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Abstract 
We previously analyzed 15 000 transcriptomes of mouse hematopoietic stem and 

progenitor cells (HSPCs) from young and aged mice and characterized the early 

differentiation of the hematopoietic stem cells (HSCs) according to age, thanks to cell 

clustering and pseudotime analysis 1. In this study, we propose an original strategy to build 

a Boolean gene network explaining HSC priming and homeostasis based on our previous 

single cell data analysis and the actual knowledge of these biological processes (graphical 
abstract).  

We first made an exhaustive analysis of the transcriptional network on selected HSPC 

states in the differentiation trajectory of HSCs by identifying regulons, modules formed by a 

transcription factor (TFs) and its targets, from the scRNA-seq data., From this global view 

of transcriptional regulation in early hematopoiesis, we chose to focus on 15 components, 

13 selected TFs (Tal1, Fli1, Gata2, Gata1, Zfpm1, Egr1, Junb, Ikzf1, Myc, Cebpa, Bclaf1, 

Klf1, Spi1) and two complexes regulating the ability of HSC to cycle (CDK4/6 - Cyclines D 

and CIP/KIP). We then defined the relations in the differentiation dynamics we want to model 

((non) reachability, attractors) between the HSPC states that are partial observations of 
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binarized activity levels of the 15 components. Besides, we defined an influence graph of 

possibly involved TF interactions in the dynamic using regulon analysis on our single cell 

data and interactions from the literature. Next, using Answer Set Programming (ASP) and 

considering these inputs, we obtained a Boolean model as a final solution of a Boolean 

satisfiability problem. Finally, we perturbed the model according to aging differences 

underlined from our regulon analysis. This led us to propose new regulatory mechanisms at 

the origin of the differentiation bias of aged HSCs, explaining the decrease in the 

transcriptional priming of HSCs toward all mature cell types except megakaryocytes. 

Introduction 
Hematopoiesis is the process of cell differentiation that allows the hematopoietic stem cell 

(HSC) to produce all types of mature blood cells, each with its own function. A critical 

balance between HSC self-renewal and differentiation into different hematopoietic lineages 

must be maintained throughout an individual's life in order to maintain an effective immune 

system and normal oxygen transport. As with many biological systems, transcriptional 

regulations orchestrated by transcription factors (TFs) and their networking are key 

mechanisms to instruct the differentiation of the hematopoietic stem and progenitor cell 

(HSPC) compartment (reviewed in 2). It is also well known that deregulations of 

transcriptional programs underlie the decline in HSC function during aging 3. This leads to 

an alteration of the HSC pool phenotype, resulting in an increase in myeloid and 

megakaryocytic cells at the expense of lymphoid and erythroid ones in aged individuals. As 

a consequence, eldery people are subject to blood disorders such as anemia and acute 

myeloid leukemia 4. Given the current aging population, deciphering the molecular 

mechanisms and specifically the gene regulatory network (GRN) underlying age-induced 

deregulation of HSCs is of great interest and is currently the subject of extensive research, 

particularly with respect to the early events of HSC commitment called early hematopoiesis. 

With recent technology developments allowing single-cell resolution transcriptome analysis 

and lineage tracing, hematopoiesis is now considered as a continuous process with a very 

early and gradual priming of the HSPC compartment into different lineages 5,6. Comparison 

of young and aged HSPCs using single-cell RNA-seq (scRNA-seq) analysis helped to 

accurately map lineage priming and cell cycle changes in aged mice 1,7,8, leading to the 

identification of groups of HSPCs that are distinct in their potential to maintain early 

hematopoiesis and whose proportions are altered during aging. With thousands of gene 

expressions measured in thousands of cells, scRNA-seq also provided the amount of data 

needed to significantly improve GRN inference methods 9,10. Some inference methods, 
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based on mutual information or regression trees, have been successfully used to analyze 

regulatory networks in the HSC microenvironment 11. They have also permitted the 

identification of regulons, modules formed by a transcription factor and its targets, in the 

HSPC compartment during human ontogeny 12 or mouse aging 1. However, these studies 

offer only a static view of the GRN governing the biological process, so the precise molecular 

mechanisms and interactions involved in cellular decisions such as differentiation to a 

particular lineage are not resolved. To address these issues, it is relevant to study the 

dynamics of networks using Boolean network (BN) modeling. BN modeling approach 

provides a good abstraction of the long-term behaviors of a biological system, although 

continuous changes in component activity and the timing of regulations are not captured. It 

also provides mechanistic explanations on the functioning of regulatory processes without 

the need for kinetic parameters and is therefore particularly suitable for the analysis of large 

biological networks 13. In the context of hematopoiesis, several logical models of HSC 

differentiation have been proposed, which helped us to understand the connection between 

the major TFs specifying hematopoietic lineage differentiation 14–16.  

The recent development of scRNA-seq technology has opened up new possibilities and 

challenges in the field of BN modeling. Indeed, the scRNA-seq data represent observations 

of a large number of cell states that when ordered along a pseudo-trajectory and after 

binarization of the component activities of interest (usually gene expression), can be 

interpreted as an observation of a trajectory generated by a BN. It is then possible from the 

transitions between states observed in the data to find logical functions for each component 

by a reverse engineering approach, in view of the observed dynamics 16,17. More recently a 

method, called Bonesis, has been developed to infer, from a gene regulatory network, a BN 

satisfying dynamic constraints between cell states 18. scRNA-seq data through the analysis 

of the pseudo-trajectory are well suited to extract the dynamical constraints used as input 

for Bonesis. 

Based on scRNA-seq analysis, we and others recently observed new priming events in the 

HSC pool 1,5 which are deregulated with aging of the BM. Here, we wanted to take advantage 

of our scRNA-seq data to construct a BN to understand the early priming of HSCs and to 

precisely characterize molecular mechanisms leading to HSC aging. We first defined key 

HSPC states of early hematopoiesis based on our previous scRNA-seq analysis of young 

and aged mouse HSPCs 1. Next, we characterized these states by an exhaustive analysis 

of the transcriptional activity in each cell composing a given state using the single-cell 

regulatory network inference and clustering (SCENIC) method 19. Then, based on these 

characterisations and taking into account the current knowledge on the regulation of HSC 
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fate, we adapted an existing GRN of early myelopoiesis 20. Then, we used Bonesis to infer 

on the new GRN a BN of early hematopoiesis whose dynamic fits with our pseudo-trajectory 

of HSC priming. Finally, we performed and analyzed perturbations of this BN to propose key 

factors and mechanisms behind the HSC differentiation bias observed during aging. 

Altogether, our results provide a mathematical model of the early hematopoiesis process 

which allows to assess the HSPC changes under physiological aging.  

 

Methods 

scRNA-seq dataset 
We used the scRNA-seq dataset presented in our previous study available in the Gene 

Expression Omnibus database under accession code GSE147729 1. This dataset is 

composed of two pools of young (2/3 months) mice HSPCs and two pools of aged (18 

months) mice HSPCs. Our previous results (cell cycle phase assignment, cell clustering, 

pseudotime ordering) were considered in this study to define the HSPC states at the basis 

of our modeling 1 (Supplementary Table 1).  

