Machine learning-based approach KEVOLVE efficiently identifies SARS-CoV-2 variant-specific genomic signatures

Dylan Lebatteux1,2, Hugo Soudeyns2, Isabelle Boucoiran2, Soren Gantt2, Abdoulaye Baniré Diallo1,3*,

1 Department of Computer Science, Université du Québec à Montréal, Montreal, QC H2X 3Y7, Canada.
2 CHU Sainte-Justine Research Centre, Montréal, QC H3T 1C5, Canada
3 Centre CERMO-FC, Pavillon des Sciences biologiques, Montreal, QC, H2X 3Y7, Canada

* diallo.abdoulaye@uqam.ca

Abstract

Machine learning has proven to be a powerful tool for the identification of distinctive genomic signatures among viral sequences. Such signatures are motifs present in the viral genome that differentiate species or variants. In the context of SARS-CoV-2, the identification of such signatures can contribute to taxonomic and phylogenetic studies, help in recognizing and defining distinct emerging variants, and focus the characterization of functional properties of polymorphic gene products. Here, we study KEVOLVE, an approach based on a genetic algorithm with a machine learning kernel, to identify several genomic signatures based on minimal sets of \(k\)-mers. In a comparative study, in which we analyzed large SARS-CoV-2 genome dataset, KEVOLVE performed better in identifying variant-discriminative signatures than several gold-standard reference statistical tools. Subsequently, these signatures were characterized to highlight potential biological functions. The majority were associated with known mutations among the different variants, with respect to functional and pathological impact based on available literature. Notably, we found show evidence of new motifs, specifically in the Omicron variant, some of which include silent mutations, indicating potentially novel, variant-specific virulence determinants. The source code of the method and additional resources are available at: \url{https://github.com/bioinfoUQAM/KEVOLVE}.

Author summary

Advances in cloning and sequencing technologies have yielded a vast repository of viral genomic sequence data. To analyze this complex and massive data, Machine learning, which refers to the development and application of computer algorithms that improve with experience, has proven to be efficient. Although many methods have been developed to classify viruses into different characteristic groups, it is often difficult to explain the predictions of these methods. To overcome this, we are working in our laboratory on the design of machine learning based methods for discriminative signatures identification within viral genomic sequences. These signatures which are a specific motifs to groups of viruses known to be pervasive in their genome, are used to 1) build accurate and explainable prediction tools for pathogens and 2) highlight mutations potentially associated with functional changes. In this paper we present the
potential of our latest approach KEVOLVE. We first compare it to three discriminating motif identification tools with data sets covering several SARS-CoV-2 variant genomes. We then focus on the identified motifs by KEVOLVE to analyze the mutations associated with the different variants and the potential changes in biological functions that they may involve.

Introduction

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the etiological agent of COVID-19. This highly pathogenic coronavirus was discovered in December 2019 in the city of Wuhan, China. It belongs to the betacoronavirus genus, which includes SARS-CoV-1 and MERS-CoV. The genome of SARS-CoV-2 consists of a single-stranded RNA of 29,903 nucleotides (Fig 1 from [1]). Its sequence identity with SARS-CoV and MERS-CoV is 79.5% and 50% at the nucleotide sequence level, respectively [2,3]. The SARS-CoV-2 genome contains 11 genes encoding 15 Open Reading Frames (ORF), which result in between 29 and 33 viral protein products [1].

SARS-CoV-2 is associated with a very high mutation rate ranging from 5.2 to 8.1 × 10^{-3} substitutions/site/year [4,5], higher than human immunodeficiency virus (HIV), which has a mutation rate of 3 to 8 × 10^{-3} substitutions/site/year [6]. Many of these mutations, principally in the spike gene, are associated with increased SARS-CoV-2 transmission rates [7], and the development of new variants associated with reduced efficacy of current COVID-19 vaccines and antibody-based treatments [8].

Given this rapid rate of evolution, it is important to be able to efficiently identify genomic signatures that discriminate between the different variants of SARS-CoV-2 and highlight potential functional changes. These signatures are defined as species or variant-specific motifs that are pervasive throughout the viral genome [9]. In the context of SARS-CoV-2, the identification of this type of signature can contribute to taxonomic [10] and phylogenetic [11] studies to differentiate distinct groups of variants, provide an explanation for their evolutionary history [9], as well as to facilitate mechanistic studies to elucidate the functional basis of variant-specific differences in virulence [12].

Fig 1. SARS-CoV-2 genome organization

To identify discriminating motifs that constitute genomic signatures among different groups of biological sequences, the traditional approach is to first compute multiple sequence alignment [13] with tools as: MUSCLE [14], Clustal W/X [15] or MAFFT [16]. These alignments can then be analyzed to identify the divergent genomic regions that constitute the discriminating motifs. However, the use of multiple alignment approaches has significant limitations, particularly when applied to viral genomes [12].

First, alignment-based approaches are generally computationally- and time-intensive and are therefore less well suited to dealing with very large viral sequence datasets that
are increasingly available [17]. Indeed, computing an accurate multi-sequence alignment is an NP-hard problem with \((2N)!/(N!)^2\) possible alignments for two sequences of length \(N\) [18], which means that in some case, the alignment cannot be solved within a realistic time frame [19]. Even with dynamic programming, the time requirement is on the order of the product of the lengths of the input sequences [20].

