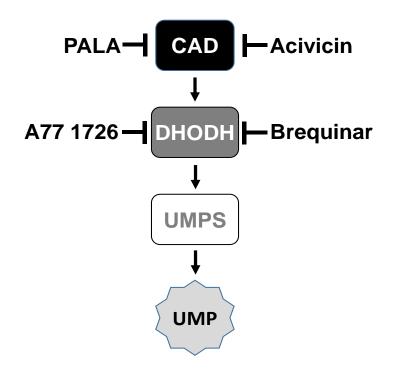
Supplemental Information Appendix

N-phosphonacetyl-L-aspartate enhances type I interferon anti-viral responses through activation of non-canonical NOD2 signaling


András K. Ponti^a, Megan T. Zangara^{a,b}, Christine M. O'Connor^{b,c}, Erin E. Johnson^{a,d}, and Christine McDonald^{a,b*}

^aDepartment of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195

^bDepartment of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, 44106

^cDepartment of Genomic Medicine, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195

^dDepartment of Biology, John Carroll University, University Heights, Ohio, 44118

Figure S1: Illustration of the targets of the *de novo* **pyrimidine synthesis inhibitors used in this study.** *N*-phosphonacetyl-L-aspartate (PALA); carbamoyl-phosphate synthetase 2/ aspartate transcarbamylase/ dihydroorotase (CAD); dihydroorotate dehydrogenase (DHODH); uridine monophosphate synthase (UMPS); uridine monophosphate (UMP)

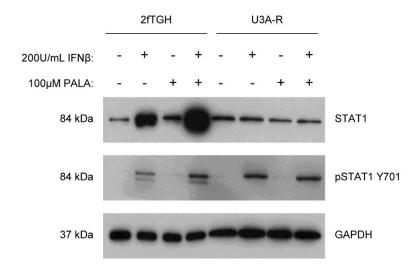


Figure S2: Enhancement of IFN β -stimulated STAT1 protein expression by PALA requires the STAT1 promoter. Immunoblot analysis of STAT1 protein levels in lysates from either cells with endogenous STAT1 expression (2fTGH cells) or a mutant of this cell line that lacks endogenous STAT1 expression but has STAT1 stably expressed from a CMV promoter (U3A-R). Cells were treated for 24h with either IFN β , PALA, or a combination of IFN β and PALA. Representative of 3 independent experiments.