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Supplementary Figures

Supplementary Fig 1. Confirmation of blood chimerism. Representative flow cytometry
analysis of CD45.1 and CD45.2 expression markers on splenocytes isolated from (a) young
(CD45.1%) and (b) old mice (CD45.2%) following heterochronic parabiosis. In each plot, the
percentage of donor-derived blood cells from one partner in the spleen of the other partner is
depicted by arrows.
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Supplementary Fig 2. Sample metrics. Profiling of animals and their derived brain cells used
for sequencing, before (a,c,e) and after (b,d,f) quality control filtering in which certain animals
were omitted (see Methods). a-b. Age of mice in weeks prior to parabiosis surgeries. c-

d. Number of days joined across parabiotic pairs. e-f. Number of dissociated cells analyzed per
brain across all animal types.
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Supplementary Fig 3. Sequencing metrics. Scatter plots showing metrics of all sequenced
young and old cells prior to any cell filtering: a. Number of cells sequenced by animal. b. Total
number of animals and cells analyzed. c. Mean number of mapped reads per cell by animal. d.
Median number of nCount RNA (UMI) detected per cell by animal. e. Median number of genes
detected per cell by animal. Data presents mean or median £ SEM.
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Supplementary Fig 4. Distribution of 50 animals across 5 sequencing batches, with
respect to cell clusters. a. UMAP projection of color-coded batches over clusters that passed
filtering criteria. b. Frequency of each color-coded batch representation in each cell type. All cell
types are represented by cells from all batches, except for HypEPC in batch 5, probably due to
its small size.
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Supplementary Fig 5. Primary data analysis. a. Bar plot showing the number of cells
analyzed by animal after cell filtering, in which all cells were successfully assigned to a specific
cell type (data presents mean + SEM). b-e. Violin plots showing QC metrics, plots in (b, ¢)
showing aggregated data of cells of all brain types, while plots in (d, e) showing individual cell
data separated by animal type: (b, d) showing nCount RNA (UMI) per cell type. (c, e) showing
nFeature RNA (number of unique genes) detected per cell.
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Supplementary Fig 6. Representation of each animal type’s distribution within each cell
type. a. Dot plot representation of each cell type’s representation by each animal type. Size of
the dot is proportional to the number of cells contributed by each animal type within a cell type.
b. Dot plot representation of each subpopulation’s representation by each animal type. Size of
the dot is proportional to the number of cells contributed by each animal type within a
subpopulation.
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Supplementary Fig 7. Cell type composition and cell count from each animal type. a.
Frequency bar plot demonstrating composition of each cell type with respect to animal type. b.
Bar plot of raw cell counts, +/- SEM, with respect to each animal. All animals contribute to all
cell types. ANOVA p-values for pairwise iterations can be found in Supplementary Table 2.
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Supplementary Fig 8. Animal type distribution and machine learning approaches to
explore EC arteriovenous zonation. a. Animal type cell distribution across EC subclusters. b-
c. Probabilistic programming cell class assignment using EC marker genes described by Zhao
et al 2020* (b) and others*32 (c).
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Supplementary Fig 9. Composition of DGEs per cell type between Aging-RJV, and Aging-
AGA. a. Bar graph of each cell type’s total FDR < 0.05 DGEs split by logFC direction. The
proportion of DGEs reflecting Aging and RJV is depicted, as well as the fraction of overlapping
signatures (intersection in grey). b. Bar graph of each cell type’s total FDR < 0.05 DGEs split by
logFC direction. The proportion of DGEs reflecting Aging and AGA is depicted, as well as the
fraction of overlapping signatures (intersection in grey).
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Supplementary Fig 10. Intercellular communication networks between EC-OLG and EC-
NRP revealed aging-related interactions that were modified by heterochronic parabiosis.
Canonical EC ligands and their cognate receptors in OLG (a) or in NRP (b) are shown in each
paradigm (Aging, RJV, AGA). In all panels of ligand-receptor interactions, node color represents
the magnitude of the DGE (logFC as estimated by DGE) such that the most significantly up-
regulated genes are in magenta, and the downregulated genes are in blue. Node borders
indicate FDR statistical significance of DGE. Edge color represents the sum of scaled
differential expression magnitudes from each contributing node, while width and transparency
are determined by the magnitude of the scaled differential expression (see details in the
Methods section).



Supplementary Tables
Supplementary Table 1. List of abbreviations for all cell types and subpopulations.

Supplementary Table 2. Metrics of pairwise comparison of cell types by cell number. For
each pairwise comparison, per cell type, ANOVA was applied, with significance designation (ns
padj > 0.05, * padj < 0.05, ** padj < 0.01, *** padj < 0.001).