Second, alignment algorithms assume that homologous sequences consist of a series of more or less conserved linearly arranged sequence segments. However, this assumption, named collinearity, is often questionable, especially for RNA viruses [19]. This is because RNA viruses show extensive genetic variation due to high mutation rates, as well as high frequencies of genetic recombination, horizontal gene transfer, and gene duplication, leading to the gain or the loss of genetic material [21].

Finally, performing multiple alignments often requires adjusting several parameters (e.g., substitution matrices, deviation penalties, thresholds for statistical parameters) that are dependent on prior knowledge about the evolution of the compared sequences [19]. The adjustment of these parameters is therefore sometimes arbitrary and requires a trial-and-error approach. Many experiments have shown that minor variations in these parameters can significantly affect the quality of alignments [22].

To overcome the limitations of discriminative motif identification among different groups of biological sequences using multiple sequence alignment, specialized statistical-based tools have been developed. The most popular of these method is MEME [23,24], which is dedicated to motif identification. MEME has a discriminative mode [25] that considers two sets of sequences and identifies the enriched motifs that discriminate the first set (primary) from the second (control). A suite of other MEME tools has been developed, of which STREME [26] is the latest and most powerful for motif discovery in sequence datasets. The STREME algorithm is based on a generalized suffix tree and evaluates motifs using a statistical test of the enrichment of matches to the motif in a primary set of sequences compared to a set of control sequences [26].

In parallel, machine learning methods have been widely used in the field of genomics over recent years and have proved to be highly effective for solving complex and massive data analysis problems [27]. For viral genomic sequence classification CASTOR [28] has shown the relevance of RFLP (Restriction fragment length polymorphism) signatures coupled with machine learning models. These models obtained in cross-validation evaluations performance in terms of F1-score > 99% for the prediction of viral genomes of hepatitis B and human papillomavirus. However, these signatures showed some limitations for HIV sequence prediction where the F1-score dropped below 0.90. Subsequently, KAMERIS [29] addressed this problem by using \(k\)-mers (nucleotide subsequences of length \(k\)) to characterize the sequences given to the learning model. To tackle the problem of the number of exponential number of features \(4^k\) associated with \(k\)-mers, KAMERIS performs a dimensionality reduction using truncated singular value decomposition. However, this transformation significantly affects the ability to explain the predictions of the model.

For this reason, CASTOR-KRFE [30] is a method that focuses on the identification of minimal sets genomic signatures based on minimal sets of \(k\)-mers to discriminate among several groups of genomic sequences. During cross-validation evaluations covering a wide range of viruses, CASTOR-KRFE successfully identified minimal sets of motifs. Subsequently, these motifs, coupled with supervised learning algorithms, have allowed to build prediction models resulting in average F1-score > 0.96 [30]. However, this study is limited to identifying an optimal set of motifs, instead of exploring the suboptimal sets of the feature space. This may have major consequences when dealing with in sets of viral sequences with high genomic diversity or when attempting to infer biological functions based on the identified motifs. To overcome the lack of flexibility of CASTOR-KRFE, KEVOLVE [31] a new method based on a genetic algorithm including
a machine learning kernel was designed to identify multiple minimal subsets of discriminative motifs. A preliminary comparative study of HIV nucleotide sequences showed that KEVOLVE-identified motifs allowed the construction of models that out-performed specialized HIV prediction tools.

Here, we evaluate the KEVOLVE, whose search function has been improved in order to identify smaller sets of motifs while trying to respect the same discriminative performance criteria. We compared several reference tools (MEME, STREME and CASTOR-KRFE) to identify discriminating motifs among SARS-CoV-2 genome sequences. The motifs were first identified in a restricted set of nucleotide sequences associated with different variants of SARS-CoV-2. Second, the motifs were used to build prediction models that were assessed through the classification of a large set of SARS-CoV-2 sequences. Third, the motifs identified by KEVOLVE were analyzed in order to highlight the potential biological functions of the sequences/motifs in questions. Finally, a specific analysis was dedicated to the new variant of concern, Omicron, that was recognized on 24 November 2021 in South Africa (https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern).

Materials and methods

To assess the relative accuracy of KEVOLVE to identify discriminating motifs, we performed a comparative study with specialized tools. This involved for each tool to identify a subset of discriminating motifs in a set of training sequences of SARS-CoV-2 variants. These sets of motifs were designed to provide genomic signatures specific to each SARS-CoV-2 variant. In a second step these signatures combined with a supervised learning algorithm and the training sequences to fit a prediction model. Then, the quality of the signatures was assessed through the prediction of trained models on a large test set of unknown sequences. Finally, we analyzed in line with the literature, the variant-discrimination motifs identified by KEVOLVE according to their location in the genome, to assess the potential functional impact of these mutations.

Discriminative motif identification tools

The first tool that was evaluated was KEVOLVE [31]. KEVOLVE, is a new method based on a genetic algorithm including a machine learning kernel. KEVOLVE implementation is based on two main units: 1) an identification unit that provides subsets of features that are minimal and likely to provide the best performance metrics; and 2) a prediction unit that applies an ensemble classifier using the subsets of features.

