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Abstract

Recurrent processing is a crucial feature in human visual processing supporting perceptual

grouping, figure-ground segmentation, and recognition under challenging conditions. There

is a clear need to incorporate recurrent processing in deep convolutional neural networks

(DCNNs) but the computations underlying recurrent processing remain unclear. In this

paper, we tested a form of recurrence in deep residual networks (ResNets) to capture

recurrent processing signals in the human brain. Though ResNets are feedforward

networks, they approximate an excitatory additive form of recurrence. Essentially, this form

of recurrence consists of repeating excitatory activations in response to a static stimulus.

Here, we used ResNets of varying depths (reflecting varying levels of recurrent processing)

to explain electroencephalography (EEG) activity within a visual masking paradigm.

Sixty-two humans and fifty artificial agents (10 ResNet models of depths - 4, 6, 10, 18 and

34) completed an object categorization task. We show that deeper networks (ResNet-10, 18

and 34) explained more variance in brain activity compared to shallower networks

(ResNet-4 and 6). Furthermore, all ResNets captured differences in brain activity between

unmasked and masked trials, with differences starting at ~98ms (from stimulus onset).

These early differences indicated that EEG activity reflected ‘pure’ feedforward signals only

briefly (up to ~98ms). After ~98ms, deeper networks showed a significant increase in

explained variance which peaks at ~200ms, but only within unmasked trials, not masked

trials. In summary, we provided clear evidence that excitatory additive recurrent processing

in ResNets captures some of the recurrent processing in humans.

Significance statement

The challenge of modeling recurrent processes is not trivial and the operationalization of

recurrent processing is highly contested. In this paper, we tested the ability of deep residual
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networks (ResNets) to explain recurrent processes in the human brain. Though ResNets are

feedforward networks, they have been shown to equate operations in recurrent neural

networks. In this study, we show that deeper networks explained more variance in brain

activity than shallower networks. However, all networks still performed far from the noise

ceiling. Thus, we conclude that recurrent processing in ResNets captures a form of

recurrent processing in humans though other types of recurrent processing (inhibition,

multiplicative) that are not present in current regular deep neural networks (alexnet, cornet,

resnet) are necessary for building better visual models.

Introduction

Deep convolutional neural networks (DCNNs) are currently the best mechanistic models of

object recognition and best at predicting human neural visual processing dynamics

(Kietzmann, McClure, et al., 2019; Kriegeskorte, 2015; Yamins & DiCarlo, 2016). However,

DCNNs have also been critiqued for lacking crucial biological features, such as recurrent

processing ((Kietzmann, Spoerer, et al., 2019; van Bergen & Kriegeskorte, 2020).

Feedforward and recurrent processing are two modes of visual processing in biological

brains (V. A. Lamme & Roelfsema, 2000). Though there is no strict separation between both

modes, the distinction of both modes has been made spatio-temporally from

electrophysiology, lesion studies, and neuropharmacological interventions (V. A. Lamme et

al., 1998). Feedforward processing is a rapid set of computations evoked by sensory

information, also known as bottom-up processing (Serre et al., 2007; Thorpe et al., 1996).

Recurrent processing sets in right after the initial feedforward computations, and is known

to include both lateral and top-down processing. In the context of object recognition,

recurrent processing is believed to be essential for recognizing noisy, occluded objects

(Rajaei et al., 2019; Spoerer et al., 2017; Tang & Kreiman, 2017), perceptual-grouping
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(Roelfsema, 2006) and figure-ground segmentation (Fahrenfort et al., 2007; Scholte et al.,

2008). Its importance in human visual processing has led researchers to assert the lack of

recurrent processes in deep convolutional neural networks (DCNNs) as a crucial limitation

(Kietzmann, Spoerer, et al., 2019; Kreiman & Serre, 2020).

Consequently, researchers have attempted to incorporate recurrent processes in the

architecture of DCNNs. This evoked discussions on different ways to model recurrent

processes as researchers from separate disciplines have modeled recurrent processing

differently. Physiologists who are primarily concerned with biological realism have modeled

recurrent processing as an interaction between feedforward and feedback signals,

influenced by neurons’ feature preferences and asymmetry of feedforward and feedback

signals (Mély et al., 2018; Roelfsema et al., 2002). Others, mainly from the field of computer

vision, modeled recurrent processing as a summation between feedforward and feedback

signals (Kietzmann, Spoerer, et al., 2019; Kubilius et al., 2019; Tang et al., 2018). Regardless

of approach, these different attempts at incorporating recurrent signals in models made

clear that recurrent processing improves model performance - especially when the task at

hand is challenging. Thus, there is a consensus on a necessity to incorporate recurrent

processing in DCNNs; however, the appropriate level of complexity in approximating

recurrent signals during the task of object recognition remains unresolved. One of the

simplest models for recurrent processing (as proposed by the graduate student of the

founder of computational neuroscience, Tomaso Poggio, and himself) is a deep residual

network (referred to as “ResNets” here; (He et al., 2016b). The proposition of using ResNets

as a model for recurrent processing follows from the observation that improvement in

