABC replaces the likelihood p(xobs|θ) with p(d(xobs,x) ≤ ϵ |θ), the probability that the model generates
outputs within a tolerance ϵ of the observed data, where d(·, ·) denotes an appropriately chosen discrepancy
measure. The posterior is then estimated by repeatedly sampling parameters and accepting those falling within
this threshold. Tuning the discrepancy measure and the parameter ϵ, which trades accuracy for number of
simulations, is difficult in practice and usually requires compressing the model output into low-dimensional
summary statistics, a step that typically entails a loss of information.

A different simulator-based approach is Synthetic Likelihoods [29, 30], where the likelihood is approximated by
a multivariate Gaussian whose mean and covariance are estimated from simulations. We will refer to this method
as Gaussian Synthetic Likelihoods (GSL). Like ABC this approach frequently works with summary statistics
of the data, which in this case should be approximately normally distributed under the model. For population
snapshot and time-series data obtained from biochemical reaction networks GSL is unlikely to provide accurate
results [31, 32]: indeed, analytically derived Gaussian approximations to the CME are commonly used in
inference [19, 22, 33], but as shown in [24] these can result in unusable parameter estimates for some systems.
Methods that approximate the likelihood based on kernel density estimation [34] or neural networks [35] can
bypass this limitation, but they can require significant amounts of tuning and computational power to work well.
A scalable approach to inference would ideally combine the flexibility of simulator-based methods with prior
knowledge of the model to provide efficient yet flexible means of approximating the likelihood function.

In this paper we propose a new method for inference in a wide class of biochemical reaction networks, specif-
ically those modelling gene expression, which is rooted in the specific characteristics exhibited by models of
gene regulatory networks. Gene expression systems can often be thought of systems switching between discrete
states of expression, broadly speaking corresponding to patterns of activation states of the genes’ promoters
[36–39]. It is therefore natural to abstract the dynamics of gene systems as an indirectly observed dynamical
system over a discrete (finite) set of states. These states are measured through observations of molecular counts;
motivated by experimental measurements of the distributions of transcript and protein numbers, as well as ana-
lytical solutions of the CME obtained in a variety of cases, we propose a negative binomial mixture distribution
as a model for molecular counts in our coarse-grained models of gene expression. We therefore propose that
mixtures of time-dependent negative binomials can provide a tractable class of approximate models of gene
expression systems. We call this class of models synthetic models (SM), and use these to approximate the
likelihood function of gene expression models by fitting them to model simulations, in the spirit of Synthetic
Likelihoods [30]. In cases when measurements are taken at short time intervals, where time correlations are
particularly important, SMs can be further enhanced by imposing Hidden Markov Model dynamics on the la-
tent states. We show that SMs can provide excellent estimates of the model likelihood where other methods
(FSP, GSL, MBI and ABC) struggle, and that our approach can be applied to obtain accurate parameter and
uncertainty estimates for challenging inference problems.

2 Synthetic Models

Our approach to inference is based on approximating the distributions predicted by the CME within a suitable
family of candidates. We are in particular interested in gene expression systems, including those with feedback,
but our methodology is general and can be applied to a large class of models, including non-Markovian models
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such as those recently considered in [40, 41]. An outline summarizing the method can be found in Fig. 1a and
b.

Theoretical investigations have shown that single-time marginal distributions predicted by the CME for a va-
riety of models describing many of the major biomolecular processes affecting gene expression (transcription,
translation, cell growth, DNA replication and cell division) can be approximated by mixtures of negative bino-
mials (MNBs) in the presence of timescale separation [42–46] – for an illustration see Fig. 1c. When timescale
separation is not applicable, such an approximation cannot be derived analytically, yet measurements of the
distribution of mRNA and protein numbers in bacterial, yeast and mammalian cells show that these are still well
fit by such mixtures in many cases [36–39].

