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The prevalence of sexual reproduction has long been an outstanding problem

of evolutionary biology. In accordance with the mathematical approach em-

ployed by past researchers, we propose a mathematical framework to address

this problem. We define and derive four measurements, diversity measure

DVM, diffusion measure DFM, optimality measure OPM, and survivability

measure SVM to compare sexual reproduction with asexual reproduction. We

show that DVM increases exponentially in sexual reproduction, while only lin-

early in asexual reproduction. Hence, sexual reproduction allows species more

opportunity to adapt. We also show that DFM is bounded in sexual reproduc-

tion and OPM is inversely related to DFM. Thus, sexual reproduction leads

to smaller DFM and hence a larger OPM. We further show that SVM is a

monotonic increasing function of OPM. Hence, sexual reproduction is better

by virtue of producing a more homogeneous population.
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Introduction

Why most species reproduce sexually is a question investigated extensively, but not yet an-

swered satisfactorily in biology (1–4). The prevalence of sexual reproduction suggests that

there are major benefits provided by this mode of reproduction. The benefits, however, are not

well-understood. In many ways, asexual reproduction seems to be a better evolutionary strategy:

only one parent is required, and all of the parent’s genes are passed on to its progeny (5–12).

In a sexual population, the males are unable to produce progeny of their own and females only

transfer half their genes to progeny, hence the so called problem of the “two-fold cost of males.”

Furthermore, sexual reproduction must also overcome obstacles that do not exist in asexual re-

production. Sexually reproducing organisms must spend a great deal of time and energy to find

and attract mates. Also, copulation in sexually reproducing organisms leaves both organisms

vulnerable to predation.

Despite these and other major drawbacks to sexual reproduction, it remains a very preva-

lent form of reproduction in most higher order organisms. Biologists have put forth numerous

hypotheses for why sexual reproduction is so prevalent. The main hypotheses to explain sexual

reproduction typically focus on the benefits of the inherent ability of sexual reproduction to

recombine and shuffle genetic information (13–20). Generally, these hypotheses have relied on

fusing observational zoological studies with our understanding of genetics to build their foun-

dations; a very understandable approach given the inherent methodological constraints on the

field of evolutionary biology

Whereas hypotheses in applied physics or chemistry can be directly tested in experiments

with controlled variables in real-time, evolutionary biology deals with “evolutionary time”

where the timescales necessary for experimentation far exceed the human lifespan, or human

civilization itself for that matter. Such controlled experiments are largely unfeasible for the field
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of evolutionary biology. As such, even Darwin was forced to use the inductive reasoning ap-

proach of accumulating large reservoirs of circumstantial evidence in combination with critical

thinking to propound his ideas (21). The field of evolutionary biology has largely inherited this

inductive reasoning methodology.

With the dearth of ability to conduct concrete controlled experiments to prove evolutionary

principles by a deductive approach, we believe that turning back to a mathematical approach, as

done by such past luminaries as JBS Haldane (22) or Kimura and Maruyama (23) can be valu-

able for addressing the problem of sexual reproduction. We believe that reproductive biology

generally follows consistent principles that are amenable to mathematical modeling; as such, a

mathematical framework can be used to provide further support for existing ideas, as well as

illuminate novel ideas that could be overlooked if not for a deductive mathematical approach.

With a mathematical methodology in mind, we introduce several mathematical constructs to

analyze population changes via sexual reproduction or asexual reproduction. We first intro-

duce a diversity measure DVM defined as the number of distinct individuals/genotypes in a

population divided by the total number of individuals/genotypes in the population. We derive

dynamic equations of DVM for both asexual reproduction and sexual reproduction. We show

that DVM increases exponentially in sexual reproduction rather than linearly as in asexual re-

production. This exponential increase in sexual reproduction’s diversity DVM is consistent

with current hypotheses that posit genetic recombinatorial shuffling from sexual reproduction

allows for more rapid adaptation.

We further introduce a diffusion measure DFM defined as the average “distance” of indi-

viduals in a population. Here, the distance between two individuals is defined as the percentage

difference in their genes. Consequently, DFM measures how homogeneous a population is.

We derive dynamic equations of DFM for both asexual reproduction and sexual reproduc-

tion. We show that, despite its diversity, sexually reproducing species are more homogeneous
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(smaller DFM ) than asexually reproducing species. In other words, sexual reproduction in-

creases diversity (by increasing DVM ) while decreases diffusion (by reducing DFM ). This is

less intuitive, but true.