DCNNs performance over the years came mainly from incorporating additional layers in the

network architecture, and these additional layers mimicked recurrent processes in primate

brains (Liao & Poggio, 2016). Furthermore, Liao and Poggio have shown that ResNets’
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computations are equivalent to unrolled time steps of recurrent computations in recurrent

neural networks (RNNs); leading the authors to the conclusion that “moderately deep RNNs

are a biologically-plausible model of the ventral stream in visual cortex”. Therefore, in our

study, we used a family of ResNet models of different depths (ResNet-4, 6, 10, 18, 34) as

proxies for varying levels of recurrent processing, to model recurrent signals in the human

visual system. For each ResNet, we initialized and trained 10 seeds of the network, resulting

in 50 artificial agents that we treat akin to animal models (Scholte, 2018).

Earlier studies have shown that task difficulty is an important factor for the occurrence of

recurrent processes (Groen et al., 2018; Kar et al., 2019; Rajaei et al., 2019; Spoerer et al.,

2017; Tang et al., 2018). In an earlier study, Seijdel, Loke et al. (2020) has similarly shown

that image complexity predicts the occurrence of recurrent signals. Therefore, in the context

of an object recognition task, image complexity could also be a factor of task difficulty - the

higher the image complexity, the more difficult the task becomes. The current study

complements the results from Seijdel, Loke et al. (2020) by testing the ability of deep

residual networks to explain the different amounts of recurrent processing in neural data

evoked through varying image complexity. We embedded the same target object in

backgrounds with varying amounts of complexity and used visual masking to disrupt the

occurrence of recurrent processes (Fahrenfort et al., 2007; Lamme et al., 2002). We posit

that the combination of target objects from natural images on artificial backgrounds gives

this experiment a good balance between naturalistic image qualities and experimental

control. The expectation was that all networks, regardless of depth, would explain the same

amount of variance in the brain for masked trials (when we disrupt recurrent processing);

whereas deeper networks would be able to explain more variance of brain activity for

unmasked trials (when visual processing is left unaffected), due to the approximation of

recurrent processes in deeper layers. We found that deeper networks (ResNets-10, 18 and
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34) indeed explained more variance of brain activity than shallower networks (ResNets-4

and 6). Furthermore, all ResNets explained more brain activity in unmasked than masked

trials with differences between masking conditions starting as early as ~98ms. In favor of

replicability of model performance and variance estimation in ResNets (Mehrer et al., 2020),

we trained 10 different seeds of each ResNet model for fitting neural data. These 50 ResNet

models are made available at https://osf.io/hcj27/.

Materials and methods

The subjects, stimuli and experimental paradigm are identical to the ones in Seijdel, Loke et

al. (2020). However, for the ease of reading, we will also briefly describe them here. The

human behavioral data has also been presented in Seijdel, Loke et al. (2020). In our results

section, we summarized the human behavioral data and presented it against new networks

behavioral data.

Human Subjects

A total of 62 participants (45 females, 18-35 years old) took part in our experiment. Data

from one participant was excluded due to the wrong placement of electrodes I1 and I2, and

two other participants were excluded due to technical errors causing missing trials (because

only one trial was obtained per stimulus, missing trials can not be used for a

representational similarity analysis, see Analysis: Representational Similarity Analysis (RSA).

Stimuli

For the categorization task, we used a total of 120 unique images from five categories (i.e.,

24 unique objects per category). These categories are bird, cat, fire hydrant, frisbee, and

suitcase. The images were curated from several online databases - SUN (Xiao et al., 2010),
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Microsoft COCO (Lin et al., 2014), Caltech-256 (Griffin et al., 2007), Open Images V4

(Kuznetsova et al., 2018), and LabelMe (Russell et al., 2008). The selected images

underwent several preprocessing steps. First, we cropped the images into 512x512 pixels

and converted them to grayscale. Second, we manually extracted the target objects in the

images and then re-pasted the target objects onto one of four backgrounds. The first type

of background is a uniform gray color, referred to as the “segmented” condition. The

second type of backgrounds was generated by phase scrambling the background of the

original images (after target object removal). The backgrounds differed in complexity as

determined by two values - Spatial Coherence (SC) and Contrast Energy (CE) (Scholte et al.,

2009). Forty images with the lowest SC and CE values were labeled as “low complexity”

images; forty images with the highest SE and CE values were labeled as “high complexity”;

and the remaining forty images in the middle range were labeled as “middle complexity”

images. A previous study in our lab (Groen et al., 2018) has shown the validity of SC and CE

values as an index of image complexity. Altogether, with 120 objects embedded in four

different backgrounds, we have 480 unique stimuli.

Experimental design

Participants performed a five-choice categorization task. The trial sequence is illustrated in

Figure 1. The complete task consisted of 960 randomized trials (480 unique stimuli

presented unmasked and masked), equally divided between visual masking, object

category, and background complexity conditions. The trials were grouped into eight blocks

of 120 trials with a one-minute break between each block (though participants were allowed

a longer break if necessary).