The second tool that was evaluated was CASTOR-KRFE [30]. It is an alignment-free machine learning approach for identifying a set of genomic signatures based on k-mers to discriminate between groups of nucleic acid sequences. The core of CASTOR-KRFE is based on feature elimination using SVM (SVM-RFE). CASTOR-KRFE identifies an optimal length of k to maximize classification performance and minimize the number of features. This method also provides a solution to the problem of identifying the optimal length of k-mers for genomic sequence classification [32].

The third tool that was evaluated was MEME (discriminative mode) [25], a tool from the MEME suite [24] specialized in motif identification. MEME inputs two sets of sequences and identifies enriched motifs that discriminate the primary set from the control set. In discriminative mode, the algorithm first calculates a position-specific prior from the two sets of sequences. It then searches the first set of sequences for motifs using the position-specific prior to inform the search based on the discriminative prior D [33]. In addition, MEME considers as a parameter a potential motif distribution
type to be identified to improve the sensitivity and quality of the motif search. In
discriminative mode, the two available options are: 1) zero or one occurrence per
sequence (zoops), where MEME assumes that each sequence may contain at most one
occurrence of each motif; and 2) one occurrence per sequence (oops), where MEME
assumes that each sequence in the dataset contains exactly one occurrence of each motif.

The last tool evaluated was STREME [26], which during a recent comparative study
of motif identification was found to be more accurate, sensitive and thorough than
several widely used algorithms [26]. STREME algorithm makes use of a data structure
called a generalized suffix tree and evaluates motifs using a one-sided statistical test of
the enrichment of matches to the motif in a primary set of sequences compared to a set
of control sequences STREME assumes that each primary sequence may contain zoops
but the motif discovery will not be negatively affected if a primary sequence contains
more than one occurrence of a motif.

Dataset

To set up the most comprehensive evaluation framework possible, we built a dataset of
226,532 complete SARS-CoV-2 genomes. The sequences of this initial dataset covering
variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon
(B.1.427/9), Zeta (P.2), Eta (B.1.525), Iota (B.1.526) and Kappa (B.1.617.1) were
downloaded on August 1, 2021 from the GISAID database [34]. In addition, in the
context of the emergence of the new Omicron variant (B.1.1.529) and its interest for
global public health, 72 sequences of this variant were also included for our studies on
December 15, 2021. Due to small sample size of Omicron during the study, the
sequences were not included in our comparative study. However, a specific analysis
section was dedicated to it. We specify that only complete genomes with high coverage
were included in our data set (Table 1) and the list of accession ids of the sequences
used in our different dataset is available on our GitHub repository.

<table>
<thead>
<tr>
<th>WHO label</th>
<th>SARS-CoV-2 lineage</th>
<th>Country of origin</th>
<th>Number of sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>B.1.1.7</td>
<td>United Kingdom</td>
<td>50000</td>
</tr>
<tr>
<td>Beta</td>
<td>B.1.351</td>
<td>South Africa</td>
<td>17126</td>
</tr>
<tr>
<td>Gamma</td>
<td>P.1</td>
<td>Brazil</td>
<td>36929</td>
</tr>
<tr>
<td>Delta</td>
<td>B.1.617.2</td>
<td>India</td>
<td>50000</td>
</tr>
<tr>
<td>Epsilon</td>
<td>B.1.427/9</td>
<td>USA (California)</td>
<td>34118</td>
</tr>
<tr>
<td>Eta</td>
<td>B.1.525</td>
<td>United Kingdom / Nigeria</td>
<td>2334</td>
</tr>
<tr>
<td>Iota</td>
<td>B.1.526</td>
<td>USA (New York)</td>
<td>28572</td>
</tr>
<tr>
<td>Zeta</td>
<td>P.2</td>
<td>Brazil</td>
<td>3745</td>
</tr>
<tr>
<td>Kappa</td>
<td>B.1.617.1</td>
<td>India</td>
<td>3708</td>
</tr>
<tr>
<td>Omicron</td>
<td>B.1.1.529</td>
<td>South Africa</td>
<td>72</td>
</tr>
</tbody>
</table>

Total number of sequences 226604

Subsequently, this initial dataset was partitioned into two independent subsets. The
first (training subset) was composed of 2,250 randomly selected sequences (250
sequences for the 9 types of variants). The second (testing subset) was composed of the
remaining sequences (224,282 sequences).

Setting the length of k

A preliminary step of this comparative study consists in setting the parameter k for the
length of the motifs to be discovered for the respective identification tools. For this
purpose, we used CASTOR-KRFE, giving it as input the training sequence set. For the associated parameters, we set the performance threshold to be maintained by reducing the number of features to $T = 0.99$ and the minimum/maximum length of k-mers to be explored to $k_{-\text{min}} = 1$ and $k_{-\text{max}} = 20$ respectively. As output, CASTOR-KRFE identified the following subset which is composed of 9 motifs of length $k = 8$:

\[\text{[AACTAAAA, ATATCTGG, AATTTCTC, ATAGAATG, CCGGTATA, CATAGCGC, }\]
\[\text{TAGTGAAT, TCTTGCAT, CAAAGTAG].}\]

During the CASTOR-KRFE identification process, this subset of motifs, coupled with a supervised prediction model based on a linear SVM, was evaluated by 5-fold cross-validation on the training set and obtained a weighted F1-score > 0.99. In addition, the length of k-mers that was identified was consistent with other studies using k-mers for viral sequence classification [9,30,32].

