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Abstract 

Cellular senescence is characterised by a state of permanent cell cycle arrest. It is accompanied 

by often variable release of the so-called senescence-associated secretory phenotype (SASP) 

factors, and occurs in response to a variety of triggers such as persistent DNA damage, telomere 

dysfunction, or oncogene activation. While cellular senescence is a recognised driver of 

organismal ageing, the extent of heterogeneity within and between different senescent cell 

populations remains largely unclear. Elucidating the drivers and extent of variability in cellular 

senescence states is important for discovering novel targeted seno-therapeutics and for 

overcoming cell expansion constraints in the cell therapy industry. Here we combine cell 

biological and single cell RNA-sequencing approaches to investigate heterogeneity of 

replicative senescence in human ESC-derived mesenchymal stem cells (esMSCs) as MSCs are 

the cell type of choice for the majority of current stem cell therapies and senescence of MSC 

is a recognized driver of organismal ageing.  Our data identify three senescent subpopulations 

in the senescing esMSC population that differ in SASP, oncogene expression, and escape from 

senescence. Uncovering and defining this heterogeneity of senescence states in cultured human 

esMSCs allowed us to identify potential drug targets that may delay the emergence of senescent 

MSCs in vitro and perhaps in vivo in the future.  

Introduction 

Cellular senescence is one the main drivers of ageing and age-associated diseases [1]. A variety 

of cell stressors such as telomere attrition, oncogene activation, and genotoxic or oxidative 

stress can induce senescence [2]. Depending on the cell type and cellular context, senescent 

cells will secrete a variety of pro-inflammatory cytokines, chemokines, growth modulators, 

proteases and other soluble signalling factors, collectively termed senescence-associated 

secretory-phenotype (SASP) factors [3]. These SASP factors promote inflammation and 

senescence in neighbouring cells, thus furthering the ageing process itself and accelerating the 

onset of age-related diseases [3]. Senescence of mesenchymal stem cells (MSCs) is thought to 
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be a particularly important contributor to organismal ageing. This is perhaps most pertinently 

shown by the devastating accelerated ageing syndromes such as Progeria and Werner syndrome 

(WS) that exhibit pathologies mainly associated with degeneration of mesenchymal tissues [4]. 

Encouragingly, transplantation of healthy MSCs into a WS mouse model improved both mean 

life span and bone density [5].  

MSCs are self-renewing multipotent immune-modulatory cells that often home to sites of 

injury, differentiate into bone, cartilage, fat and smooth muscle cells. MSCs are also an 

important component of the niches of hematopoietic and other stem cells and play important 

roles in supporting the vascular system. Hundreds of clinical trials involving autologous and 

heterologous transplantation of bone marrow, or adipose tissue - or human embryonic stem 

cells (hESCs) derived MSC are ongoing, particularly for age-related diseases such as 

osteoporosis and osteoarthritis that are accompanied by an age-dependent loss of both MSC 

number and potency. To reach clinically relevant cell numbers, MSC populations often need 

to be expanded for prolonged periods of time through in vitro culture expansion. Perhaps not 

unexpectedly, such in vitro cultured MSCs acquire a senescent phenotype over extended 

passages [6], and this occurs even earlier in primary MSCs derived from donors of advanced 

age [7]. Previous research has shown that MSC senescence programs not only elicit permanent 

cell cycle arrest, but also alter the differentiation propensity of MSC from bone or cartilage in 

the young to increased adipogenesis with advanced age, and results in an erosion of their 

immuno-modulatory properties, further limiting their clinical efficacy [8]. Previous studies 

have further shown that senescence of cultured murine and human MSCs is associated with 

telomere shortening, and is modulated through both p53 and p16/pRb tumor suppressor 

pathways, as well as GATA4 regulated pathways. Bulk MSC cultures also exhibit notable 

changes in chromatin organisation and gene expression as these cells undergo replicative 

senescence [9]. 

While these studies have certainly started to provide insights into the senescence programs of 

MSCs, most overlook the fact that MSC cultures represent a highly heterogeneous population 

of cells composed of stem cell and progenitor compartments that differ in the abundance and 

distribution of MSC markers [10]. The systematic investigation of MSC senescence is further 

hindered by the fact that the propensity to enter into senescence is affected by the source of the 

MSCs [11-21], the stage of the cell differentiation process [18, 19, 22] cultivation times [23-

28], medium composition, and donor age. Furthermore, while senescent MSCs are generally 

identified based on the combined presence of multiple biochemical markers such as expression 

of p16, p53, p21 and senescence-associated β-galactosidase (SA-β-Gal) staining, previous 

studies (and our data presented here) clearly show that the levels of these markers are not 

consistently and homogeneously distributed amongst individual cell sub-populations and 

senescent cells [29].  

To minimize such confounding factors, we have used MSC generated from Schwann cell 

precursors derived from a single hESC line, to specifically eliminate the impacts of inter-donor 

variability, source, and donor age (as hESCs are epigenetically reset to a fetal stage). We 

examined the temporal acquisition, levels and distribution of senescence markers and gene 

expression in individual cells over the course of senescence acquisition using automated image 

analysis and single cell RNA sequencing. Our data reveal that subsets of MSCs differentially 

enter heterogeneous pre-senescent states over time in culture and then progress into two 

different senescent cell states and a population that has escaped senescence. We identified 
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genes NUPR1, GDF15, S100A6, PCSK1N, MT2A, IGFBP5, CKS2 and BIRC5 as important 

drivers of these different senescent states and predict that interference with the expression of 

these genes may be able to destabilize these specific MSC senescent sub-states.  

Materials and Methods 

MSC differentiation and culture  

hESC line Genea022 [30] was maintained under feeder-free conditions on extracellular matrix 

(ECM, Sigma) coated plates with mTeSR™ Plus (Stemcell Technologies), with passages were 

performed using EDTA at 70-80% confluence approximately every 5 days. For the Schwann 

Cell Precursors (SCPs) differentiation, the hESCs were plated as single cells at a density of 

90,000 cells/cm2. The next day, the culture medium was switched to SCP differentiation 

medium: DMEM/F12 supplemented with 1X B-27 without Vitamin A, 1X GlutaMax, 1X 

NEAAs, 1X PenStrep, 100 µM β-mercaptoethanol, 10 µg/mL Holo-transferrin, 10 ng/mL 

Heregulin B, 3 µM CHIR, 10 µM SB431542, 50 µg/mL ascorbic acid, and 8 ng/mL bFGF. 

Cells were passaged every 4-5 day with Accutase and maintained in differentiation medium 

for 21 days. Differentiation to MSCs was initiated by exchanging SCP medium to DMEM low 

glucose (1 g/L) supplemented with 10% FBS and 1X PenStrep. Date of exchange to MSC 

medium was designated MSC differentiation day 0. Subsequently, MSCs were passaged using 

TrypLE at 80% confluence approximately every 5 days and plated in tissue-culture treated 

flasks. Time between passages increased with increasing senescence levels. For proliferation 

experiments, MSC differentiation replicates 1, 2 and 3 frozen at the different timepoints T=0, 

T=1 and T=2 were revived and left to recover overnight. The day after cells were detached, 

counted, and plated in quintuplicate in a 96 multiwell plate (PerkinElmer) at a confluence of 

5000 cells/well. The following day cells were incubated with BrdU at a final concentration of 

20 ug/ml for 24 or 6 hours. At the end of the incubation period cells were washed with PBS 

twice and fixed with PFA 4% for 10 minutes at room temperature.  