Regulon analysis  
Identification of regulons with pySCENIC. We used the Single-Cell Regulatory Network 

Inference and Clustering (SCENIC) approach 19 to identify regulons, which are modules of 

one TF and its potential targets, and their activities. We ran SCENIC workflow using 

pySCENIC v1.10.0 with its command line implementation 21 as in our previous study 

regarding gene filtering, TF motifs (motifs-v9-nr.mgi-m0.001-o0.0), cis-target (+/- 10 kb from 

TSS mm9-tss-centered-10 kb-7species.mc9nr) databases and command line options 1. In 

this study we used the whole 1721 TFs with an available motif in the motif database as input. 

We processed with SCENIC workflow all cells together as well as only young or only aged 

cells. For each cell set, regression per target step with grnboost2 followed by cis-target motif 

discovery and target pruning were run 50 times using a different seed for the pySCENIC grn 

command. The regulons and their targets recovered in at least 80% of the runs were kept.  

For a gene ! with n regulators (#$,… , #'), the normalized interaction score NIS of the 

transcriptional regulation of ! by #) is defined as follows: 

*+,(#), !) = 	
+,(#), !)

∑ +,(#0, !)'
01$
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where +,(#),!) is the interaction score defined as the product of the number of SCENIC runs 

in which the interaction from #) to ! was found, by the average importance score given by 

grnboost2 for the interaction across these scenic runs. The results for the interactions found 

in pySCENIC analysis of all cells are available in Supplementary Table 2. 

Regulon markers of HSPC states. We scored the activating regulons (i.e., regulons with 

a positive correlation between the TF and its targets) with AUCell (pySCENIC aucell 

command, default option with a fixed seed). Averaged AUCell scores by HSPC states were 

computed. These scores were standardized in order to hierarchically cluster the regulons 

using ward.D2 method of the R function hclust with Euclidean distance. The DoHeatmap 

function from the Seurat v3 package 22, was used to display the results. Averaged AUCell 

enrichment scores for young and aged cells by HSPC states were also computed in the 

same way. 

Activating regulon markers of HSPC states were identified based on their AUCell scores 

using FindAllMarkers Seurat function (min.pct=0.1, logfc.threshold=0) with Wilcoxon rank 

sum tests. Only regulons with an average AUCell score difference above 0.001 between 

one state versus all the others were kept. A p-adjusted value (Bonferroni correction) 

threshold of 0.001 was applied to filter out non-significant markers (supplementary Table 
3).  

Activating regulon activity differences with aging in each state were identified using the 

FindConservedMarkers Seurat function (sequencing platform as grouping variable, min.pct 

= 0.1 and logfc.threshold = 0) with Wilcoxon rank sum tests. For each HSPC state, only 

average AUCell score differences of same sign and above 0.001 in the two batches 

presenting a combined p value < 0.001 were kept (supplementary Table 4) 

Regulon network. A network based on interactions between TFs found in at least 90% of 

SCENIC runs on all cells was built (discarding self-inhibitions because of their uncertainty 
21. The cluster_louvain function, from igraph R package 23 was used to find TF communities 

in the undirected transformation of this network with edges weighted by the NIS scores. The 

Cytoscape software 24 was used to visualize the results from graph clustering.  

 

Cistrome database analysis 
Available mouse TF ChiP-seq experiments annotated for bone marrow tissue in the 

Cistrome database were analyzed using Cistrome database workflow 25. More specifically, 

for each bed file of the selected experiments in the databases, the top 10,000 peaks with 

more than 5-fold signal to background ratio were conserved for downstream analysis. Then, 
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target transcripts were identified with BETA in each TF experiment 26. We considered all TF 

peaks in an experiment j inside a +/- 10 kb window from a Transcriptional Start Site (TSS). 

BETA gave us a regulatory score 20 for each 3,,45 of potential target genes ! of a TF 6. Then 

we defined a global cistrome regulatory score (78,) for a TF 6 on a potential target gene ! 

as follow: 

78,(6, !) = 9
* ×;;20(6, 3,,45)

'<

41$

=

01$
 

 

where, the 3,,45 are the >= TSSs of g for which a regulatory score 20 by 6 is obtained in 

experiment ? among the 9 experiments where the regulation is found. This score is weighted 

by the 9, *	ratio where * is the number of experiments for the given TF available in the 

considered cistrome datasets. Only 78, for Scenic interactions or referenced regulations 

were retained (Supplementary Tables 2 & 5). 

 

Boolean modeling 
A Boolean Network (BN) is an influence graph parameterized with logical functions. An 

influence graph is a directed signed graph that is an abstraction of regulatory and molecular 

interactions (in binary relations). Nodes stand for biological components (here TFs and cell 

cycle protein complexes) that are connected through the edges representing activations and 

inhibitions. From this influence graph we define a discrete dynamical model using logical 

formalism. Each node of the influence graph is associated with a Boolean variable 

representing its level that can be 0 (component inactive) or 1 (active), this level reflecting its 

ability to regulate its targets. The effect of regulators on the level of the target node is 

expressed through logical functions (using connectors & for AND, | for OR and ! for NOT). 

Given a configuration of the network, i.e., a vector containing the level of all the 

components, several components may be called to update their level by the logical 

functions. The choice of the updating policy defines the trajectories of the systems 

(succession of consecutive configurations). Here, we used the Most Permissive (MP) 

semantics that is required to use the Bonesis tool). This recently proposed semantic takes 

into account additional transient states reflecting increasing (➚) or decreasing (➘) dynamical 

states. A component in (➚) or (➘) state can be read non-deterministically as either 0 or 1 to 

take into account the uncertainties of its actual influence thresholds on its different targets. 
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This generates a non-deterministic dynamic with a large set of trajectories, which 

considerably reduces the complexity of the exploratory analysis of the dynamics 27.  

The attractors of the model capture the asymptotic behaviors of the system. They are a set 

of configurations from which it is not possible to escape, and can be fixed points, i.e., a 

configuration whose all components are stable, or cyclical attractors, containing more than 

two configurations among which the system oscillates. Finally, a biological interpretation of 

these attractors, based on the level of some nodes or read-outs of the model, allows them 

to be associated with biological phenotypes.   

BN offer the possibility to easily simulate perturbations of gene activity, such as a gain of 

function or overexpression (denoted KI, Knocked In) or respectively a loss of function or 

deletion (denoted KO, Knocked Out), by maintaining its variable at 1, respectively at      0. 

We can also simulate an edgetic mutation by perturbing not a node but an edge of a network. 

For that, we removed the edge of the network and updated the logical rules of the target 

nodes. 

Data discretization 

We associated each HSPC state with a vector, called meta-configuration, representing the 

discretized activity level of each of the 15 components of the model. The discretization 

method depends slightly on the nature of the components: 

If the node of the network represents a TF heading a regulon with more than 10 targets, we 

considered AUCell scores of all cells of the HSPC state and used a Kmeans clustering (with 

K=2) to decide whether the node was active (1) or inactive (0). Otherwise, because the 

AUCell scores are less reliable, we discretized the activity on 3 levels, active (1), inactive 

(0) or free/unknown (*) using Kmeans clustering (K=3) on averaged RNA levels per HSPC 

states. 

