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Abstract

Summary: Machine learning algorithms for link prediction can be valuable tools for hypothesis generation.
However, many current algorithms are black boxes or lack good user interfaces that could facilitate insight
into why predictions are made. We present LinkExplorer, a software suite for predicting, explaining and
exploring links in large biomedical knowledge graphs. LinkExplorer integrates our novel, rule-based link
prediction engine SAFRAN, which was recently shown to outcompete other explainable algorithms and
established black box algorithms. Here, we demonstrate highly competitive evaluation results of our
algorithm on multiple large biomedical knowledge graphs, and release a web interface that allows for
interactive and intuitive exploration of predicted links and their explanations.
Availability and Implementation: A publicly hosted instance, source code and further documentation
can be found at https://github.com/OpenBioLink/Explorer.
Contact: matthias.samwald -at- meduniwien.ac.at
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Link prediction is a field in graph-based machine learning that aims to
predict novel relationships between entities. When applied to biomedical
knowledge graphs, link prediction can be a versatile and powerful method
of hypothesis generation, e.g. for drug discovery (Abbas et al., 2021). A
vast array of machine learning link prediction algorithms emerged over
the last decade. Most of these are black boxes such as embedding- or
deep learning based algorithms, where the rationale for a prediction is
difficult or impossible to explain. Explainability, however, is important for
facilitating scientific insight, judging the plausibility of predictions and
improving acceptance by end-users (Adadi and Berrada, 2018).

Previous work on explainable link prediction (Meilicke et al., 2019)
has limitations that decrease its utility for real-world applications involving
large biomedical knowledge graphs, such as lacking scalability, limited
predictive performance, or lack of end-user interfaces for viewing and
understanding predictions and their explanations.

To address these issues, we release the LinkExplorer software
suite for predicting, exploring and explaining links in large knowledge
graphs. It integrates SAFRAN (Ott et al., 2021), a novel, state-of-
the-art rule-based link prediction algorithm that our group developed.

SAFRAN is highly scalable, outperforms other explainable link prediction
methods on standard link prediction benchmarks, narrows the performance
gap between explainable and black-box algorithms, and produces
highly condensed and transparent explanations (Ott et al., 2021). The
LinkExplorer suite offers a web-based interface for navigating existing
links between entities and relations together with predicted links and
their explanations generated by SAFRAN, thereby enabling unprecedented
insight into the predictions of a state-of-the-art link prediction algorithm.
We also report highly competitive evaluation results of our explainable link
prediction algorithm on several large-scale biomedical knowledge graphs.

2 Software architecture and performance
In the following we provide a brief overview of the SAFRAN and
AnyBURL algorithms. For a detailed description of the algorithms we
refer to (Ott et al., 2021).

AnyBURL (Meilicke et al., 2019) is a walk-based (bottom-up) method
based on the idea that sampled paths (random walks) in a knowledge graph
are examples of very specific rules and thus can be transformed into more
general logical first-order Horn clauses. In each iteration of the rule mining
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algorithm, AnyBURL samples paths and generalizes them into rules of
three predefined types. Examples of rules generalized from a sampled path
can be seen in Table 1. Furthermore AnyBURL calculates a confidence

Table 1. Examples of rules that can be generalized
from the sampled path speaks(max, english) ←
lives(max, uk), lang(uk, english)

speaks(Y,X) ← lives(X,A), lang(A, Y )

speaks(english,X) ← lives(X,A), lang(A, english)

speaks(Y,max) ← lives(max,A), lang(A, Y )

for each rule, the probability that an entity predicted by the rule is correct.
This confidence is the relative proportion of correctly predicted entities in
all predicted entities by a rule when applied to the training set. In order to
correct for unseen entities a constant pc > 0 is added to the denominator.
As can be seen in Figure 1, LinkExplorer displays the confidence, number
of correctly predicted and number of all predicted entities of a rule. In the
example of Figure 1 pc was set to 5.

Fig. 1. Structured view of rules that triggered a prediction.

The rule-application framework SAFRAN takes rules generated by
AnyBURL as input, and improves upon AnyBURL’s rule application
method in two important ways. First, SAFRAN was engineered to
scale to large knowledge bases, which is essential for many biomedical
applications. Second, SAFRAN introduces an algorithm that identifies
and clusters redundant rules, i.e. rules that are structurally different but
have highly correlated predictions. The predictions of rule clusters can
then be aggregated with a noisy-or operation, which would not work
well when redundancies are not accounted for. The noisy-or aggregation
makes it possible to combine predictions of different rules / rule clusters
in a meaningful way and improves predictive accuracy. Furthermore,
rule clustering makes generated explanations easier to understand. Each

prediction made by SAFRAN can be explained in terms of the rules / rule
clusters and instantiations that triggered it. A screenshot of LinkExplorer
providing explanations for the prediction cytochrome P450 family 2
subfamily C member 18 can be overexpressed in liver is shown in Figure 1.

LinkExplorer uses RDF* (Hartig and Thompson, 2019) graphs to
store nodes and edges of knowledge graphs which are served via a
SPARQL* endpoint. Furthermore these graphs include metadata of entities
such as labels, descriptions and types. In addition to loading knowledge
graphs hosted on the server, users can load custom knowledge graphs by
specifying external SPARQL* endpoints.

