Somnotate: An accurate, robust, and flexible sleep stage classifier for the experimentalist

Paul J. N. Brodersen¹, Hannah Alfonsa¹, Lukas B. Krone², Cristina Blanco Duque², Angus S. Fisk³, Sarah J. Flaherty², Mathilde C. C. Guillaumin⁴,⁵, Yi-Ge Huang², Martin C. Kahn², Laura E. McKillop¹, Linus Milinski², Lewis Taylor³, Christopher W. Thomas², Tomoko Yamagata³, Russell G. Foster⁴, Vladyslav V. Vyazovskiy², Colin J. Akerman¹

1 Department of Pharmacology, University of Oxford; Mansfield Road, Oxford, OX1 3QT, UK.
2 Department of Physiology, Anatomy and Genetics, University of Oxford; Parks Road, Oxford OX1 3PT, UK.
3 Nuffield Department of Clinical Neurosciences, University of Oxford; Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK.
4 Sleep and Circadian Neuroscience Institute, University of Oxford; Parks Road, Oxford OX1 3PT, UK.
5 Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich; Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
Abstract

Manual sleep stage annotation is a time-consuming but often essential step in the analysis of sleep data. To address this bottleneck we need automated approaches that exhibit high levels of performance, are robust under different experimental conditions, are accessible, and meet the specific needs of sleep scientists. Here we develop an unbiased framework for assessing automated performance against a consensus derived from multiple experienced researchers. We then construct a new sleep stage classifier that combines automated feature extraction using linear discriminant analysis, with inference based on vigilance state-dependent contextual information using a hidden Markov model. This produces annotation accuracies that exceed expert performance on rodent electrophysiological data. We demonstrate that the classifier is robust to errors in the training data, compatible with different recording configurations, and maintains high performance during experimental interventions including sleep deprivation and optogenetic manipulations. Finally, the classifier quantifies and reports its certainty, which can be leveraged to identify ambiguous epochs for further examination. Ambiguous epochs are shown to include unsuccessful transitions between vigilance states, which may offer new insight into the mechanisms underlying sleep-wake dynamics. We call our classifier ‘Somnotate’ and make an implementation available to the neuroscience community.
Introduction

Long-term electrophysiological recordings from freely behaving mice and other laboratory animals are a popular and powerful mode of investigation for neuroscientists, particularly sleep researchers (e.g. Schwierin et al. 1998, Leemburg et al 2010, Northeast et al. 2019). This approach affords the study of a wide range of animal behaviours and associated neurophysiological activities, under experimentally controlled conditions. The recordings typically incorporate an electroencephalogram (EEG) signal recorded from the cortical surface at one or more locations, and may also include electromyogram (EMG) recordings from relevant muscle groups. As the vigilance state profoundly affects the behaviour and physiology of the animal, the first step in the analysis is typically sleep stage annotation. This involves the parcellation of the data into awake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep epochs.

Whilst sleep stage annotation is typically performed by human experts, there are two principal motives for developing effective automated methods for annotating sleep data. First, manual annotation is time-consuming, as an experienced scorer typically requires two to three hours to annotate a single 24-hour data set. This places a significant burden on the analysis stage of most experiments and automation also enables experiments to be conducted at a scale that would be otherwise difficult to imagine (Funato at al. 2016; Sun et al. 2017). The second principal motive for developing automated sleep stage annotation is that the underlying electrophysiological signals can be ambiguous with respect to the sleep stage. This is especially the case around sleep stage transitions and during intermediate sleep states, when EEG signals can exhibit features of more than one vigilance state. Local slow wave activity for example, which is normally considered a hallmark of NREM sleep, has been observed during REM and awake states across different cortical regions in humans (Nir et al. 2011, Bernardi et al. 2015) and rodents (Vyazovskyi et al 2011, Funk et al. 2016, Soltani et al. 2019). When faced with such ambiguity, manual annotations often differ between scorers. Automated methods remove such inter-rater variance and afford new opportunities to systematically describe these intermediate states.

Automated methods have been developed for sleep stage annotation, primarily in the context of human clinical data (Martin et al. 1972; Längkvist et al. 2012; Ronzhina et al. 2012; Yulita et al. 2017; Chambon et al. 2018; Li et al. 2018; Malafeev et al. 2018; Phan et al. 2018; Phan et al. 2019; Sun et al. 2019; Jiang et al. 2019; Vallat & Walker 2021), but also in the context of laboratory animals (Benington, Kodali, and Heller 1994; Veasey et al. 2000; Crisler et al. 2008; Stephenson et al. 2009; Brankačk et al. 2010; Rytkönen et al. 2011; Zeng et al. 2012; Lefort et al 2018; Alloca et
The primary focus has been to maximise performance of the classifier (i.e. the algorithm) that underpins automated analysis. However, whilst annotation accuracy is of prime importance, there are additional considerations for data collected in a research environment. First, unlike in a clinical setting where the number and position of EEG electrodes is standardised, experimental settings often require different recording configurations and generate different electrophysiological signals. This limits the applicability of methods that place strict requirements on the type of signal, or which rely upon hand-crafted features. Ideally, a classifier would be sufficiently flexible such that it could select and extract relevant features from whatever time series data is provided. Second, whilst there is a wealth of clinical EEG training data (Vallat and Walker 2021), the nature of experimental studies usually means that the amount of available training data is relatively small. This poses problems for algorithms that require large amounts of training data, such as artificial neural networks, which are powerful but prone to overfitting. Finally, there are additional challenges and opportunities associated with interrogating data collected under experimental conditions. Researchers need to distinguish between abnormal features that arise due to movement artefacts and those that result from an experimental manipulation, such as an alteration to the animal’s environment or a manipulation of the neural circuitry underlying sleep-wake dynamics. Indeed, there is a concern that experimental manipulations could limit the performance of machine learning algorithms, as these are typically trained on control data. Ideally, a classifier would maintain its performance across experimental conditions, whilst also supporting the experimentalist’s efforts to identify regions of interest.

Here, we present ‘Somnotate’ - an open-source, highly accurate and robust sleep stage classifier, which is designed specifically to support research. Somnotate affords rapid sleep scoring of large data sets, in a manner that is flexible across experimental conditions, whilst still providing the researcher with access to the analysis process. As the only free parameter is the time resolution or epoch length of the inference, the classifier is easy to use and retrain, even by an inexperienced user. In demonstrating the usefulness of our approach, we first establish an unbiased framework for assessing annotation accuracy, which uses the independent manual annotation of data by ten experienced rodent sleep researchers. Somnotate is shown to consistently exceed the accuracy of expert manual annotations on rodent electrophysiological data and is remarkably robust to errors in the training data and across a series of experimental manipulations. Furthermore, Somnotate maintains its high performance with different numbers and sources of electrophysiological signals, which highlights the classifier’s adaptability across experimental scenarios. As the only free parameter is the time resolution or epoch length of the inference, the classifier is easy to use and retrain, even by an inexperienced user. Finally, Somnotate also quantifies the certainty of its predictions, thereby identifying epochs that present abnormal electrophysiological signals, given the
context of the sleep stage. This not only affords the opportunity to review the algorithm’s predictions, but also offers a principled method for describing ambiguous states across large data sets, where an exhaustive review of the data would be impractical.
Results

Unbiased and precise assessment of automated and manual sleep annotation

The performance of sleep stage classifiers is typically measured by computing their agreement with two independent manual annotations. Performance is evaluated as the average agreement of the automated annotation with each of the two manual annotations, and this average is then compared to the level of agreement between the two manual annotations. This subtle difference in how manual and automated annotations are compared can lead to systematic biases in favour of the automated annotation. For example, assume that one manual annotation is perfectly accurate but the other manual annotation misclassifies half of the data. The inter-rater agreement between manual annotations is calculated as $1 \times 0.5 = 0.5$. Now assume that the automated annotation has exactly the average accuracy of the two manual annotations, i.e. 0.75. The average agreement with the two manual annotations will be $(1 \times 0.75 + 0.5 \times 0.75) / 2 = 0.5625$. In other words, the automated annotation will appear to be more than 10% better than the manual annotations, even though its accuracy was exactly average. Conversely, to achieve an average agreement score of 0.5, the automated annotation would only need to have an accuracy of 0.667, i.e. it could be 10% less accurate than the mean manual accuracy, while still achieving the same agreement between manual annotations.