Senescence-associated β-galactosidase assay (SA-β-Gal) 

Cells were washed in PBS, fixed for 10 minutes in 4% PFA, washed, and incubated at 37°C 

(in the absence of carbon dioxide) with fresh SA-β-Gal stain solution (pH 6.0): Potassium 

ferricyanide 5 mM, Potassium ferrocyanide 5 mM, Sodium dihydrogen phosphate 0.4 M, 

Sodium hydrogen phosphate 92 mM, Sodium chloride 150 mM, Magnesium dichloride 2mM 

and 1 mg ml−1 of 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside. Staining was evident in 

2-4 hours and maximal in 12-16 hours. 

Western Blot 

Cells were lysed with RIPA buffer containing protease and phosphatase inhibitors, and samples 

were prepared at 30 µg of protein with DTT (100 mM) and 1X Laemmli SDS loading dye. 

Lysates were resolved using denaturing TGS (Tris/glycine/SDS) buffer-based polyacrylamide 

gel electrophoresis (SDS-PAGE) followed by wet transfer (Tris/glycine/methanol) to 

nitrocellulose membranes. Primary antibodies Sox10 (rabbit, Cell Signaling Technologies 

[CST] #89356, 1:1000), p21 (rabbit, CST #2947, 1:1000) and B-actin (mouse, CST # 3700, 

1:5000) were incubated at 4°C overnight, and HRP-conjugated secondary antibodies for one 
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hour at room temperature. Cross-reactivity was detected using Clarity ECL (BioRad), and 

captured images were analyzed using Image Lab 4.1 (Bio-Rad, USA) software. 

Immunochemistry 

MSCs were plated in 96 well imaging plates (Costar) coated with ECM and allowed to adhere 

overnight. Cells were washed once with PBS prior to 10 min fixation with cold 4% 

paraformaldehyde. Cells were permeabilised with Triton-X100 at 0.1% and blocked with 3% 

BSA for 1 hour. Primary antibodies (anti-p21 (Cell Signalling, 2946S, 1:400), anti-BrdU 

(Abcam, AB6326-100UG, 1:400) and anti-p16 (Abcam, AB108349-100UL, 1:400) were 

incubated overnight at 4℃. Secondary antibodies anti-Mouse IgG (Invitrogen, A11029, 

1:400), anti-rat IgG (Abcam, AB150167-500UG, 1:400) and anti-rabbit IgG (Invitrogen, 

A10042, 1:400) were incubated for 45 minutes at room temperature. Nuclei were 

counterstained with Hoechst 33342 (Invitrogen, H3570, 2 µg ml−1) or 4′,6-diamidino-2-

phenylindole (Thermo Scientific, 62248, 1 μg ml−1) prior to imaging.  

Fluorescence images were acquired using an Operetta CLS High-Content Analysis System 

with a 10x objective. All the images were analysed using the same pipeline for experimental 

and biological replicates in the CellProfiler software. The individual cells were identified using 

the Hoechst counterstaining. Hoescht is a cell permeable dye that intercalates DNA, thus we 

used the intensity of the signal to estimate the content of genomic which is indicated later as 

‘nuclear intensity’. Other nuclear characteristics like size and circularity were also analysed. 

All the immunofluorescence signals within the nuclei were considered for analysis along with 

the extra-nuclear signal of the SA-β-Gal activity, which can be detected in the 647 channel. 

Correlation analysis for molecular marker intensities 

We used the interquartile range (IQR) method to identify and remove outliers in the intensity 

data. A data-point was identified as an outlier if it was above the 75th or below the 25th 

percentile by a factor of 1.5 times the IQR. The data was scaled by dividing each intensity 

value by the maximum intensity for each marker across time points. Wilcoxon ranked test (p-

value < 0.05) was used to measure the difference between marker intensities. Pearson’s 

correlation was used to compute the correlation between marker intensities. The bimodality 

index was computed using [31]. An index value of > 1.1 is considered as a “true” bimodal 

pattern. To identify within cluster correlations, a two-component mixture model [32] was 

applied on each correlation pair across time points and calculated the correlation within each 

cluster.  

Telomere Dysfuction Induced Foci (TIF) analysis 

MSC cells were grown on Alcian blue coated coverslips for 24 hrs. The following day the 

coverslips were rinsed in PBS and then fixed for 10 min in freshly prepared 4% 

paraformaldehyde. Cell permeabilization was performed for 10 min using KCM buffer 

(120 mM KCl, 20 mM NaCl, 10 mM Tris-HCL pH 7.5, 0.1% Triton X-100). Coverslips were 

blocked with antibody-dilution buffer (20 mM Tris–HCl pH 7.5, 2% (w/v) BSA, 0.2% (v/v) 

fish gelatin, 150 mM NaCl, 0.1% (v/v) Triton X-100 and 0.1% (w/v) sodium azide) for 1 hr at 

room temperature followed by incubation with a ɣH2AX antibody (05-636 Sigma-Aldrich, 

Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301) overnight at 4˚C. The next 
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day, 3x10 min PBS washes were performed, coverslips were incubated with a fluorophore-

conjugated secondary antibody for 1hr at room temperature, followed by three more PBS 

washes. Next, coverslips were fixed again with 4% PFA for 15 min at room temperature. Cells 

were then dehydrated with an ice-cold ethanol series of 70%, 80%, 90%, dried, and incubated 

with a TAMRA–OO-(CCCTAA)3 telomeric PNA probe (Panagene) prepared at 0.3 μg/ml in 

PNA hybridization solution (70% deionized formamide, 0.25% (v/v) NEN blocking reagent 

(PerkinElmer), 10 mM Tris–HCl, pH 7.5, 4 mM Na2HPO4, 0.5 mM citric acid, and 1.25 mM 

MgCl2) for 10 min at 80˚C. Hybridization was then allowed to occur overnight at room 

temperature in a humidified chamber. The following day, coverslips were washed for 5 min 

each in 50% deionized formamide in 2X SSC, 2X SSC, and 2X SSC + 0.1% Tween 20, at 

43˚C. Finally, cells were counterstained with DAPI and mounted in ProLong™ gold antifade 

reagent. Microscopy images were acquired on a Zeiss Axio Imager microscope with 

appropriate filter sets. Images were analysed for telomere intensity, ɣH2AX foci, and telomeres 

colocalising with ɣH2AX using Cellprofiler v2.1.1 [33]. 

Library preparation and scRNA-sequencing 

Cells were harvested by TrypLE and dead cells were stained with propidium iodide (PI). Live 

cell FACS was used to collect a healthy population of single cells for single cell RNA 

sequencing.  

