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Summary
Classical models of efficient coding in neurons assume simple mean responses—‘tuning curves’—such as bell-
shaped or monotonic functions of a stimulus feature. Real neurons, however, can be more complex: grid cells,
for example, exhibit periodic responses which impart the neural population code with high accuracy. But do
highly accurate codes require fine tuning of the response properties? We address this question with the use of
a benchmark model: a neural network with random synaptic weights which result in output cells with irregular
tuning curves. Irregularity enhances the local resolution of the code but gives rise to catastrophic, global errors.
For optimal smoothness of the tuning curves, when local and global errors balance out, the neural network
compresses information from a high-dimensional representation to a low-dimensional one, and the resulting
distributed code achieves exponential accuracy. An analysis of recordings from monkey motor cortex points to
such ‘compressed efficient coding’. Efficient codes do not require a finely tuned design—they emerge robustly
from irregularity or randomness.
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1 Introduction
Neurons convey information about the physical world by modulating their responses as a function of parameters
of sensory stimuli. Classically, the mean neural response to a stimulus—referred to as the neuron’s ‘tuning
curve’—is often described as a smooth function of a stimulus parameter with a simple monotonic or unimodal
form (Georgopoulos et al., 1982; Taube et al., 1990; Miller et al., 1991; Bremmer et al., 1997; Dayan & Abbott,
2001; Kayaert et al., 2005). The deviation from the mean response—the ‘neural noise’—may lead to ambiguity
in the identity or strength of the encoded stimulus, and the coding performance of a population of neurons as
a whole is dictated by the forms of the tuning curves and the joint neural noise. In the study of population
codes, the efficient coding hypothesis has served as a theoretical organizing principle. It posits that tuning
curves are arranged in such a way as to achieve the most accurate coding possible given a constraint on the
neural resources engaged (Barlow, 1961; Atick & Redlich, 1990; Lewicki, 2002). The latter is often interpreted
as a metabolic constraint on the maximum firing rate of a single neuron or on the mean firing rate of the whole
population (Zhang & Sejnowski, 1999; Bethge et al., 2002; Wang et al., 2016).

In order to tackle this constrained optimization problem in practice, tuning curves are parametrized, and the
corresponding parameters are optimized. Here, the simplicity of the form of tuning curves matters: only a few
parameters need to be optimized. A large body of literature addresses this constrained optimization problem,
in particular in the perceptual domain. For example, many studies model tuning curves as Gaussian or other
bell-shaped functions, and obtain the values of their centers and widths that minimize the ‘perceptual’ error
committed when information is decoded from the activity of a population of model neurons (Zhang & Sejnowski,
1999; Deneve et al., 1999; Yaeli & Meir, 2010; Ganguli & Simoncelli, 2014; Fiscella et al., 2015). In the resulting
optimal populations, and if noise among neurons is independent, the coding error typically scales like 1/

√
N ,

where N is the number of model neurons (Seung & Sompolinsky, 1993). This behavior can be intuited based on
the observation that the ‘signal’ in the neural population grows like N while the noise grows like

√
N , yielding

a signal-to-noise ratio that increases in proportion to the square root of the population size. (In some models of
population neural coding of a one-dimensional parameter, the width of tuning curves can be further optimized
to yield an additional factor of 1/

√
N ; the error then scales like 1/N (Berens et al., 2011; Kim et al., 2020).)

Real neurons, however, can come with much more complex tuning curves than simple Gaussian or bell-shaped
ones. Grid cells recorded in the enthorinal cortex offer a salient example (Hafting et al., 2005; Doeller et al.,
2010; Yartsev et al., 2011; Killian et al., 2012); their tuning curves in two-dimensional, open field environments,
are multimodal and periodic as a function of spatial coordinates. It was noted early on that such richer tuning
curves can give rise to greatly enhanced codes. Given the periodicity of their tuning curves, and provided that
the neural population includes several modules made up of cells with different periodicities (Fiete et al., 2008;
Wei et al., 2015), grid cells can represent spatial location with an accuracy that scales exponentially (rather
than algebraically, as above) in the number of neurons (Sreenivasan & Fiete, 2011; Mathis et al., 2012; Burak,
2014). Thus, the richer structure of individual tuning curves can be traded for a strong boost in the efficiency
of the population code. Recent observations showed that place cells can also exhibit complex tuning curves in
the context of motion in three dimensions, with multiple place fields that are irregular both in location and in
size (Eliav et al., 2021). In addition, Ginosar et al. (2021); Grieves et al. (2021) found that during motion in
three dimensional space, individual grid cells also exhibit irregular firing fields. A number of other examples of
neurons with complex, but unstructured, tuning curves has also been identified in other cortical regions and in
different species (Kadia & Wang, 2003; Sofroniew et al., 2015; Lalazar et al., 2016; Gaucher et al., 2020).

Here, we ask whether highly efficient codes must rely on finely-tuned properties, such as the tuning curves’
periodicity or the arrangement of different modules in the population, or, alternatively, arise generically and
robustly in populations of neurons with complex tuning curves, in the absence of any fine tuning. We approach
the question by studying the benchmark case of a random neural code: a population code which relies on
irregular tuning curves that emerge from a simple, feedforward, shallow network with random synaptic weights.
The input layer in the network is made up of a large array of ‘sensory’ neurons with classical, bell-shaped tuning
curves; these neurons project onto a small array of ‘representation’ neurons with complex tuning curves. We
show that, in the resulting population code, the coding error is suppressed exponentially with the number of
neurons in this population, even in the presence of high-variance noise.

In the context of this highly efficient code, it is not sufficient to consider a ‘typical error’: efficiency results
from the compression of the stimulus space into the activity of a layer of neurons of comparatively small size;
the price to pay for this compression is the emergence of two qualitatively distinct types of error—‘local errors’,
in which the encoding of nearby stimuli is ambiguous, and ‘global (or catastrophic) errors’, in which the identity
of the stimulus is lost altogether. The efficient coding problem then translates into a trade-off between these
two types of errors. In turn, this trade-off yields an optimal width of the tuning curves in the ‘sensory layer’:
when stimulus information is compressed into a ‘representation layer’, tuning curves in the sensory layer have
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to be sufficiently wide as to prevent a prohibitive rate of global errors.
We first develop the theory for a one-dimensional input (e.g., a spatial location along a line or an angle), then

generalize it to higher-dimensional inputs. The latter case is more subtle because the sensory layer itself can be
arranged in a number of ways (while still operating with simple, classical tuning curves). This generalization
allows us to apply our model to data from monkey motor cortex, where cells display complex tuning curves.
We fit our model to the data and discuss the merit of a complex ‘representation code’. Overall, our approach
can be viewed as an application of the efficient coding principle to a framework that includes a downstream
(‘representation’) layer of neurons as well as a peripheral (’sensory’) layer of neurons. Our study extends
earlier theoretical work on grid cells and other ‘finely designed’ codes by proposing that efficient compression
of information can occur robustly even in the case of a random network. We reach our results by considering
the geometry of population activity in a compressed, representation layer of neurons.

2 Results
We organize the description of our results as follows. First, we present, in geometric terms, the qualitative
difference between a code that uses simple, bell-shaped tuning curves and one that uses more complex forms.
Second, we introduce a simple model of a shallow, feedforward network of neurons that can interpolate between
simple and complex tuning curves depending on the values of its parameters. Third, we characterize the
accuracy of the neural code in the limiting case of maximally irregular tuning curves. Fourth, we extend the
discussion to the more general case in which an optimal code is obtained from a trade-off between local and
global errors. All the above is done for the case of a one-dimensional input space. Fifth, we generalize our
approach to the case of a multi-dimensional stimulus. This allows us, sixth, to apply our model to recordings of
motor neurons in monkey, and to analyze the nature of population coding in that system. Seventh, we give a
quantitative description of the geometry of the population response induced by our network as a function of its
parameters, through a measure of dimensionality. Finally, we extend our model to include an additional source
of noise—‘input noise’ in the sensory layer, in addition to the ‘output noise’ present in the representation layer;
input noise gives rise to correlated noise downstream, and we analyze its impact on the population code.

The geometry of neural coding with simple vs. complex tuning curves
A neural code is a mapping that associates given stimuli to a probability distribution on neural population
activity; in particular, the code maps any given stimulus to a mean population activity. In the case of a
continuous, one-dimensional stimulus space, the latter is mapped into a curve in the N -dimensional space of
the population activity, whose shape is dictated by the form of the tuning curves of individual neurons. As
an illustration, we compare the cases of three neurons with Gaussian tuning curves and three neurons with
periodic (grid-cell-like) tuning curves with three different periods (Fig. 1A). Simple tuning curves generate a
smooth population response curve, implying that similar stimuli are mapped to nearby responses; by contrast,
more complex tuning curves give rise to a serpentine curve. The latter makes better use of the space of possible
population responses than the former, and hence can be expected to yield higher-resolution coding. Indeed,
when the population response is corrupted by noise of a given magnitude, it will elicit a smaller local error in
the case of complex tuning than in the case of simple tuning: by ‘stretching’ the mean response curve over a
longer trajectory within the space of possible population activities, complex tuning affords the code with higher
resolution relative to the range of the encoded variable. However, this argument does not capture in full the
influence of noise on the nature of coding errors. In the case of a winding and twisting mean response curve,
two distant stimuli are sometimes mapped to nearby activity patterns. In the presence of noise, this geometry
gives rise to global (or catastrophic) errors. The enhanced resolution of the neural code associated with the
occurrence of global errors was also noted in the context of grid-cell coding (Welinder et al., 2008; Sreenivasan
& Fiete, 2011). Because of this trade-off, whether a simple or complex coding scheme is preferable becomes a
quantitative question, which depends upon the details of the structure of the encoding.

Shallow feedforward neural network as a benchmark for efficient coding
In order to address the problem mathematically, we examine the simplest possible model that generates complex
tuning curves, namely a two-layer feedforward model. An important aspect of the model is that it does not
rely on any finely-tuned architecture or parameter tuning: complex tuning curves emerge solely because of the
variability in synaptic weights; thus, the model can be thought of as a benchmark for the analysis of population
coding in the presence of complex tuning curves. The architecture of the model network and the symbols
associated with its various parts are illustrated in Fig. 1B. In the first layer, a large population of L sensory
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Figure 1: Geometrical approach to coding, and the random feedforward neural network archi-
tecture. (A) Top: mean responses of three-neuron populations encoding a one-dimensional stimulus. Left:
population of neurons with Gaussian tuning curves. Right: population of neurons with periodic tuning curves.
Bottom: mean activity in the neural populations, parametrized by the stimulus value colored according to the
legend, as one-dimensional curves in a three-dimensional space. Unimodal tuning curves (left) evoke a single-
loop curve, which preserves the distances between stimuli in the evoked responses. Periodic tuning curves (right)
evoke a more complex curve in which two distant stimuli may be mapped to nearby points in the joint-activity
space; the curve is longer, and fills up a larger portion of the activity space. (B) Feedforward neural network. An
array of L sensory neurons with Gaussian tuning curves (one highlighted in purple) encodes a one-dimensional
stimulus into a L-dimensional representation. These tuning curves determine the mean response of the popula-
tion for a given stimulus, x0 (dots). This layer projects onto a smaller layer of N representation neurons with
an all-to-all random-connectivity matrix, W, generating irregular responses. We plot the tuning curves of three
sample neurons, highlighting their response to the stimulus x0. (C) Examples of population activity (across the
stimulus line, color indicates stimulus value) for three sample representation neurons, for increasing values of σ.
When σ → 0 (left, σ = 0.001), neurons produce uncorrelated random responses to different stimuli, generating
a spiky curve made up by broken segments. As σ grows (σ = 0.015, σ = 0.03) irregularities are smoothed out,
and nearby stimuli evoke increasingly correlated responses. Ultimately, for large values of σ (right, σ = 0.15)
we recover a scenario similar to that with unimodal tuning curves.
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neurons encodes a one-dimensional stimulus, x, into a high-dimensional representation. Throughout, we assume
that x takes values between zero and one, without loss of generality. (If the input covered an arbitrary range, say
r, then the coding error would be expressed in proportion to r. In other words, one cannot talk independently
of the range of the input and of the resolution of the code. We set the range to unity in order to avoid any
ambiguity.) Sensory neurons come with classical tuning curves: the mean activity of neuron j in response to
stimulus x is given by a Gaussian with center cj (the preferred stimulus of that neurons) and width σ:

uj (x) = A exp

(
− (x− cj)2

2σ2

)
. (1)

Following a long line of models, we assume that the preferred stimuli in the population are evenly spaced, so
that cj = j/L. As a result, the response vector for a stimulus x0, u (x0), can be represented as a Gaussian
‘bump’ of activity centered at x0.

Complex tuning curves appear in the second layer containingN representation neurons; we shall be interested
in instances with N � L, in which efficient coding results in compression of the stimulus information from a
high-dimensional to a low-dimensional representation. Each representation neuron receives random synapses
from each of the sensory neurons; specifically, the elements of the all-to-all synaptic matrix, W, are i.i.d.
Gaussian random weights with vanishing mean and variance equal to 1/L (Wij ∼ N (0, 1/L)). In the simple,
linear case that we consider, the mean activity of neuron i in the second layer is thus given by

vi (x) =
L∑
j=1

Wijuj (x) . (2)

Since the weightsWij correspond to a given realization of a random process, they generate tuning curves, vi (x),
with irregular profiles. The parameter σ is important in that it controls the smoothness of the tuning curves
in the second layer: it defines the width of uj , which in turn dictates the correlation between the values of
the tuning curve vi for two different stimuli. By the same token, the amplitude of the variations of vi with x
depends upon the value of σ. For a legitimate comparison of population codes in different networks, we set this
amplitude to a constant on average,〈∫ 1

0

dx

[
vi (x)−

∫ 1

0

dx′vi (x′)

]2
〉
W

= R, (3)

by calibrating the value of the prefactor in Eq. (1), A. Because of the averaging over the synaptic weights,
indicated by the brackets 〈·〉W , A does not depend upon a specific realization of the synaptic weights. Equation
(3) corresponds to the usual constraint of ‘resource limitation’ in efficient coding models; it amounts to setting a
maximum to the variance of the output over the stimulus space, as is commonly assumed in analyses of efficient
coding in sensory systems (Atick & Redlich, 1990; Van Hateren & Ruderman, 1998; Doi et al., 2012; Zhaoping,
2014).

Returning to our geometric picture, we observe that, by changing the value of σ, we can interpolate between
smooth and irregular tuning curves in the second layer (Fig. 1C). In the limiting case of large σ, representation
neurons come with smooth tuning curves akin to classical ones; in the other limiting case of small σ, the
mean population response curve becomes infinitely tangled. Thus, as the value of σ is decreased, the mean
response curve ‘stretches out’ and necessarily twists and turns, in such a way as to fit within the allowed space
of population responses defined by Eq. (3). A longer population response curve fills the space of population
responses more efficiently and represents the stimulus at a higher resolution, but its twists and turns may result
in greater susceptibility to noise.

To complete the definition of the model, we specify the nature of the noise in the neural response. We
assume that the activity of neuron i in the second layer is affected by noise, which we denote by zi, such that its
response at each trial (in which stimulus x is presented) is given by ri = vi (x) + zi. For the sake of simplicity,
we use Gaussian noise with vanishing mean and variance equal to η2. In most of our analyses, we suppose that
responses in the first layer are noiseless and that the noise in the second layer is uncorrelated among neurons; in
the last subsection, however, we relax these assumptions, and discuss the implications of noisy sensory neurons
and correlated noise among representation neurons. (Our motivation for considering noiseless sensory neurons
is that we are primarily interested in analyzing the compression of the representation of information between
the first and the second layer of neurons. By contrast, noise in sensory neurons affects the fidelity of encoding
in the first layer already.)

