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ABSTRACT

Redundancy in the genetic code allows for differences in transcription and/or translation efficiency

between sequences carrying synonymous polymorphisms, potentially leading to phenotypic changes. It is

commonly admitted that the evolution codon usage bias ("CUB", the over-representation of certain codons in

a  genome,  a  gene  or  in  positions  along a  gene)  are  driven  by  a  combination  of  neutral  and  selective

processes,  but  their  relative  contribution  is  a  matter  of  debate,  especially  in  mammals.  Particularly,

integrative studies quantifying the phenotypic impact of CUB at different molecular and cellular levels are

lacking.  Here  we  report  a  multiscale  analysis  of  the  effects  of  synonymous  codon  recoding  during

heterologous gene expression in human cells.

Six  synonymous  versions  of  the shble  antibiotic  resistance  gene  were  generated,  fused  to  a

fluorescent reporter, and independently expressed in HEK293 cells. Multiscale phenotype was assessed by

means of: i) mRNA-to-DNA and protein-to-mRNA ratios for each  shble  version; ii) cellular fluorescence,

using flow cytometry,  as a proxy for single-cell  level  expression;  and iii)  real-time cell  proliferation in

absence or presence of antibiotic, as a proxy for the cell fitness. 

We show that differences in CUB strongly impact the molecular and the cellular phenotype: i) they

result  in  large  differences  in  mRNA and  in  protein  levels,  as  well  in  mRNA-to-protein  ratio;  ii)  they

introduce  splicing  events  not  predicted  by  current  algorithms;  iii)  they  lead  to  reproducible  phenotypic

heterogeneity; iv) they lead to a trade-off between the benefit  of antibiotic resistance and the burden of

heterologous expression.

We interpret that CUB modulate mRNA availability and suitability for translation in human cells,

leading to differences in protein levels and eventually eliciting phenotypic differences.

AUTHOR SUMMARY

The  genetic  code  is  redundant,  with  several  codons  encoding  for  the  same  amino  acid.  These

synonymous codons are not used with equal frequencies. Instead, codon usage bias (CUB) varies between

species, genes, and even positions along a gene. At each of these levels, CUB are shaped by the overall
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balance  between  mutational  biases  and  selection  forces.  To  shed  light  on  the  molecular  mechanisms

underlying molecular and organism phenotypes, integrative studies quantifying the phenotypic impact of

CUB at different levels of biological integration are necessary. Here, we monitored the multiscale changes

induced by six synonymous versions of an antibiotic resistance gene independently expressed in a human

cell  line.  We show that:  1.  both mRNA levels,  protein levels,  and their  ratios are affected by CUB; 2.

potential effects on mRNA (splicing and availability for translation) seem to constitute the main level of

action; 3. cell fitness is severely impacted by a trade-off between the burden of heterologous expression and

the benefits of antibiotic resistance. This integrative study provides new insights on translation regulation

and the associated phenotypic impact in human cells, associated to CU.

INTRODUCTION

The canonical  scenario of  gene  expression  posits  that  a  DNA sequence is  first  transcribed into

messenger  RNAs  (mRNAs)  that  are  secondly  translated  into  proteins,  such  as  one  given  sequence  of

nucleotides encodes one predictable sequence of amino acids (1). The initial version of this scenario did not

provide any explanation on how a unique set of genes could be associated with several cellular phenotypes.

But, through the last decades, a large body of studies on gene expression have addressed this question and

revealed multi-level regulation mechanisms increasing the diversity of the proteomic output from a given

genome. The genetic code which establishes a correspondence between the DNA coding units (i.e. the codon,

a triplet of nucleotides, 64 in total) and the protein building blocks (i.e. the amino acids, 20 in total) is

degenerated: 18 of the amino acids can individually be encoded by two, three, four or six triplets, known as

synonymous codons.  In a first null hypothesis approach, one would expect synonymous codons to display

similar  frequencies.  Instead,  CUB (i.e. the uneven representation of synonymous codons  (2))  have been

reported in a multiplicity of organisms, and vary not only between species but also within a given genome  or

even along positions in a gene (3–8).

The  origin  and  the  contribution  of  the  different  neutral  and/or  selective  forces  shaping  CUB

constitute  a  classical  research subject  in  evolutionary genetics.  The hypothesis  of  translational  selection

proposes that  differences in CUB result  in gene expression variations that ultimately lead to phenotypic
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differences, which could be subject to natural selection. And indeed, it has been established that variation in

CUB  might  constitute  an  additional  layer  of  gene  expression  modulation  (9–11).  Notably,  genetic

engineering has extensively resorted to CUB recoding for enhancing heterologous protein production, for its

use in industrial applications or for vaccine design (12–15). Besides the plethora of successful gene recoding

strategies, the interaction between CUB and the translation machinery has been well established, for instance

in:  i)  the  co-variation of  genomic CUB and the tRNA content,  from unicellular  organisms  (4,16,17) to

metazoa (Caenorhabditis elegans (18), Drosophila (19–21), or humans (22); ii) the correspondence between

CUB and expression level in bacteria  (23) or in yeast  (24,25); iii) the increase in translation efficiency in

bacteria when supplementing  in trans  with rare tRNAs  (26); iv) the changes in tumorigenic phenotype  in

mice when switching from rare to common codons in the sequence of a cancer-related GTPase (27).

In contrast, a number of studies have communicated the lack of covariation between CUB and gene

expression  (in  bacteria,  yeast,  or  human)  (28–31);  or  even  a  negative  impact  of  a  presupposed

"optimization", which may in fact decrease the expression or the activity of the protein product (32,33). To

address these conflicting results, it is important to tease apart the underlying mechanisms through which

CUB can impact the molecular, cellular and/or organismal phenotype. It has hitherto been established that

CUB can impact: 1. mRNA localisation, stability and decay (34–38), 2. translation initiation (31,39–41), 3.

translation efficiency  (20,42–55); 4. co-translational protein folding  (56–58). But, fueling the controversy,

the  respective  contribution  of  each  mechanism,  if  any,  depends  on  the  studied  system  (e.g. in  which

organism, whether the expressed gene is autologous or heterologous gene, whether it has been recoded or

not).

In  this  study,  we  aim  at  providing  an  integrated  view of  the  molecular  and  cellular  impact  of

alternative CUB of a heterologous gene in human cells. We designed six synonymous version of the  shble

antibiotic resistance gene with distinct  CUB coupled them to a  egfp reporter,  and transfected them into

cultured cells. By combining transcriptomics, proteomics, fluorescence analysis and cell growth evaluation,

we attempt to describe qualitatively, and to quantify as far as possible, the impact of CUB, and associated

sequence composition, on the molecular and cellular phenotype of human cells in culture.
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RESULTS 

1. Alternative CUB of the shble gene resulted in differences in mRNA abundance, and splicing.

The expected transcript was a 1,602 base pair (bp) long mRNA encompassing a 1,182bp coding

sequence (CDS).  The CDS spanned an  AU1-tag sequence in  5',  a  shble CDS,  a  P2A peptide sequence

inducing  ribosomal  skipping,  and  an  EGFP reporter  CDS  (Sup.  Fig.  1).  Only  the  shble CDS differed

between constructs,  and was characterized by distinct  degrees  of similarity to  the average human CUB

(estimated  using  the  COdon  Usage  Similarity  INdex,  i.e.  COUSIN)  (59),  GC composition  at  the  third

nucleotide of codons (GC3), and CpG dinucleotide frequency (CpG) (Table 1). Modifications in the  shble

sequence also entailed variations on the mRNA folding energy (Table 1). All these four parameters allowed

for a good discrimination of all constructs (Sup. Fig. 2), partly reflecting sequence similarities (Sup. Table 1).