Benchmarking

To assess the relevance of the discriminating motifs identified by each tool, we were inspired by the evaluation conducted in [30]. For CASTOR-KRFE, the previously identified subset of motifs coupled with the set of training sequences and an SVM were used to fit a prediction model. From this model the testing sequence set was predicted. Regarding KEVOLVE, the identification unit was used as input the training set of sequences as well as the following parameters: $n_{\text{iterations}} = 1000$, $n_{\text{solutions}} = 100$, $n_{\text{chromosomes}} = 2500$, $n_{\text{genes}} = 1$, $\text{objective score} = 0.99$, $\text{crossover rate} = 0.2$, $\text{mutation rate} = 0.1$ and $\text{variance threshold} = 0.01$. Initially, KEVOLVE was designed to identify multiple discriminating subsets to build a single ensemble prediction model. However, in this evaluation, for each identified subset, a model was trained and evaluated by predicting the test set.

Table 2. Summary of the evaluated motif identification tools and their associated parameters.

<table>
<thead>
<tr>
<th>Tools</th>
<th>Number of motifs</th>
<th>Motifs width</th>
<th>Site distribution</th>
<th>Discovery mode</th>
<th>Performance threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREME</td>
<td>Auto</td>
<td>8</td>
<td>None</td>
<td>None</td>
<td>Number of motifs</td>
</tr>
<tr>
<td>MEME</td>
<td>1</td>
<td>8</td>
<td>Zero or One Occurrence Per Sequence (zoops)</td>
<td>Discriminative</td>
<td>Number of motifs</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>One Occurrence Per Sequence (oops)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASTOR KRFE</td>
<td>Auto</td>
<td>8</td>
<td>None</td>
<td>None</td>
<td>0.99</td>
</tr>
<tr>
<td>KEVOLVE</td>
<td>Auto</td>
<td>8</td>
<td>None</td>
<td>None</td>
<td>0.99</td>
</tr>
</tbody>
</table>

The Tools column provides information about the different tools evaluated in this study. The column Number of motifs indicates the number of discriminating motifs that have been asked to identify for each tool. For CASTOR-KRFE and KEVOLVE no parameter is filled in because these tools automatically try to minimize the number of motifs. The column Motifs width corresponds to the length of the discriminating motifs to be identified. The column Site distribution refers for MEME to how the discriminating motifs are supposed to be present in the sequences to improve the sensitivity and quality of the search. The column Discovery mode also indicates for MEME the type of search to perform. In this context we have selected the mode for identifying motifs that discriminates between groups of sequences given as input. The Performance Threshold column refers to a quality criterion that the identified motif must satisfy. For MEME and STREME the n best motifs in terms of p-value are selected where n corresponds to the number in the Number of motifs column. For CASTOR-KRFE and KEVOLVE, the algorithms will search until they obtain a set of motifs that satisfy an F1-score > 0.99 during their internal evaluation.

To evaluate MEME, considering its limitation to take as input a binary set (primary
set and control set), we set up the following process: for each variant \(v \) present in the training set \(V \), we select all sequences belonging to \(v \) to form the primary set. All other sequences in \(V \) were used to form the control set. Then, we applied MEME to discover the motifs that discriminated the primary set from the control set. This process was repeated for each \(v \) belonging to \(V \) in order to build a set of motifs that can discriminate each variant from the others. Then, this set was used to train a model and predict the testing set in the same configuration as CASTOR-KRFE and KEVOLVE. For the associated distribution site parameters, both zoops and oops options were evaluated. In addition, for the motifs to be identified, we ran the experiments to discover 1, 2 and 3 motifs of width 8 for each variant. This involved for MEME the training and evaluation of six prediction models.

Finally, for STREME, we applied the same iterative process to identify the motifs as for MEME. As mentioned before, for the motif distribution type, STREME does not require an input parameter and handles this automatically. Finally, as for MEME, we have identified and evaluated subsets of motifs of variable size (1 motif per variant, 2 motifs per variant and 3 motifs per variant). The tools and their overall configuration are summarized and compared in the (Table 2).

Results and Discussion

Number of identified motifs

First, we focused on the number of motifs identified by each tool. For KEVOLVE, its identification unit gave as output a total of 21 subsets composed of 8 motifs of length \(k = 8 \). This was the smallest subsets of motifs capable of discriminating between the 9 groups of SARS-CoV-2 variants among all tools. Even though each subset of KEVOLVE was composed of unique motifs, some motifs overlapped between subsets. CASTOR-KRFE identified a set composed of 9 discriminating motifs, which is slightly better than KEVOLVE. To describe the results of MEME and STREME we use the name of the tool followed by the distribution type and the number of motifs to identify. If this is not specified we discuss the overall tool. With the option of 1 motif per variant, MEME zoops, MEME oops and STREME were each able to constitute a subset of 9 discriminative motifs, which is similar to CASTOR-KRFE. For the 2 motifs per variant option, MEME zoops, MEME oops and STREME identified 14, 17 and 18 discriminative motifs respectively. Finally for the 3 motif per variant configuration, the identified subsets reached the size of 18, 24 and 26 respectively for MEME zoops, MEME oops and STREME. These results show that by increasing the number of motifs to be discovered, MEME zoops tends to identify more motifs that are redundant unlike MEME oops, STREME, CASTOR-KRFE and KEVOLVE.