We quantify the performance of the code in the second layer through the mean squared error (MSE) in the
stimulus estimate as obtained from an ideal decoder, ‘ideal’ in the sense that it minimizes the MSE. (Throughout,
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Figure 2: Probability of error for narrow tuning curves in the sensory layer. (A) Joint mean responses
of two neurons to L = 50 stimuli, colored according to the legend in Fig. 1C. Noise is represented as a cloud of
possible responses (in grey) around the mean. An error occurs when the noisy response, r, falls closer to a mean
response corresponding to a stimulus, x̂, different from the true one, x0. Since mean responses are uncorrelated,
x̂may be distant from x0. (B) Theoretical (solid curves, Eq. (5)) and numerical (dots) results for the probability
of error as a function of the population size, for different values of L (η2 = 0.5). The probability of error scales
exponentially with the number of neurons, N , with a multiplicative constant involving the number of stimuli,
L. (C) Theoretical (solid curves) and numerical (dots) results for the probability of error as a function of the
population size for different values of η2 (L = 500).

in heuristic arguments and analytical calculations, we focus on the MSE. In a number figures, however, we plot
its square root, the RMSE, so as to allow for a direct comparison with the stimulus range. The figure captions
specify which of the two quantities is illustrated.) The use of an ideal decoder is an abstract device that allows
us to focus on the uncertainty inherent to encoding (rather than to imperfections in decoding); it is nevertheless
possible to obtain a close approximation to an ideal decoder in a simple neural network with biologically plausible
operations (see Methods).

Compressed coding in the limiting case of narrow sensory tuning
It is instructive to study the properties of coding in our model in the limiting case of neurons with narrow
tuning curves in the sensory layer (σ → 0), because this limit yields the most irregular tuning curves in the
representation layer of our network (Fig. 1C). As we shall see, this limiting case also corresponds to that of a
completely uncorrelated, random code, for which the mathematical analysis simplifies. When the value of σ is
much smaller than 1/L, neurons in the sensory layers respond only if the stimulus coincides with the preferred
stimulus of one of the neurons, and only that neuron is activated by the stimulus presentation; stimulus values
that lie in between the preferred stimuli of successive sensory neurons in the first layer do not elicit any activity
in the system. We can thus consider that any stimulus of interest is effectively chosen within a discrete set of
L stimuli with values xj = j/L, with j = 1, . . . , L.

Each of these stimuli elicits a mean response

vi(xj) = ÃWij ∼ N (0, R) (4)

in neuron i of the second layer. Here, the value of Ã is chosen so as to set the amplitude of the variations of
vi to be equal to the constant R (analogously to Eq. (3) but for the case of discrete stimuli). Geometrically,
Eq. (4) represents a mapping from L stimulus values to a set of uncorrelated, random locations in the space
of the population activity (as illustrated in Fig. 2A for a two-neuron population). In any given trial, however,
the responses in the representation layer are corrupted by noise (Fig. 2A). The ideal decoder interprets a
single-trial response as being elicited by the stimulus associated to the nearest possible mean response (Fig.
2A). The outcome of this procedure can be twofold: either the correct or an incorrect stimulus is decoded; in
the latter case, because the possible mean responses are arranged randomly in the space of population activity
(Fig. 2A and Eq. (4)), errors of all magnitudes are equiprobable. In other words, a model with narrow sensory
tuning curves results in a second-layer code that does not preserve distances among inputs, and, consequently,
the decoding error is either vanishing or, typically, on the order of the input range (set to unity here). The
mean error is then simply proportional to the probability with which the ideal decoder makes a mistake, with
a constant of proportionality of the order of the stimulus range.

In Methods, we provide a derivation of this quantity. In the case of low-error coding, which interests us, we
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obtain the dependence of the probability of a decoding error as a function of the various model parameters, as

Perror ≈
L√
2πN

exp

(
−log

(
1 +

R

2η2

)
N

2

)
. (5)

The main dependence to note, here, is the exponentially strong suppression as a function of the number of
neurons in the second layer (Fig. 2B). By contrast, the probability of error scales merely linearly with the size
of the stimulus space, L, as is expected in the low-error limit. This result implies that it is possible to compress
information highly efficiently in a comparatively small representation layer (N � L) even though the code is
completely random. The price to pay for the use of randomness is that any error is likely ‘catastrophic’ (on the
order of the stimulus range), but these large errors happen prohibitively rarely. It is also worth noting that the
rate of exponential suppression depends on the variance of the noise, η2, or, more precisely, on the single-neuron
signal-to-noise ratio, R/η2 (where R is the variance of the signal, Eq. (3)). In numerical simulations, we set
R = 1 and we vary η2 to explore different noise regimes. Interestingly, even when this signal-to-noise ratio
becomes small, i.e., when the noise in the activity of individual neurons is comparable to modulations of their
mean responses, the exponential suppression as a function of N of the probability of error remains valid, with
a rate approximately equal to R/4η2 .

Compressed coding with broad tuning curves: trade-off between local and global
errors
As we saw in the previous section, in the case of infinitely narrow tuning curves the coding of a stimulus in a
given trial is either perfect or indeterminate; that is, any error is typically a global error, on the order of the
entire stimulus range. In the more general case of sensory neurons with arbitrary tuning width, the picture is
more complicated: in addition to global errors which result from the twisting and turning of the mean response
curve, the population code is also susceptible to local errors (Fig. 3A). This is because broad tuning curves
in the sensory layer partly preserve distances: locally, nearby stimuli are associated with nearby points on the
mean response curve; as a result, the coding of any given stimulus is susceptible to local errors due to the
response noise. As the tuning width in the sensory layer, σ, decreases, two changes occur in the mean response
curve: it becomes longer (it ‘stretches out’) and it becomes more windy (Fig. 1C). Stretching increases the
local resolution of the code (because it allows for two nearby stimuli to be mapped to two more distant points
in the space of population activity), while windiness increases the probability of global errors. This trade-off is
apparent when we plot the histogram of error magnitudes as a function of σ: for larger values of σ, global errors
are less frequent, but local errors are boosted (Fig. 3B). Also noticeable, here, is that the large-error tails of
the histograms are flat, consistent with the observation that global errors of all sizes are equiprobable. (Strictly
speaking, this happens if the stimulus has periodic boundary conditions, such that, picking two random points,
the probability that they are at a given distance does not depend on the location of one or the other point.)
For a more quantitative understanding, we carried out an approximate analytical calculation, in which (i) we
approximated the mean response curve by a linear function locally and (ii) we considered that the distance
between two segments of the curve representing the mean responses to two stimuli distant by more than σ is
random and independent of the stimulus values. Using these two assumptions, we obtained the MSE as a sum
of two terms (see Methods for mathematical details) corresponding to local and global errors, as

ε2 =
〈
E2
〉
W
≈ ε2

l + ε2
g ≈

2σ2η2

RN
+

ε̄2
g

σ
√

2πN
exp

(
− log

(
1 +

R

2η2

)
N

2

)
, (6)

where ε̄2
g is a term of O (1) that depends upon the choice of stimulus boundary conditions (see Methods). This

expression quantifies the MSE for a ‘typical’ network, obtained by averaging over possible choices of synaptic
weights, as indicated by the brackets 〈·〉W . The first term on the right-hand-side of Eq. (6) represents the
contribution of local errors, while the second term corresponds to global errors (Fig. 3C). Their form can be
intuited as follows. The magnitude of local errors is proportional to η2 and inversely proportional to N , as in
classical models of population coding with neurons with bell-shaped tuning curves (see, e.g., Zhang & Sejnowski
(1999)). Furthermore, decreasing σ stretches out the mean response curve, which increases the local resolution
of the code and explains the factor σ2 in Eq. (6). (The form of this first term can also be understood as
the inverse of the Fisher information (Seung & Sompolinsky, 1993; Brunel & Nadal, 1998), which bounds the
variance of an unbiased stimulus estimator.) The second term on the right-hand-side of Eq. (6) is obtained as
an extension of Eq. (5): instead of considering the probability that two mean response points are placed nearby,
we consider the probability that two segments of the mean response curve with size σ each fall nearby. There
are 1/σ such segments (since we have set the stimulus range to unity), and this explains why the factor L in
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Figure 3: Trade-off between local and global errors. continue to next page
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Figure 3 (previous page): (A) Different types of error in an irregular curve of mean population activity (joint
response of two neurons, colored according to the legend in Fig. 1C). Here, rI and rII are two possible noisy
responses to the same stimulus, extracted from the Gaussian cloud surrounding the mean response, v(x0). An
ideal decoder outputs the stimulus corresponding to the closest point on the curve. In one case, rI results in
a local error, by selecting a point on the curve that represents a nearby stimulus, x̂I . In the other case, rII is
closer to a point on the curve which represents a stimulus distant from the true one, x̂II , causing a global error.
(B) Normalized histogram of absolute error magnitudes, ∆x = |x̂− x|, made by an ideal decoder, for different
values of σ (N = 25). For better visualization, we consider a stimulus with periodic boundary conditions. The
contribution of the two types of error varies with σ. For small σ, coding is precise locally (fast drop of the purple
curve for small errors), but many global errors occur (tail of the distribution is high). For large σ (green curves)
local accuracy is poorer but global errors are suppressed. (C) Theoretical prediction for the two contributions
to the MSE as a function of σ (N = 30). The magnitude of local errors increases with larger σ (solid curve),
while the number of global errors decreases (dashed curve). (D) RMSE as a function of σ: comparison between
numerical simulations (dots) and theoretical prediction of Eq. (6) (solid curve). (E) RMSE, as a function of
σ for different population sizes N (increasing from violet to yellow). The smallest RMSE occurs at an optimal
value of σ, σ∗(N) , which decreases with increasing N . (F) Same data, but the error is displayed as a function
of N , for a fixed value of σ. The MSE decreases exponentially rapidly until global errors are suppressed, then
the local errors are linearly reduced. A smaller value of σ implies a larger value of N at which the crossover
occurs, as well as a smaller MSE at this crossover value.

Eq. (5) is replaced by a factor 1/σ in Eq. (6). Importantly, the two terms in Eq. (6) are modulated differently
by the two parameters N and σ. Depending upon their values, either local or global errors dominate (Fig. 3C).

We tested the validity of Eq. (6): it agrees closely with results from numerical simulations, in which we
computed the MSE using a Monte Carlo method and a network implementation of the ideal decoder (Fig.
3D, see Methods for details). The non-trivial dependence is illustrated by the observation that the MSE may
decrease or increase as a function of σ, around a given value of σ, depending upon the value of N (Fig. 3E).
Furthermore, the strong (exponential) reduction in MSE with increasing N occurs only up to a crossover value
that depends on σ (Fig. 3F); beyond this value, global errors disappear, and the error suppression is shallower
(hyperbolic in N , due to improved local resolution). For small values of σ, the crossover values of N are larger
and occur at lower values of the MSE.

As is apparent from Figs. 3D and E, for any value of N there exists a specific value of σ = σ∗ (N) that
balances the two contributions to the MSE such as to minimize it. This optimal width can be thought as the
one that stretches out the mean response curve as much as possible to increase local accuracy but that stops
short of inducing too many catastrophic errors. The MSE is asymmetric about the optimal width, σ∗: smaller
values of σ cause a rapid increase of the error due to an increased probability of global errors, while larger
values of σ mainly harm the code’s local accuracy, resulting in a milder effect. From Eq. (6), we obtain the
dependence of the optimal width upon the population size, as

σ∗ ≈

(
ε̄2
g

4η2

√
N

2π

)1/3

exp

(
− log

(
1 +

R

2η2

)
N

6

)
, (7)

and the optimal MSE as a function of N, as

ε2∗ = 〈E2(σ∗)〉W ≈

(
ηε̄2
g√

2πN

)2/3

exp

(
− log

(
1 +

R

2η2

)
N

3

)
. (8)

Both these analytical results agree closely with numerical simulations (Figs. 4A and B). Equation (8) and Fig.
4B show that the optimal MSE is suppressed exponentially with the number of representation neurons in the
second layer. Thus, highly efficient compression of information and exponentially strong coding also occurs
when tuning curves in the sensory layer are not infinitely narrow: furthermore, a degree of smoothness in the
tuning of the sensory neurons is advantageous. With the optimal choice of the sensory tuning width, the rate
of scaling with N of the argument within the exponential in Eq. (8) depends upon the noise variance, η2; in
Figs. 4C and D, we illustrate the dependence of σ∗ and ε∗ upon N and η2.

Compressed coding of multi-dimensional stimuli
Real-world stimuli are multi-dimensional. Our model can be extended to the case of stimuli of dimensions
higher than one, but particular attention should be given to the nature of encoding in the first layer—because
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Figure 4: Scaling of the optimal width and the optimal MSE as a function of population size and
signal-to-noise ratio. (A) The optimal σ∗ decreases exponentially rapidly with the number of representation
neurons, saturating the lower bound imposed by the finite number of neurons of the first layer (corresponding
to the spacing of the preferred positions, 1/L). Simulations (dots) show good agreement with analytical results
(solid curve). (B) The optimal RMSE is suppressed exponentially rapidly with N . Simulations (dots) agree
with analytical results (solid curve). (C,D) Optimal width (C) and RMSE (D) as a function of the parameters
N and η2. The color coding is in log scale, in order to highlight the exponential scaling.
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Figure 5: Compressed coding with multi-dimensional stimuli. We illustrate the case of a three-
dimensional stimulus, with L = 3375 , η2 = 1, R = 1. continue to next page
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Figure 5 (previous page): (A) Mapping of a multi-dimensional stimulus space into neural population activity
as obtained from a two-layer coding scheme. Top: two-dimensional stimulus space; colors serve as stimulus
legend for subsequent plots. Middle: mean activity (z-axis) of a sample sensory neuron, for two cases, as a
function of the two stimulus coordinates (x- and y- axis). In the pure case (left), a single sensory neuron ‘folds’
the two-dimensional sheet across a direction, specified by its preferred position and dimension (here, x2). In
the conjunctive case (right), a sensory neuron creates a ‘bump’ in the sheet. Bottom: joint activity of three
representation neurons as a function of the stimulus. Each of these neurons randomly sum the output of sensory
neurons, producing a randomly ‘folded’ sheet in the pure case (left) and a ‘crumpled’ sheet in the conjunctive
case (right). (B) RMSE as a function of σ for different population sizes N (increasing from violet to yellow),
when the first layer consists of pure (left) or conjunctive (right) cells. The optimal σ, which decreases with N ,
optimizes the balance between local and global errors, similarly to the one-dimensional case. In the conjunctive
case, the rapid increase of the RMSE below σ = 0.05 is due to the sensory neurons not tiling the stimulus space,
and it is independent of N . (C) Ratio of the RMSE in the two cases, εc/εp, as a function of σ and N . The
yellow (violet) region indicates an outperformance of the pure (conjunctive) population. To aid visualization,
the yellow region indicates all the values greater than 2. This regime of small σ is characterized by a better
coverage of the pure population, independently of N . Values greater than one occur also when N is small, due
to the prefactor of the global error being lower in the pure case. As soon as N is sufficiently large and σ is
sufficiently large to allow for coverage of the stimulus space, the conjunctive case outperforms the pure case.
This effect is stronger in the small-σ region, due to the slower scaling of the global errors in the pure case.
When σ is large, the ratio saturates at the value given by the ratio of the local errors. (D,E) Optimal tuning
width (D) and relative RMSE (E), for pure (blue, red) and conjunctive (green, violet) cases. The global error
decreases more slowly in the pure case. For N & 75 the optimal width in the conjunctive case saturates, due to
loss of stimulus coverage, while the pure population does not suffer from this limitation. Thus, the RMSE in
the conjunctive case stops decreasing exponentially and starts decreasing only linearly with N .

sensory neurons can be sensitive to one or several dimensions of the stimulus. In one limiting case, a sensory
neuron is sensitive to all dimensions of the stimulus; for example, place cells respond as a function of the two-
or three-dimensional spatial location. Visual cells constitute another example of multi-dimensional sensitivity,
as they respond to several features of the visual world; for example, retinal direction-selective cells are sensitive
to the direction of motion, but also to speed and contrast. In the other limiting case, sensory neurons are
tuned to a single stimulus dimension, and insensitive to others. We will refer to these two coding schemes as
pure and conjunctive, following Ref. Finkelstein et al. (2018) where they are examined in the context of head-
direction neurons in bats. The authors conclude that the relative advantage of a pure coding scheme—with
neurons that encode a single head-direction angle—with respect to a conjunctive coding scheme—with neurons
that encode two head-direction angles—depends on specific contingencies, such as the population size or the
decoding time window. Indeed, in a conjunctive coding scheme individual neurons carry more information, but
the population as a whole needs to include sufficiently many neurons to cover the (multi-dimensional) stimulus
space—a constraint which becomes more restrictive as the number of dimensions increases.

