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ABSTRACT

Inference of cell-cell communication (CCC) from single-cell RNA-sequencing data is a powerful
technique to uncover putative axes of multicellular coordination, yet existing methods perform
this analysis at the level of the cell type or cluster, discarding single-cell level information. Here
we present Scriabin – a flexible and scalable framework for comparative analysis of CCC at
single-cell resolution. We leverage multiple published datasets to show that Scriabin recovers
expected CCC edges and use spatial transcriptomic data to validate that the recovered edges
are biologically meaningful. We then apply Scriabin to uncover co-expressed programs of CCC
from atlas-scale datasets, validating known communication pathways required for maintaining
the intestinal stem cell niche as well as previously unappreciated modes of intercellular
communication. Finally, we utilize single-cell communication networks calculated using Scriabin
to follow communication pathways that operate between timepoints in longitudinal datasets,
highlighting bystander cells as important initiators of inflammatory reactions in acute
SARS-CoV-2 infection. Our approach represents a broadly applicable strategy to leverage
single-cell resolution data maximally toward uncovering CCC circuitry and rich niche-phenotype
relationships in health and disease.
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INTRODUCTION

Complex multicellular organisms rely on coordination within and between their tissue niches to
maintain homeostasis and appropriately respond to internal and external perturbations. This
coordination is achieved through cell-cell communication (CCC), whereby cells send and
receive biochemical and physical signals that influence cell phenotype and function1,2. A
fundamental goal of systems biology is to understand the communication pathways that enable
tissues to function in a coordinated and flexible manner to maintain health and fight disease3,4.

The advent of single-cell RNA-sequencing (scRNA-seq) has made it possible to dissect complex
multicellular niches by applying the comprehensive nature of genomics at the “atomic”
resolution of the single cell. Concurrently, the assembly of protein-protein interaction databases5

and the rise of methods for pooled genetic perturbation screening6,7 have empowered the
development of methods to infer putative axes of cell-to-cell communication from scRNA-seq
datasets8–13. These techniques generally function by aggregating ligand and receptor expression
values for groups of cells to infer which groups of cells are likely to interact with one another14–17.
However, biologically, CCC does not operate at the level of the group; rather, such interactions
take place between individual cells. There exists a need for methods of CCC inference that: 1.
analyze interactions at the level of the single cell; 2. leverage the full information content
contained within scRNA-seq data by looking at up- and down-stream cellular activity; 3. enable
comparative analysis between conditions; and, 4. are robust to multiple experimental designs.

Here we introduce single-cell resolved interaction analysis through binning (Scriabin) – an
adaptable and computationally-efficient method for CCC analysis. Scriabin dissects complex
communicative pathways at single-cell resolution by combining curated ligand-receptor
interaction databases13,18,19, models of downstream intracellular signaling20, anchor-based
dataset integration21, and gene network analysis22 to recover biologically meaningful CCC edges
at single-cell resolution.

RESULTS

A flexible framework for comparative CCC analysis at single-cell resolution
Our goal was to develop a scalable and statistically robust method for the comprehensive
analysis of CCC from scRNA-seq data. Scriabin implements three separate workflows
depending on dataset size and analytical goals (Figure 1): 1. the cell-cell interaction matrix
workflow, optimal for smaller datasets, analyzes communication methods used for each cell-cell
pair in the dataset; 2. the summarized interaction graph workflow, designed for large
comparative analyses, identifies cell-cell pairs with different total communicative potential
between samples; and, 3) the interaction program discovery workflow, suitable for any dataset
size, finds modules of co-expressed ligand-receptor pairs.

The fundamental unit of CCC is a sender cell Ni expressing ligands that are received by their
cognate receptors expressed by a receiver cell Nj. Scriabin encodes this information in a
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cell-cell interaction matrix M by calculating the geometric mean of expression of each
ligand-receptor pair by each pair of cells in a dataset (Figure 1A). As ligand-receptor
interactions are directional, Scriabin considers each cell separately as a “sender” (ligand
expression) and as a “receiver” (receptor expression), thereby preserving the directed nature of
the CCC network. M can be treated analogously to a gene expression matrix and used for
dimensionality reduction, clustering, and differential analyses.

Next, Scriabin identifies biologically meaningful edges, which we define as ligand-receptor pairs
that are predicted to result in observed gene expression profiles in the receiving cell (Figure 1).
This requires defining a gene signature for each cell that reflects its relative gene expression
patterns and determining which ligands are most likely to drive that observed signature. First,
variable genes are identified across an axis of interest in order to immediately focus the analysis
on features that distinguish samples of relevance or salient dynamics. When analyzing a single
dataset, this set of genes could be the most highly-variable genes (HVGs) in the dataset, which
would likely reflect cell type- or  state-specific modes of gene expression. Alternatively, when
analyzing multiple datasets, the genes that are most variable between conditions (or time
points) could be used. To define the relationship between the selected variable genes and each
cell, the single cells and chosen variable genes are placed into a shared low dimensional space
with multiple correspondence analysis (MCA) implemented by Cell-ID23, a generalization of
principal component analysis (PCA). A cell’s gene signature is defined as the set of genes in
closest proximity to the variable genes in the MCA embedding (see Methods). NicheNet20 is
then used to nominate the ligands that are most likely to result in each cell’s observed gene
signature. Ligand-receptor pairs that are recovered from this process are used to weight the
cell-cell interaction matrix M proportionally to their predicted activity, highlighting the most
biologically important interactions (Figure 1).

Because one dimension of M is N x N cells long, it is impractical to construct M for samples with
high cell numbers; this problem will likely be exacerbated as scRNA-seq platforms continue to
increase in throughput. Conceptually, solutions to this problem include subsampling and
aggregation. Subsampling, however, is statistically inadmissible because it involves omission of
available valid data and introduction of sampling noise24; meanwhile, aggregation at any level
raises the possibility of obscuring important heterogeneity and/or specificity.

A third solution is to first intelligently identify cell-cell pairs of interest and build M using only
those sender and receiver cells. We hypothesize that, in the context of a comparative analysis,
sender-receiver cell pairs that change substantially in their magnitude of interaction are the most
biologically informative. To identify these cells, Scriabin first constructs a summarized interaction
graph S, characterized by an N by N matrix containing the sum of all cognate ligand-receptor
pair expression scores for each pair of cells. S is much more computationally efficient to
generate, store, and analyze than a full-dataset M (for a 1,000 cell dataset, S is 1,000 by 1,000,
whereas M is ~3,000 by 1,000,000). Comparing summarized interaction graphs from multiple
samples requires that cells from different samples share a set of labels or annotations denoting
what cells represent the same identity. We use recent progress in dataset integration
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Figure 1: Schematic overview of cell-resolved communication analysis with
Scriabin. Scriabin consists of multiple analysis workflows depending on dataset size and
the user’s analysis goals. A) At the center of these workflows is the calculation of the
cell-cell interaction matrix M, which represents all ligand-receptor expression scores for
each pair of cells. B) Cell-cell interaction matrix workflow: In small datasets, M can be
calculated directly, active CCC edges predicted using NicheNet20, and the weighted
cell-cell interaction matrix used for downstream analysis tasks like dimensionality
reduction. M is a matrix of NxN cells by P ligand-receptor pairs, where each unique
cognate ligand-receptor combination constitutes a unique P. C) Summarized interaction
graph workflow: In large comparative analyses, a summarized interaction graph S can
be calculated in lieu of a full-dataset M. After high-resolution dataset alignment through
binning, the most highly variable bins in total communicative potential can be used to
construct an intelligently subsetted M. D) Interaction program discovery workflow:
Interaction programs of co-expressed ligand-receptor pairs can be discovered through
iterative approximation of the ligand-receptor pair topological overlap matrix (TOM).
Single cells can be scored for the expression of each interaction program (IP), followed
by differential expression and modularity analyses.