For the cell cycle complexes (CDK4/6CycD and CIP/KIP complexes) we took the 

discretization of the RNA levels genes coding for their component and attributed them a 

value from -1 to 1 (-1 inactive, 0 free/unknown, 1 active). Then we considered the sum of 

gene values for each complex: above 1 active complex, below -1 inactive complex, between 

-1 and 1 free/unknown complex activity). 

In order to be less constraining, we relaxed some constraints on the component activities, 

by replacing their discretized value 0 or 1 to a free (*) status. 
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Boolean network inference with Bonesis 
The influence graph, meta-configurations and dynamical constraints (expressed for instance 

in terms of stability or reachability of meta-configurations of the network) were encoded in 

Answer Set Programming (ASP) language with the Bonesis tool which solves the Boolean 

satisfiability problem and enumerates all the possible Boolean models that satisfy the 

constraints in the Most Permissive (MP) semantic 18. 

We chose to limit the number of clauses per logical rule to 3. The solver Clingo 28 was used 

in the inference steps.  

A subset of 1000 BNs representing a variety of possible behaviors was selected during the 

generation of the solution space by the Clingo solver, as previously reported in 29. For each 

of them in silico KO perturbation on each source node were performed one by one in the 

aim of recovering some mutant phenotypes previously described experimentally. In the 

same way, in silico KI perturbations for nodes with a TF activity upregulated upon aging 

were conducted. This led to the addition of new mutant constraints matching literature 

evidence for the following next inference steps (Supplementary Table 6).  

The influence graph was then pruned by adding two optimizations to reduce the number of 

possible solutions: in priority a maximization of the confident interaction number and then a 

minimization in the other interaction numbers in the inferred models. 

Dynamical analysis of Boolean networks 
Dynamical analysis (e.g. attractors reachability from iHSC state, (un)reachabilities between 

states) of the inferred Boolean models was done in the Most Permissive (MP) semantics 

with the mpbn python package 27.  

Code availability 

All R, python, and ASP codes used in this study are integrated in a global snakemake 

workflow available at: https://github.com/leonardHerault/scRNA_infer.git.  

Statistics  
Statistics were computed with R software v4.0.2. The statistical tests for regulon activity 

scores were performed with Seurat and are detailed above. In each primed HSPC state and 

in non-primed clusters gathered, the enrichment of age was tested using a hypergeometric 

test (phyper R function). 
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Results 

Regulon analysis identified distinct HSPC states with specific 
transcription factor activities and interactions 

In order to define references for establishing dynamical constraints for the inference method 

of BN, we defined HSPC states, mixing three layers of information: cell cluster identity, 

pseudotime trajectory and cell cycle phases, retrieved from our previous scRNAseq 

analyses 1. We chose to take into account these different parameters considering that each 

of them is importantly linked to HSPC functionality. The clusters provide a meaningful 

functional partition of the HSPCs, the shape of the trajectory reflects well the priming of 

HSPCs toward different lineages, while cell cycle status is important to distinguish the 

dividing HSPCs. 

Hence, we defined nine states that were visualized on the pseudotime trajectory (Figure 
1A). We considered two HSPC states at the beginning of the pseudotime trajectory 

(pseudotime <2); one was composed of non-cycling cells and was called the initiating HSC 

state (iHSC) and the other one was composed of cells in the G2/M phase and was then 

considered as the self-renewing HSC state (srHSC). We considered three states based on 

their cluster identity; the ifnHSC state gathering cells of the ifn cluster (interferon response 

signature), a state gathering the cells of the tgf cluster that we named the quiescent HSPC 

state (qHSC state) as all of the cells (except one) were in G1/G0 phase and the preDiff state 

gathering the cells of the diff cluster representing most of the short-term hematopoietic stem 

cells (STHSC) and spreading on the terminal branches of the trajectory. Finally, we defined 

four lineage-primed HSPC states based on their position at the terminal branches of the 

trajectory and their belonging to the lineage-primed clusters (Herault et al, 2021): pLymph 

(primed lymphoid clusters pL1 on branch 2), pNeuMast (primed neutrophils and primed 

mastocytes clusters gathered together, on branch 4), pEr (primed erythrocytes, on branch 

5) and pMk (primed megakaryocytes, on branch 5). The nine defined states resume several 

initial (iHSC, srHSC), terminal (pEr, pMk, pNeuMast, pLymph) and branching (preDiff) points 

of the pseudo-trajectory and gather 40% of the cells of the scRNA-seq dataset 

(Supplementary Table 1). Thus, we provide a detailed view of the key states that an HSC 

can reach during early hematopoiesis.  

To functionally characterize these HSPC states, we studied their regulons using the SCENIC 

workflow 21.  We characterized 197 activating and 132 inhibiting regulators (Supplementary 
Table 2). Among them, 140 were regulon markers of at least one of the 9 HSPC states (see 
Methods regulon marker analysis; Supplementary Table 3). Next, by quantifying the 
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regulon activities with the AUCell enrichment score 19 and performing a hierarchical 

clustering, we revealed a specific regulon activity profile for each of the HSPC states (Figure 
1B). Regulon activities supported the TF identity. Klf1 was active in pEr, Gata1 in pEr and 

pMk, Spi1 and Cebpa in pNeuMast and Ikzf1 and Zbtb16 in pLymph. We observed Stat and 

Irf regulon activity in ifnHSC; Gata2, Junb, Egr1 and Klf1 in qHSC and Bclaf1 and Srf in 

respectively iHSC and srHSC states. Fli1 regulon was active in both iHSC and pMk. The 

preDiff state was marked with Spi1 and Myc regulons, two factors involved in HSPC 

commitment. Except for the srHSC state, uniquely marked by Zbtb7a, probably due to its 

low cell number, each state was characterized by a combination of regulons, consistent with 

its transcriptional feature 1. 

Next, to connect the regulons to each other, we built a transcriptional network whose nodes 

are TFs at the head of the regulons significantly marking at least one of the HSPC states, 

and directed edges represent the transcriptional regulations between them. When 

considering only the reliable transcriptional regulations (found in 90% of the SCENIC runs) 

and after removing auto-regulations, we obtained a directed graph of 133 nodes (TFs) and 

670 edges (regulations) (Figure 1C, Supplementary Table 2). We further confirm these 

regulatory interactions by analyzing the presence of the TFs in the regulatory regions of their 

targets using ChiP-seq data from the Cistrome database (Liu et al., 2011), which covered 

33 % of the TFs of the transcriptional network in cell populations close to ours. Approximately 

60% (302) of the network interactions with an available TF node in the Cistrome database 

were confirmed by the presence of a peak in the regulatory regions of its targets 

(Supplementary Table 3). We then performed a clustering analysis by weighting the 

network using a normalized interaction score (NIS) calculated from the SCENIC results and 

applying Louvain clustering. We underlined 10 regulon communities and three isolated 

regulons (Zbtb7b, Brf2, Sp4). By associating each TF in the network to the HSPC state that 

its regulon most characterizes, we observed that half of the communities regroups TFs 

whose activity characterizes the same HSPC state (Figure 1C and supplementary Table 
3). Indeed, most of TFs from the C1 community (Klf factors, Jun and Fos AP-1 factors, Egr1) 

are known to be related to quiescence and their regulons were markers of the qHSC state, 

whereas the C2 community contained mainly TFs leading regulon markers of ifnHSC state 

(eg Irf1-7-9, Stat1-2). In the same way, C3 community was associated with pEr state, C4 

community with pNeuMast and C5 with iHSC (Kdm5b, Foxp1) and preDiff (Sox4, Hoxa9) 

states. It was more difficult to define the smaller communities (C6 to C10) as they presented 

a more heterogeneous composition of TFs. 
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Altogether, our analysis revealed a functional relevance of the 9 HSPC states we defined 

and characterized with specific transcriptional activity. This also highlighted that TFs, 

regulators of these activities, interact with each other in a structured network that supports 

the differentiation pathway of HSCs: from the i-srHSC states to one of the four lineage 

primed HSC states, through the transient HSC states (ifn-qHSC,preDiff). 