We generalized our model to include the possibility of K-dimensional stimuli. For the sake of simplicity, we
consider here only the two limiting cases of pure and conjunctive coding in the sensory layer of our model (i.e.,
we do not discuss intermediate cases, in which a given sensory neuron is sensitive to several but not all stimulus
dimensions, see Methods). In the model, furthermore, neurons in the representation layer receive random inputs
from all sensory neurons; as such, the representation layer always embodies a conjunctive coding scheme.

By extending the geometric picture (illustrated in Fig. 1 for the case of a one-dimensional stimulus), we can
analyze differences in coding properties between pure and conjunctive coding schemes; in Fig. 5A, we illustrate
the case of a two-dimensional stimulus. In this case, the mean response of representation neurons corresponds
to a mapping from a two-dimensional stimulus space to a random ‘sheet’ (a two-dimensional surface) in the
N -dimensional space of the population activity. In the pure case, the activity of a given sensory neuron is
maximally modulated when the stimulus varies along a particular dimension, the one to which the neuron is
sensitive. Variations of the stimulus along orthogonal directions have no effect on the mean neural activity.
Neurons in the representation layer compute a linear sum of these responses, and therefore their activity can be
decomposed as a sum of one-dimensional functions. This implies that the ‘response sheet’ is maximally curved
along each of the stimulus dimensions; geometrically, this results in a ‘folded’ structure, with creases along the
directions of mild sensitivity. By contrast, in the conjunctive case the activity of a sensory neuron is modulated
by variations of the stimulus along any direction. As a result, the ‘response sheet’ that represents the joint mean
activity of neurons in the second layer comes with (random) curvature equally along all stimulus dimensions:
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rather than ‘folded’, it behaves like a ‘crumpled’ sheet (Fig. 5A).
This geometric picture offers an intuitive explanation of the behavior of the MSE in the two coding schemes.

(For the corresponding mathematical treatment, see Methods.) The local error is determined by how much
the ‘response sheet’ is stretched out; in turn, the more the response sheet is stretched out, the more it has to
fold (or crumple) to fit in the allowed range of neural activity. Folding allows for a more modest stretching
of the sheet than crumpling, and as a result the pure scheme incurs a larger local error than the conjunctive
scheme (see Eqs. (69) and (74)). The behavior of the global error is also different in the two coding schemes;
there are two mechanisms at play, here. First, in the pure scheme, for most realizations of the random tuning
curves, global errors occur primarily in a single stimulus dimension (see Methods for mathematical details); this
is also apparent in Fig. 5A: the ‘folded’ structure of the response sheet induces global errors in a single stimulus
dimension. By contrast, in the conjunctive scheme global errors occur in an arbitrary number of stimulus
dimensions. Second, the total variance of the tuning curve across the stimulus space is fixed (and, in particular,
set to the same value for the pure and conjunctive schemes), but the signal-to-noise ratio which governs the rate
of error suppression with N scales differently as a function of K. Both mechanisms, in a regime in which N is
large enough to suppress the contribution of global errors, enhance the probability of global error in the pure
scheme as compared to the conjunctive scheme (compare Eq. (79) and Eq. (81) in Methods). Intuitively, this is
because a folded sheet has a larger surface area of contact with itself than a crumpled sheet. Thus, for sufficiently
large values of N , the conjunctive scheme is more favorable than the pure one. The corresponding crossover
value of N , however, depends on K, and large values of K impose a stringent constraint in the conjunctive case.

We illustrate these conclusions with numerical results in the case of a three-dimensional stimulus (K = 3),
relevant to the data analysis we present in the next section. In Fig. 5B, we illustrate the behavior of the
RMSE as a function of N and σ for the pure and conjunctive coding schemes. In order to quantify the relative
advantage of one scheme with respect to the other, we plot the ratio of the RMSE in the two schemes as a
function of N and σ (Fig. 5C). The resulting, relatively intricate pattern, can be understood by considering
different regimes. If the population size is small, the pure scheme slightly outperforms the conjunctive one
(not because of a different scaling with N , but instead because of a difference in the prefactors that affect the
probability of error in the two cases); in this regime, global errors dominate and coding is poor overall. At
larger values of N , the contribution of local errors becomes non-negligible. If local errors dominate relative to
global errors (which occurs for large N and sufficiently large σ), then the conjunctive scheme outperforms the
pure one, and the ratio of the RMSEs approaches the ratio between local errors only (Eq. (75) for K = 3,
implies εl,c/ε1,p ≈ 1/

√
3). In the non-trivial regime in which local and global errors are balanced (for large N

and intermediate values of σ), the advantage of the conjunctive scheme is further boosted. As explained above,
this is due to a stronger suppression of global errors as a function of N in the conjunctive case. Finally, if σ
becomes smaller than a crossover value that depends on the number of sensory neurons, the latter no longer
cover the stimulus space sufficiently densely, and the conjunctive scheme breaks down; in this regime, thus, the
pure scheme is favored.

As illustrated in Fig. 5B, similar to the one-dimensional case there exists in each of the two coding schemes
an optimal value of the tuning curve width, σ, which achieves a balance between local and global errors, and it
decreases with N . This dependence is somewhat different in the two coding schemes (Fig. 5D), and contributes
to the form of the suppression of the RMSE in the two schemes (Fig. 5E). Both quantities, the optimal tuning
curve width and the RMSE, decrease more rapidly as a function of N in the conjunctive scheme. This results
from the fact that global errors are suppressed more strongly with N in the conjunctive case (as explained
above), and therefore a smaller σ, yielding a lower local error, is preferable. At the same time, the requirement
that sensory neurons cover the stimulus space yields a more stringent constraint on σ in the conjunctive scheme,
yielding a bound on the extent of the regime of exponential error suppression.

Compressed coding in monkey motor cortex
The activity of neurons in the primary motor cortex (M1) of monkey is correlated with the location and
movement of the limbs. Here, we consider spatial tuning in the context of a ‘static task’ (Kettner et al., 1988).
In this task, the monkey is trained to keep its hand motionless during a given delay after having placed it at
one of a set of preselected positions on a three-dimensional grid labeled by the vector x = (x1, x2, x3). Tuning
curves of hand-position selectivity can be extracted from recordings in M1 (Kettner et al., 1988; Wang et al.,
2007), and it has been customary to model these as a linear projection of the hand position onto a so-called
‘preferred vector’ or ‘positional gradient’, p, which thus points in the direction of maximal sensitivity (Wang
et al., 2007). The tuning curve of neuron i is then written as

vi(x) = ai + p1,ix1 + p2,ix2 + p3,ix3 = ai + pi · x. (9)
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Figure 6: Irregular vs. linear tuning. (A) Mean fractional improvement for irregular tuning as compared to
linear tuning, as a function of population size and tuning-curve width. The black line indicates the critical values
of N and σ at which the two coding schemes perform equally well. In the region below (violet), global errors
penalize the irregular case, making a smoother code more efficient. With increasing N, global errors become
rarer while irregularities improve the local accuracy of the code (yellow region). This advantage increases at
smaller values of σ, but so does the value of N required for the irregular case to be advantageous. (B) Mean
fractional improvement in the irregular case, generated with the data-fitted model, compared to the linear
one, as a function of N and η2. At small population sizes, irregular tuning curves produce global errors, and
smoother tuning curves perform better (violet region, ∆ε < 0 ). By increasing N , global errors are suppressed
and irregularities improve the local accuracy (yellow region, ∆ε > 0). The black line marks the transition values.
(C,D) Mean fractional improvement (C) and RMSE (D) in the irregular case as a function of population size, for
the noise model extracted from data. A noise variance is assigned to each neuron according to the distribution
extracted from the data, showed in the inset of panel (C). For small N , linear tuning yields a better coding
performance. At N ∼ 40, the higher local accuracy compensates for global errors, and the irregular code starts
to perform better, although the error is still substantial. The improvement saturates to a finite value of ∼ 0.4
at a value of N ∼ 100, when global errors are fully suppressed; the scaling of the error as a function of the
population size is no longer exponential, but only hyperbolic.
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A recent study (Lalazar et al., 2016) noted, however, that a model of tuning curves that includes a form of
irregularity yields an appreciably superior fit to the simple linear behavior of Eq. (9). This more elaborate
model bears similarity with our model of irregular tuning curves, and this naturally led us to ask about potential
coding advantages that a complex coding scheme may afford M1.

To be more specific, one can interpret the first layer in our network featured with neurons with three-
dimensional Gaussian tuning curves, as representing neurons in the parietal reach area (or premotor area),
which are known to display spatially localized tuning properties (Andersen et al., 1985). This population
of neurons projects onto a smaller population of M1 neurons which display spatially extended and irregular
tuning profiles. In fitting our model to recordings from M1 neurons (Lalazar et al., 2016), we considered the
arrangement of stimuli used in the experiment, namely 27 spatial locations arranged in a 3× 3× 3 grid fitting
in a 40 cm-high cube. We then followed a previous fitting method (Lalazar et al., 2016; Arakaki et al., 2019):
given the diversity of the irregular tuning curves in the population we did not aim at fitting individual tuning
curves; instead, we allowed for randomly distributed synaptic weights (as in our original model) and we fitted a
single parameter, the width of the tuning curves in the first layer, σ. The fit was aimed at reproducing specific
summary statistic of the data referred to as complexity measure (a discrete version of the Lipschitz derivative
that quantifies the degree of smoothness of a curve, see Methods and Lalazar et al. (2016)). The complexity
measure varies from neuron to neuron, and we chose σ so as to minimize the Kolmogorov-Smirnov distance (see
Eq. (103) in Methods) between the distribution implied by our model and the one extracted from the data.
While our model is somewhat simpler than a model of irregular M1 tuning curves employed previously (Lalazar
et al., 2016), it yields comparable fit.

With a neural response model in hand, we can evaluate the coding performance; to do so, we consider a finer,
21 × 21 × 21 grid of spatial locations as our test stimuli. We quantify the merit of a compressed code making
use of irregular tuning curves by computing the MSE, ε2

irr, and comparing the latter with the corresponding
quantity in a coding scheme with the smooth tuning curves defined in Eq. (9), ε2

lin. We plot our results in terms
of the ‘mean fractional improvement’, ∆ε ≡ (εlin − εirr) /εlin . ∆ε is positive when irregularities favor coding,
and is at most equal to unity (in the extreme case in which irregularities allow for error-free coding).

We explore the performance of the two coding schemes for different values of the parameters N and σ,
first in an ideal case in which all neurons have the same noise variance (Fig. 6A). We note the existence of
a crossover value of N , N∗. When N < N∗, small values of σ induce prohibitively frequent global errors in
the compressed (irregular) coding scheme, and linear (smooth) tuning curves are more efficient. For N > N∗,
however, irregularities are always advantageous, and the more so the smaller the value of σ. Because global errors
are suppressed exponentially with N , N∗ typically takes a moderate value which depends on the magnitude
of the noise; the larger the noise, the larger N∗. Figure 6B illustrates this noise-dependent behavior of the
crossover population size, for the best-fit value of σ (≈ 23).

Next, for a more realistic modeling of M1 neurons, we analyzed the performance of a model in which each
neuron’s noise variance is extracted from data (Figs. 6C and D). For each recorded neuron, we computed the
variance of the signal as the variance, across different stimuli, of the mean firing rate (left hand side of Eq. (3)).
Then, we estimated the variance of the noise by averaging the trial-to-trial variability of responses to the same
stimulus. These two quantities allowed us to define a signal-to-noise ratio for each neuron of the population
(see Eq. (104) in Methods). As in simulations we set the variance of the signal for each neuron to a constant
value, we modeled the heterogeneity in the signal-to-noise ratio as a heterogeneous noise variance; the resulting
distribution is skewed, with an appreciable fraction of neurons exhibiting low signal-to-noise ratios (Fig. 6C,
inset). For each value of N , we sampled eight different pools of N neurons from the population, and we averaged
the corresponding mean fractional improvement, ∆ε. We found, again, that the relative merit of compressed
coding (with irregular tuning curves) grows with the population size; interestingly, when compressed coding
becomes advantageous (∆ε > 0 in Fig. 6C), the error magnitude is still appreciable (Fig. 6D). This means
that even though local and global errors are balanced, both contributions are substantial. ∆ε continues to grow
with N until global errors are suppressed; beyond this second crossover value, Nlocal, ∆ε saturates because in
both coding schemes (with irregular and linear tuning curves) local errors dominate. Correspondingly, the MSE
scales differently for N above or below Nlocal. When N < Nlocal the MSE decreases exponentially with N , due
to the suppression of global errors, while when N > Nlocal, the suppression of the MSE is hyperbolic in N ,
reflecting the behavior of local errors only (Fig. 6D). This second crossover occurs at Nlocal ≈ 100, a figure
comparable to the number of neurons that control individual muscles in this specific task, as estimated from
decoding EMG signals corresponding to individual muscles from subsets of M1 neurons (Lalazar et al., 2016).
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Dimensionality of a compressed neural code
We discussed a geometrical interpretation of a neural population code in terms of a map from a set of stimuli
to a set of points in the space of (mean) population activity. With smooth tuning curves, a continuous K-
dimensional stimulus is represented as a K-dimensional hypersurface embedded in the N -dimensional space
of neural activity. This hypersurface is often referred to as a ‘neural response manifold’ (Seung & Lee, 2000;
Gallego et al., 2017) (which implicitly assumes a local homeomorphism to a Euclidean space). In the previous
sections, we analyzed the way in which the geometrical properties of the response manifold affect the coding
performance. In this section, we relate the picture put forth by our model to recent work that quantified the
dimensionality of neural activity as a way to characterize its nature and to infer strategies used by the brain to
represent (sensory) information (Fusi et al., 2016; Recanatesi et al., 2020).

While a K-dimensional stimulus space may correspond to a K-dimensional neural response manifold, the
latter’s complicated geometry—as in our model—may make its identification difficult. In practice, one is faced
with a data set, namely a noisy sample from a population of tuning curves, and from it one would like to
make statements on the geometry of the population activity. Fitting a low-dimensional manifold to a neural
population data set is not a trivial task, and is the focus of a large number of studies on dimensional reduction
(Cunningham & Yu, 2014). A simple approach is to consider the eigenvalue spectrum of the covariance matrix
of the neural responses across the stimulus range or, equivalently, the variance carried by the the different
modes in a principal component analysis (PCA). If we apply this approach to the population response in our
model, for different values of σ, we find a spectrum that exhibits a band-pass structure, which plateaus up to a
cut-off value before a sharp suppression; the cut-off value is larger for smaller values of σ (Fig. 7A). From this
analysis one would conclude that the population activity occupies a low-dimensional subspace embedded in the
N -dimensional space of neural activity, with dimensionality controlled by σ. As the value of σ falls to zero, the
population responses fill an increasingly large fraction of the N available dimensions, until they fill the space
entirely for σ → 0.