Single cell suspensions were sorted by FACS, spun down to concentrate and a cell count was 

performed to determine post-sort viability and cell concentration (concentration range 

7.40E+05 – 2.34E+06, viability 85-94%). Single cell suspension was partitioned and barcoded 

using the 10X Genomics Chromium Controller (10X Genomics) and the Single Cell 3' Library 

and Gel Bead Kit (V2; 10X Genomics; PN-120237).  The cells were loaded onto the Chromium 

Single Cell Chip A (10X Genomics; PN-120236) to target 10,000 cells. GEM generation and 

barcoding, cDNA amplification, and library construction was performed according to the 10X 

Genomics Chromium User Guide.  Reactions were performed in a C1000 Touch thermal cycler 

with a Deep Well Reaction Module (Bio-Rad).  11 cDNA amplification cycles were performed, 

and half of the cDNA was used as input for library construction.  10-13 SI-PCR cycles were 

used depending on amount of input cDNA.  The resulting single cell transcriptome libraries 

contained unique sample indices for each sample. The libraries were quantified on the Agilent 

BioAnalyzer 2100 using the High Sensitivity DNA Kit (Agilent, 5067-4626). Libraries were 

pooled in equimolar ratios, and the pool was quantified by qPCR using the KAPA Library 

Quantification Kit - illumina/Universal (KAPA Biosystems, KK4824) in combination with the 

Life Technologies Viia 7 real time PCR instrument. After the initial sequencing run, libraries 

were re-pooled according to estimated captured cells as determined using the Cell Ranger 

software (10X Genomics). 

Library preparation was performed at the Institute for Molecular Bioscience Sequencing 

Facility (University of Queensland). Denatured libraries were loaded onto an Illumina 

NextSeq-500 and sequenced using a 150-cycle High-Output Kit as follows: 26bp (Read1), 8bp 

(i7 index), 98bp (Read2).  Read1 supplies the cell barcode and UMI, i7 the sample index, and 

Read2 the 3’ sequence of the transcript. In total, 5 sequencing runs were performed.  
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scRNA-seq data analysis 

Pre-processing and quality control  

The unfiltered unique molecular identifier (UMI) count matrix from the nine libraries (three 

replicates for each of the three time-points) was generated using cellranger (v3.0.2). From 

sequencing, an average of 22,609 high quality reads were obtained per cell. Reads were mapped 

to human GRCh38 genome, and an average of 92% reads was mapped confidently to the 

transcriptome. True cells we identified droplets filtered out through DropletUtils R package. 

Briefly, this method computes the upper quantile of the top expected barcodes, and orders them 

based on the library size. Any barcode containing more molecules than the 10% of the upper 

quantile was considered a cell, and retained for further analysis. Moreover, genes with less than 

10% expression across all cells were also filtered out. The scRNA-seq dataset consisted of 

22,609 mean reads, 2,527 median genes, and 9,831 median UMI counts per cell (Table S1).  

Normalisation and integration  

Seurat’s [34] integration and SCTransform pipeline was used to integrate the samples from the 

three replicates and normalise the count matrix using the default parameters. Following 

correction for batch effect with Seurat’s integration method and normalisation via a regularised 

negative binomial regression model [34] 86,771 good quality cells were retained for the 

subsequent analysis. After elimination of genes with extremely low expression (as defined as 

UMI counts in less than 10% of all cells) 6908 genes were retained (out of a total of 32,838 

genes). The object was split by replicate and SCT normalised using 3000 highly variable 

features. 

Dimensionality reduction and subgroup identification  

Principal component analysis (PCA) was performed in Seurat package. The first 20 PCs were 

kept based on the eigenvalues, and passed into UMAP for two-dimensional visualisation, with 

the default parameters.  

To identity the number of clusters that best describes the heterogeneity in the single cell 

population, clustering at 1.2, 0.8, 0.6, 0.5, 0.4 and 0.2 resolution was applied. The result was 

evaluated and visualised using clustree software package (v0.2.0). Clusters resulted from the 

0.5 resolution were selected as the identity classes for cluster specific marker identification.  

Differential expression analysis 

To identify the differentially expressed (DE) genes specific to each time-point and cluster, 

Wilcoxon Rank Sum test was used. Genes with average expression fold-change of   x<-0.25 

and x>0.25 (Bonferroni adjusted p-value<0.001) were selected for functional annotation 

analysis and trajectory inference. Pathway over-representation analysis for each gene set was 

performed using clusterProfiler [35] against KEGG, hallmark and GO biological pathway 

signatures. Terms with FDR corrected p-value<0.05 were considered significantly enriched. 

Gene families were identified using MSigDB database [36] and SASP atlas [37]. Senescence 

associated genes were compared against CellAge database [38] and the cellular senescence 

signature from [29]. Oncogene and tumor suppressor genes were identified through COSMIC 
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database (Cancer Gene Census) [39] and TSGene (Tumor Suppressor Gene Database) [40], 

respectively.  

Potency evaluation and functional enrichment analysis 

The R package SCENT(v1.0.2) was used to quantify the proliferation potency of individual 

cells [41]. The functional interaction networks were constructed by integrating protein-protein 

interaction (PPI) network and Spearman-correlation of gene-pairs at each time-point. 

Genes/proteins were extracted from the built-in reference PPI network (that is obtained by 

integrating various interaction databases in Pathway Commons [42]) in SCENT; and edges 

were represented by spearman correlation computer from expression of genes at each time-

time. Edges with high correlation (i.e. ρ > |0.5|) were retained for further analysis. Network 

modules (densely connected regions) were identified using MCODE app [43] in Cytoscape 

(v3.8.2). The regulatory interactions between gene pairs were obtained from ReactomeFIViz 

app in Cystoscape which is connected to the Reactome pathway database [44]. Pathway over-

representation analysis for each module was performed through MSigDB [36] against GO 

Biological process, KEGG pathway database and Hallmark gene sets.  

Pseudotime analysis and trajectory inference 

Slingshot R package (v1.6.0) [45] was used to construct the pseudotime trajectory and scShapes 

R package (v1.0.0) [46] to identify the differentially distributed genes.  

Results  

esMSC display increased replicative senescence over time in culture 

It has previously been shown that hESC derived MSCs (esMSCs) undergo replicative 

senescence over a similar timeframe as primary BM-derived MSC [47]. We generated esMSC 

from hESC-derived Schwann cell precursors, and assessed whether these esMSC possess the 

marker and differentiation profiles of primary MSC, and whether they enter replicative 

senescence following prolonged in vitro culture for 23 (T0), 49 (T1) and 86 (T2) days (Fig. 

1a). These specific time points were chosen on preliminary experiments aimed to quantify the 

percentage of β-gal positive cells after long term culture (T0: <10%, T1: <30%, T2: >70%) 

(Fig. 1d). As shown in Fig. 1b, at early passage (T0) esMSC exhibit the spindle like 

morphology and surface marker expression profile of primary MSC (CD105+, CD73+, CD90+, 

CD34–, CD14– and CD19−) (Fig. S1). The MSC marker profile did not significantly change 

between T0, T1 or T2, as indicated by the fact that esMSC from each timepoint met standard 

requirements for MSC characterisation and expressed Rohart test gene-signatures of MSC 

identity (Fig. S2) [48]. After 49 days in culture (T1, passage 8 for replicates 2 and 3) cell shape 

became increasingly irregular and larger (Fig. 1b) and at 89 days (T2, passage 12 for replicates 

2 and 3) the vast majority of cells had adopted a large and flattened appearance characteristic 

of senescent MSCs (Fig. 1b). In agreement with these morphological changes, automated 

image analysis of >15,000 cells from MSC cultures at each timepoint revealed a progressive 

temporal increase and shifts in population distribution of senescence markers SA-β-Gal, p16, 

and p21 (Fig. 1d and Fig. S3). This increase in senescence markers was accompanied by a 

decrease in BrdU incorporation (Fig. 1d), and a decrease in telomere length over time (Fig. 

