LinkExplorer: Predicting, explaining and exploring links in large biomedical knowledge graphs Supplementary data

1 Statistics on datasets

	Entities	Relations	Training	Testing	Validation
OpenBioLink	$184,\!635$	28	4,192,002	183,009	180,964
PheKnowLator	$737,\!556$	294	$4,\!952,\!471$	$274,\!497$	260,775
Hetionet	$45,\!158$	24	2,030,777	$112,\!524$	106,896
ogbl-biokg	93,773	51	4,762,678	$162,\!870$	$162,\!886$

Table 1: Dataset statistics: Number of entities, relations and triples of each dataset.

	M-1	1-N	M-N	1-1
OpenBioLink	2	-	25	1
PheKnowLator	63	6	19	206
Hetionet	-	3	21	-
ogbl-biokg	-	-	51	-

Table 2: Number of relation types within each dataset. We use the same approach for classifying relationships as in [Bordes et al., 2013], where four different relationship type classes were used: 1-1, 1-many, many-1, many-many. A relationship is 1-1 if there is at most one tail for each head in the training set and vice versa. A relationship is classified as 1-many if there appear multiple tails with a head, many-1 if there appear multiple heads with a tail and many-many if multiple heads appear with multiple tails. Classes were determined by calculating the average number of tails t (heads h) that appear given a pair (h, r) ((t, r)) in the training set, A threshold of 1.5 average entities was used above which the argument is labeled as many.

Type	Relation	# Avg. head	# Avg. tail
1-N	Disease - upregulates - Gene	1.35	158.55
	Disease - downregulates - Gene	1.29	159.95
	Pharmacologic Class - includes - Compound	1.37	2.83
M-N	Gene - interacts - Gene	9.66	14.28
	Anatomy - expresses - Gene	26.34	1979.5
	Disease - presents - Symptom	7.37	22.77

Table 3: Examples of relationships of type 1-N and type M-N of Hetionet and their average number of heads per tail and average number of tails per head which lead to their classification.

Type	Relation	# Avg. head	# Avg. tail
M-1	IS_A	4.23	1.48
	PART_OF	2.5	1.07
M-N	GENE_UNDEREXPRESSED_ANATOMY	1202.23	7.28
	GENE_PHENOTYPE	19.54	34.39
	DRUG_ACTIVATION_GENE	4.98	3.78
1-1	GENE_EXPRESSION_GENE	1.11	1.08

Table 4: Examples of relations of different types appearing in OpenBioLink and their average number of heads per tail and average number of tails per head which lead to their classification.

			_	FB15K-23	37
	Approach		MRR	hits@1	hits@10
	RESCAL	*	.357	.263	.541
	TransE	*	.313	.221	.497
nt	DistMult	*	.343	.250	.531
te	ComplEx	*	.348	.253	.534
Ľ	ConvE	*	.339	.248	.521
	RotatE	¶	.336	.238	.531
	TuckER	¶	.352	.259	.536
	HAKE	\bigtriangledown	.346	.250	.542
	C-NN	\triangle	.296	.222	.446
e	DRUM	‡	$.343^{\dagger}$	$.255^{+}$	$.516^{+}$
abl	Neural LP	\diamond	$.240^{+}$		$.362^\dagger$
:et:	GPFL	\diamond	.322	.247	.504
rpı	AMIE+	÷		.174	.409
nte	RuleN	÷		.182	.420
Ĥ	RLvLR	#	.240		.393
	SAFRAN*		.389	.298	.537

2 Results for FB15K-237

Table 5: MRR, Hits@1, Hits@10 results for FB15K-237. Best results for each metric and dataset are marked in bold. *Denotes our approach. [†]Results were evaluated with top policy for dealing with same score entities and are not directly comparable to other approaches. Results marked with \star are from [Ruffinelli et al., 2020], ¶ from [Rossi et al., 2021], \triangle from [Ferré, 2020], \ddagger from [Sadeghian et al., 2019], \diamondsuit from [Gu et al., 2020], ♣ from [Meilicke et al., 2019], \ddagger from [Omran et al., 2018] and \bigtriangledown from [Zhang et al., 2020].