A quantification of the ‘intrinsic dimensionality’ of the population activity based on this PCA analysis is

offered by the participation ration, defined as d =
(∑N

i=1 λi

)2

/
∑N
i=1 λ

2
i , where λi denotes the ith eigenevalue

of the covariance matrix of the neural responses across the stimulus range (Gao et al., 2017). Loosely speaking,
the participation ratio measures the number of eigenvalues (principal components) which are much larger than
the others; for example, if M eigenvalues are of comparable size and much larger than any others, then d ≈M .

In our model, while d is close to unity for large values of σ, it becomes larger for smaller values of σ and
approaches N when σ → 0 (Fig. 7B). It is interesting to examine the behavior of this quantity in the vicinity
of the optimal value of σ. In Fig. 7C, we display the fractional dimensionality (i.e., the participation ratio
divided by the number of neurons, d/N) corresponding to the population activity at the optimal value of σ as
a function of the population size, for a fixed level of noise. As expected, d increases with N : larger populations
allow for more irregular tuning curves which benefit the local accuracy without generating prohibitive global
errors. Quantitatively, the value of d hovers around N/2. A possible interpretation of this result is that it
corresponds to the largest value beyond which a random manifold embedded in N dimensions comes close to
intersect itself; thus, this value of d ensures that global errors do not proliferate. While a naive interpretation
of the value of the participation ratio would suggest that the neural population encodes an N/2-dimensional
stimulus, in the context of our model it results from the efficient coding of a one-dimensional stimulus. This
points to the difficulty of using a simple criterion to define the dimensionality of a manifold when the latter is
highly non-linear.

Compressed coding with noisy sensory neurons
Until now, we have considered the presence of response noise only in second-layer neurons. In this case, as long
as sensory neurons are tiling the stimulus space (i.e., unless there are regions in stimulus space in which sensory
neurons are unresponsive), stimuli are encoded with perfect accuracy in the activity of the first layer, and the
MSE inferred from activity in the second layer can be made arbitrarily small for sufficiently large N . If sensory
neurons are also noisy, then they represent stimuli only up to some degree of precision. Furthermore, because
of the (dense) projections from the first onto the second layer of neurons, independent noise in sensory neurons
induces correlated noise in representation neurons. If the independent noise in sensory neurons is Gaussian with
variance equal to ξ2, then the covariance of the noise in the second layer becomes Σ = η2I + ξ2WWT. Thus,
sensory noise affects the nature of the noise in representation neurons, and it is natural to ask how this changes
the population coding properties.

As we shall show, in the compression regime (N � L) on which we focus, the kind of correlations generated
by noise in the sensory layer has a negligible effect on the coding performance. The presence of sensory noise
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A B C

Figure 7: Dimensionality of the neural code. (A) Spectrum of the eigenvalues of the covariance matrix of
neural responses in a population with N = 100 representation neurons, for different tuning widths (decreasing
from violet to yellow). (B) Intrinsic dimensionality, defined as the participation ratio of the eigenvalues of the
covariance matrix, in a population with N = 100 representation neurons, as a function of σ. Insets exhibit a
typical response manifold in a three-dimensional space. (C) Ratio of the intrinsic dimensionality at the optimal
value of σ and population size, as a function of population size, for the networks illustrated in Fig. 3,4.

degrades coding, so a comparison of noisy and noiseless systems is not very telling. Instead, we compare
population coding in the presence of the full noise covariance matrix, Σ, and in the presence of a diagonal
covariance matrix (i.e., independent noise) with elements chosen as follows. Given the distribution of synaptic
weights, the matrix WWT is sampled from a Wishart distribution with mean given by the identity matrix and
fluctuations of order 1/L (see Methods); in the limit of L→∞, the covariance matrix becomes

Σind ≡ (η2 + ξ2)I = η̃2I, (10)

i.e., the population noise becomes independent, with single-neuron variance η̃ = η2 + ξ2. Hereafter, we compare
the two cases of populations with covariance matrices Σ and Σind.

In numerical studies, we observe, first, that the MSE depends only weakly on the noise correlations, as a
function of σ. This behavior obtains because noise correlations primarily affect local errors, not global errors. (As
noise correlations reduce the noise entropy—they ‘shrink the cloud of possible noisy responses’—with respect
to the independent case, one expects that correlations reduce the probability of occurrence of global errors.
Numerical simulations however indicate that this effect is quantitatively negligible.)

In general, local errors can be either suppressed or enhanced by correlated noise (da Silveira & Rieke, 2021).
We can show analytically that in our model, if noise correlations are due to independent noise in the sensory
layer, local errors are enhanced. By computing a correction to the diagonal behavior of the covariance matrix
in the limit L→∞ through a perturbative expansion of the inverse covariance matrix to second order in ξ2/η̃2

(see Methods), we obtain the local contribution to the MSE as

ε2
l = ε2

l,ind

(
1 +

Nξ2

Lη̃2
− Nξ4

Lη̃4
+ . . .

)
, (11)

where ε2
l,ind is the corresponding quantity calculated for the matrix Σind rather than the full covariance matrix

Σ. From Eq. (11), it appears that the effect of noise correlations on the MSE is deleterious, but scales
proportionally to the ratio between the two population sizes, which we supposed to be small. We checked this
behavior numerically (Fig. 8A), and found a good match with the analytical result. We also compared the
impact of different values of ξ2, while keeping the effective noise variance, η̃2, fixed (i.e., varying the relative
contribution of input noise and output noise). Both Eq. (11) and Fig. 8B indicate that there exists a regime
in which increasing the relative contribution of input noise, ξ2, in fact mitigates the deleterious effect of the
correlated noise (this is seen in Eq. (11) as a partial cancellation of the second- and fourth-order terms).

Finally, we ask whether the impact of the noise correlations results specifically from the form with which
sensory noise invests it. To answer this question, we examine a network with noiseless sensory neurons, but
in which representation neurons exhibit correlated Gaussian noise, with a covariance matrix that has the same
statistics as those of Σ, but in which the form of correlations is not inherited from the network structure through
the synaptic matrix W; specifically, we consider a random covariance matrix, Σrand = η2I + ξ2XXT, where
Xij ∼ N (0, 1/L). In this case, noise correlations suppress the MSE as compared to the independent case (with
Σind), because the ‘cloud of possible noisy responses’ is reoriented randomly with respect to the curve of mean
responses. Analytically, the analog of Eq. (11) for the case of a covariance matrix Σrand (instead of Σ) is
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BA

Figure 8: Effects of input and correlated noise on compressed coding. (A) Ratio of MSE in the
presence of correlated noise due to input noise and independent noise of variance η̃2, as a function of N ,
theoretical prediction (solid curve, Eq. (11)) and numerical simulations (dots) with σ = 0.045, η̃2 = 0.5 and
small contribution of input noise, ξ2 = 0.05. (B) Ratio of MSE in the presence of correlated noise due to input
noise and independent noise of variance η̃2 (solid curves) and ratio of MSE in the presence of correlated noise
with random covariance matrix and independent noise of variance η̃2 (dashed curves) Different colors denote
different contributions coming from the off-diagonal terms ξ2, increasing from violet to yellow, and η̃2 = 0.5.
When correlations come from input noise, the ratio is positive (detrimental noise correlations). Their effect is
non-linear in ξ2/η̃2, due to the competition between the first-(positive) and second-order (negative) corrections.
With a random covariance matrix, correlations enhance coding precision.

similar, but skips the lowest-order, deleterious term:

ε2
l,rand ≈ ε2

l,ind

(
1− Nξ4

Lη̃4

)
. (12)

This result, as well as numerical simulations (Fig. 8B), demonstrates that generically coding is improved by
random noise correlations, and that this improvement increases with N and also increases with the relative
contribution of ξ2 with respect to η2. In sum, noise correlations in representation neurons are deleterious if they
are inherited from independent noise in sensory neurons—yet, the effect is quantitatively modest.

3 Discussion
Summary. We analyzed the properties of a neural population encoding a one-dimensional, continuous stimulus
by means of irregular tuning curves, which emerge in a neural circuit with random synaptic weights. This
model can interpolate between an irregular coding scheme, highly efficient but prone to catastrophic errors, and
a smooth one, more robust in the face of noise. Optimality is achieved at an intermediate level of irregularity,
which depends on the population size and on the variance of the noise. At optimality the mean error is suppressed
exponentially with population size; as a result, irregular neural codes allow to compress the representation of a
low-dimensional, continuous stimulus from a large, first layer of neurons to a small, second layer. We extended
these results to the case of multi-dimensional, continuous stimuli, more intricate because sensory neurons can
exhibit various degrees of mixed selectivity; we considered in particular a pure coding scheme, in which sensory
neurons are sensitive to a single stimulus dimension, and a conjunctive coding scheme, in which sensory neurons
are sensitive to all stimulus dimensions. We examined the relative advantage of one scheme with respect to the
other, a question explored recently elsewhere also (Finkelstein et al., 2018; Harel & Meir, 2020), and elucidated
its dependence on the number of representation neurons and on the tuning parameters. These analyses enabled
us to revisit data from M1 neurons in monkey (Lalazar et al., 2016) and to discuss the benefits of an irregular
code in the context of the representation of hand position. Finally, we broadened the picture of compressed
coding by considering input noise, in addition to output noise, and by relating our picture to analysis of the
dimensionality of population activity.

‘Exponentially strong’ neural population codes. Our results on the exponential scaling of the mean
error with population size are similar to results obtained in the context of the representation of position by
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grid cells (Fiete et al., 2008; Sreenivasan & Fiete, 2011; Mathis et al., 2012; Wei et al., 2015). According to
the terminology adopted in this literature, the random compressed coding presented here is an ‘exponentially
strong’ population code. Grid cell-tuning is a particular instance of exponentially strong codes making use of
periodicity; the model presented here offers another example, in which tuning curves are random.

The notion of an exponentially strong code predates work in computational neuroscience: Shannon intro-
duced it in the context of communication systems and analog signals (Shannon, 1949). In his framework, a
sender maps a ‘message’ (a continuously varying quantity analogous to our stimulus) into a ‘signal’ (a higher-
dimensional continuous quantity analogous to the output of our representation layer) which is transmitted over
a noisy channel and then decoded by a receiver. The specific illustration he provides is that of a one-dimensional
message mapped into a higher-dimensional signal (Fig. 4 in Ref. Shannon (1949)), analogous to the mapping
illustrated in Fig. 1C; this mapping corresponds to a curve that wraps around in a higher-dimensional space.
Shannon argues that an efficient code is obtained by stretching this curve to make it as long as possible up
to the point at which the winding and twisting causes the curve to pass too close to itself, thereby generating
catastrophic errors.

Yet Shannon went further, and showed that such a code need not to be carefully designed. His calculation
corresponds, in our framework, to the case of infinitely narrow tuning curves in the sensory layer (Fig. 2):
he demonstrated that it is possible to send a discrete set of messages, with an error suppressed exponentially
in the dimensionality of the signal. Our work proposes an extension of this ‘fully random’ scenario for the
representation of a continuous variable based on a smooth, but irregular, mapping in a higher dimensional
encoding space. By varying the width of tuning curves in sensory neurons, σ, one can modulate the smoothness
of the mapping and trade off global errors with local errors. In this more general, ‘correlated random’ scenario,
it is optimal to choose a non-vanishing value of σ which depends on the population size and other model
parameters.

Coding with complex tuning curves. A large body of literature has addressed the problem of coding
low-dimensional stimuli in populations of neurons with simple tuning curves. The most common assumption is
that of bell-shaped tuning curves; these are often chosen to model sensory coding in peripheral neurons. Various
studies set in this context discussed the shape of optimal tuning curves as a function of population size and
stimulus dimensionality (Zhang & Sejnowski, 1999), stimulus geometry (Montemurro & Panzeri, 2006), and
the time scale on which coding operates (Bethge et al., 2002; Yaeli & Meir, 2010). More recent work analyzed
the influence of a (non-uniform) prior distribution of stimuli on the optimal arrangement and shapes of tuning
curves across a population of neurons; a particular prediction is that the tuning-curve width is narrower for
neurons with a preferred stimulus over-represented in the prior (Wei & Stocker, 2012; Ganguli & Simoncelli,
2014; Yerxa et al., 2020). A separate direction of study focused on the effects of heterogeneity in the tuning-
curve parameters on the coding performance (Wilke & Eurich, 2002; Shamir & Sompolinsky, 2006; Fiscella
et al., 2015; Berry et al., 2019).

Our study falls in this line of work, but it presents two important differences: (i) we consider a family of
irregular tuning curves (to be contrasted with simpler tuning curves, such as bell-shaped or monotonic) and (ii)
we consider downstream neurons rather than peripheral ones. To be more specific about point (i), we consider
tuning curves resulting from a feedforward network with random synaptic weights. The assumption of random
connectivity yields a ‘benchmark model’; similar comparisons with benchmark random models have been used
previously in examining information processing among layers of neural networks (Barak et al., 2013; Babadi &
Sompolinsky, 2014; Litwin-Kumar et al., 2017). In our case, the irregularity of tuning curves makes the response
of any single neuron highly ambiguous; the resulting code is thus distributed, and the neural population as a
whole is viewed as the relevant unit of computation (Saxena & Cunningham, 2019).

Distributed codes have been argued to come with high capacity. An early example was developed in the
context of face coding in the superior temporal sulcus of monkey (Abbott et al., 1996). Data analysis indicated
that single-neuron sensitivity was heterogeneous and uninformative, but the number of distinguishable face
stimuli grew exponentially with the population size. Our work provides an example of a random distributed
code for continuous stimuli, which exhibits similar scaling properties. The main difference is that, in the case
of continuous stimuli, the precise identity of the stimulus cannot be recovered in presence of noise, and what
matters is the magnitude of the distance between the decoded stimulus and the true one, quantified by an
appropriate metric. In other words, both the probability of occurrence of an error and its magnitude matter.
The requirement of minimizing the mean squared error then yields a particular coding scheme that balances
small (local) and large (global) errors.

Regarding point (ii), in many ‘efficient coding’ models, optimality criteria in a neural population are derived
under constraints on the activity of the same population. Our results differ in that they are obtained in a
downstream (‘representation’) neural population, subject to constraints on a upstream (‘sensory’) population.

Geometry and dimensionality of population responses. In the past decade, the progress in experi-
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mental methods has allowed for the recording of neural populations on a large scale (Cunningham & Yu, 2014;
Saxena & Cunningham, 2019). In an effort to interpret the way in which information is represented in popu-
lation activity, various approaches have been focusing on the geometric properties of population responses to a
battery of stimuli (Fusi et al., 2016; Gallego et al., 2017; Stringer et al., 2019; Kobak et al., 2019). Points in
a high-dimensional space, each corresponding to the neural population response to a stimulus, are often inter-
preted as being located on a manifold which describes the space of possible population activity. Quantifying the
geometry, and more specifically the dimensionality of this manifold, offers a characterization of neural popula-
tion activity. This geometric element is eminently relevant in our work, too, where we illustrate the dependence
of the coding properties of a neural population on the geometry of the representation, which in turns depends
on the tuning properties of a presynaptic population (Kriegeskorte & Wei, 2021).

A specific geometrical question is that of the dimensionality of the population response in the representation
layer. We showed that the spectrum of the covariance of the population activity in the representation layer,
across the stimulus space, comes with a band-pass structure; by decreasing the width of tuning curves in the
sensory layer, the band-pass profile acquires additional modes. Stringer et al. (2019) discussed a similar picture
in analyzing recordings from a large population of visual neurons responding to a large, but discrete, set of
images. In their case, the spectrum of the covariance matrix of population responses exhibits an algebraic
(power-law) tail, and the authors argue that this property allows for a high-dimensional population activity
while retaining smoothness of the code. Our work presents a different, and more elementary, mechanism by
which a large number of modes can be accommodated by the population activity (while retaining smoothness).
The non-trivial point, in our case, is that it is not beneficial for coding to be poised in the limiting case in which
the number of modes is maximal but the code becomes singular (non-smooth), as, in this limit, global errors
proliferate. The optimal effective dimensionality of the response manifold, as defined by the participation ratio,
lies at an intermediate value at which intersections of the manifold with itself are rare and local and global
errors are balanced (Fig. 7).