S4a). The adoption of other proposed senescence markers such as SenezRed did not show a 
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significant change across timepoints (Fig. S5), which is in agreement with previous reports that 

found evidence of telomere erosion but no mitochondrial changes in long-term cultured 

primary human BM-MSC [49]. Western blot analysis of protein lysates from the esMSC 

cultures revealed a robust increase in p21 protein expression with increased passage number, 

and confirmed absence of the Schwann cell marker SOX10 (Fig. 1c). Image analysis revealed 

that senescent MSC cultures displayed an increase in nuclear size and identified the emergence 

of two distinct populations at T2 that differ in nuclear staining intensity (Fig. 1d and Fig. S3). 

Quantification of the number of γH2AX stained cells and telomere damage induced foci (TIFs), 

both hallmarks of senescence [50], indicated that esMSCs accumulate DNA damage in the 

form of double strand breaks over time in culture, although this did not translate into significant 

changes in TIF levels (one-way ANOVA, p-value>0.01) (Fig. S4).  

Given the variability in senescence marker expression distributions across the population over 

time in culture, we next assessed to what extent the various senescence markers correlated with 

each other within individual cells. To this end, we computed a Pearson correlation between the 

intensities obtained from different markers (Fig. 2), and calculated the bimodality index for 

individual marker intensities (Table S2), revealing that nuclear intensity has the highest 

bimodality index, specifically at the senescent state, suggesting the presence of two cell 

subpopulations with differing DNA content. We further noted a strong correlation between 

nuclear intensity and nuclear area (ρ>0.7) across all three time-points (Fig. S6). By applying 

clustering on the correlation intensities (Fig. 2) we identified different types of associations 

between senescence marker intensities in senescent esMSC subpopulations. For example, 

overall, “nuclear intensity” and “nuclear area” have a positive correlation at T2 (ρ=0.71); but 

after clustering, the extent of correlation differs in different clusters (cluster 1 ρ = 0.3; cluster 

2 ρ = 0.5). Similarly, “nuclear intensity” and “p16” exhibit an overall positive correlation 

(ρ=0.32), but at the cluster level follows an opposite trend (cluster 1 ρ = - 0.35; cluster 2 ρ = 

0.3) (Fig. 2). Collectively these data indicated that esMSC undergo replicative senescence, and 

that there are subsets of cells within the culture that acquire distinct marker profiles suggestive 

of the presence of multiple senescent states within the esMSC cultures. To further explore this 

not previously observed heterogeneity in MSC senescence states we next conducted scRNAseq 

on the same (replicate) cultures that were used for these in situ senescence marker analyses.  

sc-RNA sequencing of human esMSC undergoing replicative senescence identifies novel 

senescent states and subpopulations and predicts their hierarchical relationships 

Our experimental design consisted of three time points with three biological replicates 

performed for each time point, resulting in nine separate samples, collectively consisting of 

119,454 total sequenced cells with an average of 13,273 cells per sample. Following QC 

outlined in “Materials and Methods”, we generated a final count matrix comprising of 6908 

genes and 86771 high-quality single cells (Table 1). UMAP projection of these data revealed 

that cells from non-senescent (T0), pre-senescent (T1) and senescent (T2) esMSC clustered 

separately and were collectively made up of 8 subclusters (Fig. 3a). Indeed, ordering cells along 

the pseudotime trajectory with Slingshot [45] ordered the cells and cell clusters in a manner 

consistent to the experimental time course (Fig. 4 and S7). Since the vast majority of cells 

(>79%) retained expression of MSC cell surface and mRNA markers, as indicated by the fact 

that 70% of cells passed the Rohart test for MSC identity at each timepoint, these data suggest 

that the largest contributor to the variation in gene expression between the cell clusters is driven 

by their step wise progression into pre- and fully senescent cell states over the 86 day time-
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course. Specifically, Slingshot computed cell trajectories (Fig. 4) indicative of a transition from 

healthy proliferating esMSCs at T0 (mainly consisting of cluster 2, 6 and a subset of 3), which 

subsequently transitions into cluster 5, and next cluster 0, the most abundant cell cluster at T1 

(52.11%) (Table S3). Cluster 0 cells are next predicted to transition into cluster 4 at T2, which 

next diverges into two different cell states, cluster 1 and a subset of cluster 3. 

To gain insights into the identity of the computationally identified and temporally ordered 

esMSC cell clusters that emerge during each of the replicative senescence stages we performed 

gene enrichment analysis on the top differentially expressed genes of each cluster. This 

revealed that at T0 cluster 2 displayed significant enrichment for pathways associated with 

regulation of cell shape, epithelial to mesenchymal transition (EMT) and muscle cell 

differentiation (Table S4) and displayed high expression of CSRP2, a member of CSRP family 

encoding a group of short LIM domain proteins that is a critical for cell-cycle progression, 

development, and smooth muscle differentiation [56] (Tables 2, S4 and S5).  In the T0 sub-

cluster 3 the top DE genes (Table S6) in esMSC cells were enriched for genes related to 

regulation of G2/M cell cycle progression. These included UBE2S and PTTG1, genes that are 

associated with cell-cycle regulation through the anaphase-promoting complex, and CKS1B, 

which is associated with cell proliferation through regulation of cyclin-dependant protein 

serine/threonine kinase activity [86]. Cluster 6 of T0 esMSC was enriched for pathways 

associated with Insulin-like growth factor (IGFs) receptor signalling (Table S4), and exhibited 

pronounced expression of IGFBP2 and IGFBP4, molecules that are known to play important 

roles in promoting proliferation, self-renewal, and differentiation of MSCs [57]. Collectively 

these data indicated that healthy proliferating esMSC consist of at least 3 cell populations that 

differ in the expression of genes involved in cell cycle progression and differentiation. Cluster 

5 contains similar proportions of T1 (41.71%), and T2 (52.82%) cells (Fig. 3b and Table S3). 

In this cluster, there is enrichment for genes related to metabolic stress regulation of G2/M 

transition, reactive oxygen species (ROS), oxidative phosphorylation, and Glycolysis (Table 

S4), pathways previously implicated in metabolic changes that are implicated in promoting 

senescence [59-61] and ageing [62-65]; higher expression of tissue specific regulators (APOE: 

Adipogenic, COL1A1: Chondrogenic, THBS1: Osteogenic, ACTA2: Myogenic) and 

Mitochondrial NADH dehydrogenase subunit genes 2 and 3 (MT-ND2/3) that play an 

important role in the production of ROS [62]. Indeed, these cells from cluster 5 are 

computationally projected to transition into cluster 0, which contains roughly equal proportions 

of T1 cells (52.11%), and T2 cells (44.12%) (Fig. 3b and Table S3). Cluster 0 is enriched for 

genes related to Apoptosis and p53 pathways (Table S4) and shows strongly increased 

expression of TRIB3, an inhibitor of  cell proliferation [66] that becomes upregulated in 

response to several forms of cellular stress [67] including oxidative ER stress and hypoxic 

stress (pathways that are all significantly enriched in cluster 5). We further noted strong 

expression of NUPR1 in cluster 0 (Fig. S8 and Table S5), a gene involved in regulating 

resistance to micro-environmental stress, cell-cycle, apoptosis and DNA repair response [68] 

and that was previously found to promote K-ras induced senescence in the pancreas of mice 