Prediction performances

Regarding the predictive results associated with the model based on the motifs identified by each tool, Table 3, 4 and 5 illustrate respectively the predictive performance of the testing set according to each variant in terms of precision, recall and F1-score. Specifically, for KEVOLVE the scores shown represent the average results followed by the standard deviation obtained by 21 predictive models trained from the sets identified by the algorithm.

The best results of this comparative study are obtained by CASTOR-KRFE and KEVOLVE. For all the variants, they have scores > 0.9 in terms of Precision, Recall and F1-score. Their average score for all performance metrics is above 0.97. We note that the performance of CASTOR-KRFE is slightly better, however, KEVOLVE
Table 3. Precision of the models associated with each tool for the prediction of the testing set.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Precision</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEME ZOOPS</td>
<td>0.999</td>
<td>0.993</td>
</tr>
<tr>
<td>ZOOPS 1</td>
<td>0.990</td>
<td>0.986</td>
</tr>
<tr>
<td>ZOOPS 2</td>
<td>0.985</td>
<td>0.979</td>
</tr>
<tr>
<td>ZOOPS 3</td>
<td>0.981</td>
<td>0.975</td>
</tr>
</tbody>
</table>

Table 4. Recall of the models associated with each tool for the prediction of the testing set.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Recall</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEME ZOOPS</td>
<td>0.999</td>
<td>0.993</td>
</tr>
<tr>
<td>ZOOPS 1</td>
<td>0.990</td>
<td>0.986</td>
</tr>
<tr>
<td>ZOOPS 2</td>
<td>0.985</td>
<td>0.979</td>
</tr>
<tr>
<td>ZOOPS 3</td>
<td>0.981</td>
<td>0.975</td>
</tr>
</tbody>
</table>

Table 5. F1-score of the models associated with each tool for the prediction of the testing set.

<table>
<thead>
<tr>
<th>Tool</th>
<th>F1-score</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEME ZOOPS</td>
<td>0.999</td>
<td>0.993</td>
</tr>
<tr>
<td>ZOOPS 1</td>
<td>0.990</td>
<td>0.986</td>
</tr>
<tr>
<td>ZOOPS 2</td>
<td>0.985</td>
<td>0.979</td>
</tr>
<tr>
<td>ZOOPS 3</td>
<td>0.981</td>
<td>0.975</td>
</tr>
</tbody>
</table>

identified 21 subsets of discriminating motifs of size 8 while CASTOR identified only one subset of size 9.

The next best performer is STREME with STREME 3 obtaining average scores between 0.83 and 0.86 for Precision, Recall and F1-Score. The drop in performance compared to CASTOR-KRFE and KEVOLVE is because it was not able to identify motifs that could characterize the Beta variant and showed scores close to 0. The performance of STREME 1 and 2 then drops to average scores between 0.75 and 0.78 for the different performance metrics. These results are explained because the majority of the Alpha sequences were predicted as Iota variants.

Then MEME ZOOPS performed worse than STREME. MEME ZOOPS 2 and 3 achieved scores between 0.79 and 0.86 for Precision, Recall and F1-score. Like STREME, MEME ZOOPS had difficulties in predicting the Beta variant. For both models many Kappa sequences were incorrectly predicted as Beta or Epsilon. In addition, MEME ZOOPS 3 for Delta and MEME ZOOPS 2 for Epsilon, respectively obtained an F1-score close to 0. For MEME ZOOPS 3, many Beta and Epsilon sequences were predicted Delta, and for MEME ZOOPS 3 the majority of Epsilon sequences were assigned to other types of variants. Finally, MEME ZOOP 1 presents the same errors as MEME ZOOP 3. Moreover, it was not able to identify any discriminative motifs related to Eta leading to scores of 0 for this variant.
Finally, the least performing models are those based on the motifs identified by MEME OOPS. MEME OOPS 3 and 2 obtained average scores between 0.68 and 0.72 for Precision, Recall and F1-score. These models have had similar problems as MEME ZOOPS in predicting the sequences of Beta, Delta and Kappa. In addition, MEME OOPS was not able to identify discriminative motifs associated with the Iota variant involving performance metric scores close to 0 for Iota sequence prediction. Finally, MEME OOPS 1 also encountered the same difficulties as MEME ZOOP 1 for the prediction of the Eta variant, which dropped its average scores to about 0.58 for Precision, Recall and F1-score.

Analysis of identified motifs by KEVOLVE

KEVOLVE was able to identify 74 unique motifs that discriminated between different sequences of SARS-CoV-2 variants. Fig 2 is a cluster map of 34 motifs that allows to visualize the discriminating potential by their percentage of presence/absence according to the different families of variants. The selected motifs are those that allow to discriminate one or several groups of variants by their presence or absence at more than 97%. Note that these motifs were identified by KEVOLVE during the comparative study from the training set of 2,250 SARS-CoV-2 genomes (250 sequences for the 9 types of variants). However, the results shown in Fig 2 are based on the 226,532 variant sequences (training and testing sets).