The task was programmed in Presentation (Version 18.0, Neurobehavioral Systems, Inc.,

Berkeley, CA, www.neurobs.com) and presented on a 23-inch ASUS TFT-LCD display with
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a spatial resolution of 1920*1080 pixels and refresh rate of 60 Hz. Participants were seated

approximately 70cm from the screen. The lights in the room were dimmed and kept

constant between participants.

Figure 1. Stimuli and experimental paradigm. A) Exemplars of two categories (cat, fire hydrant)
from each complexity condition. Backgrounds were either uniform (segmented; blue), or had low
(orange), medium (green) or high (red) complexity values. B) Experimental design. On masked trials,
the stimulus was followed by a dynamic mask (5x100 ms); on unmasked trials, the stimulus was
followed by a blank screen (500 ms). Subsequently, participants were asked to categorize the target
object. Figure taken from Seijdel, Loke et al. (2020).

Deep Residual Neural Networks

A family of ResNets was selected: ResNet-4, 6, 10, 18, 34. The numbers in the model

names indicate the models’ total number of convolution and pooling layers. For each
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model, 10 different initializations were used as each initialization provides a certain amount

of variance in its internal representations (Mehrer et al., 2020). Each of these initialized

networks was trained with the ImageNet Large Scale Visual Recognition Challenge 2012

(ILSVRC) dataset and fine-tuned to the five object categories with a separate dataset from

Microsoft COCO. For the initial training, we used a learning rate of 0.1, with a learning rate

decay of 0.1 every 30 epochs. We used a stochastic gradient descent optimizer with a

momentum of 0.9. All networks were trained for 150 epochs. For fine-tuning, we replaced

the final fully-connected layer and retrained the weights for all layers. We used 13,648

training images and 584 test images from five categories for fine-tuning the network. In

regards to fine-tuning hyperparameters, we used a learning rate of 0.001, with a learning

rate decay of 0.1 every 7 epochs. We also used a stochastic gradient descent optimizer

with a momentum of 0.9. By 40 epochs, the fine-tuning validation performance reached a

plateau. All ResNets training, fine-tuning and feature extraction was performed in PyTorch

(Paszke et al., 2019).

EEG data acquisition and preprocessing

EEG recordings were made with a Biosemi 64-channel Active Two EEG system (Biosemi

Instrumentation, Amsterdam, The Netherlands, www.biosemi.com) at a sample rate of 1024

Hz. A standard 10-10 electrode placement was used. As we were more interested in visual

processing, electrodes F5 and F6 were moved to the occipital region and used as

electrodes I1 and I2. Four external electrodes were used to record eye-movement artifacts.

Preprocessing was performed in MNE-Python (Gramfort et al., 2013) using the following

steps: (1) raw data was re-referenced to the average of left and right electrodes on the

mastoids, (2) high-pass (0.1Hz) and low-pass (30 Hz) filters were applied, (3) Independent

Component Analysis (ICA; Vigario et al., 2000) was performed to identify and remove
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remainder artifact components, specifically eye-movements and eye-blinks, (4) data were

segmented into epochs from -100 to 600ms relative to stimulus onset, (5) baseline

correction was applied to the 100ms prior to stimulus onset, (6) data were transformed to

current source density responses (Perrin et al., 1989), (7) multivariate noise normalization

was applied (Guggenmos et al., 2018).

Analysis: Representational Similarity Analysis (RSA)

We examined both brain activity and internal representations of the ResNets using

Representational Similarity Analysis (RSA; Kriegeskorte et al., 2008). RSA allowed us to test

our hypotheses through the framework of representational geometry. We stored the

pairwise distances between the activations of our experimental stimuli in representational

dissimilarity matrices (RDMs). Importantly, these RDMs abstract away from the original

measurement units and allow for comparisons across different domains - in our paper,

between human brain activity and DCNNs activity.

From the EEG measurements, we obtained a RDM for every time sample from -100ms to

600ms relative to stimulus onset; this amounts to 180 RDMs per trial. The RDMs were

computed based on activity from 22 posterior electrodes (Iz, I1, I2, Oz, O1, O2, POz, PO3,

PO4, PO7, PO8, Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10). The electrodes were selected

based on a previous study on the relationship between recurrent processing and image

complexity (Groen et al., 2018).

From the DCNNs, we obtained RDMs from all convolutional layers. Similar to the analysis in

Storrs et al. (2020), we transformed the activations using 100 principal components instead

of using raw activations. These components were obtained with a separate dataset

(n=2986). The transformed activations were then used to compute the pairwise

(dis)similarity. The pairwise dissimilarity was computed as of the(1 − 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)
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pattern responses. In the following analyses involving the RDMs, only the upper triangle is

used (excluding the diagonal).