methodology21,25 to develop a high-resolution alignment process we call “binning,” where we
assign each cell a bin identity that maximizes the similarity of cells within each bin, maximizes
the representation of all samples we wish to compare within each bin, while simultaneously
minimizing the degree of agglomeration required (Figure 1; Supplemental Text). Sender and
receiver cells belonging to the bins with the highest communicative variance can then be used
to construct M.

Finally, Scriabin implements a workflow for single cell-resolved CCC analysis that is scalable to
any dataset size, enabling discovery of co-expressed ligand-receptor interaction programs. This
workflow is motivated by the observation that transcriptionally similar sender-receiver cell pairs
will tend to communicate through similar sets of ligand-receptor pairs. To achieve this, we
adapted the well-established weighted gene correlation network analysis (WGCNA) pipeline22 –
designed to find modules of co-expressed genes – to uncover modules of ligand-receptor pairs
that are co-expressed by the same sets of sender-receiver cell pairs, which we call “interaction
programs”. Scriabin calculates sequences of M subsets that are used to iteratively approximate
a topological overlap matrix (TOM) which is then used to discover highly connected interaction
programs. Because the dimensionality of the approximated TOM is consistent between
datasets, this approach is highly scalable. The connectivity of individual interaction programs is
then tested for statistical significance, which can reveal differences in co-expression patterns
between samples. Single cells are then scored for the expression of statistically significant
interaction programs. Comparative analyses include differential expression analyses on
identified interaction programs, as well as comparisons of intramodular connectivity between
samples.
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Figure 2: Benchmarking and robustness analysis of cell-resolved communication
analysis. A) Runtime of Scriabin and five published CCC methods on the 10X PBMC 5k
dataset. For each dataset size, the dataset was randomly subsampled to the indicated
size and the same subsampled dataset was used for all methods. B) Runtime of Scriabin
and Connectome comparative workflows. The 10X PBMC 5k and 10k datasets were
merged into a single dataset which was subsampled as in (A), and the comparative
workflows performed between cells from the 5k vs. 10k dataset. C) Jaccard index
heatmap depicting the degree of overlap in the top 1,000 ligand-receptor CCC edges
from each method-resource pair. D) Left, description of workflow to validate Scriabin
using spatial transcriptomics datasets; right, density plots showing the distribution of
cell-cell distances within the top 1% of highly interacting cell-cell pairs predicted by
Scriabin. The vertical black lines denote the median distance of all cell-cell pairs. E) The
procedure depicted in (D) was repeated for 11 datasets, and the median distance
quantile of the top 1% interacting cell-cell pairs calculated using real cell distances
relative to randomly permuted cell distances.

Scriabin is a robust and efficient method for single-cell resolved communication analysis

We next explored Scriabin’s performance in comparison to other published CCC methods.
Scriabin was faster than five agglomerative CCC methods15–17,26,27 in analyzing a single dataset
at all the dataset sizes tested (Figure 2A). Of these five agglomerative CCC methods, only
Connectome27 supports a full comparative workflow, and was slower than Scriabin in a
comparative CCC analysis of two datasets (Figure 2B). We also compared the top CCC edges
predicted by these methods28 to a pseudobulk version of Scriabin, finding that the top results
returned by Scriabin overlapped highly with three of the five published methods analyzed
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(Connectome, CellChat, and NATMI; Figure 2C). The remaining two methods (iTALK and SCA)
did not overlap with each other or any of the other tested methods (Figure 2C).

While Scriabin’s results agreed with several published methods, we also sought to demonstrate
more directly that these results were biologically correct. We hypothesized that spatial
transcriptomic datasets could be leveraged for this purpose, as cells that Scriabin predicts to be
highly interacting should be, on average, in closer proximity. We ran Scriabin on 11 spatial
transcriptomic datasets, removing secreted ligand-receptor interactions that could operate over
a distance from the ligand-receptor database (Figure 2D). Cells that Scriabin predicted were the
most highly interacting were in significantly closer proximity relative to randomly permuted
distances (Figure 2E).

Scriabin reveals known communicative biology concealed by agglomerative methods

We next evaluated if Scriabin’s single-cell resolution CCC results returned communicating
edges that are obscured by agglomerative CCC methods. To this end, we analyzed a
publicly-available dataset of a well-characterized tissue niche: the granulomatous response to
Mycobacterium leprae infection (FIgure 3A). Granulomas are histologically characterized by
infected macrophages and other myeloid cells surrounded by a ring of Th1 T cells29–31. These T
cells produce IFN-γ that is sensed by myeloid cells; this communication edge between T cells
and myeloid cells is widely regarded as the most important interaction in controlling
mycobacterial spread32–34. Ma et al. performed scRNA-seq on skin granulomas from patients
infected with Mycobacterium leprae, the causative agent of leprosy29. This dataset includes
granulomas from five patients with disseminated lepromatous leprosy (LL) and 4 patients
undergoing a reversal reaction (RR) to tuberculoid leprosy, which is characterized by more
limited disease and a lower pathogen burden (Figure 3A). Analysis of CCC with Scriabin
revealed IFNG as the most important ligand sensed by myeloid cells in all analyzed
granulomas, matching biological expectations (Figure 3B).