For these reasons, we were keen to compare automated annotations to a majority-vote consensus derived from multiple independent manual annotations. We asked ten experienced sleep researchers (Figure 1 - Figure Supplement 1) to annotate awake, NREM, and REM states from the same 12-hour data set based on simultaneous recordings of an anterior EEG, posterior EEG, and EMG in a freely behaving mouse (Materials and methods). This enabled us to generate consensus annotations based on multiple independent manual annotations (Figure 1A-C). First, we assessed the accuracy of each annotation against the consensus of the other nine annotations. This revealed that although the overall accuracy of the annotations was high, individual annotations varied in terms of how closely they matched the consensus of the other annotations (Figure 1C-D). This variance would cause systematic bias if one was to rely upon the level of agreement between just two manual annotations (see above). We were also keen to assess how precisely the agreement between any two annotators is able to capture the mean accuracy of both manual annotations. We therefore compared the inter-rater agreement for each pair of annotations to the mean of their accuracies based on the majority-vote consensus of the remaining eight annotations (serving as a proxy for ground truth).
Whilst there was a statistically significant linear relationship between inter-rater agreement and the mean accuracy of the two annotations, the relationship was weak ($R^2 = 0.25$; Figure 1E).

To assess the quality of manual and automated annotations in an unbiased and more precise way, we compared the annotations to the consensus of multiple independent manual annotations. This comparison is unbiased as both the manual and automated annotations are assessed in exactly the same way. We confirmed that it is also a more precise measure, as the spread of performance estimates of manual annotations was smaller when using the consensus of three independent manual annotations to assess the accuracy of a fourth annotation, than when using a single other annotation as a point of reference ($p < 0.01$, Wilcoxon signed rank test; Figure 1F). Finally, to estimate the minimum number of manual annotations required to achieve a high quality consensus sequence, we determined the consensus sequence of five annotations by majority-vote. Using either one, three or all five of the remaining unused annotations, we constructed a second consensus sequence, and computed the agreement between the two and then repeated this process for all possible combinations. On average, any individual manual annotation matched a consensus of five sequences for $92.5\% \pm 1.3\%$ of the data (mean \pm standard deviation), whereas a consensus of three annotations already significantly increased the agreement by $2.2\% \pm 1.5\%$ (agreement $94.7\% \pm 0.8\%$; $p < 0.01$, Mann-Whitney rank test; Figure 1G). There was a significant but more modest improvement of $0.5\% \pm 1.1\%$, when the number of manual annotations was increased to five (agreement $95.3\% \pm 0.7\%$; $p < 0.01$, Mann-Whitney rank test). Another widely used measure of inter-rater agreement is Cohen’s kappa, which accounts for the possibility of agreements occurring due to chance. When we repeated the analyses using this performance measure, we obtained analogous results (Figure 1 - Figure Supplement 1).

In summary, a consensus derived from multiple independent manual annotations provides a less biased and more precise framework for assessing the quality of manual and automated annotations under comparable conditions. Based on these observations, we generated a larger test data set of six 24-hour EEG and EMG recordings (i.e. 144 hours total), which were independently scored by at least four experienced sleep researchers. Unless noted, we used these six data sets throughout the rest of the study. This allowed us to compute the accuracy of manual and automated annotations using the majority-vote consensus of at least three other manual annotations for that recording. The recordings, individual manual annotations, and automated annotations are made freely available in standard formats at [WEBLINK; in line with eLife’s open access policies].
Contextual information improves automated classification of sleep states

In machine learning, classifiers typically learn a transformation that maps a sample consisting of a set of input values or features, onto an output value or category. This forms the basis of most automated methods for sleep stage classification, such as decision trees, linear discriminant analysis, support vector machines, and neural networks (without recurrence) (Brankačk et al. 2010; Crisler et al. 2008; T. Zeng et al. 2012; Rytkönen, Zitting, and Porkka-Heiskanen 2011; Ronzhina et al. 2012; Lajnef et al. 2015). A key weakness of these approaches is that each sample is classified independently and, as the input data can be noisy, this can result in misclassifications and an overestimation of the number of state transitions. Human scorers avoid these issues by using contextual information, subjectively integrating the evidence within each time bin, with an estimate of the likelihood of each state based on the broader context.

Algorithmically, the simplest way to integrate predictions based on individual samples with contextual information is to smooth the inferred state sequence by determining the most common vigilance state surrounding the sample of interest. However, vigilance states can be genuinely short-lived, which poses a difficult problem for such an approach. For example, mice often transition from REM sleep to NREM sleep via a brief period in which their EEG and EMG activity reflect the awake state (Franken et al. 1991, Huang et al. 2006, Cui et al. 2014, dos Santos Lima et al. 2019). Two methods that incorporate contextual information and have been successfully applied to sleep stage classification are recurrent neural networks and hidden Markov models (HMMs). Recurrent neural networks can perform well at learning long-term dependencies from large feature sets (Yulita et al. 2017; Chambon et al. 2018; Malafeev et al. 2018; Phan et al. 2018; Phan et al. 2019; Sun et al. 2019). However, their inherent flexibility can pose problems, as they require large amounts of labelled data to train, are prone to overfitting, and adapting their architecture to different inputs can be non-trivial. In a research setting, where changes to the experimental setup can be frequent and generating large, well-curated training data sets is often impractical, recurrent neural networks can be a suboptimal choice. In contrast, HMMs have much fewer parameters and require much less data to train. A drawback of HMMs however, is that they require an estimate of the multivariate probability distribution over input values for each state. With each additional feature, the number of samples needed to accurately estimate these probability distributions increases exponentially. HMMs are therefore only effective if the dimensionality of the input signal is relatively low. As a result, HMMs have been applied either to low dimensional, hand-crafted features (Doroshenkov, Konyshev, and Selishchev 2007; Pan et al. 2012; Fonseca et
To incorporate more of the information present in the individual samples into the inference, we set out to combine HMMs with LDA, which is able to automatically extract low dimensional features from complex, high-dimensional input signals, whilst retaining the maximal amount of (linearly decodable) information about the labelled target classes. To benchmark the performance of our new approach, and to illustrate the advantage conferred when classifiers incorporate contextual information, we systematically evaluated three automated classifiers that differed only in the amount of contextual information that they incorporated into their inference (Figure 2A-E). The data preparation was the same for all classifiers: 1) data pre-processing (subsampling to 256 Hz; conversion to multitaper spectrograms), 2) normalisation (log(x + 1) transformation; conversion to z-scores), and 3) targeted dimensionality reduction using linear discriminant analysis (LDA).

In our first classifier, referred to as ‘LDA’, a set of thresholds computed as part of the LDA were applied to the low dimensional representation of the test data (Figure 2C). This is equivalent to selecting the state ŝ ∈ S that best explains the values in the data sample d ∈ D, regardless of the prior probability of different states:

\[
\hat{s} = \text{argmax}_s P(D|S)
\]

and thus represents a baseline performance for automated annotation without incorporating contextual information. The LDA classifier was found to achieve an accuracy of 92% ± 1% on the test data set (Figure 2H), which was comparable to previous work that used an LDA classifier to predict vigilance states from rodent experimental EEG data (89% ± 1% accuracy; Brankačk at al. 2010).

In our second classifier, referred to as ‘Bayes’, we constructed a naive Bayes classifier by fitting multivariate Gaussian distributions (one for each state) to the low dimensional representation of the samples in the training data set, as well as computing the expected frequencies of the different states (Figure 2D and 2F). The states corresponding to samples in the test set were then predicted based on the probability of the sample, given each state weighted by the frequency of states:

\[
\hat{s} = \text{argmax}_s P(D|S) \cdot P(S)
\]

The Bayes classifier achieved an accuracy of 93% ± 1% on the test data set (Figure 2H), which was consistent with previously reported values using a similar approach to predict vigilance states from rodent EEG data (94% ± 1%; Rytkönen et al 2011).
Finally, in our third classifier, referred to as ‘HMM’, the states in the test set were predicted using a hidden Markov model. As above, multivariate Gaussian distributions were fitted to the low-dimensional representation of samples in the training data. In addition, the expected probabilities of transitioning from one state to another were estimated from the training data set (Figure 2G). The probability given each state $P(D|S)$ was computed for each sample in the test set, combined with the expected state transition frequencies, and the most likely state sequence through the test set was computed using the Viterbi algorithm (Viterbi 1967) (Figure 2E). The HMM classifier is conceptually similar to the naive Bayes classifier, with the difference being that the prior probability of the state, $P(S)$, is not approximated by its expected frequency, but rather depends on the overall most likely state sequence. Consequently, the HMM incorporates more contextual information into its inference than the Bayes classifier, as the transition probability matrix can be used to compute the expected state frequencies from the stationary distribution of a corresponding Markov model (whereas the state transition probabilities cannot be computed from the state frequencies alone). In terms of performance, the HMM had an accuracy of 97% ± 1%, which was significantly more accurate than either the LDA or the Bayes classifiers, reducing the number of errors by more than half in both cases (Figure 2H). These analyses confirmed the benefit of incorporating increasing amounts of contextual information. They also established automated feature extraction using LDA, combined with context-aware state annotation using a HMM, as a highly effective strategy for achieving very accurate automated sleep stage classification of experimental data. We refer to this improved classifier as ‘Somnotate’ and in subsequent sections, we characterise its performance, robustness, and potential to meet the needs of the experimentalist.