In the figure we can see motifs that allow to discriminate the different variants from the others. For the Alpha variant the ACTACAGA motif for example is absent from their genome while it is present in all the other variants. For the Beta variant, the AAAGTGGA motif is absent in about 97% of the cases in contrast to the other variants. Considering the Delta variant, we observe that the GACCTTAA and CGGTTCAC motifs are absent from their genome while they are present in the other variants. Focusing on the Epsilon variant, several motifs such as ATAGCGCT, CCTGTATA and TTAACCTTA by their absence and presence can be used to discriminate it from other variants. The CCGCAATG motif, which is present only in Eta genomes, provides a genomic signature for this variant. The absence of the AAATATCT and GGGAATTT motifs in Gamma’s genome allow discrimination from other variants where they are present. For Iota and Kappa it is for example the presence of the ATAACTGT and TATCTTAA motifs respectively that allow them to be distinguished from other variants. Finally, the Zeta variant can be characterized by the absence of the TGTATCAA motif, which is in contrast present in the genome of all other variants.

In summary, KEVOLVE identified from a small portion of the dataset multiple motifs that can discriminate by their absence or presence between different groups of SARS-CoV-2 variants. The discriminative potential of these motifs can be generalized to larger data sets as well as to constitute genomic signatures associated with SARS-CoV-2 variants.

Biological interests of the identified motifs

We analyzed the variant-discrimination motifs identified by KEVOLVE according to their location in the genome, to assess their potential functional impact of these mutations.

Preliminary sequence analyses

To study the motifs, we first used UGENE bioinformatics software [35] to perform multiple alignment by selecting 50 genomes per variant family from our training sequence set. In addition, 50 Omicron variant genomes were included to form a set of
Fig 2. Cluster map representing the percentage of presence of motifs identified by KEVOLVE according to the groups of variants of SARS-CoV-2.

500 sequences that were aligned by MUSCLE algorithm [14] in large alignment mode. From this alignment, we calculated the dissimilarity matrix based on Hamming distances. Finally, the matrix representing the dissimilarity percentages of nucleotide between the different groups of SARS-CoV-2 variants as well as a phylogenetic tree (Fig 3) based on the neighbour-joining method [36] was computed.

From this matrix we can observe that the divergence between the genomes of the several clusters of SARS-CoV-2 variants is less than 1% and the mean divergence between all the sequences is 0.29%. Focusing on the phylogenetic tree on the right of Fig 3 we observe that this divergence is sufficient to cluster the variant families. Considering the columns related to Omicron as well as the phylogenetic tree, we observe that Omicron is the most divergent. It diverges by 0.44% compared to the other variants and shows an intra-variant divergence of 0.30%. Lastly, the Alpha, Zeta and Iota variants are the least divergent (0.26%, 0.24% and 0.26% respectively compared to the other variants) and (0.05%, 0.007% and 0.14% intra variant divergence).
Mutations and potential impact associated with motifs

The motif analyses were supported by the computed multiple alignment and the SnapGene software (from Insightful Science; available at snapgene.com) using the sequence of references NC_045512 (Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome). In addition, we analyzed all 72 Omicron genomes with KEVOLVE to identify motifs that discriminate this variant from others present in the training set. From this analysis, we highlighted in Table 6, the different mutations contained in the identified motifs, where they are located and the associated variants.

Concerning the Alpha variant, the identified motifs highlighted the D1118H mutation located in the Spike glycoprotein, the SGF3675-3677 deletions located in ORF1ab (NSP6), which is also present in the Beta, Gamma, Eta and Iota variants, and the substitutions R203K / G204R, which are shared with the Zeta and Omicron variants. A recent study [37] showed that the 203K/204R mutation located in ORF9 (Protein N) is associated with increased COVID-19 infectivity. Thus, this mutation is potentially a major contributor to the high contagiousness of Omicron.

For the Beta variant, the motifs pointed out the K1655N mutation in ORF1ab (NSP3), the Q57H mutation located in ORF3a, which is present in Epsilon and Iota, as well as the T205I mutation shared with Epsilon and Eta and which is located in ORF9 (Protein N). Regarding the Gamma variant, KEVOLVE identified motifs that contain three characteristic substitutions of this variant [38] which are: K1795Q in ORF1ab (NSP3), R190S and L18F in ORF2 (Spike Protein S1).

For Delta variant-associated motifs, they highlighted D63G (ORF9 (Protein N)), G5063S (ORF1b (NSP12)), D950N (ORF2 (Protein Spike S2)), 156del / 157del (ORF2 (Protein Spike S1)), and T19R (ORF2 (Protein Spike S1)) mutations that are specific to Delta [39,40].