To assess if Scriabin was capable of avoiding pitfalls associated with agglomerative methods in
comparative CCC analyses, we analyzed differential CCC pathways between LL and RR
granulomas using an agglomerative method (Connectome; which implements a full comparative
workflow27) and Scriabin. As Connectome performs differential CCC analyses by aggregating
data at the level of cell type or cluster, it requires that each cluster have representation from the
conditions being compared. In the Ma et al. dataset, satisfying this condition meant decreasing
clustering resolution from 1 to 0.05 so that all major cell types are present in all profiled
granulomas (Supplementary Figure 1) and comparing all aggregated LL granulomas to all
aggregated RR granulomas (Figure 3C). This requirement moves analysis further from
single-cell resolution and may allow individual donors to exert disproportionate influence on
downstream analysis. Comparative CCC analysis with Connectome revealed IL1B and CCL21
as the two most upregulated T cell-expressed ligands received by myeloid cells in RR
granulomas (Figure 3D). However, there was no clear pattern of IL1B upregulation among RR
granulomas (Figure 3E); rather, the RR granuloma that contributed the most T cells expressed
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Figure 3: Scriabin reveals communicative pathways obscured by agglomerative
techniques. A) Schematic of the scRNA-seq dataset of leprosy granulomas published
by Ma, et al. B) Ligands prioritized by Scriabin’s implementation of NicheNet as
predicting target gene signatures in granuloma myeloid cells. Points are colored and
sized by the number of granulomas in which the ligand is predicted to result in the
downstream gene signature. C) Clustering resolutions required for comparative CCC
analysis by agglomerative methods. Pink bars indicate the percentage of clusters
containing at least one cell from an LL granuloma and one cell from an RR granuloma.
Blue bars indicate the percentage of clusters containing at least one cell from all nine
analyzed granulomas. D) Circos plot summarizing RR vs. LL differential CCC edges
between T cells (senders) and myeloid cells (receivers) generated by Connectome. Blue,
edges upregulated in RR; red, edges upregulated in LL. E) Percentage and average of
expression of IL1B by T cells per granuloma (left), and total number of T cells per
granuloma (right). F) Percentage and average expression of CCL21 by T cells per
granuloma (left); percentage and average expression of CCR7 and CCL21-stimulated
genes by myeloid cells per granuloma. G) RR vs. LL differential interaction heatmap
between T cell bins (senders; rows) and myeloid cell bins (receivers; columns)
generated by Scriabin. In blue, are bins more highly interacting in RR; in red are the bins
more highly interacting in LL. The black box indicates groups of bins predicted to be
highly interacting in RR granulomas relative to LL. H) UMAP projection of perturbed T
cell-myeloid cell sender-receiver pairs indicating changes in ligand-receptor pairs used
for T cell-myeloid communication in LL vs. RR granulomas. I) Scatter plot depicting
differential gene expression by T cells. The average log(fold-change) of expression by
cluster 2 bins is plotted on the x-axis; the average log(fold-change) of expression by RR
granulomas is plotted on the x-axis. J) Target genes predicted to be upregulated by
IFNG in RR granuloma myeloid cells in cluster 2 bins. Points are sized and colored by
the number of cells in which the target gene is predicted to be IFNG-responsive. K)
Alluvial plot depicting the RR granuloma cell types that are predicted to receive the
IFNG-responsive target genes from cluster 2 myeloid cells.

the highest level of IL1B and the LL granuloma that contributed the fewest T cells expressed the
lowest level of IL1B (Figure 3E). Additionally, CCL21 was expressed by T cells of a single RR
granuloma, and the myeloid cells of a different RR granuloma expressed the highest levels of
the CCL21 receptor CCR7 and three CCL21 target genes (Figure 3F). This indicates that the
most highly scored differential CCC edges may likely be due to agglomeration of RR and LL
granulomas required by Connectome (Figure 3C), rather than conserved biological changes
between these two groups.

To compare differential CCC between LL and RR granulomas with Scriabin, we aligned data
from the 9 granulomas together using Scriabin’s binning procedure (Figure 1), generated
single-cell summarized interaction graphs for each granuloma, and calculated a t-statistic to
quantify the difference in interaction for each pair of bins between LL and RR granulomas
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(Figure 3G). This analysis revealed a group of T cell and myeloid bins whose interaction was
strongly increased in RR granulomas relative to LL (Figure 3G, black box). We visualized the
cells in these perturbed bins by generating cell-cell interaction matrices for these cells in each
sample and embedding them in shared low dimensional space (Figure 3H). The T cells in these
bins were defined by expression of CRTAM, a marker of cytotoxic CD4 T cells, and upregulated
IFNG in the RR granulomas (Figure 3I). Myeloid cells in these bins upregulated several
pro-inflammatory cytokines in RR granulomas, including IL1B, CCL3, and TNF in response to
IFNG from this T cell subset (Figure 3J). IFNG-responsive IL1B and TNF were also predicted to
be RR-specific ligands received by myeloid cells, fibroblasts, and endothelial cells in RR
granulomas (Figure 3K). Collectively, Scriabin identified a subset of CRTAM+ T cells that
upregulated IFNG in RR granulomas that is predicted to act on myeloid cells to upregulate
additional pro-inflammatory cytokines. These CCC results match previous results demonstrating
that enhanced production of IFNG can drive RRs35,36 and implicate cytotoxic CD4 T cells as
initiators of this reaction.

Discovery of co-expressed interaction programs enables atlas-scale analysis of CCC at
single-cell resolution

We next assessed Scriabin’s interaction program discovery workflow. To illustrate the scalability
of this process, we chose to analyze a large single-cell atlas of developing fetal gut37 composed
of ~80,000 cells sampled from four anatomical locations (Figure 4A). Scriabin discovered a total
of 75 significantly correlated interaction programs across all anatomical locations. Scoring all
single cells on the expression of the ligands and receptors in these interaction programs
revealed strong cell type specific expression patterns for many programs (Figure 4B).

We next examined ways in which our identified interaction programs reflected known biology of
intestinal development. Recently, several important interactions have been shown to be critical
in maintaining the intestinal stem cell (ISC) niche38–40. We were able to identify ISCs, defined by
expression of LGR5 and SOX9, within the intestinal epithelial cells of this dataset, and
discovered a single interaction program (hereafter referred to as IP1) whose receptors were
co-expressed with these ISC markers (Figure 4C). IP1 represents a program of
fibroblast-specific ligand and intestinal epithelial cell receptor expression (Figure 4D). Among
IP1 ligands were the ephrins EPHB3, whose expression gradient is known to control ISC
differentiation41, and RSPO3 (Figure 4E). Two recent studies have each reported that RSPO3
production by lymphatic endothelial cells (LECs) and GREM1+ fibroblasts is critical for
maintaining the ISC niche39,40. While we did not observe expression of RSPO3 in LECs
(Supplementary Figure 2), we did find that GREM1+ fibroblasts expressed RSPO3 as a part of
IP1 that was predicted to be sensed primarily by ISCs (Figure 4D-F). We also found a separate
interaction program containing the ligand GREM1; the ligands of this interaction program were
co-expressed with IP1 ligands (Figure 4F) and predicted to communicate to a different receiver
cell type, namely gut endothelial cells (Figure 4G). Additionally, further investigation of cell
type-specific modules revealed subtle within-cell type differences in sender or receiver potential,
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Figure 4: Cell-cell interaction programs of the developing fetal gut. A) UMAP
projections of the dataset of Fawkner-Corbett, et al.37, with individual cells colored by
author-provided cell type annotations (left), or by anatomical sampling location (right).
B) Heatmap depicting average expression of interaction program ligands (left) or
interaction program receptors (right) by each cell type. C) UMAP projections of intestinal
epithelial cells, colored by expression of stem cell markers LGR5 and SOX9, as well as
by the receptor expression score for interaction program 1 (IP1). D) UMAP projection of
all cells colored by ligand (shades of purple) or receptor (shades of green) expression of
IP1. E) Intramodular connectivity scores for each ligand-receptor pair in each anatomical
location for IP1. The black arrows mark ligand-receptor pairs that include RSPO3. F)
Heatmap of 2d bin counts depicting the correlation between IP1 sender score and the
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sender score for the IP module that contains the ligand GREM1. G) UMAP projection of
all cells colored by ligand (shades of purple) or receptor (shades of green) expression of
the GREM1 IP.

highlighting the importance of maintaining single-cell resolution (Supplementary FIgure 2;
Supplementary Text). Taken together, our results suggest interaction program discovery
enables scalable CCC analysis at single-cell resolution that is capable of identifying known CCC
edges.