Table 1. Experimental conditions: the different constructs, and their sequence composition variables.

Condition Description COUSIN
of the 
shble 
sequence

%GC3
of the 
shble 
sequence

%CpG 
of the 
shble 
sequenc
e

Folding energy 
of the total 
transcript 
(kcal/mol)

shble#1
The most common codons in the human 
genome

2.93 93.08 18.46 -649.34

shble#2
The GC-richest among the two most 
common codons

2.982 99.23 22.56 -673.07

shble#3
The AT-richest among the two most 
common codons

-0.414 20.00 4.62 -581.47

shble#4 The rarest codons in the human genome -1.651 33.85 20.51 -613.49

shble#5
The GC-richest among the two rarest 
codons

0.973 91.54 35.90 -687.76

shble#6
The AT-richest among the two rarest 
codons

-0.924 9.23 0.51 -543.50

#empty No shble but only EGFP CDS n.a. n.a. n.a. n.a.

#superemp
ty

Neither shble nor EGFP CDS n.a. n.a. n.a. n.a.

mock No plasmid n.a. n.a. n.a. n.a.

Transcriptomic  analysis  (RNA-seq),  through  the  observation  of  the  read  distribution  along  the

plasmid sequence, revealed the presence of splicing events for the two constructs with the lowest similarity

to the human average CUB, namely shble#4 (construct using the rarest codon for each amino acid) and
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shble#6 (using rare and AT-rich codons) (Sup. Fig. 3). The shble#6 transcript presented two spliced forms,

using the same 5’ donor position and differing in three nucleotides at the 3’ acceptor position. The shble#4

transcript presented one spliced form, with donor and acceptor positions in the precise same location than

observed for shble#6, despite the lack of identity in the intron-exon boundaries. In all cases the spliced intron

(either 306 or 309 nucleotides long) was fully comprised within the 396 bp long shble sequence (Sup. Fig.

4), and the event did not involve any frameshift. Thus, shble splicing resulted in the ablation of the SHBLE

protein coding potential without affecting the EGFP coding potential. It is important to state that none of

these alternative splicing events was predicted by the HSF (Human Splicing Finder)  (60) nor the SPLM

(61) splice detection algorithms used for sequence scanning during design.

The mRNA abundances, expressed as transcript per millions (TPM), showed that the spliced isoform

1 (shared by both affected conditions) represented about 30% of the heterologous transcripts for shble#4, and

56% for shble#6. The spliced isoform 2, exclusively found in condition shble#6, corresponded to 22% of the

heterologous transcripts (Figure 1). The full-length mRNA, albeit present in all conditions, was differentially

represented, as follows: (i) the highest values were found in shble#3 (using the AT-richest among common

codons); (ii) the variance was largest in shble#5 (using the GC-richest among rare codons); and (iii) shble#4

and shble#6 displayed the lowest mRNA abundance even when considering the sum of all isoforms (Figure

1, Sup. Table 2). We further verified that variations in transcript levels were not related to variations in

transfection  efficiency,  by  correcting  the  TPM values  with  the  plasmid  DNA levels  in  each  sample  as

estimated by qPCR. After this normalisation, the above described pattern remained unchanged (Sup. Fig. 5).

This suggests that variations in mRNA levels are not due to differences in the DNA level, and may instead be

linked to the differentially recoded shble sequences.

In order to allow further comparison between mRNA and protein levels, while accounting for the

differential splice events, we have taken into account that the SHBLE protein was exclusively encoded by

the full-length mRNA, while the EGFP protein could be translated from any of the three transcript isoforms.

Hence, we used the ratio full-length mRNA over total transcripts (i.e. full-to-total ratio) to estimate the ratio

of SHBLE-encoding over EGFP-encoding transcripts. This ratio was about 69% shble#4, while for shble#6 it

6

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2022. ; https://doi.org/10.1101/2022.01.07.475042doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475042


was close to 21% (Sup. Table 2). For the rest of the constructs, there was virtually no read corresponding to

spliced transcripts and the ratio was in all cases above 99.96% (Sup. Table 2).

Figure 1. Transcript abundance after transfection with the different shble gene versions. mRNA-levels are

expressed as  transcripts  per  million values (TPM) for the full form (in  dark  blue)  as well as for  the two

spliced forms (in  green and  yellow). Median values are  given in  Sup.  Table 2.  Pie charts illustrate the

proportions of the spliced forms detected in shble#4 and shble#6 conditions. The experiment was performed

on six biological replicates. Dark blue letters above the different bars refer to the results of a Wilcoxon rank

sum test. Conditions associated with a same letter do not display different median TPM values for the full

mRNA (p<0.05 after Benjamini-Hochberg correction).

2. Alternative CUB of the shble gene impacted SHBLE and EGFP protein levels.

Label-free  proteomic  analysis  allowed  to  detect  EGFP proteins  for  all  constructs,  with  EGFP

abundance in shble#3 and shble#6 being significantly lower than in other conditions (respectively 2.05 and

1.35 normalized iBAQ values, compared to an overall median of 10.08 for the other constructs) (Figure 2C,

Sup. Table 3). The SHBLE protein was detected in all conditions but, for shble#6, it displayed extremely low

abundance in five replicates and was not detected in one replicate (overall normalized iBAQ value of 0.03)

(Figure 2B,  Sup. Table 3). Further, the shble#3 condition displayed lower SHBLE protein levels than the

remaining four other constructs (normalized iBAQ value of 0.93, compared to an overall median of 3.83)

(Figure 2B, Sup. Table 3). Within a given condition, values for SHBLE and EGFP protein levels displayed a
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strong, positive correlation (Pearson R coefficients ranging from 0.82 to 0.95 depending on the condition; all

p-values < 0.05;  Figure 2A). The overall SHBLE-to-EGFP ratio was 0.46±0.1 for all constructs (ranging

between 0.36 and 0.56 for the individual constructs), the exception being shble#6, which displayed a ratio

close to zero, linked to the very low SHBLE levels (Figure 2D). Label-free proteomic quantification results

were validated by semi-quantitative western blot experiments (Sup. Fig. 6, 7 and 8).