Having established that mixtures of negative binomials provide a good statistical model for experimental mea-
surements of gene expression networks at fixed times, the next step is to extend this to include time dependency.
Experimental measurements of a system at different times will be correlated, and a natural way to emulate these
correlations is to treat the individual mixture components at each time point as states in a Hidden Markov Model
(HMM). More precisely, we propose using a finite-state Markov chain with negative binomial output distribu-
tions for each state, see Fig. 1a for an illustration. This statistically tractable surrogate model, which we term
synthetic model, defines a surrogate distribution over observations jointly at all measured time points. Note that
integrating out the hidden state variable shows that the marginal distribution at any time point is still a mixture
of negative binomials.

Assuming the true distribution p(x |θ, t) predicted by the CME can be approximated by a mixture of negative
binomials qϕ(x) with parameters ϕ, a principled way to determine these parameters is to minimise the Kullback-
Leibler divergence between the two distributions:

ϕ∗ = argmin
ϕ

DKL(p(· |θ, t) ∥ qϕ).

Here qϕ is the MNB with mixture parameters ϕ. Since the reference distribution, being given by the solution
of the CME is in general inaccessible, we can approximate it empirically by drawing samples using the SSA;
minimising the above KL divergence is then equivalent to maximising the likelihood of the simulated samples,
up to sampling error.

Fitting mixtures of negative binomials to data can be done efficiently using the Expectation-Maximisation (EM)
algorithm described in [47, 48]. In order to fit all parameters of a HMM, including the initial distribution and
the transition rates, we used the Baum-Welch algorithm (see SI for details), a type of EM algorithm applicable
to HMMs. Once we have fit our synthetic model we can then compute the likelihood of our experimental
observations xobs using the forward algorithm for HMMs. This likelihood can be used to compute the posterior
over parameters θ, typically using MCMC, or to find the most likely parameters via optimisation – for an
illustration see Fig. 1b.

Our procedure to estimate the likelihood p(xobs |θ) for model parameters θ is as follows:

1. Simulate sample trajectories using the SSA for the original model with parameters θ
2. Fit the parameters of the HMM to the simulated trajectories using the Baum-Welch algorithm
3. Evaluate the fitted model at the observed data xobs to obtain the synthetic likelihood p̂syn(xobs |θ).

Note that the synthetic model has to be fit from scratch for every parameter set at which the likelihood is queried,
which is the main computational bottleneck of our approach.

The number of simulations and mixture components should be chosen appropriately for the reaction network.
In our experiments we simulated each system at several randomly chosen parameters and ensured that the given
number of simulations and mixture components could accurately reproduce the observed distributions. In an
MCMC context, the number of simulations should be chosen such that the variance of the likelihood estimate
likelihood still results in an acceptable rejection rate. Allowing a few more components than necessary did not
affect the quality of fit in our experiments, as extraneous components either merged with others or were assigned
negligible weights.
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Figure 2: Comparison of Synthetic Models with standard methods for the case of an autoregulatory genetic
negative feedback loop. a: Illustration of the reaction scheme describing the genetic circuit. b: Posteriors
obtained using four different inference methods, with the ground truth solution computed using the FSP (black).
The red dashed lines show the true parameter values. Left: Synthetic models (SM) and Gaussian synthetic
likelihoods (GSL). Right: Moment-based inference (MBI) and sequential ABC. The ranges plotted coincide
with the prior ranges. c: Comparison of true and approximate log-likelihoods. Parameter values were sampled
from the prior and the true log-likelihoods were computed using the FSP. Synthetic models (yellow) provide
significantly closer approximations to the true log-likelihood than either Gaussian synthetic likelihoods (green)
or moment-based likelihoods (purple). The true parameter values are given in SI Fig. S1. The input data consists
of protein numbers from 25 SSA trajectories measured at times t = 4, 8, 12, 16.

We remark that experimental data for mRNA or protein number generally comes in the form of either population
snapshot data or live cell imaging. In the case of the former, each snapshot represents a different group of
cells and modelling correlations at different times becomes unnecessary; it therefore suffices to fit mixtures
of negative binomials independently for each time at which a snapshot is taken. This simplification can also
be made when time correlations are weak enough to be neglected, as is the case for the toggle switch model
considered in the next section.