We used ResNets RDMs as predictors to explain EEG RDMs in a regression model. This

regression was performed with non-negative least squares (NNLS) (Khaligh-Razavi &

Kriegeskorte, 2014; Kaniuth & Hebart, 2021). The RDMs used in our regression models

were made by trials averaged within the same object categories to increase the

signal-to-noise ratio and place a larger focus on object categorization. After averaging trials

within object categories, we obtained 20x20-sized RDMs - 5 object categories x 4

background conditions. We also performed trial averaging on the ResNets’ activations

within object categories. The regression for each ResNet model is dependent on the

number of layers in the model (see Figure 2). For example, with ResNet-6, we would build

five different regression models. For the first model, we regressed only the first

convolutional layer onto the EEG RDMs; for the second model, we regressed the first and

second convolutional layers; this process continued until we included all five convolutional

layers in ResNet-6. We performed 50 cross-validations for each model. The

cross-validations folds were performed similarly as in Storrs et al. (2020). In every

cross-validation, we reserved 15 (randomly chosen) test participants and 12 (randomly

chosen) test stimuli per category (12 x 5 categories x 4 conditions = 240 trials in total), while

fitting the NNLS model on 44 participants and 12 train stimuli. For each model, we

computed a R² value based on 15 test participants and 12 test stimuli. We also computed

the upper and lower bounds of the noise ceiling by taking the averaged correlation of each

test participant’s RDM with the RDM averaged across all test participants (upper bound),

and taking the averaged correlation of each test participant’s RDM with the RDM averaged

across all train participants (lower bound). Subsequently, we squared the averaged

correlation values to obtain the R² values for the upper and lower bounds. We determined
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the unique R² of each layer based on the increase in R² value when that layer was included

in the model.

Figure 2. Regression models with varying number of layers as predictors. To observe the
contributions of additional layers in predicting neural data, we fitted regression models with an
incremental number of layers included as predictors.

Statistical analysis: behavioral data

For all ResNets (n=50) and human subjects (n=59), categorization accuracy was computed

as the average proportion of correct trials within each condition. Differences between

conditions for ResNets were tested with a two-factor ANOVA (network type and

background complexity), followed by t-tests between the condition pairs. The p-values

obtained from the ANOVA were corrected for multiple comparisons with an FDR (α=0.01).

Significance was determined based on a p-value which was smaller than 0.01. Behavioral

analysis was performed and visualized in Python using the following packages: NumPy,

SciPy, Statsmodels, Pandas, Seaborn (Harris et al., 2020; McKinney & Others, 2010;

Seabold & Perktold, 2010; Virtanen et al., 2020; Waskom, 2021).

Statistical analysis: ResNets’ explained variance on brain activity

We used a Mann-Whitney U test to test for pairwise differences in between ResNets. The𝑅2

p-values obtained from the Mann-Whitney U test were corrected for multiple comparisons
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with an FDR (α=0.01). Similarly, the Mann-Whitney U test was used to test for differences in

between unmasked and masked trials for each ResNet model. Significance was𝑅2

determined based on a p-value which was smaller than 0.01.

Results

We investigated the ability of DCNNs to capture recurrent processing in the human brain

within an object categorization task. Human subjects performed the task under both

visually unmasked and masked conditions. ResNets performed the recognition task with

identical stimuli. We compared both the object categorization performance of human

subjects with the categorization performance of ResNets, and also brain activity from

human subjects with unit activations from ResNets.

Visual masking changes human object recognition performance from one alike

a deeper network into a shallower one

Human performance under visually unmasked conditions was close to performance ceiling

(i.e. 100% accuracy) regardless of object background complexity (see Figure 3A). However,

under visually masked conditions, human performance deteriorated with increasing

background complexity. Results from repeated measures ANOVA revealed that both factors

of background complexity and masking interacted – specifically, masking impaired

performance to a greater degree for more complex backgrounds (Seijdel, Loke et al., 2020).

For ResNets (see Figure 3B), the deepest network (i.e. ResNet-34) performed close to

ceiling for all background complexity conditions; whereas shallower networks such as

ResNet-10 suffered in performance as background complexity increased. The two most

shallow networks - ResNet-4 and 6 - performed poorly regardless of background

complexity. A two factor ANOVA was performed with network type (i.e. number of layers)
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and background complexity as independent factors; its results showed significant main

effects of network type, F(4,180) = 3867.61, p < .001, significant main effects of background

complexity conditions, F(3,180) = 15.93, p < .001, and also significant interaction effects

between network type and background complexity conditions, F(12,180) = 7.60, p < .001.

To examine if differences of each network’s performance across conditions were significant,

pairwise comparisons t-tests were performed. For ResNet-4, significant differences were

reported between segmented and medium complexity conditions, t(9) = 5.01,

p(fdr-corrected) = .002; low and medium complexity conditions, t(9) = 6.00, p(fdr-corrected)

= .001; between medium and high complexity conditions, t(9) = -4.19, p(fdr-corrected) =

.005; but no significance were reported between segmented and low complexity conditions,

t(9) = -.49, p(fdr-corrected) = .64; nor between segmented and high complexity conditions,

t(9) = 1.17, p(fdr-corrected) = .33; nor between low and high complexity conditions, t(9) =

2.18, p(fdr-corrected) = .09.