Hyperparameter	Range
Embedding size	128
Training type	NegSamp
# head samples	[0, 10000]
# tail samples	[0, 10000]
Loss	CE
L_p norm (TransE)	$\{1, 2\}$
Optimizer	Adagrad
Batch size	1024
Learning rate	$[3*10^{-4}, 1], \log scale$
LR scheduler patience	[0, 10]
L_p regularization	$\{1, 2, 3, None\}$
Entity emb. weight	$[10^{-20}, 10^{-1}]$
Relation emb. weight	$[10^{-20}, 10^{-1}]$
Frequency weighting	True
Embedding normalization (TransE)	
Entity	{True, False}
Relation	{True, False}
Dropout	
Entity embedding	[0.0, 0.5]
Relation embedding	[0.0, 0.5]
Feature map (ConvE)	[0.0, 0.5]
Projection (ConvE)	[0.0, 0.5]
Embedding initialization	{Normal, Unif, XvNorm, XvUnif}
Std. deviation (normal)	$[10^{-5}, 1.0], \log \text{ scale}$
Interval (Unif)	[-1.0, 1.0]
Gain (XvNorm)	1.0
Gain (XvUnif)	1.0

Table 6: Hyperparameter search space. We follow the naming conventions and ranges given by [Ruffinelli et al., 2020], however fixed some values due to the size of the datasets (training type: negative sampling, embedding size: 128, batch size: 1024, optimizer: Adagrad, regularization: weighted). For the meaning of the parameters, we refer also to this publication. We selected the best configuration based on the MRR of the validation set after running 30 pseudo-random trials for 20 epochs. We retrained the configuration that performed best for a maximum 400 epochs (with an early stopping patience of 10).

Table 7: Best link prediction hyperparameter configurations for each model on Hetionet

RotatE	128	${ m NegSamp}$	N_{O}	2687	2804	Ι	CE	I	I	$\operatorname{Adagrad}$	1024	0.04883	9	L1	5.55^{-16}	2.28^{-08}	\mathbf{Yes}		I	I		0.00	0.00	I	I	XvUnif	I	I	1.00	I
ConvE	128	NegSamp	\mathbf{Yes}	9281	9430	Ι	CE			$\operatorname{Adagrad}$	1024	0.05670	2	L2	9.03^{-20}	4.34^{-16}	\mathbf{Yes}					0.00	0.41	0.14	0.05	Normal	0.00003			
ComplEx	128	$\operatorname{NegSamp}$	No	9193	9006	I	CE		I	$\operatorname{Adagrad}$	1024	0.18781	2	L2	3.76^{-19}	2.00^{-20}	\mathbf{Yes}		I	I		0.00	0.49	I	I	Normal	0.00003	I	I	I
DistMult	128	${ m NegSamp}$	No	9193	9606	Ι	CE	I	l	$\operatorname{Adagrad}$	1024	0.18781	2	L2	3.76^{-19}	2.00^{-20}	\mathbf{Yes}			I		0.00	0.49	I		Normal	0.00003	I	I	I
TransE	128	${ m NegSamp}$	No	2539	7092	Ι	CE	I	L1	$\operatorname{Adagrad}$	1024	0.08972	4	L3	3.32^{-17}	8.04^{-18}	Yes		L2	No		0.00	0.00	I	I	Unif.	Ι	[-0.30, 0.30]	I	I
RESCAL	128	${ m NegSamp}$	N_{O}	amp) 8985	(dur	Ι	CE	I	I	$\operatorname{Adagrad}$	1024	0.10137	1	L2	2.33^{-02}	1.90^{-07}	Yes	$\Gamma ansE)$	Ι	I		0.00	0.00	I	I	XvUnif	Ι	Ι	1.00	I
	Embedding size	Training type	$\operatorname{Reciprocal}$	No. subject samples (NegS	No. object samples (NegSa	Label Smoothing (KvsAll)	Loss	Margin (MR)	L_p -norm (TransE)	Optimizer	Batch size	Learning rate	ς Scheduler patience	$\frac{1}{2}$ L_p regularization	Entity emb. weight	ž Relation emb. weight	\mathcal{K} Frequency weighting	$\widetilde{\mathcal{P}}$ Embedding normalization (7	Entity	Relation	Dropout	Entity embedding	Relation embedding	Projection (ConvE)	Feature map (ConvE)	Embedding initialization	Std. deviation (Normal)	Interval (Unif)	Gain (XvNorm)	Gain (XvUnif)