State annotation by Somnotate exceeds manual accuracy

Manual annotation continues to be the gold standard by which any automated annotation is measured. To determine the accuracy of manual annotations by experienced sleep researchers, we compared individual manual annotations for any of the six 24-hour recordings to the consensus of the remaining three or more annotations for that data set. The sleep researchers had a median of 5 years’ experience in manual vigilance state annotation (minimum of 2 years’ experience), and had manually annotated a median of 1272 hours (minimum of 768 hours) of equivalent recordings (Figure 3 – Figure Supplement 1). Somnotate was trained and tested in a hold-one-out fashion on the same data set, and its accuracy was determined by comparison to the consensus of the manual annotations. This revealed that the accuracy of Somnotate exceeded the accuracy of manual annotations by 13 experienced sleep researchers (Figure 3A). Out of a total of 25 manual
annotations, 22 were less accurate than the automated annotation. Twelve out of the thirteen annotators had a lower average accuracy than the automated classifier on the same data sets. Thus Somnotate significantly exceeded human performance (p < 0.001, Wilcoxon signed rank). When we used Cohen’s kappa instead of accuracy as a measure of performance, we obtained identical results (Figure 3 - Figure Supplement 2).

The difference between the confusion matrices for the manual and automated annotations indicated that the performance difference between manual and automated annotation was mainly driven by a more accurate annotation of NREM states (Figure 3B). Somnotate identified more state transitions than were typically present in manual annotations, in particular if these transitions involved NREM states. Cumulatively however, the differences between manual and automated state annotations resulted in minor differences in the overall state occupancy (Figure 3C-D). When partitioning the data by state according to the manual consensus or the automated annotation, there were no discernible differences between power spectra of the EEG activity (Figure 3 – Figure Supplement 3).

Approximately two thirds of the differences between Somnotate and the manual consensus annotations had a duration that was shorter than the temporal resolution of the manual annotations (i.e. shorter than 4 s; Figure 3E). Many of these differences could therefore be resolved if the data had been manually annotated at a higher temporal resolution, albeit at the expense of a greater investment of time. In other cases however, annotating a definitive state may not have been possible. For instance, the animal may have been transitioning from one state to another, resulting in ambiguous EEG and EMG waveforms that reflect an ‘intermediate’ state. Consistent with this scenario, 54% of differences between the consensus and the automated annotation occurred within 5 seconds of a state transition, where manual annotations also often disagreed with one another (Figure 3F). As a final validation, we trained Somnotate on the six 24-hour test data sets, but then tested performance on the 12-hour data set that had been annotated by ten experienced sleep researchers (as in Figure 1). This revealed that the more manual annotations that were used to generate a consensus sequence of the test data, the more closely this manual consensus matched the automated annotation (Spearman’s rank correlation ρ = 0.80, p < 0.001; Figure 3G). In other words, as one increases the number of experienced annotators, the manual consensus converges on the automated annotation by Somnotate.
Somnotate is highly robust

Machine learning algorithms can be uniquely sensitive to patterns in the training data. This sensitivity is often desirable, but can also be problematic. We were therefore keen to examine Somnotate’s performance under conditions in which the training data contained errors, or where the test data reflected different experimental recording conditions.

First, to test sensitivity to errors in the training data, we evaluated Somnotate’s accuracy on six 24-hour EEG and EMG recordings annotated by at least 4 experienced sleep researchers in a hold-one-out fashion, while randomly permuting an increasing proportion of the consensus state annotations. This revealed that Somnotate is extremely robust to errors in the training data, as the accuracy on the test set only displayed a notable drop in performance when more than half of the training samples were misclassified (Figure 4A-B). Furthermore, classifier performance monotonically increased with increasing amounts of training data (Figure 4 – Figure supplement 1), consistent with the idea that the classifier does not overfit the training data and, as a result, does not learn patterns that are present due to chance.

Second, classifiers are susceptible to being fine-tuned to a standard training data set, such that performance levels can drop when faced with test data collected under different conditions, particularly when features used by the classifier are altered in a consistent manner. To assess robustness to changes in features, we tested Somnotate’s performance on data from a sleep deprivation study. Sleep deprivation is a common experimental manipulation that is known to change the EEG power spectrum after sleep onset, and EEG power values are primary features used by Somnotate. We evaluated the accuracy of our pre-trained classifier on six 3-hour data sets recorded after sleep onset in sleep-deprived mice, and compared this to the accuracy on matched ‘baseline’ (i.e. without sleep deprivation) data recorded from the same animals (Figure 5A-B). The annotation accuracy was found to be comparable and high across both the sleep deprivation and baseline conditions, consistent with Somnotate being robust to experimentally-induced changes in relevant features (Figure 5B).

Third, Somnotate uses contextual information in the form of prior probabilities of the different vigilance states. These probabilities depend on how much time animals spend in each state and how frequently they transition between states, both of which can change under experimental conditions. To assess the classifier’s robustness to variations in these prior probabilities, we trained and tested Somnotate in a hold-one-out fashion on the six 24-hour EEG and EMG recordings with high quality consensus annotations, as before. We then evaluated Somnotate’s accuracy on data sets from mice that had experienced repeated, experimentally-induced awakenings throughout the day. These awakenings were achieved via optogenetic stimulation of channelrhodopsin-2 (ChR2) expressing
inhibitory neurons in the lateral preoptic hypothalamus (Figure 6A; as described in Yamagata et al. (2021)), which affected the probabilities with which the animals transitioned between states (Figure 6B), but did not affect the overall time spent in each state (Figure 6 – Figure supplement 1). Despite the changes in transition probabilities, there was no detectable change in Somnotate’s performance (Figure 6C).

As a fourth and final test of Somnotate’s robustness, we compared the pre-trained classifier’s performance between the 12-hour light period and the 12-hour dark period of normally-reared mice, as both the state occupancies and state transition probabilities differ substantially between these periods (Figure 7A-B). Despite the changes in prior probabilities, Somnotate continued to match or exceed the accuracy of manual annotations by experienced sleep researchers in both the light period and the dark period (Figure 7C-D). Taken together, these observations demonstrate the robustness of Somnotate to changes in the values of the features used for inference, the state frequencies, and the state transition probabilities, which represent the main components that the classifier uses for contextual information. Somnotate is therefore able to perform highly accurate sleep stage annotation under a variety of experimental conditions.

A single EEG signal is sufficient for Somnotate to infer vigilance states

Although most electrophysiological signals show a dependence on vigilance state, some signals can be more informative of certain states. For example, REM sleep is often indicated by a high power in the theta frequency band of an EEG recording, which is typically more apparent for a posterior electrode than an anterior electrode (Huber et al. 2000). However, due to the requirements of an experiment, it is not always technically possible to record the ‘ideal’ combination of signals for the inference of vigilance states. We were therefore keen to assess Somnotate’s ability to infer vigilance states from individual electrophysiological signals. A series of classifiers were trained and tested using only one electrophysiological signal as an input: either the anterior EEG, the posterior EEG, the LFP from primary motor cortex, or the EMG. This revealed that a single EEG signal was sufficient to infer the vigilance state with high accuracy (Figure 8A). In fact, the overall accuracy of the predictions based on the anterior EEG alone did not differ from the overall accuracy when the anterior EEG, posterior EEG and EMG were provided simultaneously (p > 0.24, Wilcoxon signed rank test; Figure 8B). Underlying this was a small increase in the false negative detection rate for REM sleep, which was offset by an improved distinction between the awake and two sleep states.
The overall accuracy of the predictions based on the posterior EEG was 1% lower on average (p < 0.05, Wilcoxon signed rank test), although in this case the identification of REM showed a similar accuracy to when all signals were provided (Figure 8B). The accuracy of predictions based on either an LFP recorded from primary somatosensory cortex, or only the EMG signal, was in both cases worse (by 6% and 14%, respectively), largely due to the performance on REM sleep episodes (p < 0.05 in both cases, Wilcoxon signed rank test; Figure 8A-B). However, each individual signal was still sufficient to distinguish between awake and asleep states with high accuracy (~95%), indicating that either signal would be sufficient in experiments that do not need to distinguish between REM and NREM sleep states. Overall, these data establish that Somnotate is able to accurately infer vigilance states from individual electrophysiological signals and in a manner that could be optimised depending on the experimental arrangement and objectives.