Compressed sensing. We studied a network in which the information encoded in a high-dimensional
activity pattern is compressed into the activity of a comparatively small number of neurons, a setting which
exhibits analogies with the one of compressed sensing (Candes & Tao, 2006). Compressed Sensing is a signal-
processing approach for reconstructing L-dimensional signals, which are K-sparse in some basis (i.e., they can
be expressed as vectors with only K non-vanishing elements), from N linear, noisy measurements, with K � L
and N � L (Donoho, 2006). In our study, the low dimensionality of the stimulus, x, implies sparsity of the
L-dimensional activity of the sensory layer, as long as the tuning curves in the sensory layer are not too wide.

A central result in the field of compressed sensing is that random measurements can yield near-optimal
reconstructions. Furthermore, for near optimality to be achieved, the required number of measurements scales
approximately linearly in K and only logarithmically in the dimensionality of the signal: N > O (K log (L/K))
(Candes & Tao, 2006; Baraniuk et al., 2008). In effect, in our network the representation layer operates a limited
number of random measurements from the sensory layer. And we obtain an analog scaling form by inverting
Eq. (5): the number of random projections, N , necessary to decode L different stimuli with negligible error
scales logarithmically with the number of stimuli. We note, however, that our framework differs from that of
compressed sensing as the objective is to decode the identity of the stimulus rather than a high-dimensional
signal vector (in our case, the activity pattern of the sensory layer).

Encoding vs. decoding. We focused in this study exclusively on the properties of encoding in a neural
population. For this aim, throughout we assumed an ideal decoder; in principle, this is not a limitation: we show
in Methods that an ideal decoder can be implemented by a simple, two-layer neural network. The first layer
computes a discretized approximation of the posterior distribution over stimuli, and the second layer computes
the mean of this distribution, in such a way as to minimize the MSE. Furthermore, all the operations carried
out by this two-layer network—linear filtering, non-linear transfer, and normalization—are plausible biological
operations (Deneve et al., 1999; Kouh & Poggio, 2008; Carandini & Heeger, 2012). The parameters involved,
however, have to be chosen with the knowledge of the tuning curves and noise model.

One can ask whether biologically plausible learning rules can result in a decoder that approximates the
ideal one. A closely related question has been examined by Bordelon et al. (2020), who analyzed how the
generalization error in a deep neural network trained with gradient descent depends on the number of training
samples and on the structure of the decomposition of a target function into a set of modes (e.g., Fourier modes).
Bordelon et al. (2021) find that learning the high-frequency Fourier components of a target function requires
a larger number of training samples, as compared to learning its low-frequency components. Similarly, in the
context of our network one expects that learning a decoder in the case of narrow tuning curves in the sensory
layer is more laborious than in the case of broad tuning curves. Noise in the training samples may also hamper
learning severely in the presence of global errors. Furthermore, one can ask how our results might be modified
if decoding is carried out by a decoder different from the ideal one, for example by a decoder obtained through
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adequately chosen learning rules. We leave these questions for future work.
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5 Methods
Throughout, we denote vectors by bold letters, e.g., r = (r1, r2, ..., rN ), and the L2 norm as ‖r‖22 =

∑
i r

2
i .

Capital bold letters, e.g., W, refer to matrices. We denote the derivative of a function as f ′(x) = ∂f/∂x.

Network model
Network model for one-dimensional stimuli and constraints on its parameters. We consider a two-
layer feedforward network. The first, sensory layer is made up of L neurons, each responding to a continuous
scalar stimulus, x ∈ [0, 1], according to a Gaussian tuning curve. The mean activity of neuron j in response to
a stimulus, x, is given by

uj(x) = A exp

(
− (x− cj)2

2σ2

)
, (13)

where cj is the preferred stimulus of neuron j, σ is the tuning-curve width, and A is a fixed response amplitude.
The preferred stimuli are evenly spaced, cj = j/L. Each neuron in the first layer projects onto all N neurons
in the second, representation layer. The transfer function is assumed to be linear, and the random synaptic
weights are independent realizations of a Gaussian random variable, Wij ∼ N (0, 1/L); hence, the mean activity
of representation neuron i can be written as

vi(x) =
L∑
j=1

Wijuj(x). (14)

The value of the amplitude, A, is chosen so as to set the ‘dynamic range’ of representation neurons to a fixed
value; more precisely, we choose the value of A so that the variance of each neuron’s response across the stimulus
range is invariant under variations in the other parameter of the model, σ, on average over network realizations.
This quantity is calculated as

R =

〈∫ 1

0

dx

[
vi (x)−

∫ 1

0

dx′vi (x′)

]2
〉
W

=

〈∫ 1

0

dxvi(x)2 −
(∫ 1

0

dxvi(x)

)2
〉
W

=

〈
L∑

j=1,j′=1

WijWij′

[(∫ 1

0

dxuj(x)uj′(x)

)
−
(∫ 1

0

dxuj(x)

)(∫ 1

0

dxuj′(x)

)]〉
W

=

∫ 1

0

dxuj (x)
2 −

(∫ 1

0

dxuj (x)

)2

, (15)

where 〈·〉W indicates an average over the distribution of synaptic weights. Here (and below), we approximate
Gaussian integrals on a bounded domain as∫ 1

0

dxuj(x) ≈
∫ ∞
−∞

dxuj(x) = A
√

2πσ2; (16)

this approximation is valid when σ is small with respect to the stimulus range and cj is separated from the
boundaries (0 and 1) by a distance that exceeds σ. As we will consider a large number of neurons in the
sensory layer and relatively small values of σ (up to 1/10th of the stimulus range), errors introduced by this
approximation will be negligible. By inserting Eq. (16) and a similar approximation for

∫ 1

0
dxuj(x)2 into Eq.

(3), we obtain A as a function of σ, as

A2 =
R√

πσ2 − 2πσ2
. (17)

Tuning curves as samples from a Gaussian process. The response of each neuron in the second layer
to a stimulus, x, is a sum of realizations of Gaussian random variables; as a result, it is also a realization of a
Gaussian random variable, with mean

〈vi(x)〉W =
L∑
j=1

〈Wij〉Wuj(x) = 0, (18)
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and its covariance is calculated as

〈vi(x)vi(x
′)〉W =

L∑
j,j′=1

〈WijWij′〉W uj(x)uj′(x
′)

=
L∑
j=1

1

L
uj(x)uj(x

′)

≈ A2

∫ 1

0

dcj exp

−
(

(x− cj)2
+ (x′ − cj)2

)
2σ2


≈ A2

√
πσ2 exp

(
−∆x2

4σ2

)
, (19)

where ∆x = x− x′. The first approximation is obtained by replacing a sum by an integral∑L
j=1

1
Lf(cj) ≈

∫ 1

0
f(cj)dcj and the second approximation consists in extending the integration domain to the

entire real line. The first approximation is valid if the spacing between the centers is small relatively to the
width of the Gaussian, that is Lσ � 1, while the second is valid if the arithmetic mean of x and x′ is far from
the stimulus boundaries. According to Eqs. (18) and (19) each neuron’s tuning curve can be viewed as a sample
from a one-dimensional Gaussian process with vanishing mean and Gaussian kernel with standard deviation
equal to

√
2σ (Rasmussen, 2004).

Network model for multi-dimensional stimuli. We denote by K the stimulus dimensionality, such that
the stimulus is a K-dimensional vector, x = {x1, x2, ..., xK}. Analogously to the one-dimensional case, each
stimulus dimension can assume values in a bounded interval, xk ∈ [0, 1]. We consider the two cases of pure and
conjunctive tuning for sensory neurons. In both cases, the sensory layer is made up of L neurons, which project
onto all N representation neurons. Similarly to the one-dimensional case, synaptic weights are independent
realizations of a Gaussian random variable, Wij ∼ N (0, 1/L).

Sensory neurons with pure tuning. The L neurons are divided in K sub-populations of Q = L/K neurons.
Neurons in the sub-population k are sensitive to the single stimulus dimension xk. The mean activity of neuron
j assigned to sub-population k is given by the one-dimensional Gaussian

upj,k(x) = upj,k(xk) = Ap exp

(
−
(
xk − ckj

)2
2σ2

)
, (20)

with preferred stimuli evenly spaced, ckj = j/Q for j = 1, ..., Q. The mean activity of representation neuron i
can be written as a superposition of one-dimensional tuning curves,

vpi (x) =
K∑
k=1

Q∑
j=1

Wij,kuj,k(x)

=
K∑
k=1

vpi,k(xk). (21)

Imposing the resource constraint, Eq. (3), we obtain A2
p = R/

((
πσ2

)1/2 − 2πσ2
)
.

Sensory neurons with conjunctive tuning. Neurons are sensitive to all stimulus dimensions. The mean activity
of sensory neuron j is given by the multi-dimensional Gaussian function

ucj (x) = Ac exp

(
−
‖x− cj‖22

2σ2

)
, (22)

with preferred stimuli, cj , arranged on a K-dimensional square grid with mesh size L−1/K . The mean activity
of representation neuron i is obtained as

vci (x) =
L∑
j=1

Wiju
c
j(x). (23)

Imposing the resource constraint, Eq. (3), we obtain A2
c = R/

((
πσ2

)K/2 − (2πσ2)K
)
.
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Population coding and optimal decoder
Noise Model. We assume that the response of representation neurons is corrupted by noise. The vector of
responses to a given stimulus, x, is

r = v(x) + z, (24)

where z is a noise vector of independent Gaussian entries with vanishing mean and fixed variance, zi ∼ N (0, η2).
Here, v(x) = {v1(x), v2(x), ..., vN (x)} is the vector of mean responses of second-layer neurons to a stimulus, x
(see Eq. (2)). The probability density of a response vector, r, given a stimulus, x, is written as

p (r|x) =
1

(2πη2)
N/2

exp

(
−
‖r− v(x)‖22

2η2

)
. (25)

Below, we will furthermore consider an extension that takes into account a generic noise covariance matrix, Σ,
resulting in the more general form

p (r|x) =
1

(2π)
N/2

[det (Σ)]
1/2

exp

(
−1

2
(r− v(x))

T
Σ−1 (r− v(x))

)
. (26)

Loss function and ideal decoder. We quantify the coding performance of the neural population by the
mean squared error (MSE) in the stimulus estimate (Dayan & Abbott, 2001), as obtained from the ideal de-
coder, or estimator, x̂ = fdec(r), expressed as

E2 =

∫ 1

0

dx

∫
drp(r|x) (x̂− x)

2
, (27)

where we have assumed a uniform prior over stimuli, p(x) ∼ U(0, 1). We consider the average of this quantity
over network realizations, ε2 ≡ 〈E2〉W ; in some figures, we plot the square root of this quantity, the RMSE,
ε ≡

√
〈E2〉W .

For multi-dimensional stimuli, the ideal decoder outputs a vector estimate of the stimulus, x̂ = fdec(r). In
this case, we define the MSE as the average squared norm of the difference between the stimulus and the decoder
output,

E2 =

∫
dx

∫
drp(r|x) ‖x̂− x‖22 , (28)

where ‖x̂− x‖22 =
∑K
k=1(x̂k − xk)2.

The estimator that minimizes the MSE (Minimum-MSE or MMSE) is given by the mean of the posterior
density. We can write the optimal estimator as

x̂MMSE =

∫ 1

0

dxp(x|r)x =

∫ 1

0

dxp(r|x)x∫ 1

0

dxp(r|x)

. (29)

We note that a simple neural network can output the MMSE estimate. Indeed, if we approximate the integrals
in Eq. (29) with a discrete sum over M values and we use Eq. (25), we obtain

x̂MMSE ≈
∑M
m=1 xmp (r|xm) ∆xm∑M
m=1 p (r|xm) ∆xm

=

∑M
m=1 xm exp

(
− 1

2η2

(∑N
i=1 r

2
i +

∑N
i=1 v

2
i (xm)− 2

∑N
i=1 vi(xm)ri

))
∑M
m=1 exp

(
− 1

2η2

(∑N
i=1 r

2
i +

∑N
i=1 v

2
i (xm)− 2

∑N
i=1 vi(xm)ri

))
=

∑M
m=1 xm exp

(
1

2η2

(∑N
i=1 2vi(xm)ri −

∑N
i=1 v

2
i (xm)

))
∑M
m=1 exp

(
1

2η2

(∑N
i=1 2vi(xm)ri −

∑N
i=1 v

2
i (xm)

))
=

M∑
m=1

xmh̃m, (30)
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where the terms
∑
i r

2
i in both numerator and denominator cancel and we assumed a constant spacing,

∆xm = ∆x0. The approximate estimate specified by Eq. (30) can be by produced by a two-layer neural
network: a first layer of M neurons, whose activities are given by

h̃m =
exp

(∑N
i=1 λmiri + bm

)
∑M
m′=1 exp

(∑N
i=1 λm′iri + bm′

) , (31)

computes a normalized, discrete approximation of the posterior, h̃m ≈ p(xm|r), such that
∑M
m=1 h̃m = 1. The

unnormalized activity of neuron m, hm = exp
(∑N

i=1 λmiri + bm

)
, is obtained as a linear combination of the

activities of the representation neurons plus a bias term, transformed through an exponential non-linearity. The
‘synaptic weight’ from the ith representation neuron to the mth decoder neuron is a function of the true mean
response of neuron i to stimulus xm and of the variance of the noise, λmi = vi(xm)/η2 . Similarly, the bias term
is obtained as bm = −

∑
i vi(xm)2/2η2 . Finally, to obtain the MMSE estimate, a single output neuron weights

the activity of these M neurons according to their ‘preferred stimulus’, xm.
In what follows, we will also use the maximum a posteriori (MAP) estimator, defined as

x̂MAP = arg min
xm

‖r− v(xm)‖22 . (32)

It is equal to the maximum likelihood (ML) estimator given the uniformity of the stimulus prior, and it has a
simple geometric interpretation: it identifies the stimulus which corresponds to the vector of mean responses
closest to the noisy population output. In numerical simulations, the MSEs calculated with the MMSE and the
MAP estimators are very similar.

The MMSE estimator can be extended to the case of non-diagonal noise covariance matrix, Σ, by combining
Eqs. (26) and (29) . The decoder weights and biases are then correlated, λm = vT (xm)Σ−1 and bm =
vT (xm)Σ−1v(xm), where λm denotes the vector with elements corresponding to the mth row of λ.

The MMSE estimator can also be extended to the case of multi-dimensional stimuli. In this case, the inte-
grals of Eq. (29) are K-dimensional and the output layer is made up by K neurons, which compute a vector
estimate of the stimulus, x̂.

Details of numerical simulations. In numerical simulations, we compute the MSE with standard Monte
Carlo methods. At each step, we sample a stimulus, we generate a noisy population response and we decode it
using the ideal decoder; the squared difference between the stimulus and its estimate is used to update the MSE.
This process is repeated and the MSE estimate is updated until convergence, defined as the point for which the
variance of the MSE estimates in the last 500 steps, after a burn-in period of 5000 steps, is less than a tolerance
threshold, set to 10−8. We set the number of decoder neurons equal to the number of sensory neurons, M = L,
with uniformly spaced preferred stimuli, xm = m/M . Unless otherwise stated, L = 500, R = 1 and η2 = 0.5.
The results are averaged over 8 network realizations and shaded regions corresponds to one s.d.

Analytical derivations
In the calculations that follow, we consider the limit of L→∞ and we assume N � L.

Narrow tuning curves. In the limiting case with σ → 0, sensory neurons respond only to their preferred
stimulus. Therefore, we consider the case of L discrete stimuli corresponding to the neurons’ preferred stimuli,
xj = j/L. The mean activity of representation neuron i is written as vi(xj) = ÃWij , with Ã2 = LR, such that
vi(xj) ∼ N (0, R). The constant of proportionality is computed with the analog of Eq. (3) for discrete stimuli,
in the limit of large L.