άE	28	du	N_{O}	85	060	I	СE	I	I	ad	124	37	1	L2	-02	-07	les		I	I		00	00	I	I	nif	I	I	00	I
Rota	1	NegSar		89	29		U			Adagr	10	0.101			2.33^{-}	1.90^{-1}						0.	0.			XvU				
ConvE	128	NegSamp	$\mathbf{Y}_{\mathbf{es}}$	9281	9430	I	CE	I		$\operatorname{Adagrad}$	1024	0.05670	2	L2	9.03^{-20}	4.34^{-16}	Yes					0.00	0.41	0.14	0.05	Normal	0.00003	I		I
ComplEx	128	NegSamp	N_{O}	7712	009	I	CE		I	$\operatorname{Adagrad}$	1024	0.11374	×	L2	2.61^{-20}	8.48^{-07}	$\mathbf{Y}_{\mathbf{es}}$			I		0.00	0.35	I		Normal	0.00564	I		I
DistMult	128	NegSamp	No	7712	009	I	CE	I	I	$\operatorname{Adagrad}$	1024	0.11374	×	L2	2.61^{-20}	8.48^{-07}	\mathbf{Yes}		I	I		0.00	0.35	I	ĺ	Normal	0.00564			
TransE	128	NegSamp	No	3791	2876	I	CE	I	L1	$\operatorname{Adagrad}$	1024	0.22584	5	L1	2.03^{-16}	1.75^{-10}	Yes		No	No		0.00	0.00	I		XvUnif		I	1.00	
RESCAL	128	NegSamp	N_{O}) 8985	7990	I	CE	Ι	Ι	$\operatorname{Adagrad}$	1024	0.10137	1	L2	2.33^{-02}	1.90^{-07}	$\mathbf{Y}_{\mathbf{es}}$	sE)				0.00	0.00	I	I	XvUnif		I	1.00	I
	Embedding size	Training type	Reciprocal	No. subject samples (NegSamp	No. object samples (NegSamp)	Label Smoothing (KvsAll)	Loss	Margin (MR)	L_p -norm (TransE)	Optimizer	Batch size	Learning rate	Scheduler patience	$_{\odot}$ L_{p} regularization	Entity emb. weight	Relation emb. weight	B Frequency weighting	Embedding normalization (Tran	Entity	Relation	Dropout	Entity embedding	Relation embedding	Projection (ConvE)	Feature map (ConvE)	Embedding initialization	Std. deviation (Normal)	Interval (Unif)	Gain (XvNorm)	Gain (XvUnif)

Table 9: Best link prediction hyperparameter configurations for each model on ogbl-biokg