Somnotate identifies ambiguous states

HMMs belong to the category of Bayes classifiers that compute the likelihood of each state, for every data sample (i.e. time point). This means that Somnotate is able to distinguish samples where it is certain in its prediction (i.e. where the likelihood of the predicted state is effectively one), and samples where it is uncertain (i.e. where the likelihood of the predicted state is less than one). For our data sets, the cumulative distribution of likelihood values indicated a change point at 0.995 (Figure 9 – Figure supplement 1), with a minority of samples (5.5%) having a likelihood below this threshold. Notably, for these samples where Somnotate was uncertain, almost half (44%) coincided with instances where manual annotations disagreed with one another. This suggested that the difficulty in predicting the vigilance state at these time points was not an artefact of the inference method, but a result of ambiguity within the signals. Human annotators often exclude such sections of the data from their analysis and, by analogy, the accuracy of our automated classifier increased when these ambiguous samples were excluded (Figure 9 – Figure supplement 2). By reporting the certainty of its predictions, Somnotate greatly facilitates the identification of ambiguous samples that the experimentalist may wish to review or examine further. Somnotate also offers the chance to characterise such ambiguous samples in a principled way.

An ambiguous sample could result from measurement noise masking a true, unambiguous signal, or it could reflect an intermediate state that comprises a mixed signal. Four lines of evidence support the idea that ambiguous samples reflect an intermediate state and are not a measurement artefact. First, the majority of ambiguous samples (76%) occur around state transitions, which represent relatively rare events in the recordings (first two examples in Figure 9A). Second, for nearly all
ambiguous samples, the probability mass was concentrated in two states, rather than being randomly distributed across all three states (Figure 9B). Third, the power spectra for ambiguous samples showed elements of the power spectra of the two most likely states (Figure 9C). For example, samples that Somnotate was uncertain whether to assign as awake or NREM sleep showed a high power in the δ frequency band, characteristic of NREM sleep, but also high power in the γ frequency band, which is typically an indicator of the awake state (Figure 9C). Fourth, the periods during which the classifier was uncertain tended to be much longer than the duration of a single sample (Figure 9 – Figure supplement 3), such that these intermediate states could not simply reflect the temporal resolution of the sampling (i.e. the result of a state transition occurring during a single one second sample).

To demonstrate the opportunities afforded by Somnotate’s identification of ambiguous samples, we focused upon the 24% of ambiguous samples that were associated with an incomplete state transition (such as the third example in Figure 9A) and referred to these as ‘failed transitions’, to distinguish them from successful state transitions. We computed the frequencies of these different transition types and expressed the failed transitions as a proportion of all transitions (Figure 9D). This revealed that the probability of failing to transition was not random. The overall probability of failed transitions was higher when moving out of NREM sleep, than when moving out of REM sleep (p < 0.001, χ² contingency test). However, whereas the two state transitions out of NREM sleep exhibited a similar probability of failing (p = 0.98, χ² contingency test), the state transitions out of REM sleep differed, with a transition from REM-to-NREM showing a higher probability of failing than a transition from REM-to-awake (17% versus 1%; p < 0.001, χ² contingency test). The same pattern of failed transitions remained when a more conservative threshold was adopted for ambiguous time points (state probability below 0.95; Figure 9 – Figure supplement 4). These observations may explain why animals often appear to enter a brief awake state after REM sleep, before they resume with NREM sleep. More generally, these analyses illustrate the additional opportunities afforded by Somnotate’s ability to compute the likelihood of vigilance states at each time point.
Discussion

Here we present a novel sleep stage classifier, which achieves performance levels that surpass human experts, is robust, adaptable, easy to use, and documents the certainty of its state assignments. We call the classifier ‘Somnotate’ and we make it available to the neuroscientific community. Somnotate combines optimal feature extraction by linear discriminant analysis (LDA), with state-dependent contextual information derived via a hidden Markov model (HMM). Our benchmarking tests demonstrate that this approach optimises the use of contextual information, outperforming other classifiers that are compatible with data collected under experimental conditions. Furthermore, through systematic comparisons against expert manual annotations, we demonstrate that Somnotate outperforms the accuracy achieved by experienced sleep researchers. The classifier is shown to be robust to errors in the training data, able to operate across different types of experimental manipulations, and compatible with different electrophysiological signals. Finally, we demonstrate that Somnotate is well-placed to quantify ambiguous states, which can be used to investigate putative failed transitions between vigilance states.

Despite the development of multiple algorithms for sleep stage classification, many sleep researchers continue to manually score their data. We believe that several barriers have prevented widespread adoption of automated solutions, which include issues relating to the accessibility of the software, the true performance levels of the underlying classifiers, their robustness, adaptability, and how easily one can manually assess their performance on ‘edge cases’. We will discuss Somnotate in the context of each of these aspects.

A first barrier to the widespread adoption of automated solutions is the issue of accessibility. Commercially available software for automated sleep stage classification can be expensive and details of their operation are often not made available to the user (Taguchi et al. 2004; Alloca et al. 2019). We provide an open source implementation of our algorithm written in Python. The code comes with extensive documentation including detailed installation instructions and a comprehensive tutorial. The modules of the code base can be integrated into an existing workflow. Alternatively, we also provide a fully-fledged pipeline as a standalone command line application.

In terms of performance levels, reports of human-like performance by automated methods may fall short in practice. We believe that the choice of performance metric may have contributed to this, as we show that inter-rater agreement can be an imprecise measure of annotation accuracy and is typically used in a manner that favours automated annotation. To improve upon this standard, we evaluated the quality of automated annotations against the consensus of at least three manual
annotations. An annotation based on the consensus by majority vote will be more accurate than any individual annotation, whenever manual errors show some degree of independence from one another (Danker-Hopfe et al. 2009; Deng et al. 2019). Using this improved assessment of performance, we showed that Somnotate matched the consensus more closely than any individual manual annotation. The more manual annotations that were used to generate the consensus sequence, the more closely this consensus matched the automated annotation by Somnotate.

Central to Somnotate’s performance is its incorporation of contextual information. Human experts continually use contextual information as they interrogate time series data, relating information at a time point of interest, with information that they infer over longer timescales. This is often overlooked in automated classifiers, although a subset have used algorithms that incorporate contextual information, including those that have used HMMs (Längkvist, Karlsson, and Loutfi 2012; Jiang et al. 2019) and recurrent neural networks (Yulita et al. 2017; Chambon et al. 2018; Malafeev et al. 2018; Phan et al. 2018; Phan et al. 2019; Sun et al. 2019). As HMMs are easier to optimise by non-experts, place significantly less demands on training data, and are thus more compatible with the constraints of experimental settings, we concentrated our efforts on improving the state-of-the-art for HMM-based inference of vigilance states. Somnotate represents an advance upon previous work on related classifiers, by first using LDA to automatically extract features that carry the maximum amount of linearly decodable information about vigilance states, and then incorporating state-dependent contextual information through the application of a HMM.