For ResNet-6, significant differences were reported between segmented and low complexity

conditions, t(9) = -4.83, p(fdr-corrected) = .005; but no significant differences were reported

between segmented and medium complexity conditions, t(9) = -3.16, p(fdr-corrected) = .03;

between segmented and high complexity conditions, t(9) = -0.88, p(fdr-corrected) = .46;

between low and medium complexity conditions, t(9) = -.76, p(fdr-corrected) = .46; between

low and high complexity conditions, t(9) = 1.30, p(fdr-corrected) = .34; nor between medium

and high complexity conditions, t(9) = 2.41, p(fdr-corrected) = .08.

For ResNet-10, there were significant differences between low and medium complexity

conditions, t(9) = 9.39, p(fdr-corrected) < .001, and between low and high complexity

conditions, t(9) = 7.61, p(fdr-corrected) < .001. But no other significant differences were

found - between segmented and low complexity conditions, t(9) = -3.08, p(fdr-corrected) =

.02; between segmented and medium complexity conditions, t(9) = 2.04, p(fdr-corrected) =
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.07; between segmented and high complexity conditions, t(9) = 3.29, p(fdr-corrected) = .02;

nor between medium and high complexity conditions, t(9) = 2.48, p(fdr-corrected) = .04.

For ResNet-18, no significant differences were found between all complexity conditions -

between segmented and low complexity conditions, t(9) = -1.06, p(fdr-corrected) = .38;

between segmented and medium complexity conditions, t(9) = .61, p(fdr-corrected) = .56;

between segmented and high complexity conditions, t(9) = 1.27, p(fdr-corrected) = .38;

between low and medium complexity conditions, t(9) = 2.83, p(fdr-corrected) = .06;

between low and high complexity conditions, t(9) = 3.71, p(fdr-corrected) = .03; and

between medium and high complexity conditions, t(9) = 1.22, p(fdr-corrected) = .38.

For ResNet-34, no significance were reported between all complexity conditions - between

segmented and low complexity conditions, t(9) = 1.66, p(fdr-corrected) = .44; between

segmented and medium complexity conditions, t(9) = 1.21, p(fdr-corrected) = .44; between

segmented and high complexity conditions, t(9) = 1.12, p(fdr-corrected) = .44; between low

and medium complexity conditions, t(9) = -.55, p(fdr-corrected) = .61; between low and

high complexity conditions, t(9) = -1.13, p(fdr-corrected) = .44; and between medium and

high complexity conditions, t(9) = -.52, p(fdr-corrected) = .61.

In general, each ResNet model performed consistently across different complexity

conditions with the exception of ResNet-10 which performed poorer when background

complexity increased from low to medium complexity.
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Figure 3. Human and ResNets’ performance on the object categorization task. Both humans
and ResNets performed an object categorization task (chance performance: 20%). The different rows
indicate performance in different background complexity conditions. The diamond shaped marker
and line indicate average score and standard error. A) Human performance was consistent across
background complexity conditions within unmasked trials but differed across masked trials. B) The
deepest network (i.e. ResNet-34) mimics human performance in unmasked trials - its performance
did not vary with background complexity. However, a shallower network such as ResNet-10 mimics
human performance in masked trials - its performance deteriorated with medium and high
complexity conditions.

In other words, human subjects performed optimally under visually unmasked conditions,

much like a deep network (i.e. ResNet-34). But, when stimuli were masked, human subjects

performed more like a shallower network (i.e. ResNet-10). Here, we can conclude that visual

masking changes human object recognition performance from one alike deep networks to

one alike shallower networks.
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Deeper ResNets (ResNets-10, 18 and 34) explained more variance in brain

activity compared to shallower ResNets (ResNets-4 and 6)

All analyses of brain activity and ResNets activity is performed using Representational

Similarity Analysis (RSA; see Materials and methods section). With RSA, we obtained stimuli

pairwise dissimilarity matrix (known as representational dissimilarity matrix; RDM) as it

reveals the dissimilarity distance between stimuli condition pairs. RDMs were generated

based on EEG activity and network layer activations.

We tested the ability of ResNets to capture brain activity by fitting regression models for

each network. In these regression models, we used ResNets RDMs as predictors for EEG

RDMs. These models were fitted separately for unmasked and masked trials as we are

interested to observe the difference in explained variance when recurrent processing is(𝑅2)

undisrupted (in unmasked trials) and disrupted (in masked trials). The plotted for each𝑅2

ResNet is averaged across 10 initializations of the network. (See Figure 4)

In order to assess if ResNet models performed differently in predicting brain activity,

pairwise comparisons between ResNets were performed on samples at ~90–250ms. Within

unmasked trials, pairwise comparisons revealed no significant differences between the 𝑅2

of ResNet-4 and ResNet-6. However, significant differences were found between the of𝑅2

ResNet-4 and 6 with the of ResNet-10, 18 and 34 for all time samples within ~90–250ms𝑅2