RotatE	128	NegSamp	N_{O}	8985	1990	Ι	CE	I	I	$\operatorname{Adagrad}$	1024	0.10137	1	L2	2.33^{-02}	1.90^{-07}	\mathbf{Yes}		I	I		0.00	0.00	I	I	XvUnif		I	1.00	
ConvE	128	NegSamp	\mathbf{Yes}	9281	9430	I	CE	Ι	l	$\operatorname{Adagrad}$	1024	0.05670	2	L2	9.03^{-20}	4.34^{-16}	\mathbf{Yes}					0.00	0.41	0.14	0.05	Normal	0.00003		I	
ComplEx	128	NegSamp	No	9193	9006	Ι	CE	I		$\operatorname{Adagrad}$	1024	0.18781	2	L2	3.76^{-19}	2.00^{-20}	$\mathbf{Y}_{\mathbf{es}}$					0.00	0.49			Normal	0.00003			I
DistMult	128	${ m NegSamp}$	N_{O}	8985	1990	Ι	CE	I	I	$\operatorname{Adagrad}$	1024	0.10137	1	L2	2.33^{-02}	1.90^{-07}	\mathbf{Yes}		I	I		0.00	0.00	I	I	XvUnif	I	l	1.00	
TransE	128	NegSamp	No	2539	7092	Ι	CE	Ι	L1	$\operatorname{Adagrad}$	1024	0.08972	4	L3	3.32^{-17}	8.04^{-18}	\mathbf{Yes}		L2	No		0.00	0.00	I	I	Unif.	I	[-0.30, 0.30]	I	I
RESCAL	128	NegSamp	No	p) 8985	0662 (I	CE	I	I	$\operatorname{Adagrad}$	1024	0.10137	1	L2	2.33^{-02}	1.90^{-07}	$\mathbf{Y}_{\mathbf{es}}$	nsE)	I	I		0.00	0.00			XvUnif	l		1.00	I
	Embedding size	Training type	$\operatorname{Reciprocal}$	No. subject samples (NegSam _l	No. object samples (NegSamp	Label Smoothing (KvsAll)	Loss	Margin (MR)	L_{p} -norm (TransE)	Optimizer	Batch size	Learning rate	Scheduler patience	\mathcal{L}_{p} regularization	Entity emb. weight	👸 Relation emb. weight	E Frequency weighting	O Embedding normalization (Trai	Entity	Relation	Dropout	Entity embedding	Relation embedding	Projection (ConvE)	Feature map (ConvE)	Embedding initialization	Std. deviation (Normal)	Interval (Unif)	Gain (XvNorm)	Gain (XvUnif)

References

- Antoine Bordes. Nicolas Usunier. Alberto Garcia-Duran, Ja-Weston, and Oksana Yakhnenko. Translating embedson URL dings for modeling multi-relational data. 2013.https://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-dat
- Sébastien Ferré. Application of concepts of neighbours to and knowledge graph completion. *Data Science*, Preprint:1–28, 2020. ISSN 2451-8492. doi: 10.3233/DS-200030. URL https://doi.org/10.3233/DS-200030. Preprint.
- Yulong Gu, Yu Guan, and Paolo Missier. Towards learning instantiated logical rules from knowledge graphs, 2020.
- Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner Stuckenschmidt. Anytime bottom-up rule learning for knowledge graph completion. In Sarit Kraus, editor, *Proceedings of International Joint Conferences* on Artificial Intelligence, pages 3137–3143, California, aug 2019. ISBN 978-0-9992411-4-1. doi: 10.24963/ijcai.2019/435.
- Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. Scalable rule learning via learning representation. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pages 2149–2155. International Joint Conferences on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/297. URL https://doi.org/10.24963/ijcai.2018/297.
- Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo. Knowledge graph embedding for link prediction: A comparative analysis. ACM Trans. Knowl. Discov. Data, 15 (2), January 2021. ISSN 1556-4681. doi: 10.1145/3424672. URL https://doi.org/10.1145/3424672.
- Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks! on training knowledge graph embeddings. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=BkxSmlBFvr.
- Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum: End-to-end differentiable rule mining on knowledge graphs. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
- Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie Wang. Learning hierarchy-aware knowledge graph embeddings for link prediction. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34 (03):3065-3072, Apr. 2020. doi: 10.1609/aaai.v34i03.5701. URL https://ojs.aaai.org/index.php/AAAI/article/view/5701.