Figure 2. Expression of SHBLE and EGFP at the proteomic level, and relation between them. Panel A:

Pearson's correlation between SHBLE (y axis) and EGFP (x axis) protein levels. Six different conditions are

shown: shble#1 (dark green), shble#2 (orange), shble#3 (purple), shble#4 (pink), shble#5 (light green) and

shble#6 (yellow). Marginal boxplots (panels B and C) respectively show SHBLE and EGFP protein levels

expressed as normalized iBAQ values. Median values are given in Sup. Table 3. The SHBLE-to-EGFP ratio

for each of the six conditions (median of the ratios for each replicate) are given in panel D. Six replicates are

shown (with three of them corresponding to two pooled biological replicates). Letters in the different panels

refer to the results of a pairwise Wilcoxon rank sum test. Within each panel, conditions associated with a

same letter do not display different median values of the corresponding variable (p<0.05 after Benjamini-

Hochberg correction).
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3. Transcriptomic and proteomic phenotypes matched to different extent, and a combination several

composition variables could explain the differences.

After analysing separately mRNA and protein levels in cells transfected with the different  shble

versions, we aimed at establishing a connection between those transcriptomic and proteomic phenotypes.

Because SHBLE and EGFP protein analyses led to similar results, we focus here only on SHBLE. Variation

in full-length transcripts levels explained 45% of the variation in the protein levels (Figure 3A). Interestingly,

the shble#3 condition behaved differently from the rest and rendered similar SHBLE protein values for all

replicates, independently of the variation in transcript levels (Figure 3A). When removing this condition

from the correlation analysis, variation in full-length transcripts levels explained 83% of the variation in the

SHBLE protein levels (Figure 3B).

In order to understand the differential matches between transcriptomic and proteomic phenotypes,

we  explored  the  explanatory  potential  of  four  sequence  composition  and  mRNA  physicochemical

parameters. First, an increase of the match between the  shble sequence and the human average CUB (i.e.

COUSIN score) corresponded to an elevation in the protein-to-transcript ratio (Pearson’s R=0.67, p=6.6e-6,

Figure 3C) - with the exception of the shble#4 condition which displayed the lowest match to the human

CUB, but a higher protein-to-transcript ratio than shble#6 and #3 (Figure 3C). In fact, the lower ratio for

these two later conditions could be explained at the light of the three other tested parameters. Indeed, an

increase of the GC3 content corresponded monotonically to an augmentation in the protein-to-transcript ratio

(Pearson’s R=0.81, p=1.5e-9, Figure 3D), and shble#6 and #3 had the lowest GC3 content. Then, variations

in CpG frequency (Figure 3E), and in mRNA folding energy (Figure 3F), corresponded to a bell-shaped

variation in SHBLE protein-to-transcript ratio so that both low and high values resulted in decreased protein-

to-transcript ratio (Figure 3E and 3F): shble#6 and #3 had the lowest CpG frequency, and the highest mRNA

folding energy. Thus, the shble#3 condition combined suboptimal values for all four studied characteristics

and resulted in poorly efficient translation in spite of the high mRNA levels (see part1). In contrast, shble#1

(made of the most used codons), displayed an optimal value for all parameters and resulted in the most

efficient translation (highest protein-to-mRNA ratio).
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Figure 3. Relation between the transcriptomic and the proteomic phenotypes, and potential explicative

parameters for variations in SHBLE protein levels.  Six different conditions are shown, using the colour

code: shble#1 (dark green), shble#2 (orange), shble#3 (purple), shble#4 (pink), shble#5 (light green) and

shble#6 (yellow).  Panel A: Pearson's correlation of SHBLE protein level and shble  transcript level taking

into account all six constructs.  Panel B:  The construct #3, which displayed a discordant pattern from the

others (see panel A), was excluded from the Pearson's correlation. Panel C: Pearson’s correlation between

SHBLE  protein-to-mRNA ratio  and  COUSIN  index  of  the  shble  recoded version.  Panel  D: Pearson’s

correlation  between  the  SHBLE  protein-to-mRNA ratio  and  the  GC3  percentage  of  the  shble  recoded

version.  Panel  E: SHBLE protein-to-mRNA ratio  variations  depending on  CpG frequency  of  the  shble

recoded version.  Panel  F: Correspondence between the SHBLE protein-to-mRNA ratio and the folding

energy of the corresponding transcript. The results for six biological replicates are shown, each of them with

independent RNAseq measurements but pooled by pairs for the label-free proteomic analysis.

4. Single-cell EGFP protein expression varied within each condition, but CUB variations induced shifts

of the whole population.

We have demonstrated above that the EGFP reporter was a relevant proxy for SHBLE abundance, as

their  iBAQ values were highly correlated (Figure 2A).  On this basis,  and in order to further assess the
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phenotypic  variation  at  the  single-cell  level,  we  performed  an  extensive  analyse  on  the  cell-based

fluorescence values of 16 transfection replicates.  We verified first  that  the total  fluorescence signal  (i.e.

adding all cells) was strongly correlated to the EGFP level estimated by the label-free proteomics (Pearson’s

R=0.86, p=4.8e-15, Sup. Fig. 9). We observed then that the distribution of this fluorescence signal was 1. for

all conditions, different from that obtained with cells expressing EGFP alone (i.e. "empty" control; individual

Anderson-Darling test results shown in Table 2); and 2. multimodal for all the conditions expressing EGFP

(Figure 4A, Sup. Fig. 10). We described these multimodal populations by means of curve deconvolution, and

showed  that  an  approximation  based  on  two  underlying  Gaussian  populations  fitted  well  the  observed

distributions  (Sup.  Fig.  11).  Thus,  1.  the  construct  expression changed the fluorescence phenotype,  and

synonymous variations of the upstream  shble sequence modulated it;  2. for a given version of the  shble

sequence, cells were differentially impacted by the construct expression, overall defining two subpopulations

of low or high EGFP expression. 

Table 2. Quantitative parameters of green fluorescence signal distribution per condition. 

Condition Distribution 
similarity to #empty
(AD score and 
associated p-value)*

Percentage 
of 
fluorescent 
cells

Total fluorescence 
value for the whole 
population$

Mean fluorescence 
value for the 
underlying first 
Gaussian 
subpopulation 
(log10)

Mean fluorescence 
value for the 
underlying second 
Gaussian 
subpopulation (log10)

#shble1 1580 0 89.56% 105.269 e9 bc 4.84 6.61
#shble2 1480 0 90.17% 98.311 e9 b 4.78 6.59
#shble3 497 4.637 e-

272
79.37% 39.384 e9 d 4.31 5.86

#shble4 463 7.325 e-
254

88.00% 63.395 e9 ac 4.58 6.28

#shble5 108 4.244 e-59 83.85% 70.719 e9 abc 4.63 6.32
#shble6 11600 0 51.78% 13.990 e9 e 3.97 5.05
#empty 0 1 82.26% 57.692 e9 a 4.44 6.18
#superempt
y

64100 0 0.45% 135.449 e6 n.a. n.a. n.a.

mock 62500 0 1.00% 141.163 e6 n.a. n.a. n.a.

*"AD", results of an Anderson-Darling test for distribution similarity, comparing each curve distribution in
Figure  4A against  that  obtained  for  the  "empty"  condition (the null  hypothesis  being  that  the  samples
compared could have been drawn from a common population).  $The statistical test is a pairwise Wilcoxon
rank sum test.  Conditions  associated with a same letter  do not  display different  median values  for  the
corresponding variable (p<0.05 after Benjamini-Hochberg correction).