Assembly of longitudinal communicative circuits

A frequent analytical question in longitudinal analyses concerns how events at one time point
influence cellular phenotype in the following time point. We hypothesized, in datasets with close
spacing between time points, that Scriabin’s high-resolution bin identities would allow us to
assemble “longitudinal communicative circuits”: chains of sender-receiver pairs across
consecutive timepoints. A communicative circuit consists of at least four cells across at least two
time points: sender cell at time point 1 (S1), receiver cell at time point 1 (R1), sender cell at time
point 2 (S2), and receiver cell at time point 2 (R2). If the interaction between S1-R1 is predicted to
result in the upregulation of ligand LA by R1, S1-R1-S2-R2 participates in a longitudinal circuit if R1

and S2 share the same bin (i.e., S2 represents the counterpart of R1 at timepoint 2) and if LA is
predicted to be an active ligand in the S2-R2 interaction (Figure 5A). This process enables the
stitching together of multiple sequential timepoints to identify communicative edges that are
downstream in time and mechanism.

To illustrate this process, we analyzed a published dataset of SARS-CoV-2 infection in human
bronchial epithelial cells (HBECs) in air-liquid interface (ALI) that was sampled daily for 3 days42.
This dataset contains all canonical epithelial cell types of the human airway and indicates that
ciliated and club cells are the preferentially infected cell types in this model system, with some
cells having >50% of UMIs from SARS-CoV-2 (Figure 5B). We first defined a per-cell gene
signature of genes variable across time, and used this gene signature to predict active ligands
expected to result in the observed cellular gene signatures20,23. Next, we used Scriabin’s
high-resolution binning workflow to align the datasets from the three post-infection timepoints,
which we then used to assemble longitudinal communicative circuits.

Scriabin identified circuits at the level of individual cells that spanned all three post-infection
timepoints. We summarized these circuits by author-annotated cell type and whether
SARS-CoV-2 reads were detected in the cell (Figure 5C). We found that several acute-phase
reactant-encoding genes, like SAA1, CTGF, and C3 (encoding complement factor 3), were the
most common ligands to participate in circuits across timepoints, matching biological
expectations (Figure 5C)43–45. Interestingly, uninfected cells were more frequently the initiators
of longitudinal circuits, producing some acute-phase reactant-encoding genes in addition to the
pro-inflammatory cytokine gene IL1B. When we assessed the predicted downstream targets at
the ends of the longitudinal circuits in both infected and bystander cells, we found that TGFB1
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Figure 5: Longitudinal circuits of CCC in acute SARS-CoV-2 infection. A) Schematic
representing a longitudinal communicative circuit. Four cells participate in a longitudinal
circuit if an interaction between S1-R1 is predicted to result in the upregulation of ligand
LA by R1, if R1 and S2 share a bin, and if expression of LA by S2 participates in an active
communication edge with R2. B) UMAP projections of the dataset published by Ravindra,
et al.42 colored by annotated cell type (left) or by the percentage of UMIs per cell of
SARS-CoV-2 origin (right). C) Alluvial plot depicting longitudinal communicative circuits.
Stratum width corresponds to the number of cells in each cell grouping participating in
the circuit corrected for the total number of cells in that group. Red strata are infected
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with SARS-CoV-2; blue strata are composed of uninfected cells. D) Target genes
predicted by Scriabin’s implementation of NicheNet20 to be upregulated in the receiver
cells at the ends of the longitudinal communicative circuits at 3 days post-infection.
Points are colored by the active ligand and sized by the number of cells in which the
target is predicted to be upregulated by the active ligand.

produced by infected basal cells was predicted to result in the upregulation of TNFSF10
(encoding TRAIL) and the alarmin S100A8 predominantly by other infected cells (Figure 5C-D).
Additionally, TGFB1 was predicted to upregulate both NOTCH1 and the NOTCH1 ligand JAG1,
which indicates that these circuits may induce downstream Notch signaling. In sum, these data
illustrate how the single-cell resolution of Scriabin’s CCC analysis workflow can perform
comprehensive and integrated longitudinal analyses.

DISCUSSION

Most existing CCC methodologies aggregate ligand and receptor expression values at the level
of the cell type or cluster, potentially obscuring biologically valuable information. Here we
introduce a framework to perform comparative analyses of CCC at the level of the individual
cell. Scriabin maximally leverages the single-cell resolution of the data to maintain the full
structure of both communicative heterogeneity and specificity. We used this framework to find
rare communication pathways in the developing intestine known to be required for stem cell
maintenance, as well as to define the kinetics of early dynamic communication events in
response to SARS-CoV-2 infection through assembly of longitudinal communicative circuits.

A major challenge of single-cell resolved CCC analysis is data inflation: because CCC analysis
fundamentally involves performing pairwise calculations on cells or cell groups, it is frequently
computationally prohibitive to analyze every sender-receiver cell pair. Importantly, Scriabin
implements two complementary workflows to address this issue, both of which avoid the
statistically-problematic practices of subsampling and aggregation while maintaining scalability.
Subsampling and aggregation preclude a truly comprehensive view of CCC structure and risk
obscuring important biology; either can be particularly problematic in situations where a small
subset of cells disproportionately drives intercellular communication, with agglomeration
potentially concealing the full activity of those cells and subsampling potentially removing those
cells altogether. One biological situation in which the preservation of single-cell resolution data
could be particularly important is in the setting of activation-induced T cell exhaustion46.
Exhausted T cells may be difficult to distinguish from activated cells by clustering or
sub-clustering, yet exert divergent effects on their communication targets than their activated
counterparts. By avoiding aggregation and subsampling, Scriabin increases the likelihood of
detecting these potentially meaningful differences in CCC pathways.

We observe that aggregation obscures a potentially biologically-meaningful subset of T cells
that arises during reversal reactions in leprosy granulomas. Due to the degree of transcriptional
perturbation in T cells during reversal reactions, subclustering is not always a tenable approach
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to increasing the resolution of CCC analyses because it, in turn, can preclude analysis at a
per-sample level. We also show that aggregating across samples, a common practice in existing
CCC tools, can return putatively differential CCC edges that are driven disproportionately by
individual samples.