The MSE in the case of narrow tuning curves, ε2
n, is obtained as

ε2
n = 〈E2〉W =

〈
1

L

L∑
j=1

∫
drpe(r,W, xj) (x̂j − xj)2

〉
W

, (33)

where pe(r,W, xj) denotes the probability, given a synaptic matrix W and noise, of having an incorrect estimate
of xj , i.e., x̂j 6= xj . For every choice of W and r, there are L − 1 equiprobable realizations of the synaptic
matrix which correspond to permutations of the identity of the decoded stimulus, such that x̂j = xj′ with
j′ 6= j. Therefore, the MSE can be written as

ε2
n = 〈P (E)〉W

1

L(L− 1)

L∑
j=1

∑
j′ 6=j

(xj − xj′)2
, (34)
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where 〈P (E)〉W =
〈∫

drpe (r,W, xj)
〉
W

is the probability of error averaged over the noise and the synaptic
weights realizations. The MSE is the product of two terms: the mean probability of error and the average
squared magnitude of the error. We now compute these two terms.

Error probability. An error occurs if there exists a j′ such that r is closer to v(xj′) than to v(xj), where
xj is the presented stimulus. We calculate the probability of error as a function of the probability of the
complementary event, as

P (E) = 1− P
(
‖r− v(xj′)‖22 > ‖r− v(xj)‖22 ∀j 6= j′

)
, (35)

By averaging over different realizations of W, 〈P (E)〉W , the probabilities that an error is not committed on the
possible values of j′ are independent; thus, we can express the probability of error, as a function of the mean
responses, vi, and the noise, zi, as

〈P (E)〉W = 1−
(

1−
〈
P
(
‖r− v(xj′)‖22 < ‖r− v(xj)‖22

)〉
W

)L−1

≈ L
〈
P
(
‖r− v(xj′)‖22 < ‖r− v(xj)‖22

)〉
W

= L

〈
P

(
N∑
i=1

(vi(xj)− vi(xj′))2 −
N∑
i=1

2 (vi(xj)− vi(xj′)) zi < 0

)〉
W

. (36)

The approximation comes from the assumption that the probability of error is small, and L − 1 ≈ L is large,
while the last equality is obtained from the definition of noisy responses, Eq. (24). The difference between
the mean activity of the same neuron to two different stimuli is sampled according to a Gaussian distribution,
ṽi ≡ vi(xj)− vi(xj′) = Ã(Wij −Wij′) ∼ N (0, 2R). The mean probability of error is calculated as

〈P (E)〉W ≈ L
∫ N∏

i=1

dṽi

N∏
i=1

dzip(ṽi)p(zi)Θ

(
−

N∑
i=1

ṽ2
i + 2

N∑
i=1

ṽizi

)
. (37)

This quantity is the probability that the random variable ρ =
∑N
i=1 ṽ

2
i −

∑N
i=1 2ṽizi, where ṽi ∼ N (0, 2R) and

zi ∼ N (0, η2), is negative. With ζ ≡
∑N
i=1 ṽ

2
i , the distribution of ρ conditional on ζ is Gaussian with mean ζ

and variance 4ζη2. Thus,

〈P (E)〉W ≈ L
∫ ∞

0

dζp(ζ)

∫ 0

−∞
dρp(ρ|ζ)

=
L

2

∫ ∞
0

dζp(ζ) erfc

(√
ζ

8η2

)
, (38)

where erfc is the complementray error function and

p(ζ) =

(
ζ

2R

)N/2−1

exp
(
− ζ

4R

)
2N/2+1Γ(N/2)

(39)

is the probability density function of a chi-squared distribution. Computing the integral, we obtain

〈P (E)〉W ≈ L
( η

2

2R )
N
2 Γ(N)

Γ(N2 )
2F̃1

(
N

2
,

1 +N

2
,

2 +N

2
,−2

η2

R

)

= L

(
η2

2R

)N
2

Γ (N)

Γ
(
N
2

)
Γ
(

2+N
2

) ∞∑
n=0

(
N
2

)
n

(
N+1

2

)
n(

N+2
2

)
n
n!

(
−2

η2

R

)n
, (40)

where 2F̃1(a, b, c, x) is the regularized 2F1 Hypergeometric function; we provide its definition in the last equality.
The Pochammer symbol can be defined through Gamma functions, (x)n = Γ(x+n)

Γ(x) . By using the identity∑∞
n=0

(x)n
n! a

n = (1−a)−x and the Stirling approximation for Gamma functions, we obtain the expression of the
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error probability that appears in the main text, Eq. (5):

〈P (E)〉W ≈ L
(
η2

2R

)N
2 Γ(N)

Γ2
(
N
2

)
N
2

(
1 + 2η

2

R

)N+1
2

≈ L√
2πN

exp

(
− log

(
1 +

R

2η2

)
N

2

)
. (41)

Average squared magnitude of error. We denote by ε̄2
n,g the second factor in Eq. (34), which can be writ-

ten as

ε̄2
n,g =

1

L(L− 1)

L∑
j=1

L∑
j′ 6=j

(
j

L
− j′

L

)2

=
1

L(L− 1)

 L∑
j=1

∑
j′ 6=j

j2

L2
+

L∑
j=1

L∑
j′ 6=j

j′2

L2
− 2

L∑
j=1

L∑
j′=1

jj′

L2

 . (42)

These sums can be computed through the identities for the sum of the first n squared numbers,∑n
i=1 i

2 = n(n+ 1)(2n+ 1)/6, and for the sum of the first n numbers,
∑n
i=1 i = n(n+ 1)/2. The first two sums

in Eq. (42) are identical, and yield

L∑
j=1

L∑
j′ 6=j

j2

L2
= (L− 1)

L(L+ 1)(2L+ 1)

6L2
, (43)

while the last term is calculated as

1

L2

L∑
j=1

j
L∑

j′ 6=j

j′ =
1

L2

L∑
j=1

j

(
L(L− 1)

2
− j
)

=
L2(L− 1)2

4L2
− L(L+ 1)(2L+ 1)

6L2

=
3L3 − 10L2 − 3L− 2

12L
. (44)

Finally, combining Eqs. (43) and (44) into Eq. (42), we obtain

ε̄2
n,g =

(L+ 1)(2L+ 1)

3L2
− 3L3 − 10L2 − 3L− 2

6L2(L− 1)

=
1

6

(
1 +

12

L− 1
+

1

L

)
. (45)

This is a term of order 1, the size of the stimulus range, plus corrections of order 1/L.

Broad tuning curves. In the case of broad tuning curves, we consider the regime of smooth response curves
on the scale of the noise amplitude, such that the mean population activity can be approximated locally by
a linear function of the stimulus. This regime obtains when the second-order term in the Taylor expansion is
negligible with respect to the first-order one:

1

4
‖v′′(x)‖22 ∆x4 � ‖v′(x)‖22 ∆x2, (46)

where ∆x2 ≈ η2. In order to express this condition in terms of model parameters, we impose it on average
over network realizations; we note that this leads to the same result as imposing the condition on average
over stimuli, but it requires a simpler calculation. From the identity 〈WijWij′〉W = 1

Lδjj′ , the average of the
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left-hand-side of Eq. (46) is obtained as

〈
‖v′′(x)‖22

〉
W

=

〈
N∑
i=1

L∑
j=1,j′=1

WijWij′u
′′
j (x)u′′j′(x)

〉
W

=
N∑
i=1

L∑
j=1

1

L
u′′j (x)2

≈ 3
√
πNA2

4σ3
, (47)

where the approximations consists in replacing the sum with an integral and in extending the integration domain
to the real line. A similar calculation can be performed for the right-hand-side of Eq. (46):

〈
‖v′(x)‖22

〉
W

=
N∑
i=1

L∑
j=1

1

L
u′j(x)2

≈
√
πNA2

2σ
. (48)

By combining Eqs. (48) and (47), and substituting ∆x2 by the variance of the noise, η2, in Eq. (46), we obtain
the smoothness condition as

3η2

8σ2
� 1. (49)

In the case of broad tuning curves the error can be of two qualitatively different types: local or global (Fig.
3A). The width of the Gaussian kernel in Eq. (19) gives a measure of the distance in the stimulus space at
which population responses are correlated; we refer to a global error when the distance between the stimulus
and its estimate is greater than this ‘correlation length’, σ. We write the MSE as

ε2 = ε2
l + ε2

g, (50)

and we compute these two terms.

Local error. According to the ML decoder, Eq. (32), the stimulus estimate corresponds to the value x′ that
minimizes the distance between v(x′) and r; if the error is local, this is obtained by projecting the noise vector
onto the curve of mean population activity. By expanding the response curve around v(x), we obtain, to linear
order,

‖z · v̂′(x)‖22 ≈ ‖v(x+ ∆x)− v(x)‖22 ≈ ‖v
′(x)‖22 ∆x2, (51)

where v̂′(x) = v′(x)/ ‖v′(x)‖2. The local error can then be calculated as
∆x2 = (x̂− x)

2 ≈ ‖z · v̂′(x)‖22 / ‖v′(x)‖22. By averaging over the noise and the synaptic weights, we obtain the
mean local error as

ε2
l =

〈∫ 1

0

dx

∫
dzp(z)

‖z · v̂′(x)‖22
‖v′(x)‖22

〉
W

=

〈∫ 1

0

dx
η2

‖v′(x)‖22

〉
W

. (52)

The squared norm of the derivative of the tuning curves is the realization of the random variable

‖v′(x)‖22 =
N∑
i=1

 L∑
j=1

Wiju
′
j(x)

2

. (53)

The terms of the inner sum, Wiju
′
j(x), are realizations of independent Gaussian random variables with variable

variance; as a result, the outer sum is also the realization of a Gaussian random variable with mean equal to
the sum of the means of its terms and variance equal to the sum of the variances. The sum of the variances can
be calculated as

L∑
j=1

u′j(x)2

L
≈
∫ ∞
−∞

dcju
′
j(x)2 =

√
πA2

2σ
, (54)
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where the approximation consists in replacing the sum with an integral and in extending the integration domain
to the real line. Therefore, the inner sum is distributed according to

W̄i ≡
L∑
j=1

Wiju
′
j(x) ∼ N

(
0,

√
πA2

2σ

)
. (55)

As a result, the quantity 1/ ‖v′(x)‖22 = 1/
∑N
i=1 W̄

2
i is sampled according to a scaled inverse chi-squared distri-

bution, with mean given by 〈
1∑N

i=1 W̄
2
i

〉
W

=
2σ√

π(N − 2)A2
≈ 2σ√

πNA2
. (56)

The local error is then obtained, from Eqs. (52) and (56), as

ε2
l =

2ση2

√
πNA2

. (57)

Finally, if we approximate the response amplitude for small σ by A2 ≈ R/
√
πσ2, we obtain the expression that

appears in the main text (first term of Eq. (6)). We note that this expression is equal to the inverse of the Fisher
information averaged over network realizations; the Fisher information in case of neural responses corrupted by
independent Gaussian noise is given by

〈J(x)〉W =

〈
‖v′(x)‖22

η2

〉
W

=

√
πNA2

2ση2
. (58)

Global error. Here, we extend the calculation performed in the case of discrete stimuli. The analog of Eq.
(34) in the case of broad tuning curves is

ε2
g = 〈Pb(E)〉W ε̄2

g, (59)

where the two factors are the probability of a global error and the average squared magnitude of a global error,
respectively.

We approximate the probability of a global error by considering a division of the curve of mean population
activity into σ ‘segments’. These segments are roughly uncorrelated and appear in random locations in the
space of population activity; as a result, we can replace L by the number of segments in Eq. (5) to obtain the
probability of a global error, as

〈Pb(E)〉W ≈
1

σ
√

2πN
exp

(
− log

(
1 +

R

2η2

)
N

2

)
. (60)

Similarly to the discrete case, when a global error occurs, the decoded stimulus is uniformly sampled from
all the other stimuli belonging to incorrect segments. We illustrate the calculation for the case x − σ > 0 and
x + σ < 1; similar results can be obtained for stimuli close to the boundaries of the stimulus range. In this
case, the output of the decoder is distributed uniformly in the interval x̂ ∈ [0, x − σ] ∪ [x + σ, 1]. The average
magnitude of global errors is therefore

ε̄2
g =

〈∫ 1

0

dx (x̂− x)
2

〉
W

≈
∫ 1

0

dx
1

(1− 2σ)

[∫ x−σ

0

dx̂(x̂− x)2 +

∫ 1

x+σ

dx̂(x̂− x)2

]
=

1
(
1− 4σ3

)
6 (1− 2σ)

, (61)

which is a term of the order 1, the size of the stimulus range, plus corrections of order σ. We obtain the
expression for the global error which appears in the main text (second term of Eq. (6)), by combining Eqs.
(59), (60) and (61).

Local and global errors in the case of multi-dimensional stimuli. The MSE for multi-dimensional
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stimuli, Eq. (28), averaged over synaptic weights realizations, is defined as the sum of the MSEs along each
stimulus dimension,

ε2 =
K∑
k=1

ε2
k =

K∑
k=1

〈∫ 1

0

dxk

∫
drp(r|x) (x̂k − xk)

2

〉
W

. (62)

The local error along stimulus dimension k can be calculated, similarly to Eq. (52), as

ε2
l,k =

〈∫
dzp(z) (x̂k − xk)

2

〉
W

≈

〈∫
dzp(z)

‖z · v̂′k(x)‖22
‖v′k(x)‖22

〉
W

≈

〈
η2

‖v′k(x)‖22

〉
W

, (63)

where the noise is projected onto the direction parallel to the partial derivative of the mean activity with respect
to stimulus dimension k, v′k(x) = ∂v(x)/∂xk

Local error—sensory neurons with pure tuning. The derivative of the tuning function with respect to stim-
ulus dimension k is given by

v′i,k(x) =
∂vi(x)

∂xk
=

Q∑
j=1

Wijk

∂upj,k(xk)

∂xk
. (64)

Similarly to the one dimensional case, this is a sum of realizations of independent Gaussian random variables.
Dropping the superscript p for the sake of clarity, the sum of the variances of these terms is calculated as

Q∑
j=1

1

L

(
∂uj,k(xk)

∂xk

)2

≈ 1

K

∫ ∞
−∞

dckj

(
∂uj,k(xk)

∂xk

)2

=

√
πA2

2Kσ
, (65)

where the approximation consists in replacing the sum
∑Q
j=1

K
L f(ckj ) with an integral

∫
dckj f(ckj ), and in ex-

tending the integration domain to the real line. The sum is distibuted as

W̄ p
i,k ≡

Q∑
j=1

Wijk
∂uj,k(xk)

∂xk
∼ N

(
0,

√
πA2

p

2Kσ

)
. (66)

Finally, by calculating the mean of the scaled inverse chi-squared distribution,〈
1∑N

i (W̄ p
i,k)2

〉
W

≈ 2Kσ√
πNA2

p

, (67)

in Eq. (63), we obtain the local error along a single stimulus dimension, as

ε2
p,l,k =

2Kση2

√
πNA2

p

; (68)

the total local error is then obtained by summing over dimensions,

ε2
p,l =

K∑
k=1

ε2
p,l,k =

2K2ση2

√
πNA2

p

. (69)

Local error—sensory neurons with conjunctive tuning. The derivative of the tuning function with respect
to stimulus dimension k is given by

v′i,k(x) =
∂vi(x)

∂xk
=

L∑
j=1

Wij

∂ucj(x)

∂xk

= −
L∑
j=1

Wij
(xk − cj,k)

σ2
ucj(x), (70)
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where cj,k is the kth component of the preferred stimulus of neuron j, cj . Similarly to the previous calculations,
this is a sum of realizations of independent Gaussian random variables of different variances. Dropping the
superscript c for the sake of clarity, the sum of the variances of these terms is calculated as