For each condition,  we summarized the fluorescence behaviour of  the  whole  cell  population by

describing  the  following  statistics  (Table2):  (i)  the  fraction  of  cells  displaying  fluorescence  over  99th

11

221

222

223

224

225

226

227

228

229

230

231

232

233

234
235
236
237
238

239

240

241

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2022. ; https://doi.org/10.1101/2022.01.07.475042doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475042


percentile  of  the  "mock"  fluorescence  distribution  (i.e. 14,453  'FITC-A'  fluorescence  units,  which

corresponded to the cell autofluorescence, as the mock did not carry any plasmid); (ii) the total fluorescence

value  of  the  whole  population;  (iii)  the  median  fluorescence  value  of  the  population;  (iv)  the  mean

fluorescence value for each underlying Gaussian populations.  We observed that  the central  fluorescence

value (i.e.  the median) of the population correlated very well  with the overall  fluorescence ( R=0.85,  p-

value<2.2e-16, Sup. Fig. 12), but that the later allowed a better discrimination between conditions. Shble#1

and  #2  thereby  appeared  more  fluorescent  than  the  #empty  control,  and  shble#6  displayed  a  lower

fluorescence than all the other conditions, as did shble#3 in a lower magnitude (Table 2, Sup. Fig. 12). Those

differences  in  the  total  signal  reflected  in  fact  an  reproductible  impact  of  the  synonymous  construct

expression on all cells, independently of their affiliation to the low or high fluorescent populations: indeed,

between each condition, both underlying Gaussian curves shifted following the same pattern, as illustrated

by the variations of their  mean values (Figure 4B, Table 2).  When combining all  our summary statistic

variables for describing the population cellular fluorescence we observed that indeed shble#6, and to a lesser

extent shble#3, were the most divergent conditions, characterized by the highest proportion of negative or

low-fluorescent cells,  while shble#1 and shble#2 displayed very similar behaviour characterized by high

fluorescence values in all scores (Sup. Fig. 13). Those results strengthened the observations obtained by the

label-free proteomic experiments, and underlied the cell-to-cell reproductibilty of the impact of synonymous

substitutions.
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Figure 4. Distribution of the fluorescence signal for the different constructs, and mean values of the two

gaussian  curves  modeling  the  fluorescence  distribution.  Panel  A  depicts  the  density  of  the  green

fluorescence signal (log10(FITC-A)) considering 480,000 individual cells for each condition: shble#1 (most

common codons, dark green), shble#2 (common and GC-rich codons, orange), shble#3 (common and AT-

rich codons, purple), shble#4 (rarest codons, pink), shble#5 (rare and GC-rich codons, orange light green),

shble#6 (rare and AT-rich codons, yellow). The positive control is "empty" (i.e. transfected cells, expressing

EGFP without expressing SHBLE, in dark grey); and the negative controls are "superempty" (i.e. transfected

cells, not expressing EGFP nor SHBLE, in medium grey) and "mock" (i.e. untransfected cells, in light grey).

The dashed black line shows the threshold for positivity (14,453 green fluorescence units, corresponding to

4.16 in a log10 scale). Panel B represents the first gaussian mean1 (population of lower intensity, in red),

and the  mean2  (population  of  higher  fluorescence  intensity,  in  blue).  For  each category  of  mean,  the

statistical test is a pairwise wilcoxon rank sum test, with Benjamini-Hochberg  adjusted p-values on sixteen

biological replicates: for each color, conditions associated to a same letter do not display different median

values of the corresponding variable. 

5. Alternative CUB of the shble gene resulted in different cell growth dynamics.

To assess the functional impact of the molecular phenotypes described above, we performed a real-

time cell growth analysis, both in presence and in absence of antibiotics. We anticipated a trade-off between

a potential benefit confered by the antibiotic resistance, and a potential cost through protein overexpression

and its associated burden. Thus, to disentangle the effects linked to the total expression of heterologous

proteins (SHBLE + EGFP), and the effect of the antibiotic resistance gene alone, we tested two additional

constructs solely containing versions shble#1 and shble#4 of the shble gene, not linked to the EGFP reporter
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(labelled shble#1* and shble#4* in Figure 5 and Sup. Fig. 14). For all conditions, we monitored over time a

dimensionless  parameter  named  "Cell  Index",  that  integrates  cell  density,  adhesion,  morphology  and

viability; and we evaluated the total area below the curve as a proxy for cell growth (Sup. Method 2.8, Sup.

Fig.  14).  We  fitted  to  a  Hill’s  equation  these  values  of  cell  growth  as  a  function  of  the  antibiotic

concentration to recover, for each condition: 1. the maximum growth in the absence of antibiotic (Figure 5, y

axis);  and 2.  the  estimation for  the  antibiotic  concentration value that  inhibited cell  growth to  half  the

maximum (IC50; Figure 5, x axis). 

First,  we  observed  that  transfection  with  an  empty  vector  (i.e.  the  "superempty"  control,  not

expressing EGFP nor SHBLE) resulted in a drop of about 50% in max. growth in the absence of antibiotic

(Figure 5, y axis), and in a drop of about 85% in IC50 value (Figure 5, x axis) compared to the mock. This

meant that,  independently of heterologous gene expression, the transfection alone had an impact on cell

fitness. 

Second, all cell populations transfected with any of the constructs displayed a lower max. growth in

the absence of antibiotics than the "superempty" control (Figure 5, y axis). Only shble#4 and #6, expressing

SHBLE and EGFP at low level, and shble#1* and shble#4* lacking EGFP, had a higher IC50 value (Figure

5, x axis). Further, all transfected cells resisted less the presence of antibiotics than the mock independently

of the construct used (Figure 5, x axis), at the exception of shble#1* (high level of SHBLE and no EGFP).

This  meant  that  the  burden  induced  by  the  expression  of  heterologous  proteins  was  stronger  than  the

potential benefit of the antibiotic resistance. 

Focusing on the comparison of the shble versions #1 and #4 with or without EGFP, both shble#1*

and shble#4* versions displayed a similar increase in max. growth in the absence of antibiotic with respect to

their EGFP+ relative counterparts (respectively 38% and 24%, shown as coloured  arrows on Figure 5, y

axis). However, while the IC50 of shble#4* remained similar to shble#4, the antibiotic resistance for version

shble#1* dramatically  increased  with  respect  to  that  of  shble#1 (green  arrow on Figure  5,  x  axis).  As

mentioned before, shble#1* was the only condition in which resistance to the antibiotic was actually better

than for the untransfected cells, in spite of a remaining substantial negative impact on maximum growth on

the absence of antibiotics (Figure 5, y axis). This meant that 1. in absence of antibiotics, higher amount of

heterologous protein (whatever if it correspond to SHBLE or EGFP) had a more pronounced negative impact
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on cell fitness; 2. in presence of antibiotic, the optimum between the confered resistance and the cost of

protein burden was determined by both, the total amount of the two heterologous proteins (including EGFP,

which was unecessary to the cell fitness), and the abundance of the protein confering the resistance itself

(SHBLE).

