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Abstract

Background
Owing to the rising levels of multi-resistant pathogens, antimicrobial peptides, an
alternative strategy to classic antibiotics, got more attention. A crucial part is
thereby the costly identification and validation. With the ever-growing amount of
annotated peptides, researchers employed artificial intelligence to circumvent the
cumbersome, wet-lab-based identification and automate the detection of
promising candidates. However, the prediction of a peptide’s function is not
limited to antimicrobial efficiency. To date, multiple studies successfully classified
additional properties, e.g., antiviral or cell-penetrating effects. In this light,
ensemble classifiers are employed to utilize the advantages of peptide encodings;
hence, further improving the prediction. Although we recently presented a
workflow to significantly diminish the initial encoding choice, an entire
unsupervised encoding selection, considering various machine learning models, is
still lacking.

Results
We developed a workflow, automatically selecting encodings and generating
classifier ensembles by employing sophisticated pruning methods. We observed
that the Pareto frontier pruning is a good method to create encoding ensembles
for the datasets at hand. In addition, encodings combined with the Decision Tree
classifier as the base model are often superior. However, our results also
demonstrate that none of the ensemble building techniques is outstanding for all
datasets.

Conclusion
The workflow conducts multiple pruning methods to evaluate ensemble classifiers
composed from a wide range of peptide encodings and base models.
Consequently, researchers can use the workflow for unsupervised encoding
selection and ensemble creation. Ultimately, the extensible workflow can be used
as a plugin for the PEPTIDE REACToR, further establishing it as a versatile tool
in the domain.

Keywords: Biomedical classification; Antimicrobial peptides; Encodings;
Machine Learning; Ensemble Learning

Background
Multi-resistant pathogens are a major threat for modern society [1]. In the last

decades, a rising number of bacterial species developed mechanisms to elude effi-

ciency to widely used antibiotics [1]. The importance of developing and implement-
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ing alternative strategies is further underpinned by a recent study, which detected

a certain baseline resistance in European freshwater lakes [2]. The study confirmed

resistance specifically against four critical drug classes in human and veterinary

health in freshwater, which is typically considered as a pathogen-free environment

[2]. Moreover, already concerning levels of antibiotic resistance in Indian and Chi-

nese lakes emphasize the requirement of alternative biocides [3, 4]. One promising

approach to replace or even support common antibiotics refers to the deployment of

peptides with antimicrobial efficiency [5]. However, identifying and validating active

peptides requires intensive, hence, costly and time-consuming wet-lab work. Thus,

in the pre-artificial intelligence (AI) era, the manual classification and verification

of antimicrobial peptides (AMPs) engaged researchers. Although the in vitro confir-

mation of activity is still necessary, the application of AI, i.e., in particular machine

learning (ML) algorithms, simplifies the identification process drastically and pushes

specific AMPs to the second or third phase of clinical trials [6]. In addition, online

databases provide access to thousands of annotated sequences and pave the way for

AI application in peptide design and classification [7]. For instance, Chung et al.

(2019) developed a method, which demonstrated good performance on classifying

AMPs using a two-step approach, which first predicts efficiency, and afterward the

precise target activity [8]. Another study employed a variational autoencoder to

encode AMPs, mapped the probability of being active to a latent space, and pre-

dicted novel AMPs [9]. Fingerhut et al. (2020) introduced an algorithm to detect

AMPs from genomic data [10]. For more information on computational approaches

for AMP classification, we refer to the recent review of Aronica et al. (2021) [11].

However, the prediction of amino acid sequence features is not limited to AMPs.

In the literature, one can find various applications, e.g., in oncology for predicting

anticancer peptides [12], in pharmacology for the discovery and application of cell-

penetrating peptides as transporters for molecules [13], or in immunotherapy, for

classifying of pro- or antiinflammatory peptides [14, 15]. Other applications include

antiviral peptides [16], or peptides with hemolytic [17] or neuro transmitting activity

[18].

Unequivocally, the success of ML methods for the prediction of AMPs was enabled

by the development and advances of peptide encodings. Encodings are algorithms

mapping the amino acid sequences of different lengths to numerical vectors of an

equal length, hence, fulfilling the requirement of many ML algorithms [19]. More-

over, peptides or proteins can be described by their primary structure, i.e., the amino

acid sequence, and the aggregation in higher dimensions, denoted as the secondary

or tertiary structure. Encodings derived from the primary structure are known as

sequence-, and encodings describing a higher-order folding are structure-based en-

codings. To date, a large number of sequence- and structure-based encodings have

been introduced and employed in various studies [19]. A significant amount of en-

codings has been recently acknowledged by another study, specifically benchmark-

ing these by considering multiple biomedical applications [20]. It turned out that

most encodings show acceptable performance, partly also beyond single biomedical

domains [20]. In addition, Spänig et al. (2021) developed a workflow, which can dra-

matically reduce the number of initial encodings [20]. However, encoding selection

is still challenging, and user-friendly approaches are required.
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Furthermore, hyperparameter optimization is additionally aggravated by the

model choice. Albeit Support Vector Machines (SVM) and Random Forests (RF)

are widely employed in peptide classification [11], the variety of models used in a

broad range of studies is large. For instance, Khatun et al. (2020) utilized several