Inference of a gene Boolean network to model HSC priming 
To decipher the key molecular mechanisms governing HSC fate, we constructed a Boolean 

gene network. We developed a strategy based on the use of Bonesis, a recently proposed 

approach for Boolean network inference 18, which needs the synthesis of an influence graph 

and definition of dynamical constraints. 

For the influence graph synthesis, we built a gene network based on a previous published 

Boolean model of early myeloid differentiation 20. This model provided megakaryocyte and 

erythrocyte stable states and a granulo/monocyte branching state that corresponded quite 

well to our defined states. Yet, we had to adapt it to encompass the priming of lymphoid 

HSCs and cell cycle regulation that are likely to be involved in early HSC commitment and 

aging 1,7. We extracted a subgraph from the Krumsiek model of 9 relevant TFs and their 

mutual interactions. Eight of them were regulon markers of the HSPC states in our analysis: 

Gata1 a marker of pEr and pMk; Fli1 of pMk; Klf1 of pEr; Spi1 and Cebpa of pNeuMast; 

Tal1, Fli1 and Gata2 of qHSC (Supplementary Table 3). We also selected Zfpm1, the 

cofactor of Gata1, which was expressed in pEr and pMk HSPC states (Supplementary 
Figure 1). To represent the lymphoid priming, we added Ikzf1 whose regulon marked 

pLymph state according to our analysis (Supplementary Table 2), in agreement with prior 

knowledge of early lymphoid specification in HSPC 30. 

We also added two components that regulate the ability of HSC to cycle: the CDK4/6-

Cyclines D (CDK4/6CycD) complex (Ccnd1-3 and CDK4/6 genes) required for the HSC 

quiescence exit, and its inhibitory complex CIP/KIP (Cdkn1a-b-c genes) marking the 

quiescence of the HSCs 31. To connect CIP/KIP complex to the network we added Junb and 

Egr1, two factors involved in HSC quiescence 32,33, which we identified in our regulon 

analysis as markers of qHSC state and activators of CIP/KIP genes (Figure 1B; 
Supplementary Tables 2 & 3). Finally, to connect CDK4/6CycD to the network, we added 

Myc and Bclaf1, two factors involved in HSC cell cycle 34,35. Both were active regulons in the 

preDiff state whereas only Bclaf1 regulon was active in srHSC state with CDK4/6CycD 

complex genes in its targets (Figure 1B; Supplementary Tables 2 & 3). To connect all 
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these nodes, we considered interactions from Krumsiek's model that we complemented with 

interactions we identified with SCENIC analysis and in the literature. 

Finally, we obtained an influence graph with 15 components and 60 interactions (Figure 
2Ai), more than 75% of which were confirmed by at least two of the following information 

sources; SCENIC, literature or Cistrome (Supplementary Figure 2A; Supplementary 
Table 5A, B & C).  

For the discretization of the data, we associated to each HSPC state a meta-configuration, 

i.e., a vector representing the discretized activity level of each of the 15 components (see 

Methods). This discretization turned out to be too strict regarding the first set of constraints 

thus we decided to release empirically some constraints on meta-configurations by 

attributing a free (*) state to some nodes. First, we allowed the cycling configurations 

CDK4/6CycD in pMk and CIPKIP in pLymph to be free since they were linked to a HSPC 

state composed of cells in different cell cycle phases. Following the same idea, we let free 

the CDK4/6CycD activators, Bclaf1 in pLymph and Myc in pNeuMast, pEr and pMk. We also 

found that the pNeuMast states presented a bimodal activity for Gata2, with this gene 

marking pMast and not pNeu cells (see Supplementary Table 1 in 1. Thus, we let Gata2 

free in pNeuMast HSCP states. Finally, we also let free Egr1 in srHSC in agreement with a 

previous study suggesting its role in HSC maintenance in the niche 32.  

In order to infer with Bonesis a BN whose dynamics fits with our pseudo-trajectory of HSC 

priming, we enunciated dynamical constraints between the HSPC states. We required that 

the model presented at least four fixed points, one for each of the 4 primed meta-

configurations pLymph, pNeuMast, pER and pMk, reachable from iHSC and we added a 

zeros configuration in which all the components are inactive, reachable only from iHSC 

directly. We allowed a cell to go back and forth from the iHSC state to the srHSC (self-

renewal) or qHSC (quiescence) state as suggested by the literature 36,37. Based on the 

trajectory and the differentiation committed state of prediff, we considered this state as a "no 

return state" and blocked its return to the iHSC state. From this state, any of the 3 primed 

fixpoints pNeuMast, pER, and pMk were accessible. We allowed a cell from iHSC to directly 

reach the pLymph fixpoint based on the shape of the pseudo-trajectory and the high 

hscScore of the pLymph cells 1. All these constraints are resumed in the HSC differentiation 

journey (Figure 2Aiii).  
With this first inference, Bonesis provided a set of more than 100,000 solutions. To reduce 

the set of solutions, we therefore developed a strategy to refine the solution search and 

obtain a final solution (Figure 2B). We considered possible mutant behaviors of some of our 

solutions that match previously described biological phenotypes of the mutants reported in 
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the literature (see methods and Supplementary Table 6 for the references): the Ikzf1 KO 

conducting to an absence of pLymph fixpoint , the Spi1 KO to absences of both pNeuMast 

and pLymph fixpoints, the Klf1 KO to an absence of pEr fixpoints and the Junb KO to an 

apparition of an additional proliferative (active CDK4/6CycD complex) pNeuMast fixpoint. 