Overall,  even if no significant correlation could be established because of the limited number of

experimental conditions, a trend appeared: variation in cell fitness in absence of antibiotics seemed to be

inversely related to variation in total amount of heterologous proteins (using fluorescence as a proxy, showed

as dot size in Figure 5), so that conditions displaying strong cellular fluorescence (e.g. shble#1) grew less in

the absence of antibiotics, and resisted worse the presence of antibiotics, than conditions displaying lower

fluorescence (e.g. shble#6) (Figure 5  ,  Sup. Fig. 14). Our results suggested thus: first, the existence of an

important stress related to plasmid transfection; and second, the establishment of a trade-off between the

benefit  of  heterologous protein expression conferring resistance and the additional  burden of fluorescent

protein expression coupled to the resistance.
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Figure 5. Variation of cell growth in presence or in absence of antibiotics. The y axis represents maximum

cell growth in absence of antibiotics, proxied as the area under the curve of the delta Cell Index (AUC, log

scale).  The x axis represents the bleomycin concentration reducing to 50% the corresponding maximum

growth (e.g. IC50; log10 scale). Represented central values were estimated fitting Cell Index data to Hill’s

equation (pooled data, 3 to 6 biological replicates), and bars correspond to the standard error (left standard

error  for  superempty  IC50  was  out  of  the  graph  limit  and  is  not  plotted  –  but  see  Sup.  Fig.  15 for

representation on linear axes).  Statistical tests are Welch modified two-sample t-tests,  performed for the

AUC (small letters, y axis) or the IC50 (big letters, x axis): for each size of letters,  conditions associated

with  a  same letter  do  not  display  different  median values  of  the  corresponding variable  (p<0.05 after

Benjamini-Hochberg  correction). The  size  of  the  dots  is  proportional  to  the  corresponding  median  of

fluorescence, which is used as a proxy for the level of heterologous proteins. Nine different conditions are

shown: mock control (dark grey), superempty control (light grey), shble#1 (dark green), shble#2 (orange),

shble#3 (purple), shble#4 (pink), shble#5 (light green), shble#6 (yellow) and versions shble#1* (dark green)

and shble#4* (pink) lacking the EGFP reporter gene. Arrows on the margins represent the shift of values

(expressed  as  percentage  of  the  initial  value)  for  shble#1*  and shble#4*  against  shble#1 and  shble#4

respectively.

DISCUSSION

In the present  manuscript  we have analysed the multilevel  molecular  cis-effects of  codon usage

preferences  on  gene  expression,  and  have  further  explored  higher-level  integration  consequences  at  the

cellular level. The global trans-effects of codon usage preferences of our focal gene on the expression levels

of other cellular genes have been analysed and described in an accompanying paper (62). We summarize our

observations of these  cis-effects in  Figure 6, which displays variation in the each of the composition and

phenotypic variables monitored for the different genotypes analysed. This representation highlights that a

combination of synonymous changes results in important multilevel variation in gene expression levels and

leads to dramatic differences in the cellular phenotype.
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Figure 6. Summarizing combination of sequence composition parameters and multi-level phenotypes for

each customized version of the  shble antibiotic resistance gene.  The six versions, designed with the one

amino acid – one codon strategy, are shown by decreasing similarity to the human CUB (i.e. cousin score).

They are defined as follow:  A.  shble#1 (most  common codons,  cousin > 1,  in dark green),  B.  shble#2

(common and GC-rich codons, cousin > 1, in orange), C. shble#5 (rare and GC-rich codons, cousin ~ 1, in

light green), D. shble#3 (common and AT-rich codons, cousin < 0, in purple), E. shble#6 (rare and AT-rich

codons,  cousin  <  0,  yellow)  and  F.  shble#4  (rarest  codons,  cousin  <  0,  in  pink).  The  sequence

characteristics are from the top to the left: "cousin" (expressing the similarity to the average genome human

CUB: a score < 0 is opposite; ~1 is similar; >1 is similar human CUB, but of larger magnitude  (59)),

"CpG" (the CG dinucleotide frequency), "GC3" (the GC content at the third base of the codons), and "fold"

(the mRNA folding energy). The different phenotypes, from the bottom to the right: "rna" (the SHBLE coding

full mRNA amount), "prot" (the SHBLE protein amount), "fluo" (the total fluorescence signal), "growth"

(proxy of the cellular fitness in absence of antibiotics) and "ic50" (proxy of the cellular fitness in presence of

antibiotics).

Variation  in  codon  usage  preferences  modifies  alternative  splice  patterns  and  leads  to

differences in mRNA levels. The two versions having the most dissimilar CUB with respect to the human

average (shble#4 and shble#6) were characterized by splicing events, which were not detected by leading

splice site predicting algorithms (60,61), and which reduced the coding potential of the resulting mRNA by

30 to 80%. CUB variations across intron-exon boundaries have been described in several eukaryotes (e.g.
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human, fishes, fruit flies, nematodes, plants (11,63,64)); and splicing regulatory motifs, that can be disrupted

by synonymous mutations, have been described in mammals (9,64–67). As signature for selective pressure, a

reduced SNP density and decreased rate of synonymous substitutions have further been reported in these

regulatory  regions  (68,69).  Thus,  selection  against  mRNA mis-processing  can  constitute  an  important

selective force that results in concomitant selection for a precise local CUB (70), and this selective force has

even been proposed to outperform translational selection in D. melanogaster (71). 

In  our  experimental  setup,  variation  in  mRNA levels  between  conditions  was  independent  of

variation  in  DNA abundance,  ruling  out  a  possible  effect  of  differential  transfection  efficacy.  The  two

versions with the largest deviation in mRNA levels were the AT-richest ones (shble#3 and #6, respectively

the highest and the lowest level of  mRNA). Transcript  abundance at  a given time point  is the result  of

integrating mRNA synthesis and degradation kinetics. As all versions share the same CMV promoter, and 5'

untranslated region, we hypothesize that the observed differences in mRNA levels may most probably result

from differential mRNA stability and decay, rather than primary transcription regulation. Such an effect  has

been described for bacteria (E. coli (72)), unicellular eukaryotes (S. cerevisae, S. pombe (35), N. crassa, T.

brucei (73,74)), and metazoa (fruit fly (75) or zebrafish (76)). The effects on version shble#6 are difficult to

address as only 20% of the total transcript contain the customized shble sequence; it is thus impossible to

disantangle the effect of sequence composition on the full mRNA level from the consequences of the splicing

defect. The very high transcript levels of version shble#3 are interesting in the light of recent findings on

CUB linked mRNA degradation and/or storage: indeed, AU-rich mRNAs have been found to accumulate in

P-bodies, which can lead to an accumulation of those transcript in the cell  (77). In addition, the P-body

retention of those transcripts reduce their availability to translation and could further explain the reduced

protein level for this condition (see below). 