ML algorithms, including Näıve Bayes, AdaBoost, and a fusion-based ensemble for

the prediction of proinflammatory peptides [21]. The fusion-based model outper-

formed the other ML models significantly for this task [21]. Plisson et al. (2020)

employed Decision Trees (DT) and Gradient Boosting (GB), among others, to clas-

sify non-hemolytic peptides and demonstrated that the GB ensemble has superior

performance [22]. In contrast, Timmons et al. (2020) used Artificial Neural Net-

works to characterize therapeutic peptides with hemolytic activity [23]. Singh et

al. (2021) compared several base classifiers, e.g., Linear Discriminant Analysis and

ensemble methods, e.g., GB and Extra Trees to detect AMPs [24]. They demon-

strated that the GB performed best [24]. These studies clearly show that ensemble

classifiers typically show superior performance than single classifiers, which is based

on the fact that they can compensate for weaknesses of single encodings and base

classifiers [25].

Recently, Chen et al. (2021) introduced a comprehensive tool, which allows less

programming experienced researchers to simply select encodings and base or en-

semble classifiers through a graphical user interface, allowing easy access to the

underlying algorithms [26]. Nevertheless, the approach assumes that the user se-

lects proper settings for the parameterized encodings, which has been previously

shown to affect the classification process significantly [20]. Moreover, the encoding

selection is independent of the classifier settings, meaning that the tool can set up

the classifier automatically; however, the encoding selection is not part of it. Thus,

it remains a challenge to pick good encodings and classifiers for a biomedical classi-

fication task at hand. To this end, we assessed unsupervised encoding selection and

the performance and diversity of multiple ensemble methods. We added different

overproduce-and-select techniques for ensemble pruning, facilitating an automatic

ensemble generation. In addition, we utilized Decision Trees, Logistic Regression,

and Näıve Bayes as base classifiers, owing to their prevalence in the field of biomed-

ical classification due to their explainability [11, 19, 27].

Besides demonstrating the benefit of an unsupervised encoding selection, we also

examined how the RF performs as a base and ensemble classifier, i.e., whether the

RF, an ensemble method per se, is performance-wise already saturated or whether a

subsequent fusion can improve the final predictions. Fusion of RFs has been shown in

other studies to improve overall performance, e.g., for HIV tropism predictions [28,

29]. All in all, we complement our recent large-scale study on peptide encodings [20]

with an automatic encoding selection and a performance analysis of multiple base

and ensemble classifiers. Ultimately, the present research bridges the gap between

many peptide encodings and available machine learning models.

Results
We developed an end-to-end workflow, which automatically generates and assesses

classifier ensembles using different pruning methods and a variety of encoded

datasets from multiple biomedical domains (see Table 4). Data scientists can easily
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Table 1 The table shows the performance comparison (including RF) of classifier ensembles derived
from different pruning methods and the single best classifier. Numbers refer to the mean performance
of a 100-fold Monte Carlo cross-validation. Standard deviation (SD) is added in brackets. Mean and
SD are rounded to 2 decimal places. The top base/ensemble classifier combination is always used (see
Fig. 2). Classifier ensembles are significantly better than the single best classifiers. In particular,
except for one case, the Pareto frontier pruning (pfront) generates the best ensembles. Significance
levels are as follows: ** p ≤ 0.001, * p ≤ 0.01, and . p ≤ 0.05.

best chull mvo pfront rand rand single best single best
acp mlacp 0.73 (±0.06) 0.73 (±0.06) 0.7 (±0.07) 0.74** (±0.06) 0.69 (±0.06) 0.68 (±0.07) 0.69 (±0.07)
aip antiinflam 0.5** (±0.04) 0.5 (±0.04) 0.45 (±0.04) 0.5 (±0.04) 0.48 (±0.04) 0.47 (±0.04) 0.47 (±0.04)
amp antibp2 0.88 (±0.02) 0.89 (±0.02) 0.88 (±0.02) 0.9** (±0.02) 0.87 (±0.02) 0.84 (±0.02) 0.87 (±0.03)
atb antitbp 0.75 (±0.07) 0.76 (±0.08) 0.72 (±0.08) 0.79** (±0.07) 0.7 (±0.06) 0.66 (±0.07) 0.68 (±0.07)
avp amppred 0.79 (±0.03) 0.8 (±0.03) 0.77 (±0.02) 0.81** (±0.03) 0.79 (±0.03) 0.76 (±0.03) 0.76 (±0.03)
cpp mlcpp 0.77 (±0.03) 0.78 (±0.03) 0.78 (±0.03) 0.79** (±0.03) 0.76 (±0.03) 0.74 (±0.03) 0.75 (±0.03)
hem hemopi 0.88 (±0.03) 0.89 (±0.03) 0.87 (±0.03) 0.89** (±0.03) 0.88 (±0.03) 0.86 (±0.03) 0.87 (±0.03)
isp il10pred 0.59 (±0.05) 0.59 (±0.05) 0.6 (±0.06) 0.6** (±0.05) 0.57 (±0.05) 0.58 (±0.04) 0.58 (±0.04)
nep neuropipred 0.79 (±0.03) 0.81 (±0.02) 0.81 (±0.04) 0.81** (±0.03) 0.81 (±0.03) 0.76 (±0.03) 0.78 (±0.03)
pip pipel 0.5 (±0.04) 0.52 (±0.04) 0.5 (±0.05) 0.53** (±0.04) 0.47 (±0.04) 0.41 (±0.04) 0.49 (±0.03)