L∑
j=1

(xk − cj,k)2

Lσ4
uj(x)2 ≈

∫
dcj

(xk − cj,k)2

σ4
uj(x)2

≈ πK/2A2
c

2σ(2−K)
, (71)

where the approximation consists in replacing the sum
∑L
j=1

1
Lf(cj) with a K-dimensional integral

∫
dcjf(cj),

and in extending the integration domain. The sum is therefore distributed as

W̄ c
i,k ≡

L∑
j=1

Wij
∂uj(x)

∂xk
∼ N

(
0,
π(K/2)A2

c

2σ(2−K)

)
. (72)

Finally, by calculating the mean of the scaled inverse chi-squared distribution,〈
1∑N

i (W̄ c
i,k)2

〉
W

≈ 2σ2−K

π(K−2)NA2
c

, (73)

in Eq. (63), and by summing over dimensions, we obtain the total local error as

ε2
c,l =

K∑
k=1

ε2
c,l,k =

2σ(2−K)η2

πK/2NA2
c

. (74)

If we approximates A2
c and A2

p for small values of σ, we obtain that the ratio of the local errors in case of sensory
neurons with pure and conjunctive tuning is

ε2c,l
ε2
p,l

≈ 1

K
. (75)

Global error—sensory neurons with pure tuning. In the case of sensory neurons with pure tuning, the tun-
ing function of a representation neuron is obtained as the superposition of one-dimensional tuning curves (Eq.
(21)). According to the ML decoder, Eq .(32), the decoder output can be written as

x̂ = arg min
x′

‖v(x) + z− v(x′)‖22

= arg min
x′

∥∥∥∥∥
K∑
k=1

(vk(xk)− vk(x′k) + zk)

∥∥∥∥∥
2

2

, (76)

where zk is the projection of the noise vector onto the direction parallel to the partial derivative of the mean
activity with respect to stimulus dimension k. For most realizations of the random tuning curves, if K � N ,
the K vectors summed in Eq. (76) are likely orthogonal. Thus, minimizing the squared norm of the sum is
equivalent to minimizing the sum of the squared norms of each of the vectors. This, in turn, the stimulus
estimate can be obtained independently for each stimulus dimension, as

x̂k = arg min
x′
k

‖vk(xk)− vk(x′k) + zk‖ . (77)

Therefore, a global error can occur in one or several stimulus dimensions; it requires that |x̂k−xk| > σ for some
k. If the probability of a global error on more than one stimulus dimension is negligible, the total probability of a
global error can be approximated as the sum of probabilities over dimensions, 〈P (Ep,g)〉W ≈

∑K
k=1〈P (Ek,g)〉W .

We calculated the probability of a global error in the one-dimensional case in the previous section. In order to
extend the formula to this case, we have to take into account that the variance of the tuning function along one
stimulus dimension is〈∫ 1

0

dxk

[
vi(x)−

(∫ 1

0

dxkvi(x)

)]2
〉
W

=

Q∑
j=1

1

L

(∫ 1

0

dxkuj,k(xk)2 −
(∫ 1

0

dxkuj,k(xk)

)2
)

≈ R

K
. (78)
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This quantity is the signal variance which governs the rate of exponential suppression of the probability of
global error; replacing R by R/K in Eq. (60), multiplying by the average squared magnitude of global errors
and summing over dimensions, we obtain the global error as

ε2
p,g ≈

Kε̄2
g

σ
√

2πN
exp

(
− log

(
1 +

R

2Kη2

)
N

2

)
. (79)

Global error - sensory neurons with conjunctive tuning. The correlation of the responses of neuron i to two
stimuli, x and x′, reads

〈vi(x)vi(x
′)〉W ≈ A

2
c

(
πσ2

)K/2
exp

(
−∆x2

4σ2

)
, (80)

where ∆x2 = ‖x− x′‖22; it is exponentially suppressed if ‖x− x′‖2 > σ. By analogy to the one-dimensional case,
we divide the surface described by the population activity as a function of the stimulus, v(x) = {v1(x), ..., vN (x)},
into 1/σK uncorrelated regions. We calculate the global error by replacing L with the number of uncorrelated
regions in Eq. (5), obtaining

ε2
c,g ≈

ε̄2
c,g

σK
√

2πN
exp

(
− log

(
1 +

R

2η2

)
N

2

)
, (81)

where ε̄2
c,g is the average squared magnitude of a global error, a term of the order of the stimulus range.

Influence of correlated output noise on population coding.

Correlated output noise due to independent noise in sensory neurons. We consider the case in which the
activity of sensory neurons is affected by independent Gaussian noise: ũ(x) = u(x) + zu, with zui ∼ N (0, ξ2).
This results in a multivariate Gaussian noise in the responses of representation neurons, with covariance matrix
Σ = η2I + ξ2WWT . The matrix WWT is sampled according to a Wishart distribution, with mean I and
variance of the matrix elements of order 1/L (Livan et al., 2017). We write the covariance matrix as the identity
plus a perturbation, as

Σ = η̃2I + ξ2(WWT − I)

= η̃2

(
I +

ξ2

η̃2

(
WWT − I

))
, (82)

where η̃2 = η2 + ξ2. In order to quantify the effect of input noise on the coding performance, we calculate the
inverse of the Fisher information (FI) as a lower bound to the MSE. The FI is written as

J(x) = v′(x)TΣ−1v′(x)

= u′(x)TWTΣ−1Wu′(x). (83)

We expand the inverse of the noise covariance matrix to second order in ξ2/η̃2, as

Σ−1 ≈ 1

η̃2

(
I− ξ2

η̃2

(
WWT − I

)
+
ξ2

η̃4

(
WWT − I

)2
)
. (84)

In this approximation, the FI becomes J(x) ≈ Jind(x) + δJ(x), with

Jind(x) =
1

η̃2
u′(x)TBu′(x), (85)

and

δJ(x) =
1

η̃2

(
− ξ

2

η̃2
u′(x)T

(
B2 −B

)
u′(x) +

ξ4

η̃4
u′(x)T

(
B3 − 2B2 + B

)
u′(x)

)
, (86)

where B = WTW. The first term, Jind(x), is the FI for independent Gaussian output noise with variance η̃2;
by averaging over synaptic weights realizations, we obtain the expression in Eq. (58),

〈Jind(x)〉W =

√
πNA2

2ση̃2
. (87)
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The average of the second term, δJ(x), over network realizations depends on the moments of the matrix B,
which can be computed using Wick’s theorem: from the identity 〈WijWmn〉W = 1

Lδimδjn, we obtain

〈Bmn〉W =

〈
N∑
j=1

WjmWjn

〉
W

=
N

L
δmn, (88)

〈
B2
mn

〉
W

=

〈
L∑
i=1

N∑
j=1,j′=1

WjmWjiWj′iWj′n

〉
W

=

(
N

L
+
N2

L2
+
N

L2

)
δmn, (89)

〈
B3
mn

〉
W

=

〈
L∑

i=1,i′=1

N∑
j=1,j′=1,j′′=1

WjmWjiWj′iWj′i′Wj′′i′Wj′′n

〉
W

=

(
N

L
+ 3

N2

L2
+ 3

N

L2
+
N3

L3
+ 3

N2

L3
+ 4

N

L3

)
δmn. (90)

From now on, we consider the terms up to O(N2/L2); the mean of the perturbation term in the FI becomes

〈δJ(x)〉W ≈
1

η̃2
u′(x)T Iu′(x)

(
−N

2ξ2

L2η̃2
+
N2ξ4

L2η̃4

)
. (91)

Finally, we compute the first factor by approximating the discrete sum with the integral, similarly to previous
calculations, obtaining

1

η̃2
u′(x)T Iu′(x) =

1

η̃2

L∑
j=1

(x− cj)2

σ4
uj(x)2

≈ L

σ4η̃2

∫ ∞
−∞

dcj (x− cj)2
uj(x)2

=

√
πLA2

2ση̃2
. (92)

This quantity is proportional to the mean of the FI in the case of independent noise, Eq. (87), by a factor N/L.
Combining Eqs. (87), (91) and (92), we obtain

〈J(x)〉W ≈
√
πNA2

2ση̃2

(
1− Nξ2

Lη̃2
+
Nξ4

Lη̃4

)
. (93)

We approximate the local error as the inverse of the FI; including only corrections up to O
(
Nξ4/Lη̃4

)
, we

obtain the expression that appears in the main text (Eq. (11)),

ε2
l ≈

1

〈J(x)〉W
≈ ε2

l,ind

(
1 +

Nξ2

Lη̃2
− Nξ4

Lη̃4

)
. (94)

Correlated output noise with random covariance structure. Similar calculations can be carried out for a noise
covariance matrix that obeys the same statistics as those of WWT , but that does not derive from the structure
of synaptic weights. We consider

Σrand = η2I + ξ2XXT , (95)

with Xij ∼ N (0, 1
L ), such that 〈XijWmn〉W,X = 0 and 〈XijXmn〉X = 1

Lδimδjn. In this case, by expanding the
inverse of the covariance matrix to second order in ξ2/η̃2 in Eq. (83), we obtain the perturbation term in the
FI as

δJ(x) =
1

η̃2

(
− ξ

2

η̃2
u′(x)T

(
WTXXTW −B

)
u′(x)

+
ξ4

η̃4
u′(x)T

(
WT

(
XXT

)2

W − 2WTXXTW + B

)
u′(x)

)
. (96)
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We compute the mean of these matrices over realizations of the noise covariance matrix and of the synaptic
matrix using Wick’s theorem. We obtain

〈(
WTXXTW

)
mn

〉
W,X

=

〈
L∑
i=1

N∑
j=1,j′=1

XjiWjmXj′iWj′n

〉
W,X

=
N

L
δmn, (97)

〈(
WT

(
XXT

)2
W
)
mn

〉
W,X

=

〈
L∑

i=1,i′=1

N∑
j=1,j′=1,j′′=1

WjmXjiXj′iXj′i′Xj′′i′Wj′′n

〉
W,X

=

(
N

L
+
N2

L2

)
δmn. (98)

Therefore, the first order correction vanishes, and the FI is increased,

〈J(x)〉W,X ≈
√
πNA2

2ση̃2

(
1 +

Nξ4

Lη̃4

)
, (99)

yielding a negative correction to the MSE (Eq. (12)).

Data analysis and model fitting
Description of the data and summary statistics. The data consist of the responses (firing rates) of
N ∼ 500 neurons, recorded during an arm posture ‘hold’ task including 27 different positions, with 2 hand
orientations each, arranged in a virtual cube of size 40x40x40 cm. The response of each neuron for each hand
position is recorded in several trials (∼ 10 trials per hand position). Tuning curves are computed by averaging
over trials. In order to quantify the degree of irregularity of a tuning curve in a non-parametric form, the authors
used a ‘complexity measure’: for neuron i, it is defined as the standard deviation of a discretized derivative of
the mean response:

c(Dmin)i = std

‖vi(x)− vi(x + ∆x)‖√
‖∆x‖2

s.t. ‖∆x‖22 < Dmin

 , (100)

where vi(x) is the mean response, Dmin is the distance between two neighboring hand positions, and in the
experiment is equal to 35. Lalazar et al. (2016) evaluated also another summary statistics, the distribution of
R2 values resulting from a fit of the tuning curves with a linear model (see Eq. (9), originally proposed by
Kettner et al. (1988)):

R2
i = 1−

∑
x (vl(x)− v(x))

2∑
x v(x)2

, (101)

where vl(x) is the response predicted by a linear regression of the data, and the sum is over hand positions used
in the experiment. The distribution of these two quantities across neurons is a measure of the irregularity of the
neural population response; if the population were perfectly described by a linear model, the R2-distribution
would be a constant for all neurons and equal to 1, while the complexity measure would exhibit low values.

Model fitting and comparison between irregular and linear tuning curves. We consider neurons
responding with at least 5 spikes/s at more than two target positions and we compute their tuning curves by
averaging the firing rates over trials. Then, we shift and normalize the tuning curves to cancel their means and
set their variances across hand positions to unity. We use a version of our shallow network model to produce
three-dimensional mean-response profiles. The sensory layer is made up of L = 1003 neurons; the preferred
stimuli (here, hand positions) are arranged so as to cover a space of 100x100x100 cm, in such a way that hand
positions used in the experiment are placed far from the boundaries of the stimulus space. To limit computation
load, we choose W as a sparse random matrix, with sparsity equal to 0.1, with Gaussian-distributed elements,
similarly to the model of Lalazar et al. (2016). The sparsity of the matrix does not affect our results, as long
a proper normalization of the synaptic weights is taken into account and the representation neurons receive a
sufficient number of inputs from the sensory layer, i.e., as long as the matrix is not too sparse and the tuning
width is not too narrow. The tuning curves are normalized to have zero mean and unit variance across hand
positions. With respect to the model of Lalazar et al. (2016), there are two main differences: in their case the
random weights were distributed according to a uniform distribution, and a rectifying non-linear function was
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applied to the random sum of the activity of first-layer neurons to enforce a positive activity of the representa-
tion neurons. Their model thus had two tunable parameters: the tuning width of first-layer neurons, σ, and the
the threshold of the non-linear transfer function in the second layer. The only tunable parameter in our model
is σ.

In order to fit our model, we generate neural responses of a number of representation neurons equal to
the number of recorded neurons, using the same set of hand positions to as used in the experiment. We then
computed the distribution of the complexity measure for different values of σ; we denote by σf the tuning-
curve width which minimizes the Kolmogorov-Smirnov (KS) distance between the distribution produced by the
model and that extracted from the data (Fig. S1A). The KS distance is a measure of discrepancy between
two probability distributions. We denote by Fdata/model(c) the empirical cumulative distribution function of the
complexity measure across data/model, that is, the empirical probability of finding a neuron with complexity
measure less than c,

Fdata/model(c) =
# neurons in the data/model with complexity measure < c

N
, (102)

where N is the total number of neurons. The KS distance is defined as the maximum absolute difference between
the Fdata and Fmodel:

KS ≡ max
c
|Fdata(c)− Fmodel(c)|. (103)

Figure S1C compares the distribution of the complexity measure across neurons for our model with σ = σf
with the one found in data and the one calculated for a population with linear tuning curves. For the sake of
completeness, we also computed the KS distance between the distributions of R2 corresponding to model and
data (Fig. S1A, red line). We mention that the model of Lalazar et al. (2016) with two tunable parameters did
not reproduce the distributions of complexity measure and of R2, and only the complexity measure was taken
into account in the fitting procedure. A better fit can be obtained in a heterogeneous model, at the cost of
tracking many more parameters (two per neuron): see Arakaki et al. (2019) for a more detailed discussion of
the fitting procedure in such a model.

We also extract a noise model from the data, as follows. We define the variance of the mean response
of neuron i across hand positions as the variance of the average responses across hand positions, R̂i =
〈(ṽi(x)− 〈ṽi(x)〉x)

2〉x, where ṽi(x) is the unnormalized tuning curve. Similarly, we average the trial-to-trial
variability across different stimuli to obtain the variance of the noise, η̂2

i =
〈
〈rti − ṽi(x)〉t

〉
x
, where rt is the

response at trial t. In the model, we set the variance of the signal to unity and we rescaled the noise variance
correspondingly, as

η2
i =

η̂2
i

R̂i
. (104)

In principle, the noise may depend on the stimulus. To control for this effect, we preprocess the data with a
variance stabilizing transformation. We substitute ri(x) by

√
ri(x), (SRJ & Everitt, 1999)), and we recalculated

the variance of the noise accordingly. In this way, if the noise were proportional to the mean, one would obtain
a constant estimate of the variance of the responses for different hand positions. The distribution of noise
variances across neurons calculated in this way does not differ substantially from the one obtained without this
data transformation.