3 Results

3.1 Autoregulatory Genetic Feedback Loop

We consider an autoregulatory genetic feedback loop that is illustrated in Fig. 2a. It consists of a gene with
two promoter states Gu and Gb, and a protein P that is produced at different rates ρu and ρb depending on
the promoter state. Protein production occurs in geometrically distributed bursts with mean burst size b. The
promoter switches from state Gu to Gb by binding a protein molecule with rate σb, and this process is reversible
with rate σu. Protein dilution is effectively modelled by a first-order reaction; note that all other rates are rescaled
by the protein dilution rate. We assume mass action kinetics for all reactions. This is the prototypical example
of stochastic self-regulation in a gene and can be rigorously derived from a more detailed model incorporating
mRNA dynamics [46].

We consider the negative feedback regime where the protein production rate decreases upon protein binding
(i.e. ρb < ρu). Due to the simplicity of this model, likelihoods can be efficiently computed using the FSP using
a truncation to several hundred states in our examples, leading to an essentially exact solution and enabling us
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to compare our method with exact Bayesian inference. We tested our approach by using the SSA to simulate
time-series data from several genetically identical cells and performed Bayesian inference based on the observed
protein numbers, with a uniform box prior on the model parameters. For all methods except ABC we sampled
from the posterior using the Metropolis-Hastings sampler with a fixed Gaussian transition kernel (see SI Section
1 for details). We note that while the steady-state solution of the CME of this system is predicted by theory to be
well approximated by a negative binomial mixture (because of the small promoter switching rates compared to
other rates [46]), we use data collected in pre-steady state where theoretical results are difficult to obtain. Hence
the use of SM as a means to automatically obtain a negative binomial mixture approximation of the likelihood
is particularly useful in this case.

Due to the presence of bimolecular protein-gene interactions, solving the moment equations for moment-based
inference in this model requires a moment-closure approximation. We used the Linear Mapping Approxima-
tion (LMA) [49] for this purpose, which provided very accurate moment estimates for the parameter ranges
considered in our experiments.

We compared the exact posterior obtained using the FSP with those computed using synthetic models and three
representative inference methods: GSL, MBI and ABC (Fig. 2b) – see Methods and SI for details. For all
parameters, the mode of the posterior computed using FSP or Synthetic Models is close to the true parameter
values; this is not the case for the other methods. In particular our approach was the only one to yield a
posterior where ρb was concentrated around the true value of zero, whereas the other methods yielded posterior
means that were significantly nonzero, falsely suggesting leaky gene expression. This example illustrates that
using detailed distributional information can be valuable for discriminating between different modes of gene
expression. Fig. 2c shows that synthetic models approximate the true likelihood of the model substantially
better than both GSL and MBI, uniformly over the range of parameters considered (ABC does not yield explicit
likelihood estimates). See SI Fig. S2 for further data including the posterior and MLE predictive distributions
obtained using these methods.

In SI Fig. S2 and S3, we repeat the same analysis for a positive feedback loop where the protein production
rate increases upon protein binding (ρb > ρu). As for the negative feeback loop, we find that likelihood ap-
proximation and parameter inference using synthetic models is significantly more accurate than using standard
methods.

3.2 Genetic Toggle Switch

Next we consider a genetic toggle switch [50] in a eukaryotic cell (for an illustration see Fig. 3a). This consists
of two different promoters, each of which can be on or off, and the protein from each promoter represses the
expression of the other. We explicity model the translocation of mRNAs from the nucleus to the cytoplasm, the
translation of cytoplasmic mRNAs into proteins and the translocation of proteins to the nucleus.