Table 2 The table shows the performance comparison (excluding RF) of classifier ensembles derived
from different pruning methods and the single best classifier. See Table 1 for more details.

best chull mvo pfront rand rand single best single best
acp mlacp 0.72 (±0.06) 0.73 (±0.06) 0.69 (±0.04) 0.74** (±0.06) 0.69 (±0.06) 0.66 (±0.07) 0.67 (±0.07)
aip antiinflam 0.47 (±0.04) 0.48 (±0.04) 0.44 (±0.05) 0.48** (±0.04) 0.41 (±0.04) 0.36 (±0.04) 0.44 (±0.04)
amp antibp2 0.88 (±0.02) 0.88 (±0.02) 0.87 (±0.02) 0.89** (±0.02) 0.86 (±0.02) 0.84 (±0.02) 0.87 (±0.03)
atb antitbp 0.73 (±0.06) 0.76 (±0.08) 0.67 (±0.04) 0.79** (±0.07) 0.68 (±0.07) 0.65 (±0.08) 0.68 (±0.07)
avp amppred 0.76 (±0.04) 0.77 (±0.04) 0.73 (±0.02) 0.81** (±0.03) 0.74 (±0.04) 0.7 (±0.04) 0.73 (±0.03)
cpp mlcpp 0.74 (±0.03) 0.75 (±0.03) 0.73 (±0.02) 0.78** (±0.03) 0.74 (±0.03) 0.71 (±0.03) 0.71 (±0.03)
hem hemopi 0.87 (±0.03) 0.89 (±0.03) 0.87 (±0.03) 0.89** (±0.03) 0.86 (±0.03) 0.86 (±0.03) 0.86 (±0.03)
isp il10pred 0.59 (±0.05) 0.57 (±0.05) 0.59 (±0.08) 0.6** (±0.05) 0.57 (±0.05) 0.58 (±0.04) 0.58 (±0.04)
nep neuropipred 0.79 (±0.03) 0.79 (±0.03) 0.79 (±0.02) 0.8** (±0.03) 0.74 (±0.03) 0.65 (±0.04) 0.78 (±0.03)
pip pipel 0.48 (±0.04) 0.45 (±0.04) 0.47 (±0.05) 0.48** (±0.04) 0.45 (±0.03) 0.38 (±0.03) 0.38 (±0.03)

extend the workflow with different base and ensemble classifiers, pruning methods,

encodings, and datasets. The results can be reviewed using the provided data vi-

sualizations, and the performance is further revised using multiple statistics. We

demonstrate that the Pareto frontier pruning is a valuable technique to generate

efficient classifier ensembles. However, the utilized base classifiers show compara-

ble performance, with the Decision Tree classifier being the model of choice for

most datasets. We address the results in more detail in the following. We use the

example of the avp amppred dataset throughout the manuscript. The results for

the remaining datasets can be found in the supplement. Moreover, the code is pub-

licly available at https://github.com/spaenigs/ensemble-performance. Note that the

workflow produces interactive versions of all charts.

Pruning methods

All pruning methods generate ensembles, i.e., combined encodings, superior to the

single best classifier, i.e., individual encodings (see Tables 1 and 2). In the case of

the Pareto frontier (pfront) pruning, which is predominantly ranked among the best

pruning methods, we observe a significant (p ≤ 0.001) performance improvement

compared to the single best classifier. We also observed that the pfront pruning gen-

erates larger ensembles than the convex hull (chull) pruning, which can be visually

verified in Fig. 1 (red line). Notably, including the Random Forest (RF) classifier

(see Table 1, pfront) does not, or very slightly, affect the ensemble performance

without RF (see Table 2), although the single best classifier performance is better

with the RF included (see Table 1). Consequently, the RF increases the overall

performance of the ensembles generated by the best encodings pruning. Finally, the

multi-verse optimization (MVO) suffers from high computational demand, i.e., a

long pruning time, and in general, an inferior performance compared to the other

techniques.
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Figure 1 The kappa-error diagram depicts pairs of base classifiers (gray dots) using the kappa
diversity on the x-axis and the average error on the y-axis (top row). Each classifier pair denotes
two particular encodings. The black line indicates the convex hull, and the red line the Pareto
frontier. Ensemble types are represented as symbols. The top row shows the example of the first
fold. The bottom row groups the results of all folds in a 2D histogram. The darker the color, the
more classifier pairs are binned in one group. The gray line in all panels depicts the theoretical
boundary (refer to the method section for more details). The plot shows the example of the
avp amppred dataset.

Ensemble classifiers

The ensemble performance mainly depends on the pruning and the choice of the

base classifiers; hence, the collection of individual encodings. Thus, the performance

differences among the single best (single best) and best random (rand) pruning are

insignificant, which is in contrast to the remaining methods (see Fig. 2). Further-

more, no significant difference can be observed for ensembles with the same base

classifiers, e.g., the RF or Decision Tree (DT). Thus, the fusion method impacts the

overall performance slightly. However, various base classifiers result in significantly

different ensembles, i.e., employing, for instance, the RF, generates significantly

different ensembles compared to the application of other base classifiers (see Fig.

2).