For numerical simulations (Fig. 6), the tuning curves are computed at a finer scale than in the data (cubic
grid of 21x21x21 points instead of 3x3x3). We illustrate three examples of tuning curves obtained with σ = σf ,
measured at these hand positions in Fig. S1D-F, together with the prediction obtained from a linear regression
(Eq. (9)). We note that there are some neurons which are well described by the linear model while others are
not compatible with it. We generated the tuning curves for a number of neurons equal to the number of neurons
analyzed in the fitting procedure (Ntot = 400). Results for a given population size, N , are obtained by averaging
over 8 different pools of size N sampled with replacement from Ntot. In Fig. 6A-C, we compare the MSE as
obtained in a population in which neurons respond according to the irregular tuning curves generated by our
model and a population in which the tuning curves are linear, Eq. (9). The latter are generated according to
Eq. (9), by sampling the preferred directions, pi, uniformly on the unit sphere; the tuning curves are shifted and
normalized to have zero mean and unit variance across hand positions. The comparison is quantified through
the mean fractional improvement, defined as

∆ε ≡ εlin − εirr
εlin

, (105)

where εlin/irr is the RMSE as obtained in the population with linear/irregular tuning curves.
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Resources availability.
The data we analyze were reported and discussed by Lalazar et al. (2016). Data are publicly available at
https://osf.io/u57df/. Numerical simulations and data analyses were carried out with custom codes written in
Julia (Bezanson et al., 2017), with the DrWatson project assistant (Datseris et al., 2020). The custom code will
be made publicly available upon manuscript acceptance
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Fig. S1: Model fitting and tuning curves. (A) Kolmogorov-Smirnov distances between the distributions of
complexity measure (solid line) and R2 of fitting across neurons (dashed line) for data and model, for different
values of σ: σf is chosen to be the value at which the minimum of the distance between complexity distributions
is attained, σf ∼ 22. (B) Normalized-histograms of the distribution of complexity measure (arbitrary units)
across the neurons in the data (red), with irregular tuning with σ = σf (blue) and a linear tuning curves (green).
The irregular model captures the bulk of the distribution for the data better than a linear model. Nevertheless,
the data present a broader distribution across the population. (C) Normalized-histograms of the distribution
of the R2 of linear fits across neurons of the data and irregular tuning curves with σ = σf (red). (D-F) Three
examples of irregular tuning curves with σ = σf , showing a broad range of behaviors with respect to a linear fit.
The tuning curves are plotted as a function of the projection of the hand position onto a preferred direction,
obtained by the fit with Eq.(9) (green line). Some neurons are well described by the parametric function (D),
while others show consistent deviations (E); in a subset of neurons, a linear fit fails altogether (F)

References
Abbott, L. F., Rolls, E. T., & Tovee, M. J. (1996). Representational capacity of face coding in monkeys.
Cerebral Cortex, 6, 498–505.

Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior parietal
neurons. Science, 230, 456–458.

Arakaki, T., Barello, G., & Ahmadian, Y. (2019). Inferring neural circuit structure from datasets of heteroge-
neous tuning curves. PLoS Computational Biology, 15.

Atick, J. J. & Redlich, A. N. (1990). Towards a Theory of Early Visual Processing. Neural Computation, 2,
308–320.

Babadi, B. & Sompolinsky, H. (2014). Sparseness and Expansion in Sensory Representations. Neuron, 83,
1213–1226.

Barak, O., Rigotti, M., & Fusi, S. (2013). The sparseness of mixed selectivity neurons controls the generalization-
discrimination trade-off. Journal of Neuroscience, 33, 3844–3856.

Baraniuk, R., Davenport, M., DeVore, R., & Wakin, M. (2008). A simple proof of the restricted isometry
property for random matrices. Constructive Approximation, 28, 253–263.

Barlow, H. B. (1961). Possible Principles Underlying the Transformations of Sensory Messages. Sensory Com-
munication, pp. 216–234.

38

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.06.475186doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475186
http://creativecommons.org/licenses/by-nc-nd/4.0/


Berens, P., Ecker, A. S., Gerwinn, S., Tolias, A. S., & Bethge, M. (2011). Reassessing optimal neural population
codes with neurometric functions. Proceedings of the National Academy of Sciences of the United States of
America, 108, 4423–4428.

Berry, M. J., Lebois, F., Ziskind, A., & da Silveira, R. A. (2019). Functional diversity in the retina improves
the population code. Neural Computation, 31.

Bethge, M., Rotermund, D., & Pawelzik, K. (2002). Optimal short-term population coding: When Fisher
information fails. Neural Computation, 14, 2317–2351.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing.
SIAM Review.

Bordelon, B., Canatar, A., & Pehlevan, C. (2020). Spectrum Dependent Learning Curves in Kernel Regression
and Wide Neural Networks. In International Conference of Machine Learning (ICML).

Bordelon, B., Paulson, J. A., & Pehlevan, C. (2021). Population Codes Enable Learning from Few Examples
By Shaping Inductive Bias. bioRxiv.

Bremmer, F., Ilg, U. J., Thiele, A., Distler, C., & Hoffmann, K. P. (1997). Eye position effects in monkey
cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. Journal of Neurophysiology,
77.

Brunel, N. & Nadal, J. P. (1998). Mutual Information, Fisher Information, and Population Coding. Neural
Computation, 10, 1731–1757.

Burak, Y. (2014). Spatial coding and attractor dynamics of grid cells in the entorhinal cortex. Current Opinion
in Neurobiology, 25, 169–175.

Candes, E. J. & Tao, T. (2006). Near-optimal signal recovery from random projections: Universal encoding
strategies? IEEE Transactions on Information Theory.

Carandini, M. & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews
Neuroscience.

Cunningham, J. P. & Yu, B. M. (2014). Dimensionality reduction for large-scale neural recordings. Nature
Neuroscience, 17, 1500–1509.

da Silveira, R. A. & Rieke, F. (2021). The Geometry of Information Coding in Correlated Neural Populations.
Annu. Rev. Neurosci., pp. 1–30.

Datseris, G., Isensee, J., Pech, S., & Gál, T. (2020). DrWatson: the perfect sidekick for your scientific inquiries.
Journal of Open Source Software, 5.

Dayan, P. & Abbott, L. F. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of
Neural Systems. (MIT Press).

Deneve, S., Latham, P. E., & Pouget, A. (1999). Reading population codes: A neural implementation of ideal
observers. Nature Neuroscience, 2, 740–745.

Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory network. Nature,
463.

Doi, E., Gauthier, J. L., Field, G. D., Shlens, J., Sher, A., Greschner, M., Machado, T. A., Jepson, L. H.,
Mathieson, K., Gunning, D. E., Litke, A. M., Paninski, L., Chichilnisky, E. J., & Simoncelli, E. P. (2012).
Efficient coding of spatial information in the primate retina. Journal of Neuroscience, 32, 16256–16264.

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory.

Eliav, T., Maimon, S. R., Aljadeff, J., Tsodyks, M., Ginosar, G., Las, L., & Ulanovsky, N. (2021). Multiscale
representation of very large environments in the hippocampus of flying bats. Science, 372.

Fiete, I. R., Burak, Y., & Brookings, T. (2008). What grid cells convey about rat location. Journal of
Neuroscience, 28, 6858–6871.

39

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.06.475186doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475186
http://creativecommons.org/licenses/by-nc-nd/4.0/


Finkelstein, A., Ulanovsky, N., Tsodyks, M., & Aljadeff, J. (2018). Optimal dynamic coding by mixed-
dimensionality neurons in the head-direction system of bats. Nature Communications, 9.

Fiscella, M., Franke, F., Farrow, K., Müller, J., Roska, B., da Silveira, R. A., & Hierlemann, A. (2015). Visual
coding with a population of direction-selective neurons. Journal of Neurophysiology, 114, 2485–2499.

Fusi, S., Miller, E. K., & Rigotti, M. (2016). Why neurons mix: High dimensionality for higher cognition.
Current Opinion in Neurobiology, 37, 66–74.

Gallego, J. A., Perich, M. G., Miller, L. E., & Solla, S. A. (2017). Neural Manifolds for the Control of Movement.
Neuron, 94, 978–984.

Ganguli, D. & Simoncelli, E. P. (2014). Efficient sensory encoding and Bayesian inference with heterogeneous
neural populations. Neural Computation.

Gao, P., Trautmann, E., Yu, B., Santhanam, G., Ryu, S., Shenoy, K., & Ganguli, S. (2017). A theory of
multineuronal dimensionality, dynamics and measurement. arXiv, p. 214262.

Gaucher, Q., Panniello, M., Ivanov, A. Z., Dahmen, J. C., King, A. J., & Walker, K. M. (2020). Complexity of
frequency receptive fields predicts tonotopic variability across species. eLife, 9.

Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations between the direction
of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience, 2,
1527–1537.

Ginosar, G., Aljadeff, J., Burak, Y., Sompolinsky, H., Las, L., & Ulanovsky, N. (2021). Locally ordered
representation of 3D space in the entorhinal cortex. Nature, 596.

Grieves, R. M., Jedidi-Ayoub, S., Mishchanchuk, K., Liu, A., Renaudineau, S., Duvelle, E., & Jeffery, K. J.
(2021). Irregular distribution of grid cell firing fields in rats exploring a 3D volumetric space. Nature
Neuroscience.

Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the
entorhinal cortex. Nature.

Harel, Y. & Meir, R. (2020). Optimal multivariate tuning with neuron-level and population-level energy con-
straints.

Kadia, S. C. & Wang, X. (2003). Spectral integration in A1 of awake primates: Neurons with single- and
multipeaked tuning characteristics. Journal of Neurophysiology, 89.

Kayaert, G., Biederman, I., Op De Beeck, H. P., & Vogels, R. (2005). Tuning for shape dimensions in macaque
inferior temporal cortex. European Journal of Neuroscience, 22.

Kettner, R. E., Schwartz, A. B., & Georgopoulos, A. P. (1988). Primate motor cortex and free arm movements
to visual targets in three-dimensional space. III. Positional gradients and population coding of movement
direction from various movement origins. Journal of Neuroscience, 8.

Killian, N. J., Jutras, M. J., & Buffalo, E. A. (2012). A map of visual space in the primate entorhinal cortex.
Nature.

Kim, J. H. J., Fiete, I., & Schwab, D. J. (2020). Superlinear Precision and Memory in Simple Population Codes.
arXiv, pp. 1–5.

Kobak, D., Pardo-Vazquez, J. L., Valente, M., Machens, C. K., & Renart, A. (2019). State-dependent geometry
of population activity in rat auditory cortex. eLife, 8, 1–27.

Kouh, M. & Poggio, T. (2008). A canonical neural circuit for cortical nonlinear operations. Neural Computation.

Kriegeskorte, N. & Wei, X. X. (2021). Neural tuning and representational geometry.

Lalazar, H., Abbott, L. F., & Vaadia, E. (2016). Tuning Curves for Arm Posture Control in Motor Cortex Are
Consistent with Random Connectivity. PLoS Computational Biology, 12, 1–27.

Lewicki, M. S. (2002). Efficient coding of natural sounds. Nature Neuroscience, 5.

40

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.06.475186doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475186
http://creativecommons.org/licenses/by-nc-nd/4.0/


Litwin-Kumar, A., Harris, K. D., Axel, R., Sompolinsky, H., & Abbott, L. F. (2017). Optimal Degrees of
Synaptic Connectivity. Neuron, 93, 1153–1164.

Livan, G., Novaes, M., & Vivo, P. (2017). Introduction to Random Matrices - Theory and Practice. arXiv.

Mathis, A., Herz, A. V., & Stemmler, M. B. (2012). Resolution of nested neuronal representations can be
exponential in the number of neurons. Physical Review Letters, 109, 1–5.

Miller, J. P., Jacobs, G. A., & Theunissen, F. E. (1991). Representation of sensory information in the cricket
cercal sensory system. I. Response properties of the primary interneurons. Journal of Neurophysiology, 66.

Montemurro, M. A. & Panzeri, S. (2006). Optimal tuning widths in population coding of periodic variables.
Neural Computation, 18, 1555–1576.

Rasmussen, C. E. (2004). Gaussian Processes in machine learning. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Recanatesi, S., Bradde, S., Balasubramanian, V., Steinmetz, N., & Shea-Brown, E. (2020). A scale-dependent
measure of system dimensionality.

Saxena, S. & Cunningham, J. P. (2019). Towards the neural population doctrine. Current Opinion in Neuro-
biology, 55, 103–111.

Seung, H. S. & Lee, D. D. (2000). The manifold ways of perception.

Seung, H. S. & Sompolinsky, H. (1993). Simple models for reading neuronal population codes. Proceedings of
the National Academy of Sciences of the United States of America, 90, 10749–10753.

Shamir, M. & Sompolinsky, H. (2006). Implications of neuronal diversity on population coding. Neural Com-
putation, 18, 1951–1986.

Shannon, C. E. (1949). Communication in the Presence of Noise. Proceedings of the IRE, 37, 10–21.

Sofroniew, N. J., Vlasov, Y. A., Hires, S. A., Freeman, J., & Svoboda, K. (2015). Neural coding in barrel cortex
during whisker-guided locomotion. eLife, 4.

Sreenivasan, S. & Fiete, I. (2011). Grid cells generate an analog error-correcting code for singularly precise
neural computation. Nature Neuroscience, 14, 1330–1337.

SRJ & Everitt, B. S. (1999). The Cambridge Dictionary of Statistics. Journal of the American Statistical
Association.

Stringer, C., Michaelos, M., & Pachitariu, M. (2019). High precision coding in visual cortex. High precision
coding in mouse visual cortex, p. 679324.

Taube, J. S., Muller, R. U., & Ranck, J. B. (1990). Head-direction cells recorded from the postsubiculum in
freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience.

Van Hateren, J. H. & Ruderman, D. L. (1998). Independent component analysis of natural image sequences
yields spatio-temporal filters similar to simple cells in primary visual cortex. Proceedings of the Royal Society
B: Biological Sciences, 265.

Wang, W., Chan, S. S., Heldman, D. A., & Moran, D. W. (2007). Motor cortical representation of position and
velocity during reaching. Journal of Neurophysiology, 97, 4258–4270.

Wang, Z., Stocker, A., & Lee, D. (2016). Efficient neural codes that minimize Lp reconstruction error. Neural
Computation, 28.

Wei, X. X., Prentice, J., & Balasubramanian, V. (2015). A principle of economy predicts the functional
architecture of grid cells. eLife, 4, 1–29.

Wei, X. X. & Stocker, A. A. (2012). Efficient coding provides a direct link between prior and likelihood in
perceptual Bayesian inference. Advances in Neural Information Processing Systems, 2, 1304–1312.

Welinder, P. E., Burak, Y., & Fiete, I. R. (2008). Grid cells: The position code, neural network models of
activity, and the problem of learning.

41

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.06.475186doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475186
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wilke, S. D. & Eurich, C. W. (2002). Representational accuracy of stochastic neural populations. Neural
Computation, 14, 155–189.

Yaeli, S. & Meir, R. (2010). Error-based analysis of optimal tuning functions explains phenomena observed in
sensory neurons. Frontiers in Computational Neuroscience, 4, 1–16.

Yartsev, M. M., Witter, M. P., & Ulanovsky, N. (2011). Grid cells without theta oscillations in the entorhinal
cortex of bats. Nature, 479.

Yerxa, T. E., Kee, E., DeWeese, M. R., & Cooper, E. A. (2020). Efficient sensory coding of multidimensional
stimuli. PLoS computational biology, 16, e1008146.

Zhang, K. & Sejnowski, T. J. (1999). Neuronal tuning: To sharpen or broaden? Neural Computation, 11,
75–84.

Zhaoping, L. (2014). Understanding Vision: Theory, Models, and Data. Perception, 17.

42

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.06.475186doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475186
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Discussion
	Acknowledgements
	Methods