We also considered KI perturbations on nodes Egr1 and Junb, as these components were 

previously found upregulated in HSC upon aging 7. For these KIs, we observed a loss of 

reachability of all fixed points except a quiescent (CIP/KIP active) pMk one consistent with 

the HSC priming bias we previously described 1. These 6 altered behaviors are resumed in 

Supplementary Figure 3 and were added to the Bonesis constraint set (Figure 2Bi). Next, 

we performed a graph pruning that consists in reducing the number of edges in the influence 

graph by favoring the most confident ones, which were chosen based on strong literature 

supports (Supplementary Table 5A). There remained 36 interactions (Figure 2Bii), of 

which more than 80% were supported by at least two sources of information among 

SCENIC, Cistrome and literature (Supplementary Figure 2B). We required solutions 

containing all these 36 interactions and another run of Bonesis provided 616 solutions (to 

compare with the 10^22 possible solutions with the initial influence graph according to the 

Dedekind number 38. These solutions differed on the logical rules of 4 nodes 

(Supplementary Table 7):  CDK4/6CycD, Fli1, Gata1 (2 inferred rules for each) and Gata2 

(77 inferred rules) and needed a manual curation (Figure 2Biv). For the CDK4/6CycD, we 

chose the rule making the activation possible through Myc in the preDiff state or through 

Bclaf1 in the srHSC state. For Fli1, we chose the logical rule containing the least number of 

clauses (2). For Gata1, we chose the rule for which the auto activation is possible only when 

the two repressors Ikzf1 and Spi1 are inactive. Finally, for Gata2 among the 77 possibilities, 

7 contains only two clauses and we chose the one in which the inhibition by Gata1 and its 

co-factor Zfpm1 are present in both clauses. Finally, we obtained the final Boolean network 

presented in (Figure 2C & D).  
Thus, coupling a customized implementation of Bonesis with multiple sources of biological 

knowledge allowed to reduce the large number of possible solutions. We successfully 

synthetized a Boolean network of early hematopoiesis based on a regulatory network 

consisting of 15 components and 36 interactions.  

Analyses of the Boolean model evidence a sequence of 
transcriptional events to prime HSCs 

Simulations of the model were done within the MP semantic, they displayed 5 fixed points 

(whose complete descriptions are given Figure 3A). We observed that node Tal1 was active 
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in the fixed point pEr (while its value was left free in the fixed point constraint), as it is in the 

erythroid fixed point in the Krumsiek model 20. According to our requests, all fixed points 

were reachable from iHSC, regardless of the initial value of the Zfpm1 component. We 

verified that published mutants related to the genes of the model could be recovered by the 

simulations. To do this, we simulated the corresponding KO perturbations in the model and 

compared the results of the simulations to the expected behaviors described in the 

publications, particularly regarding the reachability of HSPC configurations from iHSC. The 

large majority of the in-silico KO simulations matched the corresponding in-vivo/in-vitro 

perturbations reported in the literature (Supplementary Table 6). For example, in silico Fli1 

KO (simulations) led to the loss of pMK fixed point from iHSC in agreement with the Fli1 KO 

BM that harbors a megakaryopoiesis defect 39.  

We conducted a fine analysis of the transient dynamics to highlight events that are 

responsible for some salient dynamical properties along the trajectory. We observed that 

Gata2 is active in the initial state iHSC (and also in qHSC and pLymph), inactive when the 

cell reaches preDiff and cannot be re-activated. This event may explain the early branching 

of the trajectory from the iHSC to the pLymph state, which is marked by the activity of Ikzf1 

whose only regulator is the activator Gata2 (Figure 3B). We highlighted a transient pME 

configuration, described in Figure 3A, that can reach pEr and pMk configurations but not 

pNeuMast configuration thanks to a fine analysis of paths in the trajectory space. We 

observed that the pME configuration is reachable from the preDiff state, when Junb is 

activated and Spi1 is inactivated (Figure 3B).  

Interestingly, the choice between pMk and pEr fixed points relied on the Fli1-Gata1-Klf1 

module (Figure 3C), and on a transient state of Fli1 catched thanks to the MP semantics. 

Indeed, starting from the branching point pME in which the three components of the module 

are absent, Fli1 activity can increase (thanks to the presence of Junb) allowing Gata1 to be 

also activated and lead to the      stable configuration pMk. Moreover     , as long as Fli1 has 

not reached its activity level allowing it to inhibit Klf1, activation of Klf1 by Gata1 can occur 

and lead to pEr configuration (Figure 3B). Note that we are able to capture this cascade of 

events thanks to the MP semantics that considers the intermediate states between 0 and 1. 

It means that a necessary condition to reach pEr from pME is that the inhibition threshold of 

Klf1 is greater than the activation threshold of Gata1. Finally, the cross-inhibitory circuit 

involving Fli1 and Klf1 functions as a switch to maintain the differentiation between pMk and 

pEr (Figure 3C). 
Furthermore, our model presents a proliferation configuration, in which CDK4/6CycD and 

Myc are active and CIP/KIP inactive. This configuration is accessible from the iHSC state, 
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and all fixed points can be reached from it. This is in agreement with our previous 

observation of an increase of HSC proliferation during the priming toward the different 

lineages 1. 

To summarize, the dynamical analysis of our MPBN of early hematopoiesis gives new 

insights about the succession of early priming events in HSCs. It highlights a decisive role 

of Gata2 inactivation to reach preDiff at the expense of pLymph from iHSC. The Spi1 

inactivation together with JunB activation are key events to reach from preDiff the pME 

branching point, whose commitment to the pMK or pER state depends on the fine tuning of 

Fli1.  

Perturbations of early hematopoiesis model explain some HSC 
aging features   
Our previous single cell RNA-seq analysis revealed an alteration of HSC priming with an 

accumulation of quiescent HSCs in aged animals at the expense of the priming toward 

pLymph, pEr and pNeuMast 1. To decipher molecular mechanisms and factors at the origin 

of this alteration, we simulated perturbations in the inferred Boolean network according to 

alterations observed in the transcriptome of aged HSPCs.  

Alterations of regulon activity due to aging were identified by comparing for each HSPC state 

the regulon activities between young and aged cells. Regulon transcriptional activity 

differences were found mainly (80%) in the non-primed iHSC, ifnHSC, srHSC states with 

similar amounts of decrease and increase in activity (Supplementary Figure 4), and very 

few in pNeuMast and pEr. Almost all activity alterations of regulons were found in more than 

one state. Aging features consisted mainly in a decrease of the activity in regulons related 

to HSC activation (Runx3, Sox4, Myc and Spi1) and NF-kappaB pathway (Rel and Nfkb 

factors), and an increase in regulons from the AP-1 complex (Atf, Jun and Fos factors) and 

involved in quiescence of HSCs (Egr1, Klf factors, Gata2, Supplementary Figure 5 & 
Supplementary Table 4). To be noted that we observed a specific increase in Cebpe-b 

regulon activity in qHSC state marking the myeloid bias of these quiescent aged cells. Eight 

of the 13 TF components of our models were altered upon aging in their regulon activities 

(Myc, Spi1, Junb, Egr1, Fli1, Klf1, Gata2 and Gata1, Supplementary Table 5B). More 

precisely we found Junb, Egr1 and Fli1 (resp. Spi1) activities significantly increased (resp. 

decreased) in more than a half of the 8 HSPC states considered for the model inference 

(Figure 4A).  