Table 2. Comparison of the fully explainable algorithms SAFRAN
and AnyBURL with several established latent models on the datasets
OpenBioLink, PheKnowLator, Hetionet and ogbl-biokg. SAFRAN
(denoted with *) is our approach. The best overall results are marked
in bold and the best explainable results are underlined.

OpenBioLink PheKnowLator

Model MRR h@1 h@10 MRR h@1 h@10

RESCAL .320 .212 .544 .330 .261 .454
TransE .280 .175 .500 .330 .245 .468
DistMult .300 .193 .521 .351 .263 .492
ComplEx .319 .211 .547 .362 .274 .505
ConvE .288 .186 .510 .290 .200 .441
RotatE .286 .180 .511 .272 .173 .431

AnyBURL (Maximum) .277 .192 .457 .393 .352 .466
AnyBURL (Noisy-OR) .159 .098 .295 .367 .323 .449
SAFRAN* .306 .214 .501 .418 .383 .483

Hetionet ogbl-biokg

Model MRR h@1 h@10 MRR h@1 h@10

RESCAL .306 .229 .456 .370 .257 .598
TransE .255 .190 .386 .237 .090 .511
DistMult .292 .220 .432 .378 .261 .610
ComplEx .297 .223 .441 .371 .252 .600
ConvE .251 .180 .393 .326 .204 .568
RotatE .242 .171 .383 .318 .200 .560

AnyBURL (Maximum) .369 .318 .469 .358 .280 .511
AnyBURL (Noisy-OR) .229 .171 .345 .228 .166 .346
SAFRAN* .381 .327 .484 .373 .293 .530

The user interface of LinkExplorer was realized using a client-server
architecture and is implemented in Javascript and HTML5. The client
was created using the ReactJS framework and the server-sided Javascript
components are served using NodeJS. The server is used to provide
predictions and explanations which are retrieved from SQLite databases
generated by SAFRAN. LinkExplorer provides explanation files for all
hosted knowledge graphs and allows users to load local prediction files.

We make a public LinkExplorer instance available that hosts three
large biomedical knowledge graphs: OpenBioLink (Breit et al., 2020),
Hetionet (Himmelstein et al., 2017) and PheKnowLator (Callahan et al.,
2020). Additionally, the instance contains two widely-used general-
domain evaluation datasets: WN18RR (Dettmers et al., 2018) and YAGO3-
10 (Dettmers et al., 2018). As there is no publicly available dataset split
of Hetionet and PheKnowLator, they were randomly split using a 90-5-5
split ratio per relation. Prediction files were generated by SAFRAN using
rules that were learned by AnyBURL for 1000 seconds using 22 threads of
a machine with 24 physical (48 logical)Intel(R) Xeon(R) CPU E5-2650 v4
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@ 2.20GHz cores and 264 GB of RAM. Table 2 shows a comparison of the
performance of LinkExplorer/SAFRAN with AnyBURL and established
black-box models RESCAL (Nickel et al., 2011), TransE (Bordes et al.,
2013), DistMult (Yang et al., 2015), ComplEx (Trouillon et al., 2016),
ConvE (Dettmers et al., 2018), RotatE (Sun et al., 2019) for the task
of link prediction on the before mentioned biomedical datasets and
ogbl-biokg (Hu et al., 2020). For training and extensive hyperparameter
optimization of the latent models we used the PyTorch-based LibKGE
framework (Broscheit et al., 2020) and use a similar hyperparameter search
space as in (Ruffinelli et al., 2020). Data on the conducted hyperparameter
search can be found in the supplemental material.

The evaluation protocol used to evaluate all models link prediction task
is as follows: Given a test triple (h, r, t) we construct two queries (h, r, ?)
and (?, r, t). For each query, a model scores the likelihood of every entity
present in the dataset to act as a substitution for ?. According to the ranked
list of scored entities, we report the filtered mean reciprocal rank (MRR),
filtered hits@1 and filtered hits@10. MRR is the average reciprocal rank
of the correct entity over all queries. Hits@k is the relative proportion of
predictions having a rank greater or equal than k. We follow the procedure
for filtering known triples first described in (Bordes et al., 2013), where
triples present in the training, testing and validation sets are removed from
the set of predicted triples, with the exception of the correct triple. As
symbolic approaches do not scale very well, we calculate the MRR for
AnyBURL and SAFRAN based on the top-1000 predicted entities for a
query, which results in a result that is marginally less or equal to the
actual MRR. All results reported were evaluated according to the average
policy Rossi et al. (2021) for dealing with same score predictions, where
a list of entities is first ranked via their individual score, entities within
groups of same score entities are however assigned the average rank of
their respective group.

LinkExplorer/SAFRAN consistently improves upon the already highly
competitive explainable link prediction algorithm AnyBURL, and closely
matches or outperforms black-box models.

3 Discussion and future work
LinkExplorer demonstrates that high predictive performance can be
achieved while retaining a high level of model explainability and
transparency, attributes that are very desirable for biomedical hypothesis
generation. Future work should focus on conducting empirical user
studies of explanation methods to quantify and understand their utility
in real-world biomedical research settings.
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