We show that a more homogeneous population has evolutionary advantages over a less ho-

mogeneous population (smaller DFM is better). This is because the diffusion measure DFM

is inversely related to optimality measure OPM , which measures the average distance of in-

dividuals in a population to the optimal individual/genotype who is most suitable in a given

environment. More precisely, we show that OPM = 1 −DFM . Therefore, a smaller DFM

implies a larger OPM . Hence, a more homogeneous population is more suitable for the envi-

ronment. Since sexual reproduction leads to smaller DFM versus asexual reproduction, it has

advantage over asexual reproduction, in addition to the advantage of having a larger DVM .

The last performance measure we define in this paper is the survivability measure SVM

which is the percentage of individuals having progeny. We show that the survivability measure

increases as the optimality measure increases (and that survivability measure decreases as the

diffusion measure increases).

By formally defining four performance measures, DVM , DFM , OPM , and SVM , we

develop a formal mathematical framework, in which advantages of sexual reproduction can be

precisely addressed. All the above discussions can be verified by simulations of the dynamical

equations for DVM , DFM , OPM , and SVM derived from basic biology.

Some theories/hypotheses that have been proposed to address the advantages of sexual re-

production over asexual reproduction, such as genetic recombination, Muller’s Ratchet, and the

Red Queen Hypothesis, can all be addressed by the mathematical framework using the perfor-

mance measures proposed in this paper.
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Diversity, Diffusion, Optimality, and Survivability Measures

In this section, we present the framework of our research. We define diversity measure, diffu-

sion (or inhomogeneity) measure, optimality measure, and survivability measure to describe a

species. We also define selective pressure to describe an environment. We show how surviv-

ability measure depends on diffusion measure, optimality measure, and selective pressure.

To do this formally and mathematically, let us first introduce the following notations.

N - the number of genes

gi, i ∈ N = {1, 2, ..., N} - the i-th gene

In asexual reproduction, a progeny inherits its genes from one progenitor.

In sexual reproduction, a progeny inherits its genes from two progenitors.

gwi - the i-th gene from the maternal progenitor.

gdi - the i-th gene from the paternal progenitor

A progeny will randomly pick the i-th gene from the maternal or paternal progenitor with

equal probability (=0.5).

From one generation to the next, the probability of mutation of gi is p.

A mutation causes h% change in gi.

Change of mutation is additive: k mutations cause kh% change in gi.

Q - the total population of a species.

q ∈ Q - an individual/genotype in the species Q.

gqi - the i-th gene of q ∈ Q.

|gq1i − g
q2
i | - distance between gq1i and gq2i , defined as the percentage difference between gq1i

and gq2i .

If the distance between gwi and gdi exceeds a bound b, that is, |gwi − gdi | > b, then either the

mating will not take place or the resultant progeny will not survive.
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Diversity measure

Diversity measure describes how diverse a population is. We will argue that a more diverse

population has an evolutionary advantage over a less diverse population, as more diversity in-

creases the chance to adapt to the environment.

Diversity measure of a species Q is defined as the number of distinct individuals/genotypes

in Q divided by the total number of individuals/genotypes in Q, that is,

DVM(Q) =
the number of distinct q

|Q|
, (1)

where |Q| is the number of elements (cardinality) of Q. Clearly, larger DVM(Q) means that

the species is more diverse.

Diffusion measure

Distance between q1, q2 ∈ Q is defined as

DS(q1, q2) =
1

N

N∑
i=1

|gq1i − g
q2
i |.

Diffusion measure of a species Q is defined as the average or expected value of DS(q1, q2):

DFM(Q) = E(DS(q1, q2)) =
1

|Q|2
∑

q1,q2∈Q

DS(q1, q2), (2)

where E(.) denotes the expectation (mean). Clearly, larger DFM(Q) means that the species is

less similar.

Optimality measure

In a given environment, the optimal individual is denoted by o ∈ Q, whose gene is denoted

by goi , i ∈ N . The goal of evolution is for the population to evolve around o, that is, the distance

of Q to o reduces as time passes.