As the throughput of scRNA-seq workflows continues to increase, it will be important that
single-cell resolution CCC methods are scalable to any dataset size. The interaction program
discovery workflow of Scriabin accomplishes this by focusing first on common patterns of
ligand-receptor pair co-expression rather than individual cell-cell pairs. Individual cells can be
scored for expression of these interaction programs post hoc, enabling downstream
comparative analyses with a comprehensive view of CCC structure. We apply this workflow to
an atlas-scale dataset of human fetal gut development, where we validate a mode of
communication between a fibroblast subset and ISCs that has recently been shown to be
important for maintaining the ISC niche39,40. Due to the relative scarcity of these cells, it is likely
that agglomerative methods may fail to discover these important interactions for downstream
mechanistic validation.

Longitudinal datasets pose an additional opportunity and challenge for comparative analyses
because there is a priori knowledge about the sequential relationship between different
samples. The single-cell nature of Scriabin’s workflows permits us to analyze how pathways of
CCC operate both within and between timepoints in longitudinal datasets. By identifying circuits
of CCC that function over multiple timepoints in a longitudinal infection dataset, we can observe
how uninfected bystander cells may initiate important inflammatory pathways first which are
later amplified by infected cells. A fundamental assumption of the circuit assembly workflow is
that ligands upregulated at one timepoint can be observed to exert their biological activity at the
following timepoint. This assumption is highly dependent on a priori biological knowledge of the
communication pathways of interest, as well as on the spacing between timepoints. Assembly of
longitudinal communication circuits may represent a valuable strategy to elucidate complex
dynamic and temporal signaling events, particularly when longitudinal sampling is performed at
frequencies on the same scale as signaling and transcriptional response pathways.

The cell-cell interaction matrix M is more highly enriched for zero values than gene expression
matrices. This is because genes encoding molecules involved in CCC tend to be more lowly
expressed than other genes (as the most highly expressed genes tend to encode intracellular
proteins involved in cell housekeeping), and because a zero value in either the ligand or the
receptor of a cell-cell pair will result in a zero value in the interaction vector. Consequently, these
zero values can make it difficult for Scriabin to determine if putatively downregulated or
“missing” CCC edges are biological or due to dropout. Data imputation or smoothing algorithms
may be applied to the gene expression matrix and the resulting data used to generate M. The
high-resolution binning workflow implemented by Scriabin could also be used for data
smoothing and prevent excessive propagation of zero values. This process can make the
presence and absence of CCC edges more interpretable, but by smoothing the data may also
slightly obscure underlying heterogeneity or structure. A potential middle ground solution to this
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issue could be to perform data imputation for all features except the ligand-receptor pairs with
the strongest expression values.

One current limitation of Scriabin is that it does not take into account situations where multiple
receptor subunits encoded by different genes are required in combination to respond to a ligand,
or where receptor subunits are known to differentially contribute to collective ligand-receptor
avidity. An additional limitation is that Scriabin assumes uniform validity of ligand-receptor
interactions in curated protein-protein interaction databases. Scriabin also treats all
ligand-receptor pairs as equally important. In situations where it is known a priori which
ligand-receptor pairs have a higher level of literature support, this information could be used to
prioritize downstream analysis of particular ligand-receptor pairs. Similarly, all downstream
signaling analyses in Scriabin rely on NicheNet’s ligand-target activity matrix, which may be
biased by the cell types and stimulation conditions used to generate it. The NicheNet database
also does not allow for analysis of inhibitory signaling, and thus Scriabin will only return CCC
edges predicted to result in activated signaling. While Scriabin uses NicheNet to predict active
CCC edges by examining downstream gene expression changes, an additional analysis goal
includes identifying the upstream signaling machinery that results in the upregulation of a ligand
or denotes successful signaling, as additional power could be gained by using sets of genes to
infer upstream signaling rather than relying on ligand expression alone (which could be
impacted by dropout or differences between mRNA and protein expression). More generally,
Scriabin assumes that gene expression values for ligands and receptors correlate well with their
protein expression. A future point of improvement would be to support analysis of multi-modal
datasets where cell surface proteins that contribute to CCC are measured directly, or to enable
analysis of protein measurements that are imputed from integration with multi-modal
references47. Future iterations of Scriabin will seek to address these issues, as well as further
improve computational efficiency.

Collectively, our work provides a toolkit for comprehensive comparative analysis of CCC in
scRNA-seq data, which should empower discovery of information-rich communicative circuitry
and niche-phenotype relationships.
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METHODS

Cell-cell interaction matrix workflow
Generation of cell-cell interaction matrix
We define the cell-cell interaction vector between a pair of cells as the geometric mean of
expression values of each cognate ligand-receptor pair. Formally, the interaction vector V
between sender cell Ni and receiver cell Nj is given by

,𝑉
𝑁

𝑖
𝑁

𝑗

= 𝑁
𝑖

𝑙
1 * 𝑁

𝑗

𝑟
1, 𝑁

𝑖

𝑙
2 * 𝑁

𝑗

𝑟
2 ,  ...  ,  𝑁

𝑖

𝑙
𝑛 * 𝑁

𝑗

𝑟
𝑛⎡

⎢
⎢
⎣

⎤
⎥
⎥
⎦

where represent a cognate ligand-receptor pair. We chose to multiply ligand and receptor𝑙
𝑛
, 𝑟

𝑛

expression values so that zero values of either ligand or receptor expression would result in a
zero value for the corresponding index of the interaction vector. Additionally, we chose to take
the square root of the product of ligand-receptor expression values so that highly expressed
ligand-receptor pairs do not disproportionately drive downstream analysis. This definition is
equivalent to the geometric mean. The cell-cell interaction matrix M is constructed by
concatenating the cell-cell interaction vectors. Linear regression is used to correct M for
variation due to sequencing depth, where the total sequencing depth of Ni,Nj is defined as the
sum of unique molecular identifiers (UMIs) in Ni and Ni. M is used as input to low dimensional
embeddings for visualization, and nearest neighbor graphs for graph-based clustering.

Weighting cell-cell interaction matrix by upstream regulome
Cell-cell interaction matrix M can be weighted by ligand-receptor edges that are predicted to be
active based on observed downstream gene expression changes. First, we identify genes in the
dataset that are variable across some axis of interest. For analyses of single datasets, variable
genes can be defined as the set of genes with the highest residual variance in the dataset, for
example, by calling FindVariableFeatures as implemented by Seurat. For comparative analyses,
Scriabin provides several utility functions to aid in the identification of variable genes between
samples or between time points, depending on the user’s analytical questions.

Next, the package CelliD23, which provides a convenient and scalable workflow to define
single-cell gene signatures, is used to define per-cell gene signatures. Briefly, user-defined
variable genes are used to embed the dataset into low dimensional space by multiple
correspondence analysis (MCA). A cell’s gene signature is then defined as the set of genes to
which that cell is nearest in the MCA biplot. A quantile cutoff is used to threshold gene proximity,
by default the 10% of nearest genes.