Moreover, it is noticeable that the Näıve Bayes (NB) and the Logistic Regression

(LR) classifiers result in ensembles with higher variance (see Fig. 1). In contrast,

the area covered by RF and DT models is more compact. Therefore, the variables,

i.e., diversity and the pairwise error, are revised by a multivariate analysis of vari-

ance (MANOVA), which revealed a significant difference (p < 0.001). A separate

examination of the variables utilizing variance analysis (ANOVA) followed by a

post-hoc analysis using Tukey’s HSD, demonstrates that all variables are signifi-

cantly different (p < 0.001). Finally, we conducted an ANOVA on the particular

area values, which disproves the initial observation, i.e., all areas are significantly

different (p < 0.001). However, considering the average values for all datasets, the

DT and RF are commonly ranked as the base classifiers with low variance (see

Table 3).

Single classifiers

In general, the performance of the base classifiers, i.e., single encodings, is lower

compared to the classifier ensembles (see Fig. 3). We also observed that the ran-
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Figure 2 The XCD chart shows the difference between pruning methods (x-axis) and ensembles
(y-axis). Entities connected with a bold line are not significant different. The higher the
performance, the darker the color. The plot shows the example of the avp amppred dataset.

domly selected model (rand single best) is inferior to the best model (single best).

In addition, we noticed that the RF is relatively saturated, i.e., using the RF as a

single classifier and as a base model for ensembles does not have a significant ef-

fect on performance improvement. The low-performance variance is in line with the

observation that weak models benefit most from ensemble learning; however, RFs

are ensemble models [30, 31]. In contrast, the performance of other single classifiers

revealed more distinct differences to the ensembles (see Fig. 3).

Data visualization

We leveraged two standard visualization techniques, which we adapted and extended

for our particular application. First, we enhanced the kappa-error diagram [25] for

Table 3 The table lists the average area (±SD) covered by the base classifiers across the 100-fold
Monte Carlo cross-validation. The lowest area per dataset is highlighted in bold. The DT classifier
has the lowest area for most of the datasets, i.e., the predictions are more stable. Refer to Fig. 1
(bottom) for the example showing the avp amppred dataset.

bayes dt lr rf
acp mlacp 3.15 (±0.073) 2.6 (±0.08) 2.66 (±0.046) 2.55 (±0.081)
aip antiinflam 2.75 (±0.066) 2.27 (±0.045) 2.41 (±0.033) 2.14 (±0.045)
amp antibp2 3.01 (±0.077) 2.5 (±0.056) 3.07 (±0.122) 2.63 (±0.061)
atb antitbp 3.18 (±0.124) 2.82 (±0.059) 3.16 (±0.094) 2.73 (±0.069)
avp amppred 2.96 (±0.054) 2.38 (±0.05) 3.15 (±0.081) 2.42 (±0.054)
cpp mlcpp-complete 2.9 (±0.086) 2.37 (±0.073) 2.48 (±0.049) 2.42 (±0.079)
hem hemopi 3.2 (±0.06) 2.74 (±0.135) 3.07 (±0.076) 2.79 (±0.122)
isp il10pred 2.96 (±0.059) 2.45 (±0.046) 2.38 (±0.031) 2.39 (±0.047)
nep neuropipred 3.23 (±0.132) 2.61 (±0.081) 3.18 (±0.309) 2.68 (±0.079)
pip pipel 3.18 (±0.053) 2.19 (±0.034) 2.23 (±0.024) 2.3 (±0.069)
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Figure 3 The box plot shows the Matthews correlation coefficients (MCC) distribution using a
100-fold Monte Carlo cross-validation. The columns include the base, i.e., diverse encodings, and
the rows depict the ensemble classifiers. Colors refer to the pruning method. Note that the
distributions of the best single (single best) and best random single models (rand single best) are
independent of the ensemble type. Variations within rand single best are due to the random
selection. Moreover, MVO pruning (mvo) has only been conducted on the first five folds (see
Discussion). The plot shows the example of the avp amppred dataset.

the presentation of multiple folds, i.e., 100 in the current study, by aggregating the

cross-validation results into a two-dimensional histogram (see Fig. 1). The color

code allows the viewer to spot the peak at one glance. Hence, the tendency of

ensembles to use a specific base classifier. Moreover, considering the distribution of

the variables, one can make conclusions about the robustness.

Second, we extended the critical difference (CD) chart [32] with a categorical

heatmap displaying the actual performance. The extension enables viewers to sta-

tistically compare classifiers and review the individual encoding performance, i.e.,

Matthews correlation coefficient in the present case, at one glance. In addition, the

thickness of the vertical and horizontal rules is directly related to the critical dif-

ference, i.e., the thicker the rule, the closer the classifiers to the critical difference.

Thus, the rule thickness provides an additional visual channel to access the CD.

Discussion
We developed a workflow for unsupervised encoding selection and performance as-

sessment of multiple ensembles and base classifiers. Thus, we implemented and

compared several algorithms to facilitate ensemble pruning, including convex hull,

Pareto frontier pruning, and multi-verse optimization (MVO). Our results demon-

strate that the crucial factors are the base classifiers and the individual encodings.

The ensemble technique was not relevant, i.e., we could not observe performance

variations using one of hard or soft voting or stacking. In general, applying the Deci-

sion Tree (DT) as a base classifier yielded good performance across all datasets. The

Pareto frontier pruning selected suitable encodings throughout the experiments.