Variation in  mRNA nucleotide  composition,  codon usage  preference  and structure  lead to

differences in translation efficiency. Considering all conditions together, our experimental setup allowed us

to determine that the mRNA levels explain only around 40% of the variation in protein levels, which fits well

previous descriptions in the literature for a wide diversity of experimental  systems  (78–80).  Such weak

explanatory power would not be expected if mRNAs were translated at a constant rate, and has thereby
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motivated studies to elucidate which factors are involved in the regulation of translation  (81). Here, we

evidenced that this discrepancy between mRNA and protein level was unequal between CUB. Particularly,

the version using the AT-richer codons among the two most common ones in the average human genome

(shble#3) displayed the highest mRNA levels but contrasting low amount of the corresponding protein.  A

possible  explanation  for  this  phenomenon  could  be  the  selective  translation  impairment  of  AT-rich

transcripts.  As proposed  before,  this  can  result  from P-body retention  (77),  but  other  mechanisms may

alternatively, but not exclusively, be involved. For instance, in human cells, the protein Schlafen11 has been

shown to prevent translation of viral transcript (known to be AU-enriched), in a codon usage dependant

manner (82,83). Noticing that the AT-rich condition #4 displays a moderated impairment of translation, we

interpret that  condition #3 dramatic phenotype arises in fact from the combination of suboptimal variables

for which a role in optimizing the expression of heterologous genes had already been evidenced (11) : (i)

similarity to human average CUB, (ii) the CpG frequency, and (iii) the mRNA folding energy.

(i) Regarding similarity in codon bias between the focal gene and the expression system (i.e. average

human CUB), gene versions with a better match resulted in higher protein-to-mRNA ratios. This result is in

disagreement with previous reports, as well as with descriptions showing the very limited impact of CUB on

gene  expression  in  mammals,  compared  to  other  features  (30,84).  Nevertheless,  it  is  complicated  to

disentangle the effect of CUB from other composition characteristics, such as GC and GC3 content.  It is

even  more  difficult  to  interpret  them in  terms  of  neutralist  or  selectionist  origin,  as  both  evolutionary

hypotheses could account for variation in either parameter (10). 

(ii) Regarding intragenic CpG frequency, we report a negative impact of extreme values (either too

high or too low) on translation. Such direct effect on translation efficiency had never been reported before,

and CpG frequency had been shown to impact heterologous protein amount through its impact on de novo

transcription instead (85,86). More precisely, high CpG depletion was previously associated to low mRNA

level, that weren't evidenced as a result of changes in nuclear export, alternative splicing or mRNA stability

(85,86). Indeed, a signature for selection towards decreased values of CpG has been consistently reported

(87,88),  experimentally verified by the detrimental  effects  of  increased CpG levels on protein synthesis

(89,90), and further corroborated through experimental evolution (91).
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(iii) Regarding the total mRNA folding energy, we also report a negative impact of extreme values

(either too high or too low) on the translation. Molecular modeling, along with experimental studies, suggest

a prominent  role of  the  initiation,  rather  than elongation,  on the efficacy of  translation  (41,92,93).  And

indeed, several studies adressing the impact of mRNA folding on translation, established the importance of

the 5' mRNA secondary structure in translation initiation. A shared trend was identified in  bacteria, yeast,

protists,  and mammals  (31,55,93–96): a reduced mRNA stability near the site of translation initiation is

correlated  to  a  higher  protein  production.  In  bacteria  and  yeast,  strong  folding  around  the  start  codon

prevents  ribosome  recruitment  (31,93);  and  a  "ramp"  of  rare  codon  along  the  50  to  100  first  coding

nucleotides has been reported, with the effect of reducing mRNA folding energy and with the proposed

function of avoiding ribosome traffic jam (96,97). A systematic exploration using 244,000 synthetic DNA

sequences on E. coli shows that the strength of the secondary structures predicted 60 nucleotides around the

start codon is capturing around 36% of the total variance in protein synthesis, while variation in downstream

mRNA folding  energy  accounts  only  for  ca. 4-5%  (98).  Nonetheless,  an  important  role  of  translation

elongation cannot be ruled out. Particularly, in human transcripts, de Sousa Abreu et al. describe no effect of

the  initiation  rate  on  translation  efficiency  (78).  A  recent  study,  in  human  cell  lines,  highlight  the

consequences of the secondary structures along the CDS in the functional half life of mRNA (95).  In our

experimental setup all constructs share by design the nucleotide sequence around the start codon: the 5’UTR

corresponds to the plasmid backbone and the first 24 coding nucleotides are identical (AU1 tag). Thus, there

are actually no differences in folding energy when considering only the immediate sequence stretch around

the start codon, but there are instead differences when considering the full mRNA length. We interpret thus

that our observation of a non-monotonic effect of the full-length mRNA folding energy on the protein-to-

mRNA ratio is related to translation elongation impairment rather than to an effect on translation initiation.

Transfected  human  cells  differentially  express  heterologous  genes,  independently  of  their

sequence;  but sequence recoding impact  the individual cell  expression in a reproductible way.  We

report phenotypic variability of transfected human cells, observable as multimodal distribution of cellular

fluorescence. The multimodal distribution of cellular fluorescence intensity on the transfected cells could be

captured in all cases by fitting to a combination of two Gaussian curves. This pattern was similar for all
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constructs expressing egfp, including the empty control, which contains only the egfp sequence, and was thus

not  influenced by codon usage preferences of the recoded  shble sequence.  We interpret  that  phenotypic

variability in cell-based fluorescence levels reflects phenotypic plasticity and may be related to transient

cellular states, such as cell division status and/or differential kinetics of recovery from transfection-induced

cellular stress. Cell cycle-dependent differences in gene expression have been actually reported when using

cytomegalovirus-based  expression  vectors  (99).  Beyond the  shared  bimodal  distribution  of  fluorescence

levels, we observe significant and concerted shifts of both cellular subpopulations towards higher (e.g. for

the constructs enriched in the most used codons) or lower (e.g. for constructs using AT-rich codons) values of

fluorescence intensity. Thus, differences in overall EGFP-based fluorescence between recoded constructs do

not arise from differences in the number of positive cells expressing a given quantity of EGFP, but rather

from differences in EGFP synthesis at the individual cell level. Our experimental model using human cells

shows that  CUB exerts  an important effect on the overall  levels but  also in the cell-based levels of  the

heterologous protein produced.

We showcase a trade-off between the cellular burden imposed by extra protein synthesis and

the benefit conferred through antibiotic resistance. In the absence of antibiotic all transfected cells grow

less  than  the  parental  cells:  ca. 2  to  4.8  times  less,  even  for  cells  transfected  with  a  control  plasmid

containing an empty expression cassette (i.e. not expressing neither shble nor egfp). In addition to this basal

cost, related to transfection alone, strong heterologous expression imposes an enormous basal burden on the

cellular economy. A similar effect has been described in bacteria  (100) and the interpretation is consistent

with the broad literature about the direct (-cis) and indirect (-trans) costs of translation (70): first, translation

is the per-unit most expensive step during biological information flow  (101), consuming ca. 45% of the

whole energy supply in human cells in culture (102); second, and virtually all ribosomes are bound to mRNA

molecules  and  potentially  engaged  in  translation  (102),  so  that  highly-transcribed  heterologous  mRNA

increase overall  ribosome demand and cause loss of opportunity for cellular  gene translation; and third,

heterologous  protein  synthesis  can  lead  to  additional  downstream  costs  by  protein  folding,  protein

degradation and off-target effects of mistranslated proteins (45,103,104). Additionally, mismatch between the

CUB of the heterologous gene can display strong trans-effects on the cellular homeostasis, by sequestering
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ribosomes onto mRNAs that hardly progress over translation but also by creating a competition for the tRNA

pools (31,105). Scarcity of the less common tRNAs is actually a severe limiting factor for protein synthesis

in bacteria (106), and this pressure over rare tRNAs can become extreme in conditions of stress, or changes

in nutritional status (10,107,108).