A key advantage is Somnotate’s robustness. We found that Somnotate is remarkably robust to errors in the training data, with test performance only dropping significantly when more than half of the training samples had been deliberately misclassified. Furthermore, automated scoring methods can exhibit overfitting to standard or control data sets, which means that their performance is diminished in other settings when the probabilities of key features vary (Veasey et al. 2000; Khalighi et al. 2013; Malafeev et al. 2018, Sun et al. 2019; Guillot et al. 2020). This was not the case with Somnotate. We saw no drop in performance when Somnotate annotated data collected under different experimental conditions in which the features used for inference, the state transition probabilities, and/or the state frequencies varied. Somnotate’s high performance was maintained on data from sleep-deprived mice in which the EEG spectrogram is significantly altered; on data from optogenetic manipulation experiments in which the state transition probabilities are changed; and on data across both the light and dark periods of the 24-hour cycle, which show pronounced differences in state occupancies and transition probabilities. These applications establish that Somnotate is well-suited to perform accurate sleep stage annotation under a variety of experimental conditions.
In terms of adaptability, we assessed Somnnotate’s performance upon a number of electrophysiological signals recorded in mice. The use of targeted feature extraction via LDA means that Somnnotate is agnostic with respect to the exact nature of the input signal. In principle, the method could be applied to any high frequency time series data that contains information about an animal’s vigilance state, and hence we plan to expand this approach to other types of signals, such as surface EEG, actigraphy, or respiratory activity (Zeng et al. 2012; Khalighi et al. 2016; Boe et al. 2019; Guillot et al. 2020). Although some automated methods depend on a specific input signal (Lefort et al. 2018), other automated methods can also be recalibrated to accommodate changes in the experimental setup. For example, support vector machines and neural networks can be retrained, or linear discriminants and decision trees can be re-evaluated. However, as most methods have several free parameters, adapting them to a different experimental arrangement can be time-consuming, with uncertain returns. As there are no free parameters in Somnnotate other than the desired time resolution of the state prediction, re-training requires no optimisation, and is straightforward and fast. Training Somnnotate takes approximately one second per 24 hours of data on a standard desktop computer.

Somnnotate’s ability to quantify the certainty of its predictions creates new opportunities for the researcher, by systematically identifying ambiguous epochs. We view this as a key feature, as our discussions with researchers revealed that a primary concern is how automated solutions perform on edge cases. With its dual output for each epoch – the prediction of the vigilance state and the certainty of the classifier – Somnnotate offers users the chance to rapidly identify and confirm the classifier’s performance in a targeted manner. Furthermore, this feature affords new analysis opportunities that require an automated approach. Whilst the gold standard for sleep stage classification remains human experts, there is an element of subjectivity to all manual annotations that makes certain areas of investigation difficult. For example, EEG traces show signatures of multiple states, particularly around state transitions (Glin et al. 1991, Gottesmann 1996, Emrick et al. 2016, Funk et al. 2016), which is where most disagreements between manual annotations occur. And whilst humans are very good at determining the most likely state at any given time point, they struggle to quantify intermediate states. In contrast, there is no difference between these two tasks for our classifier. In a subset of cases, Somnnotate identified intermediate states in the absence of a state transition, which we defined as failed transitions. Interestingly, the distribution of failed transitions was highly non-random, with REM-to-awake transitions being nearly always successful, whereas failures were much more common for REM-to-NREM transitions. This differential failure rate may explain the preponderance of brief awake periods between REM and NREM sleep, as it may be easier for the underlying neuronal networks to transition from REM to awake, and then to NREM, rather than transition directly from REM to NREM. This highlights a potential direction for
future investigations, which could lead to a richer description of the neurophysiological mechanisms of vigilance state transitions.
Materials and methods

Animal husbandry and sleep deprivation

All experiments were performed on adult male C57BL/6 wild-type mice, which were bred, housed and used in accordance with the UK Animals (Scientific Procedures) Act (1986). Animals were maintained under a 12-hour:12-hour light-dark (LD) cycle. For the subset of animals that underwent a sleep deprivation (SD) protocol, the animal was pre-exposed to novel objects to encourage exploratory behaviour. The SD protocol then consisted of delivering novel objects for the first six hours of the light cycle, under the continuous observation of an experimenter. Once an animal had stopped exploring an object, a new object was presented.

Surgical procedures and electrode configuration

For chronic electroencephalogram (EEG) and electromyogram (EMG) recordings, custom-made headstages were constructed by connecting three stainless steel screw electrodes (Fine Science Tools), and two stainless steel wires, to an 8-pin surface mount connector (8415-SM, Pinnacle Technology Inc., Kansas). For LFP recordings, a 16-channel silicon probe (NeuroNexus Technologies Inc., Ann Arbor, MI, USA; model: A1x16-3mm-100-703-Z16) with a spacing of 100 μm between individual channels was used. Device implantation was performed using stereotactic surgery, aseptic technique, isoflurane anaesthesia (3-5% for induction and 1-2% for maintenance) and constant body temperature monitoring. Analgesia was provided at the beginning of surgery and during recovery (buprenorphine and meloxicam). A craniotomy was performed over the right frontal cortex (AP +2 mm, ML +2 mm from Bregma), right occipital cortex (AP +3.5 mm, ML +2.5 mm from Bregma), and the cerebellum (-1.5 mm posterior from Lambda, ML 0). A subset of animals were further implanted with a bipolar concentric electrode (PlasticsOne Inc., Roanoke, VA, USA) in the right primary motor cortex, anterior to the frontal EEG screw. To accommodate this additional implant, the frontal EEG screw was typically implanted 0.2-1.6 mm posterior to the target coordinates. For EEG recordings, a screw was fixed over both the right frontal and occipital cortex. For LFP and multi-unit activity recording in a subset of animals, a 16-channel silicon probe was implanted into primary motor cortex (+1.1 mm AP (anterior), -1.75 mm ML (left), tilt -15° (left)) under microscopic control, as reported previously (Krone et al., 2021). EEG and LFP signals were referenced to a cerebellum screw. For EMG recordings, wire electrodes were inserted into the left and right neck muscles, and one signal acted as reference to the other. All implants were secured
using a non-transparent dental cement (SuperBond from Prestige Dental Products Ltd, Bradford, UK). Animals were allowed to recover for at least 1 week before recordings.

In vivo data acquisition

Animals were moved to a recording chamber and housed individually in a Plexiglas cage (20.3 x 32 x 35 cm). Recordings were performed using a 128-channel Neurophysiology Recording System (Tucker-Davis Technologies Inc., Alachua, FL, USA), acquired using the electrophysiological recording software, Synapse (Tucker-Davis Technologies Inc., Alachua, FL, USA), and stored locally for offline analysis. EEG, EMG, and LFP signals were continuously recorded, filtered between 0.1–100 Hz, and stored at a sampling rate of 305 Hz. EEG, EMG and LFP signals were resampled at 256 Hz using custom code in MATLAB (MathWorks, v2017a), and converted into the European Data Format. The first and/or last 30 seconds of recordings could contain missing values as this corresponded to the period when the electrodes were being connected/disconnected from the recording system. These epochs were excluded from all subsequent analyses.

Optogenetic stimulation

We employed a protocol previously described in detail in Chung et al (2017) and Yamagata et al. (2021). Briefly, channelrhodopsin-2 (ChR2) was expressed in glutamate decarboxylase 2 expressing (GAD2⁺) interneurons by injection of an adenovirus construct (UNC vector core, AAV5-EF1a-DIO-ChR2-eYFP) into the lateral preoptic area (LPO) of the hypothalamus in adult Gad2-IRES-Cre mice (Jackson Laboratory 019022; B6N.Cg-Gad2tm2(cre)Zjh/J). For optical stimulation, either an optic fiber (400 μm diameter, Doric Lenses Inc, Quebec) or a custom made optrode, consisting of an optic fiber glued with tungsten wires, was inserted to 0.2 mm above the virus injection site. All electrophysiological recordings were made 4 to 7 weeks post virus injection. To optogenetically stimulate GAD2⁺ neurons, we applied 10 ms pulses of light from a blue LED (470 nm, 10.8 – 13.2mW at fiber tip) at various frequencies (20, 10, 5, 2 or 1 Hz), for a duration of 2 minutes, every 20 ± 2 minutes. On baseline days, no optogenetic stimulation was provided.

Manual vigilance state annotation

Manual annotation of vigilance states was performed offline, based on 4 s epochs using SleepSign software (Kissei Comtec). The anterior EEG channel, the posterior EEG channel, and the EMG
channel were displayed on-screen simultaneously and visually inspected for vigilance state scoring. Three vigilance states were identified, as is typical in laboratory rodent studies. Waking was defined by a low-voltage, high-frequency EEG signal, with a high level or phasic EMG activity. During active, exploratory waking, a transient increase in theta-activity (5-10 Hz) was typically observed in the occipital derivation, overlying the hippocampus. NREM sleep was defined by an overall higher amplitude signal, dominated by slow waves (<4 Hz) and spindle oscillations (10-15 Hz) that were especially prominent in the anterior EEG channel, while the EMG signal was typically low. REM sleep was characterised by low-voltage, high-frequency EEG, dominated by theta activity especially in the posterior EEG channel, with a low level of EMG activity.