However, since we used one encoding per base classifier, we restricted the em-

ployed ensemble methods, i.e., majority voting, averaging, and stacking, which do
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not modify the base classifiers. These ensemble types are in contrast to others,

e.g., boosting, where weights are adapted for misclassified training instances in

base classifiers [33]. More research is necessary to investigate how performance and

more sophisticated ensemble methods are associated. The employed ensemble types

are also the reason for the kappa-error point cloud shape solely depending on the

base classifiers. Consequently, computing the kappa-error diagram for all ensem-

ble methods was unnecessary. Our encoding/classifier approach is also contrary to

other studies, e.g., [12], [14], or [16], which concatenated several encoded datasets

to one final dataset (hybrid model) and applied feature selection before training.

In the present study, we solely scaled the datasets to standardize the feature range;

nevertheless, used the encoded datasets largely unprocessed, potentially affecting

the final performance.

As mentioned above, we employed several methods for ensemble pruning compris-

ing best single and random encodings for reference. In general, utilizing the Pareto

frontier pruning generates good ensembles; however, requiring the calculation of the

Cartesian product of all base classifiers; thus, encodings. Although only the (lower)

triangular matrix is necessary, the computation is still CPU-intensive. Furthermore,

considering the performance gain compared to the single best encodings, the diver-

sity contribution is only small, but more research is required in this direction [34].

The results of the MVO also acknowledge the impact of diversity. One can observe

that the MVO generates inferior ensembles (see Fig. 3).

Regarding Fig. 1, which depicts preferable classifier pairs towards the lower-left

corner, one can readily recognize the inferiority of the MVO. The classifier pairs are

distributed across the kappa-error area, i.e., the MVO screens the entire solution

space and adds weak classifiers to the final ensemble. Nevertheless, since we limited

the maximum number of generations to 15, we cannot rule out that more generations

would yield better results. Moreover, due to high resource consumption, we limited

the MVO to 5 folds, which might hamper comparison.

Moreover, the Random Forest (RF) deployment as a single classifier reveals good

performance, which is expected since it is already an ensemble algorithm per se.

With this respect, the other base classifiers are less accurate (see Fig. 3). However,

it could be demonstrated that RFs as base classifiers, i.e., using different encoded

datasets per model, slightly improves the performance. This further highlights the

importance of different encodings, hence the projection of different biological as-

pects, for the classification process.

The implemented methods demonstrate usability on a broad range of datasets

from various biomedical domains. With this respect, we incorporated the MVO ow-

ing to its excellent and promising performance on several benchmark datasets [35].

The comprehensive Monte Carlo cross-validation copes with the variance, ultimately

increasing the robustness of the results. In addition, the Pareto frontier and convex

hull pruning consider simultaneously the performance and the diversity of encodings

and base classifiers; hence, compensating their strength and weaknesses and reveal-

ing their potential not only for ensembles [36], but also in particular for biomedical

classification. Our proposed extension to the critical difference chart allows the

viewer at one glance to grasp significant, i.e., critical, performance differences of

encodings, models, and pruning methods jointly with the actual performance (see

Fig. 2).
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Conclusions
In summary, we employed two overproduce-and-select methods, namely Pareto fron-

tier and convex hull pruning, as well as the multi-verse optimizer for exhaustively

searching the encoding/base classifier space. We employed Logistic Regression, De-

cision Trees, Näıve Bayes, and Random Forest as base models and majority vote,

averaging, and stacked generalization for the fusion. The experiments and visu-

alizations enable the comparison of the respective components; however, further

research is necessary to examine other ensemble classifiers, e.g., boosting. All in

all, we propose an extensible workflow for automated encoding selection through

diverse ensemble pruning methods. Researchers can utilize our workflow to augment

the recently published PEPTIDE REACToR [20] with an unsupervised encoding

selection, ultimately easing the access for non-technical users.

Methods
We developed a high-throughput workflow using Snakemake v6.5.1 [37], Python

v3.9.1, and R v4.1.0. For the machine learning algorithms, we employed scikit-

learn v0.24.2 [38]. The peptide datasets are taken from the PEPTIDE REACToR

[20]. Finally, only encoded datasets with the final sequence- and structure-based

encodings were used for the subsequent analyses.

Note that there are two approaches to harness multiple encodings in a single

model, namely the fusion and the hybrid model [21]. Fusion models train one en-

coding per base classifier and fuse the output for the final prediction. Contrary,

hybrid models use the concatenated features of multiple encodings for single model

training. The concatenation approach is particularly problematic for entropy-based

models such as DT or RF due to the bias in variable selection. Thus, in the present

study, we implemented the fusion design, i.e., each ensemble consists of an arbitrary

amount of base classifiers using one particular encoding, respectively. Finally, the

employed datasets from a wide range of biomedical domains ensure broad applica-

bility and the robustness of our results.

Figure 4 Overview of the workflow. (a) For each fold of the MCCV, the preprocessing is
conducted, i.e., the indices of the train/test splits are determined, and the data is scaled. (b) The
pruning methods, e.g., Pareto frontier and MVO, select the current fold’s encodings and the
number of base classifiers. (c) Different ensembles with various base classifiers are trained and
validated on the test data. (d) The results are collected, statistically validated, and illustrated.
The workflow accepts an arbitrary number of datasets as input (arrows). Refer to the method
section for more details.