In the motifs, we also identified the I82T mutation located in ORF5 (membrane protein), which has been proposed to increase replication fitness through alteration of cellular glucose uptake during viral replication [41]. Our analysis also confirms the presence of this mutation in the Eta variant [42]. The L452R mutation located in the spike protein, which increases fusogenicity and promotes viral replication and...
<table>
<thead>
<tr>
<th>Variant name</th>
<th>Motifs</th>
<th>Mutation</th>
<th>Mutation position</th>
<th>Amino acid change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha (B.1.1.7)</td>
<td>ACTACAGA ⇒ ACTACAGA</td>
<td>D1118H</td>
<td>ORF2 (Protein Spike S2)</td>
<td>Asp1118 ⇒ His</td>
</tr>
<tr>
<td>Beta (B.1.351)</td>
<td>TAGTTTTGTCGGTTTTA ⇒ TAGTTTG———A</td>
<td>Del SGF3675-3677</td>
<td>ORF1ab (NSP6)</td>
<td>Deletion mutation</td>
</tr>
<tr>
<td>Gamma (P.1)</td>
<td>CAGTAGGG ⇒ CAGTAAC</td>
<td>R203K / G204R</td>
<td>ORF9 (Protein N)</td>
<td>Arg203 ⇒ Lys / Gly204 ⇒ Arg</td>
</tr>
<tr>
<td>Eta (B.1.525)</td>
<td>AAAGTGGA ⇒ AAAATGGGA</td>
<td>K1655N</td>
<td>ORF1ab (NSP3)</td>
<td>Lys1655 ⇒ Asn</td>
</tr>
<tr>
<td>Iota (B.1.526)</td>
<td>AACCTTCTC ⇒ AACCTTCTC</td>
<td>Q205I</td>
<td>ORF9 (Protein N)</td>
<td>Thr205 ⇒ Ile</td>
</tr>
<tr>
<td>Kappa (B.1.617.1)</td>
<td>CCGGTATA ⇒ CCGGTATA</td>
<td>L452R</td>
<td>ORF2 (Protein Spike S1)</td>
<td>Leu452 ⇒ Arg</td>
</tr>
<tr>
<td>L452R</td>
<td>ORF2 (Protein Spike S1)</td>
<td>Leu452 ⇒ Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eta (B.1.525)</td>
<td>ATCGCAAT ⇒ ACACGCAAT</td>
<td>I82T</td>
<td>ORF5 (Protein membraire)</td>
<td>Ile82 ⇒ Thr</td>
</tr>
<tr>
<td>Kappa (B.1.617.1)</td>
<td>CTAATCTC ⇒ ATACATCTC</td>
<td>T11I</td>
<td>ORF8</td>
<td>Thr11 ⇒ Ile</td>
</tr>
<tr>
<td>Eta (B.1.525)</td>
<td>AATCCTAGT ⇒ ATACCTAGT</td>
<td>T11I</td>
<td>ORF8</td>
<td>Thr11 ⇒ Ile</td>
</tr>
<tr>
<td>Kappa (B.1.617.1)</td>
<td>TTATCCCA ⇒ TTATCCCA</td>
<td>Silent Mutation</td>
<td>ORF2 (Protein Spike S2)</td>
<td>Phe1062 ⇒ Phe</td>
</tr>
<tr>
<td>Zeta (P.2)</td>
<td>GTATCAA ⇒ GTATTAA</td>
<td>Silent Mutation</td>
<td>ORF1ab (NSP3)</td>
<td>Ala1707 ⇒ Ala</td>
</tr>
<tr>
<td>Omicron (B.1.1.529)</td>
<td>CTTACAGC ⇒ CTTACAGC</td>
<td>Q57H</td>
<td>ORF3a</td>
<td>Gln57 ⇒ Lys</td>
</tr>
<tr>
<td>Eta (B.1.525)</td>
<td>AATCCTAGT ⇒ ATACCTAGT</td>
<td>Silent Mutation</td>
<td>ORF2 (Protein Spike S2)</td>
<td>Thr19 ⇒ Arg</td>
</tr>
<tr>
<td>Eta (B.1.525)</td>
<td>AATCCTAGT ⇒ ATACCTAGT</td>
<td>Silent Mutation</td>
<td>ORF2 (Protein Spike S2)</td>
<td>Thr19 ⇒ Arg</td>
</tr>
<tr>
<td>Iota (B.1.526)</td>
<td>ACCTTAGT ⇒ ATACCTAGT</td>
<td>Silent Mutation</td>
<td>ORF2 (Protein Spike S2)</td>
<td>Thr19 ⇒ Arg</td>
</tr>
<tr>
<td>Kappa (B.1.617.1)</td>
<td>TTATCCCA ⇒ TTATCCCA</td>
<td>Silent Mutation</td>
<td>ORF2 (Protein Spike S2)</td>
<td>Thr19 ⇒ Arg</td>
</tr>
<tr>
<td>Zeta (P.2)</td>
<td>GCTGCCCTAA ⇒ GCCGCCCTAA</td>
<td>Silent Mutation</td>
<td>ORF1ab (NSP3)</td>
<td>Ala1707 ⇒ Ala</td>
</tr>
<tr>
<td>Omicron (B.1.1.529)</td>
<td>GCTGCCCTAA ⇒ GCCGCCCTAA</td>
<td>Silent Mutation</td>
<td>ORF1ab (NSP3)</td>
<td>Ala1707 ⇒ Ala</td>
</tr>
<tr>
<td>Eta (B.1.525)</td>
<td>ACTAAATTC ⇒ ACTAAATTC</td>
<td>N679K</td>
<td>ORF2 (Protein Spike)</td>
<td>Asp796 ⇒ Tyr</td>
</tr>
<tr>
<td>Kappa (B.1.617.1)</td>
<td>TTATCCCA ⇒ TTATCCCA</td>
<td>Silent Mutation</td>
<td>ORF2 (Protein Spike)</td>
<td>Asp796 ⇒ Tyr</td>
</tr>
<tr>
<td>Zeta (P.2)</td>
<td>GCTGCCCTAA ⇒ GCCGCCCTAA</td>
<td>Silent Mutation</td>
<td>ORF1ab (NSP3)</td>
<td>Ala1707 ⇒ Ala</td>
</tr>
<tr>
<td>Omicron (B.1.1.529)</td>
<td>GCTGCCCTAA ⇒ GCCGCCCTAA</td>
<td>Silent Mutation</td>
<td>ORF1ab (NSP3)</td>
<td>Ala1707 ⇒ Ala</td>
</tr>
<tr>
<td>Eta (B.1.525)</td>
<td>ACTAAATTC ⇒ ACTAAATTC</td>
<td>N679K</td>
<td>ORF2 (Protein Spike)</td>
<td>Asp796 ⇒ Tyr</td>
</tr>
<tr>
<td>Kappa (B.1.617.1)</td>
<td>TTATCCCA ⇒ TTATCCCA</td>
<td>Silent Mutation</td>
<td>ORF2 (Protein Spike)</td>
<td>Asp796 ⇒ Tyr</td>
</tr>
<tr>
<td>Zeta (P.2)</td>
<td>GCTGCCCTAA ⇒ GCCGCCCTAA</td>
<td>Silent Mutation</td>
<td>ORF1ab (NSP3)</td>
<td>Ala1707 ⇒ Ala</td>
</tr>
</tbody>
</table>
infectivity [43], was also found in motifs within the Delta, Epsilon and Kappa genomes.