The distance of Q from o is defined as the average or expected distance of individuals

q ∈ Q to o. One minus this distance is called the optimality measure OPM . Hence, optimality
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measure of a species Q is one minus the expected value of DS(q, o):

OPM(Q) = 1− E(DS(q, o)) = 1− 1

|Q|
∑
q∈Q

DS(q, o). (3)

The reason to use 1 − E(DS(q, o)) rather than E(DS(q, o)) as optimality measure is that,

intuitively, we would like to see that the larger OPM is, the closer Q is to o.

As to be shown in Section V, optimality measure is related to diffusion measure as follows.

OPM(Q) ≈ 1−DFM(Q).

Selective pressure

For a given environment, its selective pressure is measured as a threshold SP ∈ [0, 1] such

that, if DS(q, o) > 1 − SP , then individual q will not have progeny. The larger SP is, the

strong selective pressure is.

Survivability measure

In a given environment, survivability measure of a species Q is defined as the percentage of

individuals having progeny, that is,

SVM(Q) =
the number of q having progeny

|Q|
= percentage of q such that DS(q, o) ≤ 1− SP .

(4)

Survivability measure depends on selective pressure, optimality measure, and diffusion

measure as shown in the following theorem, whose proof is in Appendix.

Theorem 1

(1) As the selective pressure SP increases, the survivability measure SVM(Q) decreases.

(2) As the optimality measure OPM(Q) increases, the survivability measure SVM(Q)

increases.

(3) As the diffusion measure DFM(Q) increases, the survivability measure SVM(Q) de-

creases.
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In the next two sections, we derive the diversity and diffusion measures for both asexual

reproduction and sexual reproduction. Without loss of generality, we assume that all individuals

in Q are of the same generation. Denote the m-th generation of the species as Qm. Since

DVM(Q), DFM(Q), OPM(Q), and SVM(Q) are all defined as a percentage, we further

assume that, without loss of generality, the number |Qm| of individuals in Qm is unchanged

from one generation to the next.

Asexual Reproduction

For asexual reproduction, each individual in the m-th generation q′ ∈ Qm is produced by an

individual in the m-1-th generation q ∈ Qm−1, denoted as q → q′.

Diversity measure

For asexual reproduction, each mutation produces an individual who is different from its

parent. The probability that this individual is distinct in Q is proportional to 1−DVM(Qm−1).

The expected number of mutations in one generation is given by |Q| ×N × p. Hence,

DVM(Qm) = DVM(Qm−1) + (1−DVM(Qm−1))
|Q|Np
|Q|

= (1−Np)DVM(Qm−1) +Np.

(5)

It can be shown (Section V) thatDVM(Qm)→ 100% asm→∞. Assume thatDVM(Qm)

is small initially, then 1−DVM(Qm−1) ≈ 1 and the above equation can be approximated as

DVM(Qm) ≈ DVM(Qm−1) +
|Q|Np
|Q|

= DVM(Qm−1) +Np.

In other words, DVM(Qm) increases linearly.

Diffusion measure

To calculate DS(q′1, q
′
2), where q1 → q′1 and q2 → q′2, let us consider their i-th genes, gq

′
1
i

and gq
′
2
i . Since mutations are independent with probability (w.p.) p, we have the following

g
q′j
i =

{
g
qj
i w.p. 1− p
g
qj
i + δj w.p. p , j = 1, 2.
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where δ is used to denote a mutation. Hence, the possible pairs (g
q′1
i , g

q′2
i ) and probabilities of

their occurrences are as follows.

(g
q′1
i , g

q′2
i ) =


(gq1i , g

q2
i ) w. p. (1− p)(1− p)

(gq1i , g
q2
i + δ2) w. p. (1− p)p

(gq1i + δ1, g
q2
i ) w. p. (1− p)p

(gq1i + δ1, g
q2
i + δ2) w. p. p2

A mutation causes h% change. The probability that this mutation increases |gq
′
1
i − g

q′2
i | is

proportional to 1− |gq1i − g
q2
i |. Thus,

|gq
′
1
i − g

q′2
i | =


|gq1i − g

q2
i | w.p. (1− p)2

|gq1i − g
q2
i |+ (1− |gq1i − g

q2
i |)h w.p. 2p(1− p)

|gq1i − g
q2
i |+ (1− |gq1i − g

q2
i |)2h w.p. p2

Hence1,

E(|gq
′
1
i − g

q′2
i |) = (1− 2hp)E(|gq1i − g

q2
i |) + 2hp. (6)

Therefore,

DFM(Qm) = (1− 2hp)DFM(Qm−1) + 2hp. (7)

It can be shown (Section V) that DFM(Qm) → 100% as m → ∞. In other words, in

asexual reproduction, individuals in a species will become less and less similar as time passes.