NicheNet20 is then used to rank ligands based on their predicted ability to result in the per-cell
gene signature. First, expressed genes are defined by the percentage of cells in which they are
detected (by default, 2.5%). Next, a set of potential ligands is defined as those ligands which are
expressed genes and for which at least one receptor is also an expressed gene. Next, ligand
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activities are predicted by predict_ligand_activities, and ligand-to-target gene links are
recovered via get_weighted_ligand_target_links. The authors of NicheNet have shown that the
Pearson correlation coefficient between a ligand’s target prediction and observed transcriptional
response is the most informative metric of ligand activity20. Therefore, we select a Pearson
coefficient threshold (by default 0.075) to define active ligands in each cell. Finally, we weight

individual values of ; is weighted proportionally to the corresponding Pearson𝑉
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threshold.

Downstream analysis of weighted cell-cell interaction matrices
M can be treated analogously to the gene expression matrix and used for downstream analysis
tasks like dimensionality reduction. After generation and (optional) weighting of M by active
ligands, M is placed into an assay of a Seurat object for downstream analysis. M is scaled by
ScaleData, latent variables found via PCA, and the top principal components (identified by
ElbowPlot for each dataset; default 10) used to embed the dataset in two dimensions using
UMAP48. Neighbor graphs are constructed by FindNeighbors, which can then be clustered via
modularity optimization graph-based clustering49 as implemented by Seurat’s FindClusters47.
Differential ligand-receptor edges between clusters, cell types, or samples can be identified via
FindMarkers. Scriabin provides several utility functions to facilitate visualization of gene
expression profiles or other metadata on Seurat objects built from cell-cell interaction matrices.

Summarized interaction graph and binning workflow
Generation of summarized interaction graph
Because M scales exponentially with dataset size, it is frequently impractical to calculate M for
all cell-cell pairs Ni,Nj. In this situation, Scriabin supports two workflows that do not require
aggregation or subsampling. In the first workflow, a summarized cell-cell interaction graph S is

built in lieu of M where . S thus represents the magnitude of predicted interaction𝑆
𝑖,𝑗

= Σ 𝑉
𝑁

𝑖
𝑁

𝑗

across all cognate ligand-receptor pairs expressed by all sender-receiver cell pairs. As for the
cell-cell interaction matrix M, S is also corrected for differences due to sequencing depth by
linear regression. S may optionally be weighted by upstream regulome as described above. The
second workflow is described below under “Interaction program discovery workflow”.

Dataset binning for comparative CCC analyses
Once summarized interaction graphs are built for multiple samples, alignment of these graphs
requires knowledge about which cells between samples represent a shared molecular state.
The goal of binning is to assign each cell a bin identity so that S from multiple samples can be
summarized into equidimensional matrices based on shared bin identities.

The binning process begins by constructing a shared nearest neighbor (SNN) graph via
FindNeighbors defining connectivity between all cells to be compared. Alternate neighbor
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graphs, for example those produced using Seurat’s weighted nearest neighbor workflow which
leverage information from multi-modal references, can also be used. Next, mutual nearest
neighbors (MNNs) are identified between all sub-datasets to be compared via Seurat’s
integration workflow (FindIntegrationAnchors)21. Briefly, two sub-datasets to be compared are
placed into a shared low dimensional space via diagonalized canonical correlation analysis
(CCA), and the canonical correlation vectors are log-normalized. Normalized canonical
correlation vectors are then used to identify k-nearest neighbors for each cell in its paired
dataset and the resulting MNN pairings are scored as described21. Low scoring MNN pairings
are then removed, as they have a higher tendency to represent incorrect cell-cell
correspondences when orthogonal data is available (Supplementary Figure 3).

For each cell that participates in an MNN pair, Scriabin defines a bin as that cell and all cells
with which it participates in an MNN pair. Next, Scriabin constructs a connectivity matrix G
where Gi,j is the mean connectivity in the SNN graph between cell i and the cells within bin j.
Each cell Ci is assigned a bin identity of the bin j with which it shares the highest connectivity in
G. Next, we optimize for the set of bins that results in the best representation of all samples.
Bins with the lowest total connectivity and lowest multi-sample representation in G are iteratively
removed and cell bin identities re-scored until the mean sample representation of each bin
plateaus. Within-bin connectivity and sample representation are further improved by
re-assigning cells that result in better sample representation of an incompletely represented bin
while maintaining equal or greater SNN connectivity with the cells in that bin. Finally,
incompletely represented bins are merged together based on SNN connectivity. At the end of
this process, each cell will thus have a single assigned bin identity, where each bin contains
cells from all samples to be compared.

Statistical analysis of bin significance
Bins are then tested for the statistical significance of their connectivity structure using a
permutation test. For each bin, random bins of the same size and number of cells per sample
are generated iteratively (by default 10,000 times). The connectivity vector of the real bins is
tested against each of the random bins by a one-sided Mann-Whitney U test. If the bin fails 500
or more of these tests (p-value 0.05), it is considered non-significant.

Because bin SNN connectivity is generally non-zero, but randomly sampled cells generally have
an SNN connectivity of zero, this strategy will tend to return most bins as statistically
significantly connected. Thus, we recommend passing high-resolution cell type labels to the
binning significance testing. In this situation, randomly generated bins are generated by
randomly selecting cells from the same sample and cell type annotation, and the permutation
test proceeds as described above. Bins where greater than a threshold (by default 95%) of cells
belong to the same cell type annotation are automatically considered significant. This avoids
rare cell types that may only form a single bin from being discarded. Cells that were assigned to
bins which failed the significance testing are re-assigned to the bin with which they share the
highest SNN connectivity.
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Identification of variable bins
For each bin, a Kruskal-Wallis test is used to assess differences in the magnitude of CCC
between cell-cell pairs from different samples. The Kruskal-Wallis p-value and test statistic can
be used to identify which bins contain cells that exhibit the highest change in prediction
interaction scores. This set of sender and receiver cells can then be used to construct M as
described above.

Interaction program discovery workflow
Iterative approximation of a ligand-receptor pair topological overlap matrix (TOM)
An alternative to the summarized interaction graph workflow is to instead identify co-expressed
ligand-receptor pairs, which we refer to as “interaction programs.” This approach represents an
adaptation of the well-established weighted gene correlation network analysis (WGCNA)22 and
is scalable to any dataset size and still permits analysis of CCC at single-cell resolution. The first
step in this workflow is to generate a signed covariance matrix of ligand-receptor pairs for each
sample, defined as:
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matrix via soft thresholding:
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where is the soft power. Soft power is a user-defined parameter that is recommended to beβ
the lowest value that results in a scale-free topology model fit of > 0.8. Next, this adjacency
matrix is converted into a TOM as described50. This process proceeds separately for each
sample to be analyzed in a multi-sample dataset.

Identification and significance testing of interaction programs
The TOM is hierarchically clustered, and interaction programs identified through adaptive
branch pruning of the hierarchical clustering dendrogram. Intramodular connectivity for each
ligand-receptor pair in each interaction program is then calculated as described51. If interaction
programs are being discovered in a multi-sample dataset, similar modules (defined by Jaccard
overlap index above a user-defined threshold) are merged. Next, interaction programs are then
tested for statistically significant co-expression structure via a permutation test where random
interaction programs are generated 10,000 times. The correlation vector of the real module is
tested against each of the random modules by a one-sided Mann-Whitney U test. If the module
fails 500 or more of these tests (p-value 0.05), it is considered non-significant. Each sample is
tested for significant correlation of each module.