Finally, three substitutions constituting unique features of Omicron were highlighted, by KEVOLVE: I3758V in ORF1ab (NSP6) and N679K and D796Y in ORF2 (Spike protein) [44]. The functional implications of these Omicron variant mutations are unknown, leaving many questions about how they may affect viral fitness and vulnerability to natural and vaccine-mediated immunity [45]. However, the combination of N679K with H655Y and P681H, due to their proximity to the furin cleavage site, could increase the cleavage of spike, enhancing fusion and viral transmission [46].

Conclusion

In this study, we compared the ability of machine learning-based tools to classify SARS-CoV-2 variants compared to statistical tools specialized in discriminative motif identification. We found that the identification of motifs in SARS-CoV-2 genome sequences readily discriminates different groups of variants. However, the machine learning-based approaches, CASTOR-KRFE and KEVOLVE, were generally more efficient. The predictive models based on the motifs (8 for KEVOLVE and 9 for CASTOR-KRFE) identified by these two approaches predict a large set of SARS-CoV-2 variant sequences with an average F1 score greater than 0.98. Furthermore, these two approaches predicted a large set of SARS-CoV-2 variant sequences (over 225,000) with an average F1-score greater than 0.98. In contrast, the model involving the most motifs (26), using STREME, which was the best performing approach after KEVOLVE and CASTOR-KRFE, only obtained an average F1-score of 0.836. In addition, unlike the statistical approaches, KEVOLVE and CASTOR-KRFE, can deal with multi-class sets and are not limited to binary sets. In addition, KEVOLVE is distinguished by its ability to identify multiple discriminative sets unlike other tools that are limited to a single optimal set.

Subsequently, we analyzed the motifs identified by KEVOLVE with respect to their recognized or potential functional importance from the existing literature. Not surprisingly, we found that the majority of SARS-CoV-2 motifs identified by KEVOLVE were associated with known mutations among the different viral variants. However, of interest, several motifs derived from CASTOR-KRFE and KEVOLVE did not correspond to recognized variant-specific mutations. With respect to Omicron, 4 motifs contained what appear to be silent mutations, indicating potentially novel variant-specific virulence determinants [47]. Interestingly, although Omicron displays increased transmissibility and evades vaccine-induced and natural-acquired neutralizing antibodies through its numerous spike mutations, it may also cause less severe disease, perhaps due to altered tissue tropism [48,49]. As the genetic basis of SARS-CoV-2 virulence remain incompletely understood, variant-discriminating mutations represent valuable targets for understanding differences in viral phenotypes and clinical outcomes.

These results suggest that KEVOLVE is a robust tool for the rapid and accurate determination of SARS-CoV-2 variants. The identified motifs provide genomic signatures that can be used to build peptide or oligonucleotide libraries for rapid and accurate pathogen detection using tools such as VirScan [50]. The identification of motifs by KEVOLVE is automatic and independent of multiple sequence alignments, in contrast to traditional methods by which mutations are associated with variant-discriminating motifs. Indeed, such analyses require manual verification based on annotated reference sequences and multiple sequence alignment, making them impractical for variant discrimination of diverse viruses with large and complex genome structures, such as cytomegalovirus [51]. KEVOLVE and CASTOR-KRFE can also be adapted to allow the automatic analysis of previously-identified motifs, further increasing its efficiency.
In summary, we have shown that machine learning-based tools has numerous advantages over statistical tools and conventional alignment-based methods for efficiently discriminating among SARS-CoV-2 variants. This new approach is independent of multiple sequence alignment and allows users to capture mutations associated with motifs of interest in different groups of viral pathogens. Moreover, these machine learning-based approaches may rapidly identify novel motifs that point toward otherwise unrecognized mutations of functional importance, in new variants such as Omicron. Thus, ML-based/KEVOLVE is a useful adjunct to conventional genomic analyses to classify and understand viral variants.

Acknowledgments

Abdoulaye Banire Diallo holds both a Natural Sciences and Engineering Research Council of Canada (NSERC) discovery and a Genome Canada grant.

References