Sexual Reproduction

In sexual reproduction, each individual in the m-th generation q′ ∈ Qm is produced by two

individuals in the m-1-th generation qw, qd ∈ Qm−1, denoted as qw, qd → q′.

Diversity measure

While in asexual reproduction, one new mutation will increase the number of distinct new

individuals by 1, in sexual reproduction, one new mutation has the potential to double the
1Derivations of all equation can be found in Appendix.
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number of distinct new individuals due to genetic recombination. We assume that c percentage

of genetic recombination will be accomplished. Since the expected number of mutations in one

generation is |Q|×N×p, the expected number of new individuals due to genetic recombination

is |Q|cNp × DVM(Qm−1)|Q|. The probability that the new individuals are distinct in Qm is

proportional to 1−DVM(Qm−1). Hence,

DVM(Qm) = DVM(Qm−1) + (1−DVM(Qm−1))
|Q|cNpDVM(Qm−1)|Q|

|Q|
= (1 + (1−DVM(Qm−1))|Q|cNp)DVM(Qm−1).

(8)

It can be shown (Section V) thatDVM(Qm)→ 100% asm→∞. Assume thatDVM(Qm)

is small initially, then 1−DVM(Qm−1) ≈ 1 and the above equation can be approximated as

DVM(Qm) ≈ DVM(Qm−1) +
|Q|NpDVM(Qm−1)|Q|

|Q|
= (1 + |Q|cNp)DVM(Qm−1).

In other words, DVM(Qm) increases exponentially with respect to m. It is well-known that

exponential increase is much faster than linear increase.

Diffusion measure

To calculate DS(q′1, q
′
2), where q1,f , q1,d → q′1 and q2,f , q2,d → q′2, let us consider their i-th

gene, gq
′
1
i and gq

′
2
i . Since mutations are independent with probability p, we have

g
q′j
i =


g
qj,f
i w.p. 0.5(1− p)
g
qj,f
i + δj w.p. 0.5p
g
qj,d
i w.p. 0.5(1− p)
g
qj,d
i + δj w.p. 0.5p

, j = 1, 2.

A mutation causes h% change. The probability that this mutation increases |gq
′
1
i − g

q′2
i | is

proportional to 1− |gq1,ei − gq2,ei |, where e ∈ {f, d}. Thus,

|gq
′
1
i − g

q′2
i | =


|gq1,ei − gq2,ei | w.p. (1− p)2
|gq1,ei − gq2,ei |+ (1− |gq1,ei − gq2,ei |)h w.p. 2p(1− p)
|gq1,ei − gq2,ei |+ (1− |gq1,ei − gq2,ei |)2h w.p. p2

Since, E(|gq1,fi − g
q2,f
i |) = E(|gq1,fi − g

q2,d
i |) = E(|gq1,di − g

q2,f
i |) = E(|gq1,di − g

q2,d
i |) =

E(|gq1,ei − gq2,ei |), let us denote them by E(|gq1i − g
q2
i |. Then,

E(|gq
′
1
i − g

q′2
i |) = min{b, (1− 2hp)E(|gq1i − g

q2
i |) + 2hp}. (9)
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The reason for min is that, if |gq
′
1
i − g

q′2
i | > b, then the progeny will not survive. Therefore,

DFM(Qm) ≈ min{b, (1− 2hp)DFM(Qm−1) + 2hp}

≈ −1

τ
ln(e−τb + eτ((1−2hp)DFM(Qm−1)+2hp)),

(10)

where τ > 0 is the parameter that determines the softness of the approximation of min.

It can be shown (Section V) that DVM(Qm) → b as m → ∞. This is very different

than asexual reproduction, where DFM(Qm) → 100% as m → ∞. In other words, while

asexual reproduction can make individuals in a species completely dissimilar, to the point that

a taxonomist could be forced to concede that the population of individuals are in fact multiple

“species,” whereas, sexual reproduction maintains a species as a related and coherent group.