Downstream analysis of interaction programs
Single cells are scored separately for the expression of the ligands and receptors of each
significant module with Seurat’s AddModuleScore. This function calculates a module score by
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comparing the expression level of an individual query gene to other randomly-selected control
genes expressed at similar levels to the query genes, and is therefore robust to scoring modules
containing both lowly and highly expressed genes, as well as to scoring cells with different
sequencing depth. Scriabin includes several utility functions to conveniently visualize interaction
program expression for sender and receiver cells.

Identification of longitudinal CCC circuits
A longitudinal CCC circuit is composed of S1-L1-R1-S2-L2-R2, where S are sender cells and R are
receiver cells at timepoints 1 and 2, and where L1 is expressed by/sensed by S1/R1 and L2 is
expressed by/sensed by S2/R2 . For computational efficiency, construction of longitudinal CCC
circuits starts at the end of the circuit and proceeds upstream. First, ligands L2 predicted by
NicheNet to be active in receiver cells at timepoint 2 are identified. Next, sender cells that
express L2 and have the L2 in its per-cell gene signature are identified. Among the bins occupied
by these S2 candidates, Scriabin then searches for receiver cells at timepoint 1 that occupy the
same bin and have the corresponding timepoint 2 ligand L2 within its list of upregulated target
genes and identifies the ligand(s) L1 predicted by NicheNet to result upregulation of that target.
Finally, Scriabin identifies S1 candidates that express the timepoint 1 ligands L1 and have L1 in
its per-cell gene signature. S1-R1-S2-R2 cell groups that meet these criteria are retained for
further analysis. This process repeats for every pair of timepoints. Finally, Scriabin searches for
overlap between circuits of sequential time point pairs to identify circuits that operate over more
than two timepoints.

Processing, analysis, and visualization of public scRNA-seq datasets
Datasets of PBMCs (pbmc5k and pbmc10k) were downloaded from 10X genomics
(https://www.10xgenomics.com/resources/datasets). scRNA-seq data of human leprosy
granulomas29 was downloaded from https://github.com/mafeiyang/leprosy_amg_network. Data
from developing fetal intestine37 was acquired from the cellxgene portal:
https://cellxgene.cziscience.com/collections/60358420-6055-411d-ba4f-e8ac80682a2e. Data of
longitudinal responses to SARS-CoV-2 infection in HBECs42 was downloaded from the Gene
Expression Omnibus accession #GSE166766. In each case, we acquired raw count matrices or
processed Seurat objects containing raw count matrices. Any upstream processing was
performed as described in the corresponding manuscripts.

The R package Seurat21,52 was used for data scaling, transformation, clustering, dimensionality
reduction, differential expression analysis, and most visualizations. Raw count matrices from
Ravindra, et al.42 required filtering before downstream analysis; cells meeting the following
criteria were kept: >1,000 UMIs, <20,000 UMIs, >500 unique features, <0.85 UMI-to-unique
feature ratio, <20% UMIs of mitochondrial origin, <35% reads from ribosomal protein-encoding
genes. Pbmc5k and pbmc10k datasets from 10X genomics were filtered to enforce a minimum
number features per cell of 200 and to remove genes not expressed in at least 3 cells. Data
were scaled and transformed and variable genes identified using the SCTransform function, and
linear regression performed to remove unwanted variation due to cell quality (% mitochondrial
reads, % rRNA reads). PCA was performed using the 3,000 most highly variable genes. The

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 7, 2022. ; https://doi.org/10.1101/2022.02.04.479209doi: bioRxiv preprint 

https://www.10xgenomics.com/resources/datasets
https://paperpile.com/c/dHtjFI/hqVi
https://github.com/mafeiyang/leprosy_amg_network
https://paperpile.com/c/dHtjFI/36xg
https://cellxgene.cziscience.com/collections/60358420-6055-411d-ba4f-e8ac80682a2e
https://paperpile.com/c/dHtjFI/RQ8v
https://paperpile.com/c/dHtjFI/233k+XUjFs
https://paperpile.com/c/dHtjFI/RQ8v
https://doi.org/10.1101/2022.02.04.479209


first 50 principal components (PCs) were used to perform UMAP to embed the dataset into two
dimensions. Next, the first 50 PCs were used to construct a shared nearest neighbor graph
(SNN; FindNeighbors) and this SNN used to cluster the dataset (FindClusters).

Cell type annotations were provided for the Ma, et al. and Fawkner-Corbett, et al. datasets,
which were used for downstream analytical tasks. For the Ravindra, et al. dataset, manual
annotation of cellular identity was performed by finding differentially expressed genes for each
cluster using Seurat’s implementation of the Wilcoxon rank-sum test (FindMarkers()) and
comparing those markers to known cell type-specific genes listed in the Ravindra, et al.42

PBMC datasets were annotated by weighted nearest neighbor projection and label transfer from
a multi-modal PBMC reference as described47,53.

Comparative analyses between Scriabin and published CCC analysis methods
Pbmc5k and pbmc10k datasets from 10X genomics were used to benchmark the computational
efficiency of Scriabin. For single dataset analyses, pbmc5k was randomly subsetted to multiple
dataset sizes. Cell type annotations were passed to Connectome27, NATMI17, CellChat15,
iTALK16, and SingleCellSignalR (SCA)26, which were run using default parameters defined by
Liana28. The time for these methods to return results was compared to a version of Scriabin that
generated and visualized a full-dataset summarized interaction graph and returned pseudobulk
ligand-receptor pair scores for each cell type annotation. Connectome27 is the only of these
packages that supports a full comparative workflow. For comparative analysis, we analyzed
differences in CCC between the pbmc5k and pbmc10k datasets. We compared Connectome’s
total runtime to the runtime of Scriabin to generate full dataset summarized interaction graphs,
perform dataset binning, and visualize the most perturbed bins.

Multiple ligand-receptor resources compiled by Liana28 were used to compare results returned
by published CCC analysis methods and Scriabin. The following results parameters were used
from each method: prob (CellChat), LRscore (SingleCellSignalR), weight_norm (Connectome),
weight_comb (iTALK), edge_avg_expr (NATMI). To visualize the overlap in results between the
methods and resources, we extracted the top 1,000 results from each method-resource pair and
calculated the Jaccard index between these top results (as described by28).