To identify possible altered TF regulations, we compared for each regulation the normalized 

interaction score (NIS) of young and aged cells analyzed separately using SCENIC workflow 
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and computed a score difference between young and aged conditions (Supplementary 
Table 4 and Supplementary Figure 6). The distribution of these score differences showed 

that most of the regulations were not strongly altered (14% of the interactions have a score 

difference above 0.4; Supplementary Figure 7). When focusing on the interactions of the 

model supported by SCENIC, we noticed an alteration of Cebpa activation by Gata2 

(decrease of the NIS of 0.4 upon aging), which was compensated by an increase of 

activation by Spi1 (NIS increase by 0.2) upon aging (Figure 4B)  

Thus, in order to simulate aging alteration, we performed KI perturbations on Junb, Egr1 

and Fli1, KO perturbation on Spi1, and an edgetic mutation (loss of Cebpa activation by 

Gata2) on the network of early hematopoiesis (Figure 4C). The simulations of these 5 

perturbations led to the loss of reachability of the fixed points pLymph and pNeuMast from 

the i-sr-qHSC configurations, only the simulation of the 3 KIs led to the loss of reachability 

of pEr, which makes pMK the unique reachable fixed point (Table 1). This was expected for 

Egr1, Junb KIs and Spi1 KO as we have imposed these behaviors in the dynamical 

constraints regarding previous experimental studies (Supplementary Table 6). Note that, 

still for these two perturbations, the fixed point pMk is quiescent (CIP/KIP active).  These 

results agree with our single cell analysis at the population scale, as the 3 fixed points 

pLymph, pNeuMast, pEr correspond to the primed HSPC states whose cell proportion 

significantly decreases with aging, while pMk remains reachable in any of our model 

perturbations and does not present any decrease in cell proportion with aging in the single 

cell data (Figure 4Di). 
We also observed that preDiff was no longer accessible from i-sr-qHSC configurations with 

Junb KI disruption and the edgetic Cebpa-Gata2 mutation, suggesting that HSC priming to 

pMk in aged mice follows an alternative differentiation pathway. This pathway could be 

directly derived from the state of qHSC cells, the proportion of which increases with aging 

(Figure 4D) and are found at the end of the first branch of the pseudo-trajectory near the 

appearance of the first pMk (branch 3 and beginning of branch 5 of pseudotime trajectory 

Figure 1A). 

Although the topology of the gene regulatory network consists in a unique strongly 

connected component and 3 output nodes, we distinguished two functional modules, one 

regulating the cell cycle complexes (CDK4/6CycD and CIP/KIP) constituted of nodes Bclaf1, 

Myc, Junb, and a second one constituted of seven TFs governing HSC fate, with nodes 

Cebpa, Fli1 and Egr1 making the connections between them (Figure 4C). The model 

perturbations affected these modules, in particular the functional circuits that control them 

(Egr1-Junb, Fli1-Gata1, and the self-regulation on Spi1). The perturbation Egr1 KI implies 
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an activation of Junb which in turn activates Fli1. Thus, the cross-inhibitory circuit (Fli1-Klf1) 

that ensures the differentiation pMk/pEr is affected in each of these perturbations with a loss 

of pEr.  Besides, the KO of Cebpa activation by Gata2 prevents Spi1 from becoming active 

from any of the i-sr-qHSC configurations. Thus, we highlighted the major roles of Egr1 

overexpression and loss of Cebpa activation by Gata2 in early hematopoiesis aging. On 

another note, regarding the global TF network from scenic (supplementary Table 3) Junb 

and Egr1 upregulation with aging could be mediated by Klf factors such as Klf2-4-6 also 

upregulated with aging (supplementary Table 4).  

Therefore, our model perturbation analysis of aging of early hematopoiesis highlights Egr1 

and Junb upregulation and loss of Cebpa activation by Gata2 alterations as two major 

molecular mechanisms that lead to HSC aging resulting in the decrease in all lineage 

priming except the megakaryocyte one.  

 

Discussion 

The mechanisms governing the balance between self-renewal and differentiation of HSCs 

are the guarantee of functional hematopoiesis. Several BNs have been proposed to 

understand the key regulatory elements of HSC commitment to lymphoid or myeloid 

progenitors 14–16. However, none of them fully addressed the early priming of the HSCs, 

which has been recently emphasized by the development of scRNAseq analyses 1,5. 

Previous approaches to inferring BN from scRNA-seq data have been successfully applied 

to hematopoiesis 16,17. However, results from these works, relying solely on the data, may 

be biased by the imprecision of the pseudotime values and the discretization of the data 

they require. Here we developed a new modeling strategy using scRNAseq to highlight key 

regulatory points of early HSC differentiation that are dysregulated in aged HSCs. The 

originality of our modeling approach lies in taking full advantage of the scRNA-seq data by 

incorporating the knowledge available in the rich literature and databases to compensate for 

the "grey areas" of scRNA-seq 40. The synthesis of our BN was assisted by constant cross-

referencing of data from the literature and our scRNA-seq-deduced observations. On one 

hand, we inferred new transcriptional regulations between the components that we selected 

using regression trees (added to the literature regulations). On the other hand, we defined 

dynamic constraints ((non)accessibility, stable states) between the meta-configurations, 

defined from our observations of key process states. We then implemented a BN inference 

strategy using Bonesis to select an early hematopoiesis BN as consistent as possible with 
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prior knowledge of the behaviors and regulations of experimentally characterized mutants. 
Studying the dynamics of our BN solution in MP semantics allowed us to trace a succession 

of events leading to HSC priming to the different lineages. We showed that from the iHSC, 

activation of Ikzf1 by Gata2 stabilizes early lymphoid priming of HSC. From a committed 

state with Spi1 and Myc active and Gata2 inactive HSC can prime for the 

neutrophil/mastocytic lineage or activation of Fli1 regulates the choice of priming towards 

the erythroid or megakaryocytic lineage. Our model also shows that the pre-Diff committed 

state is not the unique path for HSC priming to differentiation pathways. An alternative 

trajectory is possible, for example, with early activation of Gata1 by Gata2 leading directly 

to the primed megakaryocyte or erythrocyte state. Thus, our model is in agreement with 

previous lineage tracing studies highlighting the coexistence of multiple hematopoietic 

hierarchies 41,42. However, we suggest that under normal conditions, HSC initiates mainly 

following the trajectory observed in our scRNA-seq data on which the dynamic constraints 

satisfied by our model have been defined.  

 

Our model correctly reproduces behaviors of mutants observed in vivo/in vitro for a majority 

of the TFs in the network. This is not the case for the Myc KO for which we observed no 

difference in the accessibility of the primed states in silico, whereas an increase in HSCs 

and a decrease in its differentiation have been reported experimentally with this mutation 35. 

According to this study, this is due to intercellular interactions not taken into account in our 

model. We also did not observe any changes in the dynamics for the Egr1 KO mutant 

although, similarly, a previous study showed a decrease in HSC priming along with an 

increase in HSC 32. These observations could correspond to a transient accumulation before 

a delayed priming that our modeling formalism cannot capture. In the condition perturbed 

by aging our study suggests an alteration of the accessibility of the primed states. Our model 

perturbations based on alterations in TF activity (over-activation of Egr1 and Junb) and 

regulation (loss of Cebpa activation by Gata2) observed with aging in our scRNA-seq data, 

as a whole result in the loss of priming to all lineages except the megakaryocytic lineage. 