Simulation Results

There are two tasks for simulations. The first task is to verify

OPM ≈ 1−DFM (11)

The second is to compare sexual reproduction with asexual reproduction by means of the diver-

sity, diffusion, and optimality measures.

We use MATLAB, a popular engineering software to perform simulations. For the first task,

we calculate DFM and OPM using Equations (2) and (3).

Since DS(q1, q2) and DS(q, o) are percentages, we represent q ∈ Q by a number between

0 and 1. We generate K random numbers, denoted, with a slight abuse of notation, as Q =

{q1, q2, ..., qK}, and then calculate

DFM(Q) =
1

K2

K∑
i=1

K∑
j=1

|qi − qj|

OPM(Q) = 1− 1

K

K∑
i=1

|qi − q1|,

(12)
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where, without loss of generality, we let o = q1.

We run the above simulations R times and take the average. For different K and R, the

results are shown in Table 1.

 

 

Table 1: Simulation results to verify OPM ≈ 1−DFM or OPM +DFM ≈ 1.

For the second task, we simulate the derived dynamic equations, which are summarized

below, to compare sexual reproduction with asexual reproduction. Since it is a comparison, only

the relative values (rather than the absolute values) of the diversity, diffusion, and optimality

measures are of importance.

Diversity measure: Diversity measure for asexual reproduction is given in Equation (5). Di-

versity measure for sexual reproduction is given in Equation (8).

Diffusion measure: Diffusion measure for asexual reproduction is given in Equation (7). Dif-

fusion measure for sexual reproduction is given in Equation (10).

Optimality measure Diffusion measures for both asexual and sexual reproductions are given

by Equation (11).

We conducted several simulations with different parameter values. The results are all sim-

ilar. Typical parameters used in the simulations are as follows. We do not claim that these

parameters are biologically representative. Note that since we are only interested in the relative

values of the diversity, diffusion, and optimality measures, absolute values of parameters are

not critical.
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p = 0.001, h = 25%, N = 10, |Q| = 200, b = 30%, c = 10%, τ = 10.

The initial conditions are DVM(Q0) = 10% and DFM(Q0)) = 10%. Results of simulations

are shown in Figures 1 and 2.

DVM,sexual

DVM,asexual

Figure 1: Diversity measure DVM of sexual vs asexual reproduction. Horizontal axis shows
the number of generations.

OPM,asexual

OPM,sexual

DFM,asexual

DFM,sexual

Figure 2: Diffusion measure DFM and optimality measure OPM of sexual vs asexual repro-
duction. Horizontal axis shows the number of generations.

From Figure 1, it is clear that the diversity measure of sexual reproduction is larger than and

increases faster than that of asexual reproduction. Larger diversity measure allows a species to
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evolve faster. Hence, in terms of diversity measure, sexual reproduction has an advantage over

asexual reproduction.

On the other hand, from Figure 2, diffusion measure of sexual reproduction is bounded and

smaller than that of asexual reproduction. By Theorem 1, smaller diversity measure leads to

larger survivability measure. Hence, in terms of diffusion measure, sexual reproduction also

has an advantage over asexual reproduction.

Comparing the horizontal axis of Figure 1 with the horizontal axis of Figure 2, we note that

the advantage of sexual reproduction over asexual reproduction in terms of diffusion measure

takes a longer time to show than the advantage in terms of diversity measure. This probably

explains why the effects of diversity measure have been so readily latched onto and investigated

by biologists, whereas the potential evolutionary consequences of diffusion measure’s effects

have been overlooked and not been investigated in any comprehensive manner.

Diversity vs Diffusion

By the definitions, DVM is the number of distinct individuals in a population Q divided by

the total number of individuals in Q, while DFM is the average distance between any two

individuals in Q. Hence, DVM describes how diverse a population is, while DFM describes

how similar or homogenous a population is. At first glance, one may think that DVM and

DFM depend on each other. However, they are actually independent of each other. This is

illustrated in Figure 3, where two populations have the same DVM , but the population on the

left has a much smaller DFM that the one on the right. Hence, it is entirely possible to keep

DVM large while keeping DFM small. We argue that, for a population to best adapt to an

environment, it is best for the population Q to have a large DVM and a small DFM (see

Theorem 1).