The workflow conducts the following steps. First, indices are determined to en-

sure equal samples for the comprehensive cross-validation, and the indices for all

folds are calculated. Second, we standardized the encoded datasets using a min-max
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Table 4 Employed datasets in this study. The function refers to the positive class, i.e., sequences of
class + possess the respective function. The stated MCC refers to the performance reported in the
original study. See the references or [20] for more details.

Name Function MCC Size (+,-) Ref.
acp mlacp Anti-cancer 0.698 581 (185,396) [12]
aip antiinflam Anti-inflammatory 0.45 2124 (863,1261) [14]
amp antibp2 Anti-microbial 0.84 1975 (981,994) [40]
atb antitbp Anti-tubercular 0.52 492 (246,246) [41]
avp amppred Anti-viral 0.8 1476 (738,738) [16]
cpp mlcpp Cell-penetrating 0.793 1901 (737,1164) [13]
hem hemopi Hemolytic 0.52 1013 (522,461) [17]
isp il10pred Immunosuppressive 0.59 1242 (394,848) [42]
nep neuropipred Neuropeptides 0.67 1750 (875,875) [18]
pip pipel Pro-inflammatory 0.454 3228 (833,2395) [15]

normalization between 0 and 1. Afterward, we trained and assessed models for all

encoded datasets and ensemble types using a 100-fold Monte Carlo cross-validation.

We selected the best single and the random best encoding per dataset to compare

the results to single encodings. Finally, we statistically assessed and visualized the

results (see Fig. 4). Significant steps are described in more detail below. We will

use the following definitions throughout the manuscript: the original unprocessed

dataset is denoted as the dataset. One dataset can be encoded in manifold ways,

which we refer to as encoded datasets. Encodings specify particular encoding algo-

rithms.

Note that we used Matthews correlation coefficient (MCC) throughout the study

to handle the imbalance in the datasets [39]:

MCC =
a × d − c × b√

(a + c)(a + b)(d + c)(d + b)
. (1)

a is the number of true positives, d is the number of true negatives, b is the number

of false negatives, and c is the number of false positives.

Datasets

For a comprehensive analysis on peptide encodings, Spänig et al. (2021) gathered a

variety of datasets from multiple biomedical domains [20]. We specifically selected

datasets with low to medium classification performance from this collection, i.e.,

a reported MCC of 0.63 ± 0.15 on the independent test set; additionally, covering

diverse biomedical applications. Moreover, we excluded datasets for which accurate

models have been published to investigate the potential effects of different classifiers

and ensembles. We limited our study to ten datasets to cope with the computational

complexity. The dataset size ranges from 492 to 3,228 sequences with an average

of 1, 580.8± 812.1 sequences. The datasets comprise 15,782 sequences with a mean

length of 21.17±13.23 amino acids. 6,404 sequences belong to the positive and 9,378

to the negative class. The average sequence length is 22.47±15.88 and 20.29±10.97,

respectively. Duplicated sequences have been removed. Refer to Table 4 for more

details.
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Monte Carlo cross-validation

We applied the Monte Carlo cross-validation (MCCV) [43]. The MCCV improves

the generalization and diminishes the variance of the results, i.e., results are more

robust, hence comparable. In addition, we ensured that the n-th fold is identical

across all experiments leading to improved comparability across all base classifiers

and ensembles. Each fold is composed of one split using 80 % of the data for model

training and another utilizing the remaining 20 % for testing. In contrast to k-fold

cross-validation, MCCV follows a sampling with replacement strategy, i.e., splits

can contain identical samples multiple times. However, duplicate samples do not

occur in the train, and the test split [43].

Base classifiers

We used the following base classifiers for our experiments: Näıve Bayes, Logistic Re-

gression, Decision Tree, and Random Forest. Each classifier will be briefly described

hereinafter. We used the implementations provided by the scikit-learn library [38].

Näıve Bayes

The Näıve Bayes (NB) classifier (naively) assumes conditional independence of the

feature vectors and applies the Bayes theorem for prediction [25]. Model training

is enabled via a probability density function (PDF) and the prior probability of a

given class. For simplicity, we assume a Gaussian distribution of the features. Hence,

we applied the Gaussian NB using

p(x|y) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

(2)

as the PDF, whereby σ denotes the standard deviation and µ the mean of features

x given a class y [44].

Logistic Regression

The binary Logistic Regression (LR) is another probability-based classifier, i.e., it

derives the probability of a class y given a feature vector x [45]. The LR predicts

probabilities between 0 and 1 using the logistic function denoted as

p(x) =
eβ0+β1x

1 + eβ0+β1x
(3)

and the maximum likelihood function to estimate the coefficients β, i.e., to train

the model [45].

Decision Tree

The Decision Tree (DT) classifier, precisely the CART (Classification And Regres-

sion Trees) implementation, is a tree-based model, i.e., a tree structure is generated

during training [46]. Each node is based on the most discriminating feature [25].

New splits are created based on the impurity of the remaining data, i.e., if a split is

pure enough, a leaf node is added. Otherwise, intermediate nodes are created [25].
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For prediction, the tree is traced until a leaf node, which states the final class. In

particular, we used the Gini impurity, denoted as

i(t) = 1−
∑
j

P 2
j , (4)

where j ∈ {0, 1} for binary classification and P is the probability of class j at a

node t [25].