The shble gene that we have used as a base for synonymous recoding encodes for a small protein

that confers resistance to bleomycin through antibiotic sequestering (109). This protein-antibiotic binding is

equimolecular and reversible: a SHBLE protein dimer binds two bleomycin molecules (110). It can be thus

hypothesised that the strength of the antibiotic resistance conferred is a direct, probably monotonic, function

of the SHBLE amount produced. Our results, however, show that the benefit conferred by SHBLE synthesis

in the presence of antibiotic is largely exceeded by the cost and burden of heterologous protein synthesis.

Thus, as described above for the fitness in the absence of antibiotic, we state an important trade-off between

the intensity of heterologous SHBLE+EGFP protein synthesis and the actual bleomycin resistance levels;

and an important rescue of the antibiotic resistance for cells expressing SHBLE but not EGFP. Altogether, we

conclude that: (i) transfection alone introduces an important cellular stress that impairs cellular growth; (ii)

heterologous gene overexpression imposes a strong burden on the cell economy, sufficient to severely affect

cell  growth;  (iii)  CUB  of  heterologous  gene  differentially  impact  cellular  fitness  as  a  function  of  the

differences in heterologous protein synthesis. 

CONCLUSION

The main conundrum for scientists approaching codon usage bias remains the contrast between, on

the one hand, the large and sound body of knowledge showing the strong molecular and cellular impact of

gene expression differences arising from codon usage preferences and, on the other hand, the thin evidence

for  codon usage  selection  at  the  organismal  level.  Under  the  neutral  hypothesis,  differences  in  average

genome CUB can be explained by biochemical biases during DNA synthesis or repair (e.g. polymerase bias)

(111); and, in vertebrates, CUB at the gene level may be shaped by their relative position to isochores (e.g.

alternation between GC-rich and AT-rich stretches along the chromosomes) (112). Further, GC-biased gene

conversion mechanisms can enhance those local variations  (111,113,114). The selective explanation, often

referred  to  as  "translational  selection",  proposes  that  different  codons  may  led  to  differences  in  gene
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expression, by changes in alternative splicing patterns, mRNA localisation or stability, translation efficiency,

or  protein  folding  (115).  If  such codon-bias  induced variation in  gene  expression were  associated with

phenotypic variation that results in fitness differences, it may, by definition, be subject to natural selection.

Nevertheless, differences in fitness associated with individual synonymous changes seem to be mostly of low

magnitude, so that selection may only act effectively in organisms with large population sizes (116) such as

bacteria  (7), yeast  (117), nematodes  (118), but also in fruit flies  (19,20,119,120), branchiopods  (121) and

amphibians  (122). In organisms with small population sizes, such as mammals, and particularly humans,

evidences of selection for (or against) certain codons remain nevertheless controversial (22). In the present

manuscript,  we have intended to contribute to this debate by exploring the phenotypic consequences of

codon usage differences of heterologous genes in human cells.  We claim that the potential  evolutionary

forces  at  play  in  shaping  human  CUB,  select  for  a  strict  control  of  mRNA processing:  splicing,  and

secondary structure (potentially affecting stability and decay); and that the resulting mRNA properties in fine

impact translation elongation. Notwithstanding, the disparity between predictions and findings encountered

in powerful, codon-usage related experimental evolution approaches highlights the gap in our understanding

at connecting phenotype and fitness over different integration levels: molecules, cells, tissues and organisms.

Despite, or thanks to, the immense body of knowledge accumulated over the last fifty years, the quest for

interpreting and integrating the riddle of codon usage preferences over broad scales of time and biological

complexity remains tempting and unsolved.

MATERIAL AND METHODS

Design of the  shble synonymous versions and plasmid constructs.  Six synonymous versions of

the shble gene were designed applying the "one amino acid - one codon" approach, i.e., all instances of one

amino acid in the  shble sequence were recoded with the same codon, depending on their frequency in the

human genome (Table 1): shble#1 used the most  frequent codons in the human genome; shble#2 used the

GC-richest among the two most frequent codons; shble#3 used the AT-richest among the two most frequent

codons; shble#4 used the least frequent codons; shble#5 used the GC-richest among the two less frequent

codons; and shble#6 used the AT-richest among the two less frequent codons. An invariable AU1 sequence
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was added  as  N-terminal  tag  (amino acid  sequence  MDTYRI)  to  all  six  versions.  Nucleotide  contents

between versions are compared in Sup. Table 1. The normalized COUSIN 18 score (COdon Usage Similarity

Index),  which  compares  the  CUB  of  a  query  against  a  reference,  was  calculated  on  the  online  tool

(http://cousin.ird.fr) (59). A score value below 0 informs that the CUB of the query sequence is opposite to

the reference CUB; a value close to 1 informs that the query CUB is similar to the reference CUB , and a

value above 1 informs that the query CUB is similar the reference CUB , but of larger magnitude (59). All

shble synonymous sequences were chemically synthesised and cloned on the  XhoI restriction site in the

pcDNA3.1+P2A-EGFP  plasmid  (InvitroGen),  in-frame  with  the P2A-EGFP  reporter  cassette.  In  this

plasmid,  the  expression  of  the  reporter  gene  is  located  under  the  control  of  the  strong  human

cytomegalovirus (CMV) promoter and terminated by the bovine growth hormone polyadenylation signal. All

constructs encode for a 1,602 bp transcript, encompassing a 1,182 bp au1-shble-P2A-EGFP coding sequence

(Sup. Fig. 1).  The folding energy of the 1,602 bp transcripts was calculated on the  RNAfold Webserver

(http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi),  with  default  parameters  (Table  1).  During

translation, the P2A peptide (sequence NPGP) induces ribosome skipping (123), meaning that the ribosome

does not  perform the transpeptidation bond and releases instead the AU1-SHBLE moiety and continues

translation of the EGFP moiety. The HEK293 human cell line used here is proficient at performing ribosome

skipping on the P2A peptide (124) The transcript encodes thus for one single coding sequence but translation

results in the production of two proteins: SHBLE (theoretical molecular mass 17.2 kDa) and EGFP (27.0

kDa). As controls we used two plasmids: (i) pcDNA3.1+P2A-EGFP (named here "empty"), which encodes

for the EGFP protein; (ii) pcDNA3.1+ (named here "superempty") which does not express  any transcript

from the CMV promoter  (Table 1). In order to explore the burden of EGFP expression we generated two

additional  constructs  by subcloning the AU1-tagged shble#1 and shble#4 coding sequences in the XhoI

restriction site of the pcDNA3.1+ backbone, resulting in the constructs shble#1* and shble#4*, lacking the

P2A-EGFP sequence.