Sexual reproduction allows genetic recombination to produce recombinant types via mech-
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Figure 3: Diversity measureDVM and diffusion measureDFM are independent of each other.
The above two populations have the same DVM , but the population on the left has a much
smaller DFM than the one on the right.

anisms such as chromosome shuffling, and this process occurs with each successive progeny.

Subsequently, through this probabilistic process, every progeny is forced to be distinct from

both its progenitors and sibling progeny (assuming the progenitors do not have exactly iden-

tical genomes, and excluding atypical phenomena such as twins, etc.). In other words, sexual

reproduction results in a high DVM . This point has been well established. Our added contri-

bution is the insight that such a chromosomal reshuffling phenomenon could only occur if both

progenitors are not radically dissimilar, such as a paternal progenitor with 46 chromosomes

contributing 23 chromosomes and a maternal progenitor with 44 chromosomes contributing 22

chromosomes. This is an example of a high DFM value precluding the generation of progeny.

Asexual reproduction has no such constraints. A progenitor of 46 chromosomes could produce

10 progenies: 9 with identical 46 chromosomes, and 1 with 47 chromosomes as a mutational

accident. Such a population would have low DVM (90% of the population are 100% identical)

with high DFM (10% of the population is radically different in chromosome number).

Our mathematical models and simulation results are consistent with the evidences that sex-

ual reproduction promotes genetic similarity/homogeneity, while asexual reproduction leads to
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genetic diffusion. As seen from our simulations, asexual reproduction results in an increase of

DFM over time, while sexual reproduction results in bounded DFM , implying the formation

of a tight cluster of similar individuals. The tight cluster is maintained by sexual reproduction

that prevents the diffusion seen in asexual reproduction. Theorem 1 states that a smaller DFM

means a large OPM and hence a large SVM .

To illustrate this benefit of genetic similarity and maintenance of adaptational advantages

in a biological context, we take the example of a developed ecosystem that is near its “climax

community”. Such a system can be considered relatively stable with high biodiversity. The

high biodiversity means there is more competition for the same limited resources. In order for

all these species to successfully live amongst each other, selective pressures have caused each

species to develop specific adaptations that allow it to occupy an exclusive niche. Deviating

away from such adaptations, which means deviating away from the species’ niche, results in

competition with other species that occupy other niches. These other species are highly adapted

for their niches; consequently, the “deviant organism” is unlikely to survive the competition.

Sexual reproduction maintains adaptational advantages and minimizes the conversion of pre-

cious resources to the production of deviant organisms that are unlikely to survive.

In summary, both DVM and DFM are distinct principles that can provide a more nuanced

approach to investigating the advantages of sexual reproduction over asexual reproduction. (1)

Sexual reproduction leads to a more diverse population and hence allows more rapid adaption to

environments. (2) Sexual reproduction is a species stabilization mechanism that naturally main-

tains genetic homogeneity and species identity. (3) Asexual reproduction, which does not have

this inherent species stabilization mechanism, leads to genetic inhomogeneity and no definitive

species identity. (4) Sexual reproduction is beneficial because the maintenance of species iden-

tity maintains desired adaptational advantages, which is important when selective pressures are

strong. In the next section, we use DVM and DFM to explain some theories/hypotheses that
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have been proposed to address the advantages of sexual reproduction over asexual reproduction.

Advantages of Sexual Reproduction

Various theories/hypotheses have been proposed to address the advantages of sexual reproduc-

tion over asexual reproduction. The main theories/hypotheses are as follows. (1) Genetic recom-

bination: Sexual reproduction allows genetic recombination to produce recombinant types that

can make the population better able to adapt changes in the environment. In other words, sexual

reproduction allows greater exploration of genotype possibilities hence providing the raw fuel

for natural selection to act upon. (2) Muller’s Ratchet: Continued accumulation of deleterious

mutations leads to a degradation of a species’ average fitness over time, without any method of

correction, the species will likely face extinction (24–26). Muller’s Ratchet posits that sexual re-

production allows good genes in separate loci to be recombined to restore genotypes to optimal

fitness. (3) Red Queen hypothesis: In this hypothesis, parasites and hosts engage in a constant

arms battle with hosts evolving resistances to parasites and parasites evolving ways to get past

those resistances (10, 27, 28). Sexual reproduction generates new genotypes at a much faster

rate than would be possible with asexual reproduction. The faster generation of new genotypes

then allows for rapid adaptation of resistances against parasites for the hosts. Likewise, sexu-

ally reproducing parasites can have rapid adaptation against host resistances. The mathematical

models we presented fits well with these theories/hypotheses.