This system is significantly more complex than the autoregulatory feedback loop considered above, involving
an effective 10 species (we do not count bound promoter states due to conservation laws). For realistic mRNA
and protein abundances (few tens and several tens to hundreds, respectively) a simple state space truncation
would need to consider on the order of 109 states, many orders of magnitude more than the previous example.
Due to hardware constraints we were therefore not able to apply the FSP to this example; this illustrates the
lack of scalability of the direct approach when applied to more realistic systems and the need for more efficient
methods.

Fixing the translocation and degradation rates, which can often be deduced experimentally, we tested our ap-
proach in this case by inferring the remaining 8 parameter values. We used the SSA to simulate a synthetic
dataset of 100 cells observed at eight different time points each, and performed Bayesian inference on the cy-
toplasmic protein numbers (both species) with a box prior around the true parameters (Fig. 3b) using Synthetic
Models, Gaussian Synthetic Likelihoods, Moment-Based Inference (not shown, see below) and ABC. As with
the autoregulatory feedback loop we used a Metropolis-Hastings sampler with a Gaussian transition kernel for
all methods except ABC (see SI for details). Not all parameters of this model were identifiable from the data:
while the ratio between the binding and unbinding rates for each gene can be identified, the individual rates
themselves cannot. These findings did not depend on the method used, which suggests that we are dealing with
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Figure 3: Comparison of Synthetic Models with standard methods for the case of a genetic toggle switch in
a eukaryotic cell. a: Illustration of the reaction scheme describing the circuit, which is symmetric in A and
B. b: Posteriors obtained using Synthetic models, Gaussian synthetic likelihoods, moment-based inference and
Sequential ABC. c: Predictive distributions generated using the SSA at 4 time points for the maximum like-
lihood parameters obtained using each method. Synthetic models (yellow) and Gaussian synthetic likelihoods
(green) provide significantly closer approximations to the true distribution (grey) than the other methods, with
the former yielding a consistently more accurate fit for low molecule numbers (see insets). Parameters and prior
ranges for all parameters are given in SI Fig. S4. The input data consists of cytoplasmic protein numbers (A and
B) from 100 SSA trajectories measured at times t = 1, 2, . . . , 8.

intrinsic, as opposed to technical, unidentifiability. This is supported by SI Fig. S4, which shows that the pre-
dictive uncertainty in the posteriors is very small despite large variations in these two quantities. In contrast, the
peaked posteriors around the true values of the transcription and translation rates show that these rates can well
estimated by SM and GSL (which is not the case for ABC and MBI). We furthermore compared the predictive
distributions for the maximum likelihood parameters estimated during inference (Fig. 3c) – we note that the SM
prediction is the only one of all methods that is accurate for all times.

While the input to this experiment consisted of time-series data for SM, fitting a full HMM performed similarly
to fitting independent mixtures of negative binomials at each time point, and we therefore used the latter ap-
proach for simplicity. We observed that using a full HMM for this model was more prone to local optima during
the fitting step, which resulted in a higher variance of the approximate likelihood and reduced acceptance rates.
Gaussian synthetic likelihoods similarly had significantly lower acceptance rates compared to independent mix-
tures of negative binomials, with a correspondingly increased number of MCMC iterations until convergence.

As for the autoregulatory feedback due to the nonlinearity of the propensities of the protein-gene interactions,
moment-based inference for this model requires a moment-closure approximation. Out of the 9 different
schemes implemented in the package MomentClosure.jl [51], the Linear Mapping Approximation (LMA)
[23, 49] was the only one that consistently predicted positive moments around the true parameters, a necessary
condition to get well-defined likelihoods. However even the LMA failed to predict the moments accurately for
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Figure 4: Comparison of Synthetic Models with standard methods for the MAPK pathway model. a: Illus-
tration of the reaction scheme of the model, which consists of a gene in four possible states Gi and mRNA.
A kinase, whose concentration is a time-dependent input signal, modulates the transition rate k∗21 (see SI for
details). b: Comparison of the experimentally observed distribution (grey) with the predictive distributions for
the maximum likelihood estimates obtained using four different methods. Synthetic models (yellow) provide a
quality of fit similar to the Finite State Projection (dotted line), whereas Gaussian synthetic likelihoods (green)
and moment-based inference (purple) fail to capture the long-tailed shape of the distributions. Estimated pa-
rameters for each method are given in SI Table S1.

this system, resulting in a wildly skewed posterior (not shown) and heavily divergent predictive distribution
(Fig 3c).