Supplementary Tables 3-11. DGE metrics per comparison, per cell type. edgeR/muscat
metrics were computed for each cluster in a comparison, with logFC, p-value, Benjamini-
Hochberg p-value adjustment (p_adj.loc is per cluster, p_adj.global is with respect to all clusters
in class) reported. TPM values (“tpm”) for each animal type, per cell type are listed. Percentage
expression (“pct”) of each gene for each animal type, per cell type are listed.
RJV=Rejuvenation-association ((OY-OX)-(00-YX)), AGA=Aging Acceleration-associated ((YO-
YX)-(YY-OX)), Aging=0OX/YX, OY_OO=0Y/00, OY_OX=0Y/OX, OO_0OX=00/0X,
YO_YY=YO/YY, YO_YX=YO/YX, YY_YX=YY/YX. HypEPC and TNC clusters did not have
enough cells distributed across multiple animals for inclusion in the DGE framework, but TPM
and PCT are reported.

Supplementary Table 12. RJV and Aging common DGEs and unique DGEs, per cell type.
DGE FDR = 0.05 genes common between RJV and Aging, but also those only found in RJV,
and those only found in Aging are listed per cell type.

Supplementary Table 13. AGA and Aging common DGEs and unique DGEs, per cell type.
DGE FDR = 0.05 genes common between AGA and Aging, but also those only found in AGA,
and those only found in Aging are listed per cell type.

Supplementary Table 14. DGE bi-directional DGEs between RJV and AGA. For RJV and
AGA DGE genes FDR < 0.05 per cell type, report the genes that are RJV Up (logFC >0) and
AGA Down (logFC<0), or RJV Down (logFC <0) and AGA Up (logFC=>0). Count is the number of
times a gene is bi-directionally expressed across cell types.

Supplementary Table 15. Matrices of all DGE FDR < 0.05 logFC values across cell types.
Per comparison, per gene, clusters where the gene’s significance is FDR < 0.05 have their
logFC value reported. “Up” column is the sum of clusters with logFC >0, “Down” column is the
sum of clusters with logFC < 0.

Supplementary Table 16. DGE logFC values across all cell types. Per comparison, per
gene, collated logFC values across all clusters reporting DGE, with no thresholding. “Up”
column is the sum of cell types with logFC >0, “Down” column is the sum of clusters with logFC
<0.

Supplementary Table 17. Matrices of al identified significant GSEA terms per comparison
across cell types. f{GSEA Benjamini-Hochberg adjusted p-value < 0.25 significant terms are
collated per comparison across all cell types by Normalized Enrichment Score (NES). Pathway
and process metaclasses are described in the Methods. “Up” column is the sum of cell types
with NES >0, “Down” column is the sum of cell types with NES < 0.

Supplementary Table 18. SCENIC regulon matrices per animal type. Per animal type, per
cell type, SCENIC regulon activity scores are reported. Column “counts” is the sum of cell type
that have a regulon score.

Supplementary Table 19. Cell-cell communication networks in RJV, AGA, and per animal
type. For RJV, the set of unique source:target:receptor:ligand pairs that are found only in OY
and YX combined. For AGA, the set of unigue source:target:receptor:ligand pairs that are found
only in YO and OX combined. YX, YY, YO, OX, OO, QY display the CellChat’ networks derived
for each animal type (see details in Methods). “Source” is the cell type the ligand comes from,



while “Target” is the cell type found matching the ligand’s receptor. Probability and p-value are
the statistical measures derived by CellChat. Ligand-Receptor pairs are given Interaction
Names and assigned to a Pathway. Annotation provides the type of interaction are Secreted
Signaling, ECM-Receptor, Cell-Cell Contact. Evidence codes and relevant PMIDs are provided
by CellChat.

Supplementary Table 20: Literature-curated senescence-associated genes. Senescence-
associated genes were curated from the literature for use as a reference gene set to perform
fGSEA. HGNC.symbol denotes Homo sapiens gene symbol, MGI.ID denotes MGI ID number,
MGI.symbol is Mus musculus gene symbol, Name is long name of the gene, and Feature Type
denotes the type of gene or pseudogene.

Supplementary Table 21: Senescence status GSEA per comparison. For RJV, AGA, and
aging, fGSEA against a literature-curated senescence gene set (Supplementary Table 20) to
derive enrichment score, Normalized Enrichment Score (NES), p-value, Benjamini-Hochberg
adjusted p-value, rank, and genes in the leading edge.
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