(1) Genetic recombination: The diversity measure DVM describes genotype possibilities

of a population. Comparing Equation (5) with Equation (8), we can see that initially (when

DVM is small), DVM increases linearly in asexual reproduction, but exponentially in sexual

reproduction. Simulation results of Figure 1 clearly show that DVM increases much faster in

sexual reproduction than in asexual reproduction.

(2) Muller’s Ratchet: Muller’s Ratchet is reflected in the optimality measure OPM . As
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shown in Figure 2, OPM decreases in both sexual reproduction and asexual reproduction as

time goes by. This is exactly what Muller’s Ratchet anticipates. However, in sexual reproduc-

tion, OPM will reach a limit and no longer decreases. In other words, sexual reproduction can

restore genotypes to optimal fitness.

(3) Red Queen hypothesis: The Red Queen Hypothesis can also be explained by DVM .

Sexually reproduced parasites and hosts have much larger DVM than asexually reproduced

parasites and hosts as shown in Figure 1. Larger DVM allows parasites and hosts to better

adapt in the battle with hosts evolving resistances to parasites and parasites evolving ways to

get past those resistances.
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1 Appendix

Proof of Theorem 1

Let us enumerate individuals in Q based on their distance to o, that is, let

Q = {q1, q2, ..., qK},

where K = |Q|, such that

DS(q1, o) ≤ DS(q2, o) ≤ ... ≤ DS(qK , o).

Define a distance function ρ : K → [0, 1], where K = {1, 2, ..., K}, as

ρ(k) = DS(qk, o).

Then ρ is a monotonic increasing function, that is,

k1 < k2 ⇒ ρ(k1) ≤ ρ(k2),

where⇒ denotes “implies”.

From the definition of survivability, we have

qk having progeny⇔ ρ(k) ≤ 1− SP,

where⇔ denotes “if and only if”.

Therefore,

SVM(Q) =
|{qk ∈ Q : ρ(k) ≤ 1− SP}|

K
=

max{k : ρ(k) ≤ 1− SP}
K

To prove Part (1) of Theorem 1, consider two selective pressures SP1, SP2 with SP1 ≤ SP2.

We have

SP1 < SP2
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⇒(ρ(k) ≤ 1− SP2 ⇒ ρ(k) ≤ 1− SP1)

⇒max{k : ρ(k) ≤ 1− SP2} ≤ max{k : ρ(k) ≤ 1− SP1}

(because ρ is a monotonic increasing function)

⇒max{k : ρ(k) ≤ 1− SP2}
|Q|

≤ max{k : ρ(k) ≤ 1− SP1}
|Q|

⇒SVM2(Q) ≤ SVM1(Q),

where SVMi(Q) is the survivability measure under selective pressure SPi, i = 1, 2.

To prove Part (2) of Theorem 1, consider two optimality measures OPM(Q1), OPM(Q2)

with OPM(Q1) ≤ OPM(Q2). By the definition of OPM(Qi), i = 1, 2,

OPM(Qi) = 1− E(DS(q, o)) = 1− 1

K

K∑
k=1

DSi(qk, o) = 1− 1

K

K∑
k=1

ρi(k),

where ρi(k) = DSi(qk, o), for k ∈ K, corresponds to OPM(Qi). Hence, for any SP

OPM(Q1) ≤ OPM(Q2)

⇒1− 1

K

K∑
k=1

ρ1(k) ≤ 1− 1

K

K∑
k=1

ρ2(k)

⇒
K∑
k=1

ρ1(k) ≥
K∑
k=1

ρ2(k)

⇒ρ1(k) ≥ ρ2(k) with probability 1

⇒ρ1(k) ≤ 1− SP ⇒ ρ2(k) ≤ 1− SP

⇒max{k : ρ1(k) ≤ 1− SP} ≤ max{k : ρ2(k) ≤ 1− SP}

⇒max{k : ρ1(k) ≤ 1− SP}
K

≤ max{k : ρ2(k) ≤ 1− SP}
K

⇒SVM(Q1) ≤ SVM(Q2).