(ɑ = 0.01, FDR corrected for 420 pairwise comparisons – 10 model pairs x 42 time

samples). Pairwise comparisons between the of ResNet-10 and ResNet-18 have shown𝑅2

significant differences at ~110–126ms, and ~180ms (ɑ = 0.01, FDR corrected). Pairwise

comparisons between the of ResNet-10 and ResNet-34 have shown significant𝑅2
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differences at ~102–126ms, and ~184ms (ɑ = 0.01, FDR corrected). Pairwise comparisons

between the of ResNet-18 and ResNet-34 revealed non-significant differences.𝑅2

In summary, the of ResNet-4 and ResNet-6 did not significantly differ, and both are𝑅2 

significantly lower than the of ResNet-10, 18 and 34. The of ResNet-10 significantly𝑅2 𝑅2

differed from the of ResNet18 at ~110–126ms and ~180ms. The of ResNet-10 also𝑅2 𝑅2

significantly differed from the of ResNet-34 at ~102–126ms, and also ~184ms. The of𝑅2 𝑅2

ResNet-18 and ResNet-34 did not significantly differ from each other. We observed that

deeper networks have higher compared to shallower networks, indicating an increased𝑅2

capture of the variance in EEG data; this is especially apparent in the differences between

ResNet-10, 18 and 34 and ResNet-4 and 6.
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Figure 4. Regression models using ResNets’ layers as predictors for unmasked (A) and
masked (B) trials. Pairwise comparisons between the ResNets revealed that deeper networks have

higher than shallower networks. A) Within unmasked trials, results showed that the of𝑅2 𝑅2

ResNet-10, 18 and 34 is higher compared to the of ResNet-4 and 6 for all time points 90–250ms.𝑅2

Additionally, the of ResNet-18 and 34 is also higher compared to the of ResNet-10. B) Within𝑅2 𝑅2

masked trials, results showed that the of ResNet-10, 18 and 34 is higher than the of ResNet-4𝑅2 𝑅2

and 6 at two windows: 90–122ms(± 4ms) and 174-237ms(± 12ms). Additionally, the of ResNet-34𝑅2

is also higher compared to the of ResNet-10 and ResNet-18. Surprisingly at ~122–174ms, all𝑅2

networks’ did not differ significantly from each other.𝑅2
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Subsequently, we fitted the models to masked trials. We similarly performed pairwise

comparisons between the of ResNet models on samples at ~90–250ms. Pairwise𝑅2

comparisons between the of ResNet-4 and ResNet-6 revealed no significant differences.𝑅2

Pairwise comparisons between the of ResNet-4 and 6 with ResNet-10, 18 and 34𝑅2

significantly differed in two windows: ~90–122ms (± 4ms) and ~174–237ms (± 12ms), (ɑ =

0.01, FDR corrected). Pairwise comparisons between the of ResNet-10 and ResNet-18𝑅2

revealed only one significant time sample at ~114ms (ɑ = 0.01, FDR corrected). Pairwise

comparisons between of ResNet-10 and ResNet-34 showed significant differences at𝑅2

~106–122ms, ~161ms, and also ~227–246ms (ɑ = 0.01, FDR corrected). Pairwise

comparisons between of ResNet-18 and ResNet-34 showed significant differences at𝑅2

~234ms and ~242–246ms (ɑ = 0.01, FDR corrected). However, of all ResNets did not𝑅2

significantly differ from each other at ~122–174ms.

In summary, the of ResNet-4 and ResNet-6 for masked trials do not show significant𝑅2

differences. However, the of ResNet-10, 18 and 34 is higher than the of ResNet-4 and𝑅2 𝑅2

6 at ~90ms–122ms (± 4ms) and ~174–237ms (± 12ms). Only one significant time point was

found between between of ResNet-10 and ResNet-18 at ~114ms. Comparisons between𝑅2

of ResNet-10 and ResNet-34 showed significant differences at ~106–122ms, ~161ms,𝑅2

and also ~227–246ms. Comparisons between of ResNet-18 and ResNet-34 showed𝑅2

significant differences at ~242–246ms. Similar to unmasked trials, we also observed that

deeper networks (ResNet-10, 18 and 34) have higher compared to shallower networks𝑅2

(ResNet-4 and 6); however, the duration of significant differences between both deeper and

shallower networks have shrunk in masked trials compared to unmasked trials. Additionally,
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within masked trials, the of all ResNets did not significantly differ from each other at𝑅2

~122–174ms.

Figure 5. R of models for unmasked and masked data and differences in models performance²
between masking conditions. A) The for both unmasked and masked trials are plotted together.𝑅2

B) The difference in between masking conditions is plotted. Colored markers above reflect𝑅2

significant differences between masking conditions. We similarly see that deeper networks
(ResNet-10, 18 and 34) have longer duration of significant differences compared to shallower
networks (ResNet-4 and 6), moreover, the magnitude of differences are larger for deeper networks.
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To compare between the explained variance in unmasked and masked trials, we performed

pairwise comparisons between the models’ for unmasked trials and for masked trials𝑅2 𝑅2

on time samples ~90–250ms. For ResNet-4, significant differences were found –

~122–129ms, ~145–157ms, ~176–231ms, and ~246ms (ɑ = 0.01, FDR corrected). For

ResNet-6, significant differences were found at ~118–133ms, ~145–157ms, and

~172–231ms (ɑ = 0.01, FDR corrected). For ResNet-10, significant differences were found

at ~102–106ms, and ~114–246ms (ɑ = 0.01, FDR corrected). For ResNet-18, significant

differences were found at ~98–106ms, and ~114–246ms (ɑ = 0.01, FDR corrected). For

ResNet-34, significant differences were found at ~102–106ms, and ~114–246ms (ɑ = 0.01,

FDR corrected).