Data pre-processing for automated annotation

We first computed the spectrograms of the anterior EEG, the posterior EEG, and the EMG traces. To reduce sensitivity to noise present in electrophysiological recordings, we used a multitaper approach, as this results in more robust estimates of the power than the more conventional Baum-Welch algorithm. Specifically, we used the implementation in the lspopt python library (1 second long segments with no overlap, other parameters at default values). We then discarded parts of the power spectrum that are strongly influenced by signals not related to changes in vigilance states. We discarded signals in the 0-0.5 Hz frequency range in the EEG and EMG recordings, as these are dominated by drift due to animal locomotion. Furthermore, we discarded signals between 45-55 Hz and above 90 Hz, as these were strongly affected by 50 Hz electrical noise. We then applied a log(x+1) transformation to map the heavy-tailed distribution of power values to a distribution that is more normally distributed. The normal distribution is the maximum entropy distribution for continuous distributions on unbounded domains, and as such, samples are maximally far apart from one another (compared to other distributions with the same variance). This facilitates downstream classification into separable groups. The re-mapped power values were then normalised by converting them to Z-scores (mean subtraction followed by rescaling to unit variance). Normalisation ensures that all frequencies are weighted equally in the downstream feature extraction. Finally, the normalised spectrograms were concatenated, resulting in a high-dimensional signal.

Automated feature extraction

Features for downstream classification were then extracted from the concatenated spectrograms in a targeted manner using linear discriminant analysis (LDA; Fisher 1936), as implemented in the
scikit-learn python library (Pedregosa et al. 2011). LDA determines a linear projection of high
dimensional data to a low dimensional representation, such that samples belonging to different
classes are optimally linearly separated in the low dimensional space. Thus, information in the
signal about the different classes is preserved, while non-informative components of the signal are
discarded. This has two further effects. Firstly, training of any classifier is accelerated, which
implicitly or explicitly fits a joint probability distribution to the components of the training data.
The number of samples required to accurately fit a joint probability distribution increases
exponentially with the number of dimensions. As the dimensionality of the data is reduced, fewer
samples are required to escape the under-sampled regime and accurately determine the shape of the
data distribution. This is enhanced by the fact that the components of the LDA are largely
independent of one another – unlike the original signal, in which many frequencies are highly
correlated with each other. Secondly, as much of the original signal is effectively discarded,
artefacts that contaminate the signal are also removed.

Automated vigilance state annotation

Given three target states (awake, NREM sleep, and REM sleep), dimensionality reduction with
LDA results in two-dimensional signals. These two-dimensional signals together with the
corresponding manual annotations were used to train a HMM in a supervised fashion, with
multivariate Gaussian state emissions using the python library pomegranate (Schreiber 2018; all
optional parameters at default values). If the annotations were not based on the consensus of
multiple manual annotations, mislabelled samples in the training data resulted in non-zero
probabilities for disallowed state transitions, specifically awake-to-REM transitions. These were
pruned by removing all state transitions with probability below 0.0001 per second. The accuracy of
the trained LDA and HMM models were ascertained by applying the models to held out test data.
For each sample, the probability of each state was computed using the Baum-Welch algorithm, and
the most likely state sequence was determined using the Viterbi algorithm. Unless specified
otherwise, training and testing occurred in a hold-one-out fashion.

Recording artefacts

Samples containing artefacts associated with the animal’s gross body movements were identified
during manual annotations, but were still included in the analysis of vigilance states and in the data
used to train Somnote. Such artefacts represented 1.0% ± 1.0% of the consensus manual
annotations (mean ± standard deviation; 3.8% ± 2.8% in the individual manual annotations) and did
not influence the automated feature extraction by LDA, so did not impact the quality of the automated annotations. However, such artefacts could affect downstream analyses in future applications, such as spectral analysis of the recorded signals. For this reason, Somnotate includes two features to facilitate the detection and removal of artefacts. First, Somnotate detects and demarcates gross movements that generate voltage deflections outside of the dynamic range of the recording system (with an optional padding to also remove voltage deflections preceding and following such events), so that they are not included in downstream analyses. Second, Somnotate has the option to present samples to the user where the classifier was uncertain about state assignment. Intervals consisting of consecutive samples in which the probability of the inferred state is below one are scored according to the sum of the residual probabilities (i.e. one minus the probability of the inferred state) and presented to the user in descending order. Movement artefacts associated with prolonged voltage deflections, or that strongly affect the spectral features identified by LDA, result in a high score and can be excluded by the user.
Author contributions

PJNB designed and wrote the Somnotate software. HA tested and provided feedback on Somnotate during its early development. PJNB and CJA designed the validation experiments and PJNB carried out the analysis. HA, LBK, CBD, and TY performed the in vivo recordings. LBK organised the manual annotation effort. HA, LBK, CBD, ASF, SF, MCCG, YGH, MCK, LEK, LEM, LM, LT, CWT, TY, and VVV contributed manual annotations. RGF, VVV and CJA supervised the work. PJNB and CJA wrote the manuscript, with input from all authors.

Acknowledgements

We would like to thank the Akerman lab for advice and comments. The research leading to these results received funding from the European Research Council under the European Community’s Seventh Framework Programme FP7/2007-2013, ERC Grant Agreement 617670 and also Medical Research Council (UK) project MR/N026039/1 and MR/S01134X/1, and Wellcome Trust 106174/Z/14/Z. HA was funded by a Sir Henry Wellcome Postdoctoral Fellowship and St John's College Junior Research Fellowship; LBK by a Wellcome Trust PhD studentship (203971/Z/16/Z), Hertford College Senior Scholarship, Goodger and Schorstein Research Scholarships in Medical Sciences; CBD by a Wellcome Trust PhD studentship (109059/Z/15/Z) and Clarendon Fund Scholarship; MCCG by a BBSRC DTP grant (BB/J014427/1) and Clarendon Scholarship; YGH by a Medical Research Council/Stroke Association Clinical Research Training Fellowship; MCK by a Berrow Foundation Lord Florey Scholarship, plus Goodger and Schorstein Research Scholarship in Medical Sciences; LEM by a Biotechnology and Biological Sciences Research Council Industrial CASE Grant with Eli Lilly & Company Ltd (BB/K011847/1), a Novo Nordisk Postdoctoral Fellowship and a Sir Paul Nurse Junior Research Fellowship at Linacre College; LM by an Action on Hearing Loss studentship; CWT by a BBSRC DTP Grant (BB/M011224/1); TY by a Uehara Memorial Foundation Overseas Postdoctoral Fellowship and a Naito Grant for Studying Overseas.
References

Cui N, Mckillop LE, Fisher SP, Oliver PL, Vyazovskiy VV. Long-term history and immediate preceding state affect EEG slow wave characteristics at NREM sleep onset in C57BL/6 mice. Arch Ital Biol. 2014 Jun-Sep;152(2-3):156-68. doi: 10.12871/0002982920142310.

Figure legends

Figure 1. The consensus of manual annotations yields a better estimate of annotation accuracy.

(A) The annotation of vigilance states was based on recordings of the anterior EEG, posterior EEG and EMG from a freely behaving mouse. A one-minute segment of the recordings is shown. (B) Multi-taper spectrograms for each of the recorded signals in ‘A’. (C) The majority-vote consensus of manual annotations by three independent experienced sleep researchers (top), which discriminates the vigilance states of awake (red), NREM sleep (blue) and REM sleep (yellow). A fourth (middle) and fifth (bottom) independent individual manual annotation of the same segment. (D) A total of ten experienced sleep researchers independently annotated the same 12-hour recording and the accuracy of each annotation was assessed by using the consensus of the other nine annotations as a proxy for the ground truth. (E) For each possible pair of annotations, the inter-rater agreement was plotted against the mean accuracy of the pair of annotations, when judged against a consensus based on the remaining other eight annotations. (F) There was greater variability in the accuracy of an annotation when judged against a single other manual annotation, than when judged against the consensus of three randomly selected annotations (without replacement). Plot shows the variability in accuracy estimates (standard deviation with Bessel correction), which was significantly lower when using the consensus of three annotations (p < 0.01, Wilcoxon signed rank test). (G) A consensus was constructed from five of the ten independent annotations based on majority vote. A second consensus annotation was then constructed using either one, three or all five of the remaining annotations. The plot shows the mean agreement between the two consensus annotations. Error bars represent the standard deviation.