3.3 MAPK Pathway in S. Cerevisiae

Our final example uses experimental data from [52] to analyse the high osmolarity glycerol (HOG) MAPK
pathway in S. Cerevisiae, where population snapshots were taken at different times after the induction of osmotic
shock. The model is described in Fig. 4a which features highly non-Gaussian distributions of mRNA copy
numbers. It consists of a single gene (STL1) in four possible states, each of which produces mRNA at a specified
rate. Switching into one specified state is controlled by a kinase that is activated by a signalling cascade under
osmotic shock; the concentration of the kinase is given as an external input to the system.

It was found in [24] that moment-based inference generally fails to yield good predictive results for this example,
in contrast to direct likelihood-based inference using the FSP. As the model contains only 4 effective species
(mRNA and 3 gene states, the fourth being given by the conservation law) it is very amenable to the FSP as a
truncation to a few hundred states suffices to capture its dynamics in the relevant parameter range. Despite this
simplicity, the model has 12 free parameters and poses a challenge for full Bayesian inference. A random-walk
Metropolis-Hastings algorithm would require very small step sizes in order to keep acceptance rates high in 12
dimensions, requiring very long runtimes in order to cover the relevant posterior mass. For synthetic likelihood-
based approaches another issue is the large number of experimental measurements (16k), which significantly
increases the variance of the total likelihood estimates and reduces acceptance rates even further. For these
reasons we followed the approach of the authors in [24, 52], performing Maximum Likelihood Estimation
(MLE) and comparing the predictive distribution with experimental data1.

The results can be seen in Fig. 4b. Since the data comes in the form of independent population snapshots we
used independent mixtures of negative binomials as our synthetic model. Parameters obtained using FSP and
our approach provide good agreement with the experimental data as reported in [24], whereas GSL and MBI
often failed to capture the shape of the experimental distribution. These results show that synthetic models

1We emphasise that the predictive distributions are obtained by running the model at the estimated parameters and are
not mixtures of negative binomials (for SM) or Gaussians (for GSL).
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can be applied to obtain high-quality parameter estimates for real-life biochemical systems with comparable
accuracy to FSP.

4 Discussion

We presented an approach for inference in stochastic gene regulatory networks relying on an approximation
of the generally intractable CME by a family of synthetic models, fit to the original model via simulations.
These synthetic models yield estimates of the model likelihood, which can be optimised to obtain maximum
likelihood estimates for the true model parameters, or within an MCMC sampler for posterior inference and
model selection.

We tested our method on a well-studied autoregulatory feedback loop and showed that it closely approximates
the exact posterior in both the positive and the negative feedback regimes, recovering true parameters with sig-
nificantly more accuracy than standard approaches such as Moment-Based Inference and Approximate Bayesian
Computation. We then considered a more complex model, the genetic toggle switch, which is difficult to analyse
using moment-based methods and the FSP, illustrating the flexibility of our approach and its ability to handle
nontrivial models of real-life systems. Our findings show that distributional approximations beyond Gaussians
can aid parameter identifiability, and that simulation-based methods can be effectively used in place of analytical
approximations where the latter fail.

We finally demonstrated the effectiveness of our approach for analysing real-life data by testing it on the MAPK
pathway in S. Cerevisiae in [52], obtaining parameter estimates rivalling those of the FSP in predictive accu-
racy. A significant advantage of our approach over the FSP is that its computational complexity grows only
modestly in the number of species, whereas solving the FSP for models such as the genetic toggle switch is a
difficult numerical problem. This allows synthetic models to be used for more realistic reaction networks that
are challenging to analyse with the FSP, with a negligible trade-off in accuracy as exemplified by our results.