These observations are in agreement with our scRNA-seq data, which show a decrease in 

the proportion of aged cells in all primed state clusters except for the cell cluster primed for 

megakaryopoiesis. Our model is thus able to describe in part the mechanisms of 

immunosenescence occurring during early hematopoiesis with a loss of lymphoid potential 

and a myeloid bias 43.  
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Our results highlight the role of overactivated Egr1 and Junb factors in quiescent myeloid-

biased HSCs that accumulate with aging 7 and have previously been identified as factors in 

HSC quiescence 32,33. Our model shows that these alterations impact a positive circuit 

between Egr1 and Junb that may be necessary for multiple priming to the different fixed 

points in the model. Interestingly, the global transcriptional network inferred with SCENIC 

shows that these two factors are activated by Klf2-4-6 factors known to be downstream of 

TGF-beta signaling in other biological contexts 44–46. We have seen that cells in the qHSC 

state have a strong TGF-beta signature to which a myeloid bias is added with aging (over-

activation of Cebpe-b in particular). Moreover, it is known that megakaryocytes can promote 

HSC quiescence by producing TGF-beta 47,48. Our results thus allow us to propose a self-

activating loop of HSC aging with differentiation towards megakaryocytes that would 

promote a myeloid-biased quiescent state of HSC from which a single priming towards the 

megakaryocytic lineage would occasionally be possible. In agreement with this hypothesis, 

a direct differentiation of HSC into megakaryocytes was shown in a lineage tracing study 5. 

This trajectory would thus be the one best preserved by the aged quiescent myeloid biased 

HSC. In parallel, the loss of Cebpa activation by Gata2 also participates in the loss of 

lymphoid and neutrophil/mastocyte priming. This alteration could have an epigenetic origin 

given the strong impact of ageing on histone marks regulating chromatin opening to the 

regulatory elements of HSC differentiation genes 49. It could also originate from the 

emergence with age of a clone with a mutation at a Cebpa regulatory element recognised 

by Gata2.  

 

To be noted that the selected solution and our simulations of aging perturbations are valid 

in MP semantics which allows many more transitions than the asynchronous and 

generalized semantics classically used. A comparison of the asynchronous and MP 

trajectories of our model would be interesting in order to identify the set of multivalued 

refinements necessary to reproduce in asynchronous semantics the MP trajectories. Here, 

we have done this work to explain the choice of differentiation towards the fixed points pEr 

and pMk from the preDiff state which is based on the existence of two thresholds of influence 

of Fli1 on these targets Klf1 and Gata1. Finally, one can notice that if our model describes 

the differentiation of a HSC, it could be used in a future work to model a population of HSCs 

using stochastic simulations. Such method could allow for an even finer description of the 

biological observations by proposing probability of stable states as output 50, which would 

correspond to the proportions of cells found in the primed clusters in the scRNA-seq data. 
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Figure & Table legends 
Graphical abstract: From single cell-RNA seq data and current knowledge in early 

hematopoiesis (literature and biological database investigation), 3 inputs are obtained to 

define the network synthesis as a Boolean Satisfiability Problem depending on observations 

of states in the differentiation process: 1 influence graph of the possible component 

interactions, 2 discretized component activity levels in the considered states (blue: 0, 

inactive, white: *, unknown/free, red: 1, active). 3 dynamic relations ((non) reachability, 

attractors) between the considered states. Then, these inputs were encoded as constraints 

in Answer Set Programing (ASP) thanks to the Bonesis tool. After the solving, a final solution 

of a Boolean model of early hematopoiesis is obtained. This model is altered according to 

the characteristics of aging observed in our scRNA-seq data, in order to identify the main 

molecular actors and mechanisms of aging. 

 

Figure 1: Regulon analysis identified distinct HSPC states with specific transcription 
factor activities and interactions. A Upper panel: HSPC states are defined according to 

results of cell clustering, cell cycle phase assignment and pseudotime trajectory analysis of 

scRNA-seq data 1. On the right, the cells are ordered on the trajectory and are coloured 

according to their pseudotime value. The 5 branches of the trajectory are circled. Lower 

panel: the defined HSPC states are highlighted (labels) in the trajectory and cells coloured 

accordingly. B Heatmap of the average AUCell scores of the activity of regulons in each 

HSPC state. The scores were standardized and used to cluster regulons hierarchically. C 
Transcriptional regulation network of the regulon markers of the defined HSPC states. 

Regulons were clustered in 10 communities (from C1 to C10 plus 3 isolated nodes) with 

Louvain graph clustering. Node label color highlights the states where the regulon is the 

most active (same color code as in B). Red (grey) edges indicate that the transcriptional 
regulation is (is not) supported by peak analysis in Cistrome database with BETA tool. Edge 

thickness represents the normalized interaction score (NIS) obtained from SCENIC. 

 

Figure 2: Inference of a gene Boolean network to model HSC priming. A Inference 

steps performed with wild-type constraints. i A first influence graph is retained taking into 

account the possible interactions of the components deduced from the literature and the 

SCENIC results. Interactions with a high (low) confidence level are in dark (pale) blue. ii 
Discretization of component activities in the configurations. The activities of TFs at the head 

of a regulon with more than 10 targets are discretized with a Kmeans clustering of two on 

all cell regulon activity scores (the value of the cluster with the most cells is retained). Blue: 
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inactive; red: active. The activities of the other TFs (Tal1, Ikzf1, Zfpm1, and gene belonging 

to the two complexes CDK4/6CycD and CIPKIP) are discretized with a Kmeans clustering 

of three on averaged RNA levels in the corresponding states. Blue: inactive; white: 

unknown/free; red:  active. For the CDK4/6CycD and CIPKIP complexes the final 

discretization is deduced from the sum of the discretization of each of its genes (see 

supplementary Figure 2). Red (resp. blue) hatched cases mark node activities freed from 

1 (resp 0) to * in the final configuration settings compare to the discretized data in order to 

get some solutions. iii Graph representation of the dynamical constraints (edges) defined 

between the configurations (nodes). Arrows (crossed arrows) indicate reachability (resp. 

unreachability) between source and target configurations. Framed configurations are 

constrained as fixpoints. B Scheme of the Strategy to refine the solution search and obtain 

a final solution. i Obtention of a new influence graph after the addition of constraints resulting 

from mutant behaviours. 36 interactions are kept. For the updated constraints see 

supplementary Figure 3A. ii Pruning of the influence graph through maximization of high-

confident interactions and minimization of others. iii A last inference step is applied to result 

in 616 possible solutions. iv A manual curation is necessary to obtain a final model. C Logical 

rules of the Boolean model of HSC priming. D Gene regulatory network of the inferred 

Boolean model. Rectangular nodes are cell cycle complexes and ellipse node TFs. Nodes 

are colored according to the HSPC states in which they are highly active according to our 

regulon analysis: Grey for qHSC, yellow for pL, orange for pNeuMast , blue for pMk and pEr, 

white for the nodes highly active in several HSPC states. 

 

Figure 3: Analyses of the Boolean model evidence a sequence of transcriptional 
events to prime HSCs. A Table relating the HSPC and pME configurations identified by the 

model analysis (column: HSPC states, lines: components of the model). Colors represent 

the activation levels of the nodes (blue: inactive; red : active, white: free). B Graph 

representation of the dynamics between the configurations (nodes) from iHSC toward the 

different fixed points (framed nodes). Arrows (resp. crossed arrows) indicate reachability 

(resp. unreachability) between source and target configurations. Black edges are 

constrained dynamic properties whereas the red ones and pME configuration result from the 

dynamic study of the model. Zfpm1: * highlights the two possible values of this node in iHSC. 