In short, significant differences in between masking conditions were found as early as𝑅2

~98ms for ResNet-18, ~102ms for ResNet-10 and 34, ~118ms for ResNet-6 and ~122ms

for ResNet-4. There were no effects of masking nor network depth before ~98ms, indicating

EEG activity reflected purely feedforward processes.

Additionally, we computed the difference between the for unmasked trials and masked𝑅2

trials (see Figure 5B) and observed that the difference between masking conditions

gradually increased to a peak at ~200ms. The magnitude of differences between masking

conditions are also larger for deeper networks (ResNet-10, 18, and 34) than shallower

networks (ResNet-4 and 6), indicating that deeper networks are better at capturing

recurrent processing signals at later time-points.

Early DCNN layers are sufficient to explain brain activity

To understand the contribution of ResNets’ depth in capturing brain activity, we built a

series of regression models differentiated by the number of convolutional layers used as

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.30.478404doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.30.478404
http://creativecommons.org/licenses/by-nc-nd/4.0/


predictors (see Figure 2). As more layers are included as predictors, the model increases in

(see Figure 6). However, at a certain number of layers, including more layers no longer𝑅2

increases the of the model. ResNet-4 reached maximal in layer 3. ResNet-6 and𝑅2 𝑅2

ResNet-10 reached maximal in layer 5. ResNet-18 reached maximal in layer 7.𝑅2 𝑅2

ResNet-34 reached maximal in layer 9. Deeper models like ResNet-10, 18 and 34𝑅2

reached maximal in its early layers (i.e. first half layers of the network). Layers beyond𝑅2

these layers of maximal do not improve the model performance (i.e. amount of ).𝑅2 𝑅2

Figure 6. Models’ R² plotted as a proportion of the maximum R². We fitted regression models
with an increasing number of convolutional layers as predictors. With each additional layer, models

increases its . However, the increase in stopped at a certain number of layers. The colored𝑅2 𝑅2

triangles indicate the layer where stopped increasing for the model. For ResNet-10, 18 and 34, the𝑅2

maximal was reached in its early layers (i.e. first half layers of the network).𝑅2

To further assess the networks’ ability to predict brain activity, we computed the unique 𝑅2

from each network layer to observe each layer’s contribution to the model performance.

The unique of a layer is computed as the increase in of the model with the additional𝑅2 𝑅2

layer as a predictor (See equation below).

𝑢𝑛𝑖𝑞𝑢𝑒 𝑅² 𝑎𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛  =  𝑚𝑜𝑑𝑒𝑙'𝑠 𝑅² 𝑎𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛 − 𝑚𝑜𝑑𝑒𝑙'𝑠 𝑅² 𝑎𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛 − 1
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Figure 7. Unique R² of each ResNet layer. We computed the unique variance for each layer in the
regression model. For shallower networks (ResNet-4 and 6), layers 2 and 3 contributed most to the
model. For deeper networks (ResNet-10, 18 and 34), layers 3, 4 and 5 similarly contributed at least

half of the models’ . Note: Layer-1 is not plotted as it has negative values which happen when𝑅2 𝑅2

the model is arbitrarily worse than chance. This is also the reason why the plot begins below zero.

We observed that the early layers of deeper networks contributed disproportionately to the

models’ (see Figure 7). Layers 3, 4 and 5 contributed most to deeper networks’𝑅2

(ResNet-10, 18 and 34) . Paradoxically, though deeper networks have significantly higher𝑅2

than shallower networks, deeper networks’ performance can be attributed to activity in𝑅2

its early layers; deeper layers (i.e. second half layers of the network) do not further

contribute to the models’ .𝑅2

Discussion

Summary

In this study, we investigated the ability of DCNNs to capture recurrent processing in the

human brain. Specifically, we tested ResNets as they approximate an additive form of

recurrent processing consisting of repeating excitatory activations on static inputs. We used

ResNets of varying depths as proxies for varying amounts of recurrent processing. We
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expected deeper networks (i.e. networks with more recurrent processing) to explain more

variance in brain activity (i.e. have higher ) than shallower neworks in unmasked trials𝑅2

when recurrent processing was not disrupted, but for all networks to have similar in𝑅2

masked trials when recurrent processing was disrupted. Our expectations were partially met

as deeper networks (ResNet-10, 18 and 34) indeed have higher than shallower networks𝑅2