Analysis of spatial transcriptomic datasets with Scriabin
To evaluate if Scriabin returns biologically meaningful CCC edges, we downloaded spatial
coordinates and gene expression count matrices from 11 spatial transcriptomic datasets from
the 10X Visium platform available at https://www.10xgenomics.com/resources/datasets. We
treated each count matrix analogously to scRNA-seq data, performing data transformation and
dimensionality reduction as described above. We calculated per-cell gene signatures for each
dataset based on variable genes across the dataset, which we then used to rank ligands based
on their predicted ability to result in the observed gene expression profile using NicheNet20.
Next, we constructed a summarized interaction graph using a ligand-receptor pair database that
was restricted to membrane-bound ligands and receptors, which we weighted according to the
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predicted ligand activities. Finally, we compared the distance quantile of the top 1% of
interacting cell-cell pairs compared to randomly permuted distances.
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SUPPLEMENTARY INFORMATION

Supplementary Text

Conceptual requirements for dataset alignment for comparative analyses of summarized
interaction graphs

Comparing summarized interaction graphs from multiple samples requires that cells from
different samples share a set of labels or annotations denoting what cells represent the same
identity. Each identity class to be compared then requires representation from each of the
samples to be compared. This annotation typically comes in the form of coarse, low-resolution
labels like cluster or cell type calls. We sought to minimize the degree of agglomeration required
for comparative CCC analysis by maximizing the resolution of cell type identity labels.

We hypothesized that high-resolution clustering or sub-clustering is an inadequate solution
because greater transcriptional perturbation between samples necessitates lower clustering
resolutions to capture representation from each sample. To illustrate this observation, we
analyzed a toy dataset of peripheral blood monocytes from a longitudinal experiment
(Supplementary Figure 3). Cells from the week 4 timepoint show a high degree of
transcriptional perturbation from the other samples, visually evidenced by little overlap in low
dimensional manifold embeddings. At default clustering resolution, the cluster that constitutes
this sample does not contain cells from two of the samples we wish to compare. Decreasing the
cluster resolution (ie. increasing the degree of agglomeration) to 0.05 improves representation
of other samples but still fails to capture cells from all timepoints in each cluster. An optimal
strategy for comparing summarized interaction graphs thus involves manifold alignment rather
than clustering.

Scriabin’s binning workflow

Identifying mutual nearest neighbors (MNNs)25 between datasets has been implemented in
several methods for dataset integration21,54–56. We reasoned that because MNNs represent pairs
of cells with a shared molecular state, MNNs themselves encode single-cell resolution
inter-dataset correspondences that could be generalized to high-resolution identity labels for all
cells in a dataset. We refer to this process as “binning” to distinguish it from graph-based
clustering. Binning with Scriabin begins by identifying MNNs between all datasets to be
compared, as implemented by Seurat v321. MNNs are then filtered, as we have observed that
cross-cell type anchor pairs tend to have lower scores (Supplementary Figure 4). Cells are
initially binned with the set of MNNs with which they share the highest connectivity in the shared
nearest neighbor (SNN) graph, and these bin assignments are further optimized for SNN
connectivity and representation of all datasets to be compared. At the end of the binning
process, each cell will have a high-resolution bin identity linking it to at least one cell from all
other datasets to be compared. These identities can be used as the basis for comparative
analysis of CCC that maintain near single-cell resolution.
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We also evaluated the performance of Scriabin’s binning strategy for comparative CCC
analyses. In a toy dataset of ~14,000 cells from nine sub-datasets, Scriabin identified a total of
456 bins with a median bin size of 25 cells, maintaining near single-cell resolution
(Supplementary Figure 4). Additionally, cells from each bin generally shared the same
orthogonal reference-based cell type annotation (Supplementary Figure 4). For example, all
plasmacytoid dendritic cells (pDCs) fell into a single bin that was composed of only pDCs. Bins
whose cells did not share the same cell type annotation generally shared related annotations,
for instance, intermediate and naive B cells frequently occupied the same bin (Supplementary
Figure 4).

Heterogeneity of interaction program structure and expression

The discovery of interaction programs in the intestinal development dataset37 revealed several
programs that were significantly up- or down-regulated between anatomical sampling locations,
reflecting either changes in the magnitude of program expression or a shift in the proportions of
cell types expressing the program (Supplementary Figure 2). We also hypothesized that
interaction program structure may vary between samples even if the expression magnitude of
the program does not change. Thus, we calculated intramodular connectivity scores for each
gene in each sampling location analyzed. We identified ligand-receptor pairs in non-differentially
expressed interaction programs that had differential intramodular connectivity between sampling
locations (Supplementary Figure 2). For example, the EFNB2 - EPHB4 ligand-receptor pair
has higher intramodular connectivity in hindgut than other anatomical locations, and the hindgut
is the location that expresses the highest level of both of these genes (Supplementary Figure
2). This indicates that, in the hindgut, when EFNB2 and EPHB4 are expressed, they are
co-expressed along with other ligand receptor pairs in this interaction program. Collectively, this
analysis provides an example of the heterogeneity, specificity, and nuanced co-expression
patterns that can be revealed through the scalable discovery of interaction programs in
atlas-scale datasets.
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Supplementary Figures

Supplementary Figure 1: Cell type proportions in leprosy granuloma dataset. Bar graph
depicting cell proportions per granuloma in the dataset of Ma, et al29. Author-provided cell type
annotations are used for analysis.
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Supplementary FIgure 2: Co-expressed interaction programs in intestinal development.
A) Scatter plot depicting expression of LEC marker LYVE1 and RSPO3. B) UMAP projections of
ligand (shades of purple) or receptor (shades of green) expression in 3 gut endothelial
cell-specific modules. C) UMAP projection of gut endothelial cells colored by expression of
ligands in the interaction programs depicted in (B). D) Dot plot depicting the expression

29

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 7, 2022. ; https://doi.org/10.1101/2022.02.04.479209doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.04.479209


fold-change and Bonferroni-corrected Wilcoxon rank-sum test 2-sided p-values of interaction
program expression in each anatomical location. E) Intramodular connectivity scores for each
ligand-receptor pair in each anatomical location for the module indicated by the arrow in (D).
The black arrow in (E) indicates the genes whose average and percent expression are plotted to
the right.
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Supplementary Figure 3: Highly perturbed samples require a higher degree of
aggregation for dataset alignment. A toy dataset of peripheral blood monocytes from a
longitudinal dataset was analyzed. A) UMAP projection colored by time point. B-D) UMAP
projections (left) colored by cluster identity, and bar plot depicting per timepoint cluster
membership in the cluster principally occupied by sample Week 04 (right). Cluster resolutions: 1
(default, B), 0.3 (C), 0.05 (D).
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Supplementary Figure 4. Robustness analysis of Scriabin’s binning workflow. A toy
dataset of ~14,000 peripheral blood mononuclear cells (PBMCs) from nine sub-datasets was
analyzed. A) Density plot depicting the number of cells in each bin. The median bin size in this
analysis is 25 cells. B) Heatmap depicting overlap between bin identity and cell type
annotations. Each row sums to 100%. An SNN graph was used to assess cell-cell connectivity
for the binning workflow. Cell type annotations are transferred from a reference dataset and are
thus orthogonal to the data used to generate the bins. C) Dot plot depicting the cell type
annotations and scores for the anchor pairs used to generate the bins depicted in (B).
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