[51]. Overall, the results suggest that after undergoing oxidative stress (cluster 5), through 

stress-induced up-regulation of such genes, MSCs undergo cell cycle arrest, and transition into 

a pre-senescent state that predominantly consists of cluster 0 cells [69]. T1 cluster 0 cells are 

transcriptionally close to both cells of cluster 4 and cluster 1. Based on pseudotime trajectory 

analysis, cluster 0 is the starting point for cells to diverge into different senescent states. Given 

that the majority of the cells in this cluster are T1, we performed DE analysis of these cells 
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with the other T1 cells in other clusters (pre- and senescent states). These cells show significant 

high expression of ribosomal protein family, including RPL11 and RPL5 (Fig. S9). In response 

to oncogenic and replicative stress, the overexpression of these genes mediates p53 activation, 

which in turn delays proliferation and promotes cellular senescence [52]. 

Cluster 4 is particularly enriched for oncogenes or tumor suppressor genes (23.48%), 

suggesting these correspond to cells undergoing oncogene associated senescence (Fig. S8, 

Table S5), including G0-G1 switch gene 2 (G0S2),  a tumor suppressor gene associated with 

human dermal fibroblasts senescence, hematopoietic stem cell quiescence, adipocyte 

differentiation and cell-cycle withdrawal [53]. Another notable gene in cluster 4 is transcription 

elongation factor A protein-like 7 (TCEAL7), a gene that is known to regulate human 

telomerase reverse transcriptase (hTERT) expression and telomerase activity by inhibiting c-

Myc pro-oncogene in cells that have activated the alternative lengthening of telomeres (ALT) 

mechanism. This is significant as more than 70% of mesenchymal tumours use the ALT 

pathway to maintain the telomere length and bypass replicative senescence [54, 55]. Similar to 

other clusters, the number of SASP factors are upregulated in cluster 1. These include  growth 

differentiation factor 15 (GDF15) [56], THBS1 [57] and MMP14 [58] (Fig. S8, Table S5). 

However, what makes this cluster “SASP-associated” is the exclusive enrichment of TGF-β 

signalling and inflammatory response pathways, pathways with well-established roles in 

regulating cellular senescence [58-62]. Notably, there is a strong link between inflammatory 

response and senescence, as SASP includes inflammatory cytokines and chemokines [58, 63]. 

The marker genes in cluster 1 that are associated with the inflammatory pathway include CCL2, 

CD70, CDKN1A, DCBLD2, EREG, HIF1A and MMP14 (Table S5). Moreover, SASP induces 

the production and expression of TGF-β, a growth factor known to induce and maintain a 

senescent phenotype and age-related pathological conditions [59]. We next examined the top 

significantly up-regulated DE genes in T2 cluster 3 (Fig. 5, Fig. S10 and Table S6). This 

revealed that these cells show significantly increased expression of SASP factors (MMP1, 

SERPINE2, MMP2), as compare to the cluster 3 T0 subpopulation (Fig. 5a). They also 

displayed strong expression of CCND1, a well-established regulator of CDK kinases 

throughout the cell cycle, and a protein that specifically interacts and regulates CDK4/CDK6 

that are required for cell cycle G1/S transition [64]. Compared to the rest of T2 cells in the 

dataset (Fig. 5b and Fig. S10), T2 subcluster 3 displays increased expression of BIRC5, an anti-

apoptotic gene linked to G2/M cell cycle phase, suggesting that the cells in this cluster have 

likely escaped cell cycle arrest or never entered cellular senescence in the first place [65]. The 

fact that this cluster also uniquely over-expresses TPX2, a gene that promotes chromosomal 

instability and escape of cell cycle arrest and senescence [66, 67], further re-inforces the notion 

that T2 subcluster 3 cells represent putatively oncogenic esMSC that have escaped senescence.  

Transcription and Gene Regulatory Networks are less tightly regulated in senescent esMSC 

Since previous findings have suggested that senescence is associated with an increase in 

heterogeneity and a loss of robustness in gene expression [68, 69] we next examined 

transcriptional variability and transcript distribution across the timecourse. 

To identify senescence-specific interactions and to study the dynamic behaviour of gene 

regulatory networks in MSC senescence process, we constructed timepoint-specific gene 

regulatory networks by integration PPI and gene correlation networks. We extracted the PPI 

network from the reference database available through SCENT; and computed Spearman 
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correlations of gene expression at each timepoint. Overall, T1 subnetworks displayed the 

highest number of positively correlated edges, followed by T0 and T2. The genes in 

subnetworks 4 and 7 are highly positively correlated at T0, but next gradually lose their 

correlation during senescence. These genes are mainly associated with cell division and 

regulation of cell cycle transition (CDC20, TPX2, CENPF, UBE2, PPTG1, BIRC5 and 

CKS1B). Moreover, in subnetwork 5 only three genes show any sort of correlation in T0 but 

they develop more positive (and negative) correlation during senescence. The genes in this 

subnetwork are associated with extracellular matrix organisation (VCAN, SPARC, COL1A1 and 

COL5A1) and regulation of tissue development (COL1A1, COL5A1 and SFRP1) (Table 3 and 

S7, Fig. S11). Collectively these data reveal a clear reduction in the number of interactions in 

both negative and positive correlations as esMSC enter into senescence.  

To further examine transcriptional regulation changes across the pseudotime trajectory we next 

constructed cluster-specific expression networks. The nodes in the networks represent cluster 

specific marker genes and the edges represent pair-wise Pearson correlation between these 

genes. Following retention of edges with the highest correlations (i.e. ρ > |0.5|) we found that 

the final networks exhibited a power-law degree distribution, with a few hub genes (Table 4). 

Highly connected genes in cluster 6 and 2 (T0) are associated with cell proliferation (e.g. 

IGFBP5, TPM1, CNN1 and HBEGF). Cluster 5 network with the highest number of nodes and 

edges, parsed into 11 modules, with mitochondrial genes as the top 10 highly connected nodes 

characterised by genes involved in oxidative phosphorylation and ATP metabolic process (MT-

ATP6, MT-CO2, MT-CO1, MT-ND4, MT-ND3, MT-CYB). These observation are consistent 

with previous data indicating that oxidative stress initiates a DNA damage response that leads 

to activation of p53 and p16 (CDKN2A) pathways that in turn initiate and sustain cell cycle 

arrest [70], and  supports our inference that cluster 5 (mainly T1 cells) consists of cells 

undergoing metabolic stress while transitioning from T0 to T2. Moving along the trajectory,  

cells in cluster 0 (cells transitioning to T2), express genes involved in regulating the recovery 

from metabolic stress such as TIMP1 and GDF15 that are present in the top 10 most highly 

connected nodes in cluster 0. TIMP1 is an inhibitor of matrix metalloproteinases (MMPs) and 

has anti-apoptotic functions [71]. Expression of MMPs is associated with the production of 

reactive oxygen species (ROS) that drive the emergence of senescence and age-associated 

disease [72]. GDF15 is involved in the stress response program of cells following cellular 

injury, and its increased gene expression is associated with age-associated states such as tissue 

hypoxia, inflammation and oxidative stress [73] and was previously found to contribute to 

radiation-induced senescence through the ROS-mediated p16 pathway in human endothelial 

cells [74]. Another gene of note amongst the top 10 highly connected genes in cluster 1 (the 

senescence state, T2) is SFRP1, a gene that is commonly over expressed in senescent cells 

exposed to DNA damage or oxidative stress [75]. Analysis of the co-expression network of 

cluster 4 of the senescent esMSC indicates that S100A13 is the gene with the highest number 

of edges. Previously overexpression of S100A13 was shown to increase NF-κB activity and to 

induce multiple SASP genes, resulting in the emergence of cellular senescence [76]. Consistent 

with the notion that T2 cluster 3 is abundant with cells that have escaped senescence we find 

that the top most highly connected genes in cluster 3 possess both SASP and pro-proliferation 

properties such as gene involved in G2M checkpoint and cell division.  
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Investigating the temporal gene-expression heterogeneity of MSCs during senescence   