Figure 2. Contextual information improves automated sleep stage classification. (A) A fifteen-minute segment of the consensus of manual annotations by four independent experienced sleep researchers, based on recordings from a freely behaving mouse. (B) Annotation was based on the anterior EEG, posterior EEG and EMG traces (top), and corresponding multi-taper spectrograms (bottom). (C) Two-dimensional representation of the segment after targeted dimensionality reduction via LDA. Small values in the first component (‘LD1’) indicate the awake state, large values indicate either REM or NREM. Small values in the second component (‘LD2’) indicate the awake or NREM state, large values indicate REM. (D) Probability of each state when fitting two-dimensional Gaussian distributions to the values in ‘C’. (E) Likelihood of each state given the probability of each state (as shown in ‘D’) and all possible state sequences, weighted by their likelihood given the state transition probabilities (as shown in ‘G’). (F) The state occupancy based on the time spent in each state across six 24-hour data sets, according to at least four manual annotations. (G) The corresponding state transition probabilities. (H) Accuracy of the LDA, naive Bayes, and HMM classifiers. Without any contextual information, applying linear thresholds to the values in ‘C’ yields the LDA classifier. Combining the probability of the data given the state with the prior state probability, based on state occupancy shown in ‘F’, yields a naive Bayes classifier. If instead the prior probability of each state is derived from the state transition probabilities shown in ‘G’, the classifier becomes a HMM. Accuracy was evaluated across six 24-hour data sets in a hold-
one-out fashion. Error bars indicate standard deviation. P-values are derived from a Wilcoxon
signed rank test with a Bonferroni-Holm correction for multiple comparisons.

Figure 3. Automated sleep stage classification by Somnotate exceeds manual accuracy. (A) Somnotate was trained and tested, in a hold-one-out fashion, on six 24-hour data sets. Using a consensus annotation based on at least three manual annotations, the accuracy of the classifier was compared to the accuracy of individual manual annotations (n=25 manual annotations from 13 experienced sleep researchers). (B) The confusion matrix for individual manual annotations compared to the manual consensus (left), for the automated classifier compared to the manual consensus (middle), and the difference between these two confusion matrices (right). (C) Comparison of state occupancies between the automated and manual consensus annotations. (D) State transition probabilities in the automated annotation, normalised to the state transition probabilities in the manual consensus annotation. (E) Cumulative frequency plot shows the duration of the differences between the automated annotation and the manual consensus. Note that the manual annotation had a temporal resolution of 4 s (vertical dashed line), whereas the automated classifier performed best at a time resolution of 1 s. (F) Venn-diagram of the time points at which the automated annotation and manual consensus differed. (G) Somnotate was trained on six 24-hour data sets and then tested on a 12-hour data set, which had been independently annotated by ten experienced sleep researchers (as in **Figure 1**). The accuracy of the annotation by Somnotate was compared to consensus annotations generated from different numbers of manual annotations. Error bars indicate standard deviation. P-values are derived from a Wilcoxon signed rank test.

Figure 4. Somnotate is robust to errors in the training data. (A) Somnotate’s accuracy was evaluated on six 24-hour data sets, in a hold-one-out fashion, while permuting an increasing fraction of annotations in the training data. Confusion matrices show the results when permuting 10% of the training data annotations (resulting in 6% mislabelled time points; left), permuting 50% of the training data annotations (resulting in 28% mislabelled time points; middle), or permuting 90% of the training data annotations (resulting in 51% mislabelled time points; right). Values represent mean ± standard deviation. (B) Somnotate’s accuracy as a function of the percentage of permuted training data annotations.

Figure 5. Somnotate is robust to experimentally-induced changes in features of the data. (A) The accuracy of a pre-trained classifier was evaluated against a manual annotation of normal sleep-wake cycle data (six 12-hour data sets), and compared to its accuracy on data from the same animals after undergoing a sleep deprivation protocol (six 12-hour data sets). Confusion matrices are shown for the normal sleep-wake cycle (left, ‘baseline’), following sleep deprivation (middle), and as the difference between these two confusion matrices (right). (B) Comparison of Somnotate’s overall accuracy on baseline data and data collected after sleep deprivation. P-value is derived from a Wilcoxon signed rank test.
Figure 6. Somnotate is robust to optogenetically-induced changes in the state transition probabilities. (A) Mice experienced experimentally-induced awakenings via optogenetic stimulation of ChR2-expressing inhibitory neurons in the lateral preoptic hypothalamus. (B) This optogenetic manipulation increased the probability that the animals transitioned from NREM sleep and REM sleep, to the awake state. (C) The accuracy of a pre-trained classifier evaluated against a manual annotation was comparably high for eleven 24-hour data sets recorded during optogenetic stimulation, and for baseline recordings from the same animals on days when optogenetic stimulation was not performed (p > 0.9, Wilcoxon signed rank test).

Figure 7. Somnotate is robust to changes in state occupancy. (A) To assess the impact of a change in vigilance state occupancy, the accuracy of a classifier trained on 24-hour data sets (i.e. full-day data sets) was evaluated on data sets acquired either during the light period (six 12-hour data sets), or during the dark period (six 12-hour data sets). The state occupancy is shown during the light (left) and dark period (right). (B) The state transition probabilities, normalised to their corresponding values over the full-day, for the light (left) and dark periods (right). (C) Confusion matrices for the light (left) and dark periods (right), with entries corresponding to the difference after subtracting the corresponding values for the full-day. (D) Somnotate’s accuracy was compared to the accuracy of individual manual annotations (n=25) during the light (left) and dark periods (right). Values throughout indicate mean ± standard deviation. P-values are derived from a Wilcoxon signed rank test.

Figure 8. A single EEG signal is sufficient for Somnotate to infer vigilance states with high accuracy. (A) The accuracy of Somnotate’s sleep stage classification using a single input signal. Classifiers were trained and tested, in a hold-one-out fashion, on six 24-hour data sets. Only one signal was provided as an input signal: either the anterior EEG, the posterior EEG, the LFP from primary somatosensory cortex, or the EMG. (B) Confusion matrices when using only the anterior EEG (top left), the posterior EEG (top right), an LFP (bottom left), or the EMG (bottom right). Values indicate mean ± standard deviation.

Figure 9. Somnotate identifies ambiguous states. (A) Three examples of ambiguous states identified by Somnotate, in which the probability of the most likely state dropped below 0.995. In each case, the consensus annotation, input signals, power spectra and likelihood of each state assigned by Somnotate, are shown. The first example (left) shows a successful state transition from awake to NREM sleep. Just before the transition, Somnotate identifies time points with intermediate states in which the probability of being awake has decreased and NREM sleep has increased. The second example (middle) shows a brief state transition from NREM sleep to awake, and then back to NREM sleep, which includes time points with intermediate states. The third example (right) shows a failed transition from NREM sleep to awake, which includes a series of time points with intermediate states in which there is a partial decrease in the probability of NREM sleep and
partial increase in the probability of being awake. (B) Ternary plot of the state probabilities assigned to each time point with an intermediate state in six 24-hour data sets (left). In the vast majority of cases, the probability mass was concentrated in one or two states. This was different to a theoretical distribution in which the probability mass outside the most likely state was randomly assigned to the other two states (right). (C) Power spectra extracted for time points with intermediate states (solid lines). For reference, the power spectra for the “pure” states are also shown (dashed lines). (D) Relative frequencies of successful state transitions (per day; left), failed state transitions (middle) and the ratio between these (right). Values indicate mean ± standard deviation.
Figure Supplement legends

Figure 1 – Figure Supplement 1. The consensus of manual annotations yields a better estimate of annotation accuracy, as measured by Cohen’s kappa. The analyses in Figure 1D-G were repeated using Cohen's kappa as a measure of performance. (A) A total of ten experienced sleep researchers independently annotated the same 12-hour recording and the accuracy of each annotation was assessed by using the consensus of the other nine annotations as a proxy for the ground truth. (B) For each possible pair of annotations, the inter-rater agreement was plotted against the mean accuracy of the pair of annotations, when judged against a consensus based on the remaining other eight annotations. (C) There was greater variability in the accuracy of an annotation when judged against a single other manual annotation, than when judged against the consensus of three randomly selected annotations (without replacement). Plot shows the variability in accuracy estimates (standard deviation with Bessel correction), which was significantly lower when using the consensus of three annotations ($p < 0.01$, Wilcoxon signed rank test). (D) A consensus was constructed from five of the ten independent annotations based on majority vote. A second consensus annotation was then constructed using either one, three or all five of the remaining annotations. The plot shows the mean agreement between the two consensus annotations. Error bars represent standard deviation.