Part (3) of Theorem 1 is the direct result of Part (2) of Theorem 1 and the relationOPM(Q) ≈

1−DFM(Q).

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2022. ; https://doi.org/10.1101/2022.02.05.479258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.05.479258
http://creativecommons.org/licenses/by/4.0/


Derivation of Equation (6)

E(|gq
′
1
i − g

q′2
i |) = E(|gq1i − g

q2
i |) + (1− E(|gq1i − g

q2
i |))h(2p(1− p) + 2p2)

= E(|gq1i − g
q2
i |) + 2(1− E(|gq1i − g

q2
i |))hp

= (1− 2hp)E(|gq1i − g
q2
i |) + 2hp.

Derivation of Equation (7)

DFM(Qm) = E(DS(q′1, q
′
2)) = E(

1

N

N∑
i=1

|gq
′
1
i − g

q′2
i |) =

1

N

N∑
i=1

E(|gq
′
1
i − g

q′2
i |)

=
1

N

N∑
i=1

((1− 2hp)E(|gq1i − g
q2
i |) + 2hp)

=
1

N
(
N∑
i=1

(1− 2hp)E(|gq1i − g
q2
i |) +

N∑
i=1

2hp)

= (
1

N

N∑
i=1

(1− 2hp)E(|gq1i − g
q2
i |)) + (

1

N

N∑
i=1

2hp)

= (1− 2hp)E(
1

N

N∑
i=1

|gq1i − g
q2
i |) + 2hp

= (1− 2hp)E(DS(q1, q2)) + 2hp

= (1− 2hp)DFM(Qm−1) + 2hp.

Derivation of Equation (9)

E(|gq
′
1
i − g

q′2
i |) = min{b, E(|gq1i − g

q2
i |) + (1− E(|gq1i − g

q2
i |))h(2p(1− p) + 2p2)}

= min{b, E(|gq1i − g
q2
i |) + 2(1− E(|gq1i − g

q2
i |))hp}

= min{b, (1− 2hp)E(|gq1i − g
q2
i |) + 2hp}.

Derivation of Equation (10)

DFM(Qm) = E(DS(q′1, q
′
2)) = E(

1

N

N∑
i=1

|gq
′
1
i − g

q′2
i |) =

1

N

N∑
i=1

E(|gq
′
1
i − g

q′2
i |)
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=
1

N

N∑
i=1

min{b, (1− 2hp)E(|gq1i − g
q2
i |) + 2hp}.

Mathematically,

1

N

N∑
i=1

min{b, (1− 2hp)E(|gq1i − g
q2
i |) + 2hp}

≤min{b, 1
N

N∑
i=1

((1− 2hp)E(|gq1i − g
q2
i |) + 2hp)}.

However, we expect that E(|gq1i − g
q2
i |) ≈ E(|gq1j − g

q2
j |), for i, j ∈ N . Therefore,

DFM(Qm) =
1

N

N∑
i=1

min{b, (1− 2hp)E(|gq1i − g
q2
i |) + 2hp}

≈ min{b, 1
N

N∑
i=1

((1− 2hp)E(|gq1i − g
q2
i |) + 2hp)}

= min{b, 1
N
(
N∑
i=1

(1− 2hp)E(|gq1i − g
q2
i |) +

N∑
i=1

2hp)}

= min{b, ( 1
N

N∑
i=1

(1− 2hp)E(|gq1i − g
q2
i |)) + (

1

N

N∑
i=1

2hp)}

= min{b, ( 1
N

N∑
i=1

(1− 2hp)E(|gq1i − g
q2
i |)) + 2hp}

= min{b, (1− 2hp)(
1

N

N∑
i=1

E(|gq1i − g
q2
i |)) + 2hp}

= min{b, (1− 2hp)E(
1

N

N∑
i=1

|gq1i − g
q2
i |) + 2hp}

= min{b, (1− 2hp)E(DS(q1, q2)) + 2hp}

= min{b, (1− 2hp)DFM(Qm−1) + 2hp}.

For better simulations, we approximate min by a continuous function as follows.

DFM(Qm) ≈ min{b, (1− 2hp)DFM(Qm−1) + 2hp}

≈ −1

τ
ln(e−τb + eτ((1−2hp)DFM(Qm−1)+2hp)).
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