To identify timepoint specific markers we next assessed the temporal changes in the gene 

expression levels of esMSCs from T0 to T2 (Fig. 6a). Markers were identified by performing 

Wilcoxon ranked sum test for cells at each time-point against the rest of the cells. Overall 317, 

126 and 240 genes were identified as markers for cells at T0, T1 and T2 respectively (p-value 

< 0.001; log fold change of > 0.25 up/down-regulated) (Table 2 and Fig. 6b).  

At T0, significantly enriched pathways were mainly associated with regulation of cell shape, 

cellular assembly and organ development (Fig 6c). Response to oxidative stress, angiogenesis 

and aging pathways were enriched in T1 cells, indicating the tendency of these cells to 

transition to a stable phenotypic state (whether a specific cell type or a senescent state). 

Pathways such as ageing, cellular senescence and PI3k-signalling were significantly enriched 

in the fully senescent population (T2 cells) (Fig. 6c and Table S5).    

The senescence-related genes that are the strongest contributors to these temporal changes were 

identified by assessing differential expression between consecutive time points, i.e. T0 vs. T1 

and T1 vs. T2 and identifying clusters of genes within these cohorts that follow the same 

temporal expression pattern throughout the trajectory. This revealed clusters that either 

consistently increase or decrease expression over time (Fig. 6d-g and Table S6) or exhibit 

transient changes (Fig. 6g-h and Table S6). Tissue-specific proliferation genes such as MEST 

(adipocyte differentiation and proliferation [77]) and KRT18 (a member of intermediate 

filament protein family that provides tissue integrity and structural support in the cytoplasm 

and nucleus [78]) were among the genes that showed a gradual decrease in expression over 

time, whereas, SASP factors (e.g. MMP1 and SERPINE2) showed an opposite trend.  

We also investigated the expression of the 10 protein-coding mitochondrial genes at the 3 

different timepoints (T0, T1, T2) to check whether there was a significant change in their 

expression during senescence. Except MT-CO2 which displayed a consistently decrease 

expression, all other genes exhibited a significant increase in expression either at the pre-

senescent (T1) or the senescent state (T2) (Fig. S12, Table S8). This observation is consistent 

with top 10 highly connected genes in cluster-specific co-expression networks (specifically 

cluster 5, T1 cells), and supports past studies suggesting an increase in production of ROS by 

dysfunctional mitochondria [79]. 

Assessing differential distributions of gene expression reveals genes associated with long 

non-coding RNA, DNA damage response and apoptosis during replicative senescence 

Single cell RNA sequencing data measure cell-specific gene expression, and as a result, provide 

the opportunity to study the extent of gene expression heterogeneity within a biological 

condition. Single cell RNA-seq data is complex with high sparsity (increased zeros) and 

sometimes multimodal gene expression distribution. Therefore, if the data are not modelled 

reliably, important signals might go unobserved. To capture differences in gene expression 

heterogeneity beyond simple mean shift, we next investigated gene expression distributions 

across different timepoints. To this end, gene expression was fitted using generalised linear 

models with different distributions, including Poison (P), zero inflated Poison (ZIP), negative 

binomial (NB) and zero inflated negative binomial (ZINB) distributions adjusted for replicate 

ID. Out of the 3563 that pass the Kolmogorov–Smirnov (KS) goodness of fit test, 585 genes 

(16.4%) changed distribution in at least two time-points (Tables 5, 6 and S9). Among these, 
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117 genes (20%) switched distributions at all three time-points that is, from T0 to T1, and from 

T1 to T2. Pathway over-representation analysis of these genes showed a significant enrichment 

in genes involved in the response to DNA damage stimuli and non-coding RNA processing 

pathways (Table S4). These data are in accordance with previous studies that showed lncRNAs 

that target p21/p53 and pRB/p16 pathways [80] are involved in telomere length attrition [81], 

consistent with our data showing shortening of telomere length in senescent esMSCs (Fig. S4). 

Out of the genes that switched distribution at every time-point, genes associated with regulation 

of cell death and apoptotic process (RARA, KAKRN, DLG5, FAIM, NFATC4 and APBB2) 

changed distribution from unimodal to zero inflated at T1, and back to unimodal distribution 

at T2. Genes including CDK3, SRGN, UHRF1 and REV3L changed distribution from zero 

inflated to unimodal to zero inflated at T0, T1 and T2, respectively (Table 5, 6 & S9). CDK3 

is a cyclin kinase that is an important regulator of cell cycle by promoting G0-G1 and G1-S 

cell cycle transitions. Its increased expression has been associated with enhanced cell 

proliferation whereas its knockdown suppresses proliferation in cancer [82]. Similarly, UHRF1 

is essential for maintaining DNA methylation function in a p53-dependent damage checkpoint 

[83, 84], and its depletion has been associated with G2/M cell cycle arrest, activation of DNA 

damage response and apoptosis [85].  

A subset of MSCs retain their proliferation potential at the senescent state 

To quantify the proliferation potential of MSCs during senescence in an unbiased fashion from 

transcriptome data we applied signalling entropy rate (SR) analysis, an analysis method that 

identifies the degree of correlation between transcriptome and connectome (i.e. predicted 

interaction of individual genes with the rest of the PPI network) [86]. SR score range from 1-

4, indicating the highest and lowest proliferation potency, respectively (Fig. 7a). Our SR 

analysis showed that even though esMSC are a heterogeneous cell population with different 

potency scores at each timepoint, the majority of esMSC lose differentiation potency over time 

(Fig. 7b) with 43% of cells T2 obtaining the lowest potency score (potency state 4), whereas 

more than 50% of cells at T0 and T1 had the highest potency score (potency states 1 and 2) 

(Fig. 7c). As far as the high potency T2 cells are concerned, this observation is in line with the 

BrdU staining result. From the total number of cells that stained positive for BrdU at T0, 28% 

remained positive at the T2 stage of experimental design, indicating that a proportion of 

senescent MSCs have escaped cell cycle arrest associated with senescence, or they have not 

reached the senescent state yet.  

The SR analysis at the cell subpopulation level showed that cells acquire a higher proliferation 

potential at T1 (cluster 5), and then gradually lose their proliferation power at the two 

senescence states (cluster 1 and 4). As expected, Cluster 3 shows a higher variability in SR 

score since this cluster consist of cells derived from both T0 and T2 (Fig. 7d).  