Transfection and differential cell sampling. As mentioned above, all experiments were carried out

on  HEK293 cells.  Cell  culture conditions, transfection methods and related reagents are detailed in  Sup.

Methods  2.2.  Cells  were harvested two days after  transfection and submitted to  analyses  at  four  levels
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(Figure  6):  (i)  nucleic  acid  analyses  (qPCR and RNAseq);  (ii)  proteomics  (label-free  quantitative  mass

spectrometry analysis and western blot immuno-assays); (iii) flow cytometry; and (iv) real-time cell growth

analysis  (RTCA).  Overall,  the  different  experiments  were  performed  on  33  biological  replicates,

corresponding to a variable number of repetitions depending on the considered analysis (Sup. Method 1).

Transfection efficiency was evaluated by means of qPCR targeting two invariable regions of the plasmid and

revealed no significant differences between the constructs (Sup. Methods 2.3).

Figure 7. Overview of the sampling protocol and the measured phenotypes. HEK293 cells were seeded

on 6-well plates (A) one day before transfection with the customized pcDNA3.1 plasmids (B). Transfected

cells were harvested two days later (C). mRNA levels were assessed by RNAseq (D), protein levels were

measured by label-free proteomics (E), EGFP fluorescence was assessed at the single cell  level by flow

cytometry (F) and cell growth was assessed by xCELLigence RTCA (Real Time Cell growth Analysis) in

presence of different concentrations of the bleomycin antibiotic (G).

RNA sequencing and data analysis.  The transcriptomic analysis was performed on six biological

replicates and eight conditions: shble#1 to shble#6, #empty, and mock (for which the sample is submitted to

the  exact  same  procedures,  including  the  transfection  agent,  but  in  absence  of  plasmid).  Paired  150bp

Illumina reads were trimmed (Trimmomatic v0.38) (125) and mapped on eight different genomic references

(HISAT2  v2.1.0)  (126),  corresponding  to  the  concatenation  of  the  human  reference  genome
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(GCF_000001405.38_GRCh38.p12_genomic.fna,  NCBI  database,  7th of  February  2019)  and the

corresponding full sequence of the plasmid. For the mock condition, we considered the human genome and

all possible versions of the plasmid. Virtually no read of those negative controls mapped to the plasmid

sequences. For all other conditions, read distribution patterns along the plasmid sequence were evaluated

with IGVtool (127). In all cases the au1-shble-p2a-EGFP coding sequence displayed highly similar coverage

shape for all  constructs,  except  for shble#4 and shble#6 for which respectively one and two alternative

splicing events were observed (Sup.  Fig.  3  and 4).  None of these splice sites were predicted when the

theoretical  transcripts  were  evaluated  using  Human  Splicing  Finder (HSF,  accessed  via

https://www.genomnis.com/access-hsf)  (60), or with SPLM - Search for human potential splice sites using

weight matrices (accessed via http://www.softberry.com/) (61). When relevant, the three alternative transcript

isoforms identified were further used as reference for read pseudomapping and quantification with Kallisto

(v0.43.1)  (128). Details on RNA preparation and bioinformatic pipeline are provided in  Sup. Methods 2.4

and Sup. Methods 3.

Label-free  proteomic  analysis.  The  label-free  proteomic  was  performed  on  nine  biological

replicates (three of them measured independently, and six pooled by two), and eight different conditions:

shble#1 to shble#6, #empty, and mock. 20 to 30 µg of proteins were in-gel digested and resulting peptides

were analysed online using  a  Q Exactive HF mass  spectrometer  coupled with  an Ultimate  3000 RSLC

system (Thermo Fisher Scientific). MS/MS analyses were performed using the Maxquant software (v1.5.5.1)

(129). All MS/MS spectra were searched by the Andromeda search engine (130) against a decoy database

consisting  in  a  combination  of  Homo sapiens entries  from Reference  Proteome (UP000005640,  release

2019_02,  https://www.uniprot.org/), a database with classical contaminants,  and  the sequences of interest

(SHBLE and EGFP).  After  excluding the usual  contaminants,  we obtained a final  set  of  4,302 proteins

detected at least once in one of the samples.  Intensity based absolute quantification (iBAQ) was used to

compare protein levels between samples (131).

Western blot immunoassays and semi-quantitative analysis.  Western blot immunoassays were

performed on nine replicates and nine conditions:  shble#1 to shble#6,  #empty,  #superempty,  and mock.

Three different proteins were targetted:  β-TUBULIN, EGFP, and SHBLE (via the invariable AU1 epitope
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tag). Semi-quantitative analysis from enzyme chemoluminiscence data was performed with ImageJ (132) by

«plotting lanes» to obtain relative density plots (Sup. Fig. 7). 

Flow  cytometry  analysis.  Flow  cytometry  experiments  were  performed  on  a  NovoCyte  flow

cytometer  system  (ACEA biosciences).  50,000  ungated  events  were  acquired  with  the  NovoExpress

software, and further filtering of debris and doublets was performed in R with an in-house script  (filtering

strategy is detailed in Sup. Method 2.7). For subsequent analysis, 30,000 events were randomly picked up

from each sample. Seven samples had less than 30,000 events and, in order to ensure the same sample size

for all conditions, the four corresponding replicates were excluded. After a first visualization of the data, two

replicates were ruled out because they displayed a typical pattern of failed transfection for the condition

shble#1 (Sup. Method 2.7), resulting in 16 final replicates being fully examined.

Real time cell growth analysis (RTCA). RTCA was carried out on an xCELLigence system for the

mock and the superempty controls, and further eight constructs: the previously analysed shble#1 to shble#6,

plus  the  shble#1*  and  shble#4*  lacking  the  EGFP  reporter  gene.  Cells  were  grown  under  different

concentrations of the Bleomycin antibiotic ranging from 0 to 5000 μg/mL (Sup. Method 2.8). Three to six

biological replicates were performed, including technical duplicates for each replicate. Cells were grown on

microtiter  plates  with  interdigitated  gold  electrodes  that  allow  to  estimate  cell  density  by  means  of

impedance  measurement.  Measures  were  acquired  every  15  minutes,  over  70  hours  (280  time  points).

Impedance measurements are reported as "Cell Index" values, which are compared to the initial baseline

values to estimate changes in cellular performance linked to the expression of the different constructs. For

each construct we estimated first cellular fitness by calculating the area below the curve for the delta-Cell

index  vs time for the cells grown in the absence of antibiotics. We estimated then the ability to resist the

antibiotic  conferred  by  each  construct  through calculation  of  IC50 as  the  bleomycin  concentration  that

reduces the area below the curve to half of the one estimated in the absence of antibiotics (detailled methods

in Sup. Method 2.8).

Data  availability.  RNAseq  raw  reads  were  deposited  on  the  NCBI-SRA database  under  the

BioProject  number  PRJNA753061.  R  scripts  and  input  files  are  available  at

https://github.com/malpicard/synonymous-but-not-neutral.git.
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