Random Forest

The Random Forest (RF) classifier is an ensemble learning technique, which trains

multiple DTs on random samples, i.e., bagging, of the input data [47]. For the final

classification, the majority vote of the trees is used [47]. Note that we use the RF as

a base learner, which allows comparing the performance with DTs and the actual

ensembles techniques in general (see below).

Classifier ensembles

To combine the output specifically of the base classifiers introduced above, we em-

ployed the following ensemble methods: majority vote (hard voting), averaging (soft

voting), and stacked generalization (stacking). In the present study, each base clas-

sifier is trained on one encoded dataset, meaning if for one dataset n encodings

are selected, the size of one ensemble is n. We adapted the implementations of the

scikit-learn library [38], such that not only one dataset but several encoded datasets

can be used for training. For instance, if one passes n encoded datasets, the ensemble

consists of n base classifiers trained on one particular encoded dataset, respectively.

Majority voting The majority voting ensemble (hard voting) combines the output

by ultimately assigning the class, which has been predicted by the majority of

the single base classifiers. We employed the customized version of scikit-learn’s

VotingClassifier class with hard voting enabled.

Averaging The averaging method (soft voting) computes the means of the pre-

dicted class probabilities per base classifier. The maximum value determines the

final class. We used the adjusted VotingClassifier with voting set to soft.

Stacked generalization The stacking approach utilizes the output of the base clas-

sifiers to train a meta-model, i.e., the predicted class probabilities of the base classi-

fiers are used as features [48]. We adapted the StackingClassifier from the scikit-learn

package and employed Logistic Regression as the meta-model.

Ensemble pruning

Selecting the correct number of base classifiers in an ensemble is challenging. Thus,

Kuncheva (2014) suggests several approaches to determine the ensemble size [25].

For instance, sequential forward selection, adding one classifier successively, in case

the additional model improves the ensemble performance [25]. However, in the
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present case, we are dealing with potentially hundreds of encoded datasets, for

which this particular technique is not practical. To this end, we used two selec-

tion methods, namely convex hull and Pareto frontier pruning, circumventing the

limitations mentioned above [25].

Moreover, we implemented the multi-verse optimization algorithm as an auto-

matic encoding selection technique [49]. Finally, we employed best and random en-

codings selection as a baseline reference. The pruning methods are described more

precisely in the following.

Kappa-error diagram

The kappa-error diagram, introduced by Margineantu and Dietterich (1997), is the

basis for the convex hull and Pareto frontier pruning [50]. The graph represents pairs

of classifiers by their average error and diversity, as shown in Fig. 1. The diversity

measures the agreement of classifier outputs, i.e., the better the agreement of the

classifier predictions, the less the diversity [25]. Specifically, the kappa diversity is

denoted as

κ =
2(ad− bc)

(a+ b)(b+ d) + (a+ c)(c+ d)
. (5)

The κ statistic ranges from −1 to 1, whereby κ = 1 denotes perfect agreement,

κ = 0 random, and κ < 1 worse than random consensus [50]. The error is calculated

using

e = 1− a+ d

a+ b+ c+ d
, (6)

with the subtrahend being the accuracy. However, Kuncheva (2013) pointed out

that diversity concerning the average error can not be arbitrarily low [36]. In fact,

desirable classifier pairs approximate the lower-left corner (see Fig. 1), i.e., approx-

imating a theoretical boundary, which is defined in Eq. 7 [36].

κmin =

1− 1
1−e , if 0 < e ≤ 0.5

1− 1
e , if 0.5 < e < 1

(7)

Note that the classifier pairs are composed using the lower triangular matrix of

the Cartesian product. Afterward, the pruning methods select a subset of pairs, also

likely include duplicated base classifiers. Thus, all pruning methods ensure that the

final ensemble only uses unique classifiers. Hence, base classifiers are trained on

individual encoded datasets.

Convex hull

The kappa-error diagram depicts a set of points, i.e., pairs of base classifiers, in a

two-dimensional space. The kappa diversity is the first, and the pairwise average
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error is the second dimension. We employed the Quickhull algorithm to calculate

the convex hull [51]. Hence, the smallest convex set that contains the classifier pairs

[51]. Thus, no further classifier pairs exist beyond the convex hull. We utilized the

implementation of the Quickhull algorithm provided by the SciPy package in the

ConvexHull module [52].

Since we are only interested in the partial convex hull, that is, pairs approach-

ing the theoretical boundary defined in Eq. 7 and depicted in Fig. 1, we adapted

the pareto n algorithm from Kuncheva (2014), which returns only classifier pairs

fulfilling the criteria [25].

Pareto frontier

The Pareto optimality describes the compromise of multiple properties towards op-

timizing a single objective [53]. For instance, a pair of classifiers is Pareto optimal if

improving the diversity is impossible without simultaneously impairing the average

pairwise error. Analog to the partial convex hull introduced earlier, Pareto optimal

classifier pairs approach the theoretical boundary as stated in Eq. 7, ultimately

defining the Pareto frontier. Again, we used the pareto n algorithm adapted from

Kuncheva (2014) to obtain all classifier pairs determining the Pareto frontier (see

Fig. 1).