Discussion  

Primary senescence is a cell-intrinsically activated tumour suppressor mechanism brought 

about by cellular stress. Senescence is considered to be a stochastic process that is driven by 

both telomere shortening and ensuing telomere damage signalling [87], progressive 

mitochondrial dysfunction in individual cells, resulting in a heterogeneous occurrence of 

senescence in progressively increasing numbers of subsets of cells over time in culture as well 
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as in vivo [88]. Since primary senescent cells simultaneously induce secondary senescence in 

neighbouring cells via paracrine and juxtacrine signalling processes that are commonly referred 

to as SASP, deconstructing the molecular mechanisms of replicative senescence has been 

challenging and has hampered the design of targeted seno-therapeutics.   

To start to address these challenges, here we investigate replicative senescence at a single cell 

level in hESC-derived MSC, cultured for prolonged periods of time in vitro. We first establish 

that at a population level esMSCs exhibit the marker profile and differentiation properties of 

primary MSC. We next verify that esMSC display a progressive reduction in BrdU 

incorporation, an increase in p21 and p16 expression, a reduction in telomere length, an 

increase in nuclear shape abnormalities and size, an increase in SA-β-Gal staining, elevated 

SASP factor expression, and characteristic changes in cell shape, as expected of cells 

undergoing primary and secondary senescence. By measuring these hallmarks of senescence 

at a single cell level with unbiased high-throughput imaging approaches we identified subsets 

of cells that acquire distinct marker profiles, suggesting the emergence of multiple senescent 

states within the esMSC cultures over time in culture, as well as a population of cells that are 

possibly polyploid and with the potential to escape senescence. Comprehensive single cell 

transcriptome analysis of the esMSC cultures undergoing progressive replicative and 

secondary senescence revealed that healthy proliferating, pre-senescent and fully senescent 

esMSC populations consisted of cell sub-populations bearing distinct transcriptional 

signatures. Pseudo-temporal analysis of these data sets next showed that healthy “young” 

passage 1 (day 23) esMSC (clusters 2, 3, and 6) transition at passage 8 into two pre-senescent 

states that show transcriptional signatures enriched for metabolic stress regulation of G2/M 

transition, reactive oxygen species (ROS), oxidative phosphorylation, and Glycolysis (cluster 

5) and p53 and apoptosis (cluster 0). At passage 12 (day 89) cluster 0 cells transition to cluster 

4 that is enriched for oncogene-induced senescence pathways. This population next divides 

into either cluster 1 cells that show a particularly strong signature of SASP and a population of 

cells (T2 subcluster 3) that appears to have escaped senescence as indicated by the re-

expression of proliferation markers. We deem it highly likely that this population of senescence 

escapees represents the population of BrdU-labelled polyploid cells observed in our imaging 

analysis. Overall our data are consistent with the notion that telomere erosion induces a DNA 

damage response, ROS and mitochondrial dysfunction pathways that activate p53, the 

retinoblastoma-associated protein (pRb) and the cell cycle-dependent kinase (CDK) inhibitors 

p16INK4A and p21, that mediate proliferation arrest. 

Having established this order of senescent state transitions we next show that the pattern of co-

expression is highly heterogeneous at each timepoint, and network modules are specific to each 

cell subpopulation. We identified a module of highly connected mitochondrial genes in cluster 

5 (T1 cells), providing the evidence of oxidative stress response prior to senescence. Our result 

supports the previous data suggesting mitochondrial genes as potential targets to reduce the 

effect of senescence [89, 90]. Transcription of a gene is a stochastic process, occurring in 

irregular bursts or pulses of activity, interspersed by irregular intervals of inactivity [91]. The 

irregularity in transcriptional bursting is known to be the main driver of diversity of cell 

behaviours in differentiation and disease, reflecting the underlying mechanisms of 

transcriptional regulation [92]. We used zero inflation in gene expression distribution as a 

function of reduced transactional bursting. We found that genes exhibiting zero-inflation in 

young (T0) and senescent MSCs (T2) were pro-proliferative (e.g. CDK3) and pro-apoptotic 
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(e.g. UHFR1), respectively. We computed a potency score to assess the proliferation potential 

of cells during senescence. While there is a mixed population of cells with different levels of 

proliferation potential in all timepoints, overall, the proliferation potential of cells decreases 

during senescence.  

Collectively our study reveals that replicative senescence of in vitro cultured human MSCs 

results in a temporally ordered sequence of cell state transitions. Our data will enable the design 

of better culture conditions and intervention strategies that may enable cells to overcome these 

bottle necks that currently constrain MSC expansion for therapeutic purposes. Our data further 

permit the identification of senotherapeutics that target the different senescent states that MSC 

adopt following prolonged culture expansion, and such molecules may also be able to improve 

MSC ageing in vivo in the future.  
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Figure 1. Establishing the human embryonic stem cell (hESC) derive- mesenchymal stem cells 

(esMSCs) line to study senescence. (a) Schwann Cell Precursors (SCPs) were 

transdifferentiated into MSCs. Young esMSCs were cultured until population doubling. Day 

23, 49 and 86 post MSC medium exposure were selected as T0, T1 and T2 respectively. Cells 

from each of the three technical replicates at each time-point were harvested for sc-RNA 

sequencing. (b) Representative images of Young (T0), pre-senescent (T1) and senescent (T2) 

esMSCs. (c) Western blot analysis to confirm the conversion of SCPs to MSCs by quantifying 

the abundance of MSC- (p21) and SCP- (SOX10) specific markers. (d) Quantitative estimation 

of senescence and proliferation specific markers and phenotypic features at T0, T1 and T2 of 

the experimental set up to confirm the appearance of senescence state. The gradual increase in 

p16, p21 and β-gal staining are indicative of cell cycle arrest and senescence. Moreover, 

gradual decrease in Brdu and telomere length also support the presence of the senescence 

phenotype. There was no substantial difference observed in the circularity feature across 

different time-points. The bimodal distribution in the nuclear intensity indicates the presence 

of two cell sub-populations with different DNA contest at T2 (The plots are generated by 

pooling marker intensity data obtained from replicate 2 and 3; Wilcoxon ranked test, p-value 

< 0.05).  
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Figure 2. Evaluating the heterogeneity in cell-to-cell associations during senescence. Pearson correlation (represented by r) of nuclear intensity 

(DNA content) estimates with other molecular markers and phenotypic features at three time points. Clusters (in blue and red) are identified using 

two-component mixture models. Each cluster represents a subset of cells that show a similar pattern of correlation between each marker pair.      
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Figure 3. The overall representation of the esMSC population. (a) UMAP of esMSCs color coded by replicate, time-point, cluster and cell cycle 

phase. (b) Proportion of cells in each cluster with respect to time-points. Cluster 2 and 6 are mainly comprise of T0 cells whereas majority of cells 

in cluster 1 and 4 are from T2 (senescent) cells. Cluster 0 and 5 comprise of mix of T0, T1 and T2 cells.   
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Figure 4. Trajectory inference analysis. The UMAP is color coded based on (a) cluster and (b) time-points. The trajectory starts at cluster 6 and 

ends at two different senescence states: oncogene related senesce and senescence escapees.  