Figure 3 – Figure Supplement 1. Manual annotations were performed by experienced sleep researchers. All authors who provided manual annotations reported their task-relevant experience in years, plus the approximate number of hours that they had previously manually annotated.

Figure 3 – Figure Supplement 2. Sleep stage classification with Somnotate exceeds manual performance. The analysis in Figure 3A was repeated using Cohen's kappa as a measure of performance. Somnotate was trained and tested, in a hold-one-out fashion, on six 24-hour data sets. Using a consensus annotation based on at least 3 manual annotations, the Cohen's kappa score of the automated annotation was compared to the Cohen's kappa score of individual manual annotations ($n=25$ manual annotations from 13 experienced sleep researchers). P-value is derived from a Wilcoxon signed rank test.

Figure 3 – Figure Supplement 3. EEG power spectra by state according to Somnotate (A) or manual consensus annotations (B). Somnotate was trained and tested, in a hold-one-out fashion, on six 24-hour data sets. Spectrograms were computed for the anterior and posterior EEG and partitioned according to the predicted state. The process was repeated using the manual consensus annotations. The lines indicate the median EEG power.

Figure 4 – Figure Supplement 1. Somnotate's performance as a function of the amount of training data. Somnotate was trained and tested, in a hold-one-out fashion, using different numbers of 24-hour data sets. The maximum amount of training data available was twenty 24-hour EEG and...
EMG recordings under baseline conditions. The line indicates the median. Error bars demarcate the 5th and 95th percentile.

Figure 6 – Figure Supplement 1. Periodic, optogenetically-induced awakenings do not alter overall vigilance state occupancy. For a period of 24 hours, mice experienced experimentally-induced awakenings every 20 minutes via optogenetic stimulation of ChR2-expressing inhibitory neurons in the lateral preoptic hypothalamus. However, these awakenings did not result in a statistically significant change in the occupancy of any vigilance state compared to baseline recordings from days without optogenetic stimulation in the same animals (p > 0.15 for all states, Wilcoxon signed rank test).

Figure 9 – Figure Supplement 1. Selecting a state probability threshold to identify ambiguous samples. The probability of the predicted state was computed for each sample in six 24-hour data sets. As the cumulative distribution of probabilities exhibits an elbow at 0.995, this value was chosen as a threshold below which samples were classified as ambiguous.

Figure 9 – Figure Supplement 2. Excluding samples where the classifier is not certain improves the accuracy of automated annotation. (A) Classifier accuracy was compared between cases when all time points were included (‘baseline’) and when 5.5% of samples were removed because the likelihood of the predicted state dropped below 0.995 (‘refined’). The plot indicates mean ± standard deviation and p-values are derived from a Wilcoxon signed rank test. (B) Confusion matrices when including all time points (left), when excluding time points where the automated annotation was uncertain (middle; ‘refined’) and the difference between these (right).

Figure 9 – Figure Supplement 3. Duration of ambiguous states around successful and failed state transitions. The probability of the predicted state was computed for each sample in six 24-hour data sets, and ambiguous samples were identified as having a likelihood below 0.995. Each epoch comprising consecutive ambiguous time points was checked for the presence of state transitions.

Figure 9 – Figure Supplement 4. Frequencies of successful and failed transitions. The analysis in Figure 9D was repeated using a more conservative threshold to identify ambiguous samples (P(predicted state) < 0.95). Relative frequencies of successful state transitions (left), failed state transitions (middle) and the ratio between these (right) are shown. Values indicate mean ± standard deviation.
Figure 1
Figure 2
Figure 3
Figure 4

<table>
<thead>
<tr>
<th>Consensus annotation</th>
<th>10% randomized (6% mislabelled)</th>
<th>50% randomized (28% mislabelled)</th>
<th>90% randomized (51% mislabelled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated annotation</td>
<td>0.95 ±0.02 0.05 ±0.02 0.01 ±0.00</td>
<td>0.94 ±0.02 0.05 ±0.02 0.00 ±0.00</td>
<td>0.98 ±0.02 0.02 ±0.02 0.00 ±0.00</td>
</tr>
<tr>
<td>Wake</td>
<td>0.02 ±0.01 0.97 ±0.01 0.01 ±0.01</td>
<td>0.02 ±0.01 0.98 ±0.01 0.01 ±0.00</td>
<td>0.21 ±0.14 0.79 ±0.14 0.00 ±0.00</td>
</tr>
<tr>
<td>NREM</td>
<td>0.03 ±0.05 0.12 ±0.07 0.85 ±0.07</td>
<td>0.94 ±0.06 0.21 ±0.09 0.75 ±0.09</td>
<td>0.72 ±0.10 0.17 ±0.08 0.11 ±0.04</td>
</tr>
<tr>
<td>REM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5

<table>
<thead>
<tr>
<th>Manual annotation</th>
<th>Baseline</th>
<th>Sleep deprivation</th>
<th>Performance difference: Sleep deprivation - Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated annotation</td>
<td>0.92 ±0.06 0.07 ±0.05 0.01 ±0.01</td>
<td>0.93 ±0.04 0.06 ±0.04 0.01 ±0.01</td>
<td>0.00 ±0.05 -0.01 ±0.05 0.01 ±0.02</td>
</tr>
<tr>
<td>Wake</td>
<td>0.03 ±0.04 0.95 ±0.04 0.02 ±0.01</td>
<td>0.00 ±0.00 0.98 ±0.01 0.02 ±0.02</td>
<td>-0.03 ±0.04 -0.02 ±0.04 0.00 ±0.02</td>
</tr>
<tr>
<td>NREM</td>
<td>0.02 ±0.05 0.09 ±0.10 0.88 ±0.10</td>
<td>0.06 ±0.01 0.08 ±0.06 0.92 ±0.06</td>
<td>-0.02 ±0.05 -0.01 ±0.05 0.03 ±0.06</td>
</tr>
<tr>
<td>REM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 6
Figure 7
Figure 8
Figure 9
Figure 1 - Figure Supplement 1
<table>
<thead>
<tr>
<th>Annotator</th>
<th>Experience (Years)</th>
<th>Number of hours of data annotated</th>
</tr>
</thead>
<tbody>
<tr>
<td>VVV</td>
<td>22</td>
<td>10000</td>
</tr>
<tr>
<td>TY</td>
<td>6</td>
<td>3840</td>
</tr>
<tr>
<td>LEM</td>
<td>7</td>
<td>2400</td>
</tr>
<tr>
<td>LT</td>
<td>5</td>
<td>2400</td>
</tr>
<tr>
<td>CBD</td>
<td>6</td>
<td>1608</td>
</tr>
<tr>
<td>HA</td>
<td>3</td>
<td>1368</td>
</tr>
<tr>
<td>CWT</td>
<td>3</td>
<td>1344</td>
</tr>
<tr>
<td>MCCG</td>
<td>6</td>
<td>1200</td>
</tr>
<tr>
<td>YGH</td>
<td>5</td>
<td>1200</td>
</tr>
<tr>
<td>MCK</td>
<td>4</td>
<td>1200</td>
</tr>
<tr>
<td>LBK</td>
<td>5</td>
<td>1200</td>
</tr>
<tr>
<td>SJF</td>
<td>2</td>
<td>960</td>
</tr>
<tr>
<td>ASF</td>
<td>2</td>
<td>840</td>
</tr>
<tr>
<td>LM</td>
<td>5</td>
<td>768</td>
</tr>
<tr>
<td>Mean</td>
<td>5.79</td>
<td>2166</td>
</tr>
<tr>
<td>Median</td>
<td>5</td>
<td>1272</td>
</tr>
<tr>
<td>Minimum</td>
<td>2</td>
<td>768</td>
</tr>
</tbody>
</table>

Figure 3 - Figure Supplement 1
Figure 3 - Figure Supplement 2

The figure illustrates the agreement κ between manual and automated annotation. The agreement is represented on a y-axis ranging from 0.70 to 1.00. Two bars are shown, one for manual annotation with a κ of 0.91 ± 0.03 and another for automated annotation with a κ of 0.95 ± 0.02. The data points are connected by a line with a significance level of $p < 10^{-3}$. The results indicate a high level of agreement between the two methods.
Figure 3 - Figure Supplement 3

Automated annotation

Manual annotation
Figure 4 - Figure Supplement 1

Figure 6 - Figure Supplement 1
Figure 9 - Figure Supplement 1

Figure 9 - Figure Supplement 2
Figure 9 - Figure Supplement 3

Figure 9 - Figure Supplement 4