(ResNet-4 and 6), but for both unmasked and masked trials. We also find that all ResNet

models (ResNet-4, 6, 10, 18, 34) have higher under unmasked trials than masked trials,𝑅2

with differences in starting as early as ~98ms. These differences in gradually𝑅2 𝑅2

increased to a peak at ~200ms, with deeper networks (ResNet-10, 18, 34) showing larger

magnitudes of differences compared to shallower networks (ResNet-4 and 6). By building

regression models with increasing numbers of layers as predictors, we see that only early

layers (i.e. first half layers of the model) contributed to the of the model.𝑅2

Deeper networks capture behavioral performance but not recurrent processes in

early visual cortex

We found that humans performed similarly as a deep network (i.e. ResNet-34) under

visually unmasked conditions; but visual masking deteriorated human performance to

become more like a shallower network (i.e. ResNet-10). Based on categorization

performance, we had expected a deep model like ResNet-34 to have higher as𝑅2

compared to a shallower model like ResNet-10. This expectation stems from previous

studies - where DCNNs that perform better in categorization accuracy also better predict

brain data (Yamins et al., 2014). However, although ResNet-34 significantly outperforms

ResNet-10 at categorizing objects, the ResNets-34 only significantly differed from the𝑅2 𝑅2

of ResNet-10 for a short time window at ~102–126ms and ~184ms. Nonetheless, our

finding agrees that model depth improves the model’s object categorization performance -
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similar to the findings of the original ResNet creators (He et al., 2016a). Though, the

mechanisms in ResNets’ deeper layers do not seem to match the underlying mechanisms

in human’s early visual cortex, at least as measured with EEG. This discrepancy between

behavioral outcomes and brain activity prediction can also be observed on the Brain-Score

platform, where we see that the unmodified version of ResNets tend to score well on

explaining behavior but score less well on explaining activity in V1 (Schrimpf et al., 2018).

Simple recurrence captures recurrent processing but still insufficient

ResNets are made up of residual blocks. Each residual block has multiple convolutional

layers with the same filter size and same number of filters. Thus, the repetition of identical

convolutional operations could be perceived as an additive form of recurrence - recurrence

by repeating excitatory activations in response to a static stimulus, similar to recurrence in

current RNNs and DCNNs like CorNet. We observed that this simple form of recurrence

indeed contributed to significant differences between ResNet-4 and 6 with ResNet-10, 18

and 34. However, this form of recurrence only works to a certain extent. With deeper

networks, our results revealed that the of ResNets-10, 18 and 34 only significantly𝑅2

differed on a few time points (between ResNet-10 and 34) or none at all (between

ResNet-18 and 34), while there was still a large gap between ResNet-34’s with the noise𝑅2

ceiling. Thus, it appears that though additive recurrence captures recurrent processing

partially, by itself it is insufficient to fully capture recurrent processing in humans. This

finding is supported by studies in animals demonstrating the importance of inhibition in

feedback processes (Klink et al., 2017), and also recent studies modeling recurrent signals,

where researchers have shown that both lateral (i.e. repeating excitatory activations) and

feedback (i.e. top down) connections are necessary to improve the model’s performance

beyond feedforward processes (Kietzmann, Spoerer, et al., 2019; Spoerer et al., 2017).

Recurrent signals set in as early as ~98ms
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When we observed the difference in between masking conditions, we see significant𝑅2

differences as early as ~98ms for ResNet-18, ~102ms for ResNet-10 and 34, ~118ms for

ResNet-6 and ~122ms for ResNet-4 – with deeper networks (ResNet-10, 18 and 34)

showing earlier significant differences compared to shallower networks (ResNet-4 and 6).

These early differences indicate that recurrent signals set in as early as ~98ms. Before

~98ms, there were no effects of masking nor effects of network depth, indicating that EEG

activity before ~98ms are feedforward processes. The differences in between masking𝑅2

conditions gradually increased until a peak difference at ~200ms, indicating that recurrent

signals build up across time. As such, early EEG activity is a mixture of feedforward and

recurrent processes, whereas late EEG activity is mainly dominated by recurrent processes.

Consequently, our results suggest that models including interactions between feedforward

and feedback streams across time steps could better capture recurrent processes in

humans.

Conclusion

In this paper, we tested the ability of DCNNs to capture recurrent processes in human

brains. Specifically, we tested an additive form of recurrence in ResNets to predict recurrent

signals in human visual systems. We found that deeper ResNets (ResNets-10, 18 and 34)

explained more variance in brain activity than shallower ResNets (ResNets-4 and 6).

Furthermore, all ResNets explained more variance in brain activity during unmasked trials

than masked trials. Differences in explained variance between masking conditions set in as

early as ~98ms and gradually increased to a peak at ~200ms, indicating that early brain

activity consists of both feedforward and recurrent processes but gradually becomes

dominated by recurrent processes. Accordingly, deeper networks showed larger differences

in explained variance between masking conditions than shallower networks, providing

further evidence that deeper networks capture larger proportions of recurrent processing
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signals. However, given the substantial distance between the models’ explained variance

and data’s noise ceiling, we posit that other types of recurrent processes (inhibition,

multiplicative), that are not present in current regular deep neural networks (alexnet, cornet,

resnet) are of paramount importance towards better visual models.
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