 

 

a) b) 
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Figure 5. Differential expression analysis of senescence escapees (in blue) with (a) Proliferative esMSCs subtype-3 (other cells in cluster 3), and 

(b) other senescent cells (other T2 cells). Top panel: UMAP highlight cells in the comparison. Bottom panel: Significant DE genes (LogFC x > 

|0.25|, Bonferroni adjusted p-value < 0.001) 

 

a) b) 
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Figure 6. (a) UMAP representation of esMSCs, split by time-point. (b) Normalised gene expression of top five marker genes for each time-point. 

(c) Pathway over-representation analysis of upregulated genes (logFC > 0.25, p-value < 0.001) in each time-point, against GO database, biological 

pathways. Pathways with q-value < 0.05 are considered significant. (e-g) Gene clusters with a similar pattern of gene expression during senescence. 

Differential expression analysis was performed for T0 vs T1 and T1 vs T2. A total of 178 genes had a significant expression change at every time-

point. These genes were divided into four groups according to their pattern of gene expression (logFC x> |0.25| Adjusted p.value < 0.001). Genes 

that consistently (d) increase expression (e) decrease expression (f) transiently increase expression at T1 and (g) transiently decrease expression at 

T1 during senescence.  
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Figure 7. Evaluating the proliferation potential (as a measure of entropy) of esMSCs undergoing replicative senescence. The higher the Shannon 

entropy rate (SR) the more proliferative the cells are. (a) Based on the SR scores, four potency states were identified. Potency state 1 indicates the 

highest proliferation potential whereas potency state 4 indicates the least proliferation potential. (b) SR score of cells based on time-point. (c) 

Proportion of cells with different potency states at each time-point (χ2 test, p-value < 0.05). More than 50% of the cells at T0 and T1 are in potency 

states 1 and 2, whereas majority of cells at T2 acquire a lower potency state. (d) SR score of cells based on cluster.  
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 Table 1: Count matrix dimension before and after pre-processing and filtering. 

 

Count matrix 
Time point (samples) Replicate (samples) 

T0 T1 T2 R1 R2 R3 

Original  

32838 features x 101945 samples 
31065 31065 44693 43356 27200 31389 

Filtered  

6908 features x 86771 samples 
27735 18389 40647 33202 23975 29594 

 

 

Table 2: Top 5 time point and cluster-specific markers 

 
 Group No. of cells No. of markers (up/down) Top 5 

 T0 27735 (32%) 317 (187/130) KRT18, IGFBP2, SHISA2, MEST, IGFBP4 

T1 18389 (21%) 126 (77/49) ACTA2, CRYAB, GDF15, LUM, BGN 

T2 40647 (46%) 240 (83/157) CCND1, SERPINE2, MMP1, MMP2, NEAT1 
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 Cluster2 13822 (16%) 199 (105/94) KRT18, IGFBP2, FHL1, MAP3K7CL, NREP 

Cluster3 11345 (13%) 360 (267/93) HIST1H4C, UBE2S, PTTG1, H2AFZ, PCLAF 

Cluster6 5229 (6%) 263 (125/138) IGFBP2, IGFBP4, IGFBP3, SHISA2, CDH6 

L
at

e 
st

ag
e 

o
f 

ti
m

e 
co

u
rs

e 
(p

re
-

se
n

es
ce

n
ce

 &
 

se
n

es
ce

n
ce

) 

Cluster0 22087 (25%) 106 (31/75) NUPR1, BGN, TRIB3, EIF3E, ZFAS1 

Cluster1 19851 (23%) 200 (60/140) IGFBP5, MT2A, CCND1, SFRP1, NEAT1 

Cluster4 7595 (8%) 149 (43/106) S100A6, G0S2, PCSK1N, CYP1B1, GNG11 

Cluster5 6683 (7%) 659 (491/168) POSTN, HSPA5, UBC, HSP90AA1, ACTA2 

Cluster7 159 (<1%) 940 (137/778) MALAT1, NEAT1, S100A11, H3F3B, UBA52 

 

Table 3: PPI network comparison during senescence.  

Subnetwork Nodes 

Edges 

T0 T1 T2 

Positive Negative Positive Negative Positive Negative 

1 31 105 0 450 0 94 0 

2 18 28 15 10 4 5 0 

3 29 29 7 41 0 26 4 

4 8 19 0 0 0 0 0 

5 8 3 0 4 0 9 5 

6 12 6 2 8 2 5 4 

7 5 7 0 1 0 0 0 

8 3 2 0 2 0 1 0 

Total 114 198 24 515 7 140 13 

*Nodes are extracted from the reference PPI network via SCENT packages and edges 

represent spearman’s ρ > |0.5|. Subnetworks are identified with MCODE app in Cytoscape.  
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Table 4: Characteristics of cluster-specific co-expression networks. 

Cluster 
No. of 

nodes 

No. of 

edges 

No. of 

modules 
Top 10 highly connected genes 

6 115 776 4 
TKT, UGCG, SLC25A5, AKAP12, EEF1A1, C12orf75, 

NPM1, HNRNPA1, HBEGF, IGFBP5 

2 84 546 3 
ARPC2, CNN1, PRKCDBP, TPM1, EEF1A1, HMGCS1, 

IGFBP2, MAP2K2, SELENOW, COL3A1 

5 396 11932 11 
MT-ATP6,  VCAN, MT-CO2, MT-CO1, GSTP1, MT-ND4, 

MT-ND3, FBN1, COL1A1, MT-CYB 

0 22 48 1 
TIMP1, COL1A1, RPL21, C6orf48, NPC2, VCAN, TKT, 

RPS3A, ZFAS1, GDF15 

1 42 178 4 
DCBLD2, S100A16, FTH1, SFRP1, HMGA1, THBS1, 

CCND1, IGFBP5, MT2A, HMGA2 

4 25 92 2 
S100A13, HLA-A, KCNMA1, CD63, PCSK1N, RPS27, 

B2M, HLA-B, HMGA1, FTL 

3 260 3552 6 
KNSTRN, CENPF, CCNB1, CKS2, ARL6IP1, TPX2, 

KPNA2, CKS1B, CDC20, BIRC5 

 

Table 5: Set of genes belonging to the same family of distributions. Total of 3563 genes 

passed the Kolmogrov-Smirnov test 

 T0 T1 T2 

Poison 1568 (44%) 1742 (48.89%) 1556 (43.67%) 

NB 1833 (51.44%) 1647 (46.22%) 1881 (52.79%) 

ZIP 135 (3.78%) 150 (4.2%) 106 (2.97%) 

ZINB 26 (0.72%) 23 (0.64%) 19 (0.53) 

 

 

Table 6: Differentially distributed genes across time-points.  

 Count T0 T1 T2 

Changing in 

all three time 

points 

Total = 117 

14 Poison NB ZIP 

22 Poison ZIP NB 

1 Poison ZINB NB 

22 NB Poison ZIP 

14 NB ZIP Poison 

2 NB ZINB ZIP 

27 ZIP Poison NB 

15 ZIP NB Poison 

Changing in 

two time 

points 

Total: 468 

138 Poison NB Poison 

30 Poison ZIP Poison 

212 NB Poison NB 

69 NB ZIP NB 

15 NB ZINB NB 

1 ZIP Poison ZIP 

3 ZINB NB ZINB 

Total 585    
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