Multi-verse optimization

The multi-verse optimization (MVO) algorithm is inspired by the alternative cos-

mological model stating that several big bangs created multiple, parallel existing

universes, which are connected by black and white holes and wormholes [35]. In

terms of an optimization algorithm, black and white holes are used to explore the

search space and wormholes to refine solutions [35]. Moreover, the inflation rate,

i.e., the fitness, of universes is used for the emergence of new holes; thus, to cope

with local minima [49]. For more details, refer to Mirjalili et al. (2016) and Al-

Madi et al. (2019) [35, 49]. We implemented the binary MVO following [49] using

Python. Each solution candidate is represented as a binary vector, where each posi-

tion denotes the path to an encoded dataset, that is, the i-th bit set means that the

i-th encoding is included in the final ensemble (see Fig. 1). We examined different

generations, i.e., 100, 80, 50, 25, and 15. However, we observed that performance

depends mainly on the initialization and count of the universes. Specifically, the

performance gain from the 15th generation is minor but requires much time. Thus,

we set the optimization to a maximum of 15 generations with 32 universes each.

Due to its resource intensity, we executed the MVO only for the first five folds (see

section Monte Carlo cross-validation).

Best encodings

A further pruning method uses only the best classifier pairs. In particular, based

on the kappa-error diagram, the algorithm selects 15 classifier pairs with the lowest

pairwise average error (see Fig. 1).

Random encodings

The last pruning method selects 15 random classifier pairs from the kappa-error

diagram. Note that the selection is only performed one time. That is, the pairs are

the same across all folds.
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Statistics

We examined the areas covered by the respective base classifiers (see Fig. 1). To

this end, we calculated the area for each fold. The area is described by multiple

variables, i.e., the kappa diversity and the average pairwise error. Thus, we ap-

plied the multivariate analysis of variance (MANOVA) to verify if the areas differ

significantly. If this is the case, we subsequently employed an analysis of variance

(ANOVA) to investigate the effect of the diversity and the average error separated.

For post-hoc assessment, Tukey’s HSD has been applied. We used the tests provided

by the R standard library. α was set to 0.05, i.e., p values ≤ 0.05 are considered as

significant.

In addition, we employed the Friedman test with the Iman and Davenport correc-

tion for the statistical comparison of multiple single and ensemble classifiers [54].

In the case at least one model is significantly different, we used the Nemenyi test

for post-hoc analysis [54]. Refer also to Spänig et al. (2021) for more details [20].

The tests were provided by the scmamp R package v0.2.55 [32].

Finally, we examined if the best ensemble has a significant improvement over

the best single classifier using Student’s t-test for repeated measures, i.e., paired

samples. Again, α was defined as 0.05.

Data visualization

All plots are realized using Altair v4.1.0 [55] and described in more detail here-

inafter.

Kappa-error diagram

The kappa-error diagram, suggested by Margineantu and Dietterich (1997) [50],

shows the result of a single split in the top row and a two-dimensional histogram

aggregating all folds in the bottom row (see Fig. 1). The columns show the base

classifiers. Note that the kappa-error shape depends only on the base classifiers (see

Discussion). The top row also visualizes the partial convex hull (black line) and

the Pareto frontier (red line). Symbols refer to the pruning method. Each dot is a

classifier pair trained on two encoded datasets. Note that we display only 1000 dots

per panel (top row). Moreover, we set the bin size to 40 for the binned heatmap

with darker colors depicting more values (bottom row).

XCD chart

The extended critical difference (XCD) chart (Fig. 2) is based on the critical dif-

ference chart introduced by Calvo and Santafé (2016) [32]. Classifier groups not

surpassing the critical difference (CD) are connected with black lines. The line

thickness depicts the actual CD, meaning groups associated with thicker lines are

closer to CD. The XCD charts present two classifier groups. The x-axis includes

pruning types, and the y-axis the actual ensembles and the corresponding base

classifier. The main area contains a categorical heatmap showing Matthews corre-

lation coefficient (MCC) in 0.05 steps. The darker, the higher the MCC. The MCC

is the median MCC of the respective group combination and corresponds to the

median from Fig. 3. Note that for the computation of the CD, we concatenated

the MCCs of all cross-validation runs, e.g., 12 * 100 MCCs for pfront, and 6 * 100

MCCs for bayes voting soft.
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D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H.,

Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python. Nature Methods 17, 261–272 (2020). doi:10.1038/s41592-019-0686-2

53. Messac, A., Ismail-Yahaya, A., Mattson, C.A.: The normalized normal constraint method for generating the

Pareto frontier. Structural and Multidisciplinary Optimization 25(2), 86–98 (2003).

doi:10.1007/s00158-002-0276-1

54. Santafe, G., Inza, I., Lozano, J.A.: Dealing with the evaluation of supervised classification algorithms. Artificial

Intelligence Review 44(4), 467–508 (2015). doi:10.1007/s10462-015-9433-y

55. VanderPlas, J., Granger, B., Heer, J., Moritz, D., Wongsuphasawat, K., Satyanarayan, A., Lees, E., Timofeev,

I., Welsh, B., Sievert, S.: Altair: Interactive Statistical Visualizations for Python. Journal of Open Source

Software 3(32), 1057 (2018). doi:10.21105/joss.01057

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.06.479282doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479282


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.06.479282doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479282


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.06.479282doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479282


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.06.479282doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479282


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.06.479282doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479282