A major limitation of our method is that fitting a synthetic model to simulations introduces a variance in the
approximate likelihood proportional to the number of experimentally observed datapoints. In order to obtain
accurate estimates of the true likelihood, therefore, the number of simulations used to train the synthetic model
needs to be increased in step with the sample size. For MLE estimation this does not significantly complicate
things, but in an MCMC context this variance causes difficulties as it can heavily reduce acceptance rates.
Another limitation of our method is that a MNB can only provide an accurate approximation for (transcript or
protein) marginal distributions with a Fano factor greater than 1. This condition is met in the overwhelming
majority of computational models and experimental studies of gene regulatory systems, but exceptions exist
[53–55]. Incorporating a different parametric family of distributions with Fano factor smaller than 1 (e.g.
hypergeometric) is in principle straightforward within the SM framework.

The Metropolis-Hastings sampler used in this paper is most suited for low-dimensional problems spaces as a
random walk-based approach is not an efficient way to explore high-dimensional posteriors. MCMC sampling
in high-dimensional spaces is often done using the Metropolis-adjusted Langevin Algorithm (MALA) or Hamil-
tonian Monte Carlo (HMC) [56], both of which require gradients of the posterior to direct the sampler towards
high-probability regions. Approximating the gradient of the likelihood function using synthetic likelihoods is
therefore a promising direction for future research.

The need to fit a synthetic model from scratch at every iteration of the MCMC procedure is the computational
bottleneck of our method. Methods such as data subsampling [57, 58] and amortisation, e.g. using neural
networks [35] could result in significant speedups and a reduced variance in the likelihood estimates for more
complex problems.

An advantage of our approach over standard CME-based inference methods is that it can be readily applied to
systems with extrinsic noise, simulated using the exact Extrande algorithm [59], and/or non-Markovian systems
such as those considered in [40, 41, 60, 61]. While such models are difficult to analyse mathematically, requiring
various extensions to the CME formalism, the presence of efficient and exact versions of the SSA for these
systems allows most simulator-based inference methods to work without any modification. We hope that our
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work, as well as the ideas contained within, provides a useful stepping stone that will enable researchers to
analyse and use these models more efficiently in the future.

Materials and Methods

Gaussian Synthetic Likelihoods: We model the distribution of observed molecule numbers, jointly at all time
points, as a multivariate Gaussian whose mean and covariance we estimate from simulations obtained using the
SSA.

Moment-Based Inference: The moments of the CME can be computed at any point in time from its associated
moment equations. For linear systems with mass-action kinetics, such as the MAPK pathway example, these
can be solved directly, while for the autoregulatory feedback loop and the genetic feedback loop we used the
Linear Mapping Approximation [49] to obtain a solvable set of equations.

Experimentally observed moments form a stochastic estimate of the true moments of the system; for large
sample sizes, the Central Limit Theorem ensures that these sample moments will be approximately normally
distributed. Following the approach in [17, 23] we thus model the first and second (uncentered) sample moments
over observed molecule numbers using a multivariate Gaussian. The means and covariances of the sample
moments can be expressed in terms of the analytical moments of the system, and we assume that measurements
at different timepoints are independent (see SI for details). This results in a Gaussian likelihood on the moment
level that can be used for inference.

Approximate Bayesian Computation: We use the first and second-order moments over species numbers at
each time point as summary statistics. Fixing a tolerance ϵ we repeatedly sample parameters from the prior and
compare the simulator output x with the observed data xobs. Namely we accept parameters for which the sum of
the squared relative errors in the first and second moments is less than ϵ and iterate until a prespecified number
of acceptances is reached. To improve sample efficiency we decrease ϵ over multiple rounds following [28],
using a Gaussian proposal prior estimated from the results of the previous round to guide sampling. Regression
adjustment [62] did not yield measurable improvements in our experiments.

Code Availability

Code implementing synthetic models as well as the experiments in this paper is available at
https://github.com/kaandocal/synmod.
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