Spi1: 1, Gata2: 0 indicate the irreversible inactivation of Gata2 by Spi1 observed in the 

preDiff non-return configuration. Junb: 1, Spi1: 0 indicate the necessary change in preDiff to 

reach the branching configuration pME. In MP semantics, from pME increasing activity of 

Fli1 (➚) can first activate Gata1 and then inhibit Klf1. Thus, depending on whether Gata1 
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activates Klf1 before it is inhibited by Fli1, pEr is reached rather than pMk. C Module of 

Gata1, Fli1 and Klf1 of the BN with cross inhibitory circuits between Klf1 and Fli1 maintaining 

HSC priming to pMk or pEr. 

 

Figure 4: Perturbations of the early hematopoiesis model explain      some HSC aging 
features. A Combined violin plots of most altered TF (of the model) activities upon aging in 

young (orange) and aged (purple) cells from the different HSPC states. Stars show 

significant differences of activity score between young and aged cells (average difference 

> 0.001 and p value < 10-3). B Normalized interaction scores of Cebpa activation by Spi1 

and Gata2 from scenic multiple runs on all cells (grey), only young cells (orange) and only 

aged cells (purple). C Aging perturbations of the Boolean gene network. Rectangular nodes 

are cell cycle complexes and ellipse nodes TFs. Nodes are coloured according to the HSPC 

states in which they are highly active according to our single cell analysis: Grey for qHSC, 

yellow for pL, orange for pNeuMast , blue for pMk and pEr, white for the nodes highly active 

in several HSPC states. Framed nodes highlight KO/KI perturbations. Crossed activation of 

Cebpa by Spi1 illustrates its edgetic mutation. D Reachability of HSCP states from any 

configuration      in i-sr-qHSCs for WT and altered dynamic of the model. (i) WT case. Young 

(orange) and aged (purple) cell proportion is given below each HSPC state node. A star 

highlights a significant shift from expected proportion (hypergeometric test p value < 0.05). 

(ii) Egr1 KI perturbation. (iii) Junb KI perturbation. (iv) Cebpa edgetic mutation. Colored 

arrows represent the remaining      reachabilities. 

 

Table 1: Aging perturbations of the early hematopoiesis Boolean model. This table 

summarizes the reachabilities of 5 HSPC-states (4 fixed points pLymph, pNeuMast, pER, 

pMk, and preDiff) from states i-sr-qHSC, in different simulations (a cross mean that the 

HSPC-state is reachable). The last column reports the observations in our data: Up 

(resp.down) arrows indicate an increase (resp a decrease) upon aging in component activity 

or interaction score revealed by our scRNA-seq analysis. 

 

Supplementary figure legends 
Supplementary Figure 1: Discretization of gene expressions for genes and regulons 
with less than 10 targets. Results of k-means clustering on averaged RNA levels of the 

selected HSPC states. Blue:  inactivated; grey:  unknown/free; red: activated. 
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Supplementary Figure 2: Venn diagrams of influence graph interaction sources. A 

Initial influence graph interactions retrieved from SCENIC results and/or literature 

investigation and supported or not by the Cistrome database analysis (see Supplementary 

Table 3). B Same diagram for interactions remaining after the influence graph pruning. 

 

Supplementary Figure 3:  Constraints and discretization used for the influence graph 
pruning and the final rule inference. A Dynamical constraint used for the update of the 

influence graph and the final rule inference. Black Arrows (resp. crossed arrows) indicate 

reachability (resp. unreachability) between source and target configuration. Framed 

configurations are constrained as fixpoints. Dashed line highlights the allowed reachability 

of a fixpoint with all node activities at 0 from iHSC. Red (crossed) arrow highlights the 

additional (non) reachable constraints of mutant behaviors. G0pMk is the only reachable 

fixpoint from iHSC in pEr/pMk KI (large blue arrow). 1: loss of pLymph reachability with 

Ikzf1/Spi1 KO, 2: loss of pNeuMast reachability with Spi1 KO, 3 loss of pEr reachability with 

Klf1 KO, 4: additional pNeuMast cycling fixpoint with Junb KO, 5: a unique pMk quiescent 

fixpoint with Junb/Egr1 KI B Discretization of component activities in the configurations used 

for the pruning of the influence graph and the final rule inference. Blue: 0, inactivated; white: 

*, unknown/free; red: 1, activated. G0pMk and G2MpNeuMast configuration were defined 

according to the first solution space exploration. 

 

Supplementary Figure 4: HSPC state repartition of the regulon activity alterations 
upon aging. Up (Down) marks significant increases (decreases) in activity upon aging 

(average differences > 0.001, p-value < 10-3). An alteration of a regulon activity can be 

recovered in several HSPC states. 

 

Supplementary Figure 5: Heatmap of AUCell scores of regulons      activity averaged 
by group of cells from the HSPC states in young and aged cells. Scores are 

standardized      on aged (A) and young (Y) cells of the different states. Rows are ordered 

as in Figure 1. 

 

Supplementary Figure 6: Retrieved scenic interaction from all cell analysis in aged or 
young only cell analysis. We did not consider interactions retrieved only in young or only 

in aged cells. 
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Supplementary Figure 7: Histogram of normalized interaction score differences with 
aging.  Interactions non retrieved in SCENIC analysis of aged or young cells have a null 

difference. A difference of one points out that a regulation was retrieved only in young or 

only in aged cells analysis 

Supplementary table legends 
Supplementary Table 1: Definition of the HSCP states. Nine HPSC states were defined 

according to the results of cell clustering, cell cycle phase assignment and pseudo-trajetory 

analysis 1. Cell number and cell proportion given the entire scRNA-seq dataset are given for 

each state. 

 
Supplementary Table 2: Transcriptional network inferred with SCENIC. The table gives 

all the transcriptional interactions recovered in at least 80% (40) runs of SCENIC on all cell 

dataset from a TF head of a regulon toward a target gene with a mor (mode of regulation) 

of 1 for activation and -1 for inhibition. The recoveredTimes columns give the number of 

SCENIC runs in which the regulation is recovered. NIS: Normalized Interaction Score 

computed from importance score of SCENIC. NIS_diff: Normalized Interaction Score 

differences between NIS obtained from aged cell analysis versus NIS obtained from young 

cell analysis. NIS difference is 1 when the interaction is recovered in young (resp. aged) cell 

analysis and not in aged (resp. young) cell analysis. NIS is 0 when the interaction is 

recovered neither in young or aged cell analysis and only in all dataset analysis. 

Cistrome_BM column indicates if some ChIP-seq experiments in the Cistrome database for 

the TF head of regulon were available and analyzed (TRUE) or not (FALSE) enabling the 

computation of the Cistrome Regulatory Score (CRS) for the interaction.  

 

Supplementary Table 3: Regulon activity markers of HSPC states. For each HSPC 

state, list of the regulons with an average AUCell score difference (avg_diff one state vs all 

others) > 0.001, a p value (p_val Wilcoxon rank sum test) and a p-adjusted value (p_val_adj 

Bonferonni correction) < 0.05. regulons were assigned to a community (C1 to C10) of the 

regulon network. 

 

Supplementary Table 4: Regulon markers of aging in the different HSPC states. 
In each HSPC state Wilcoxon Rank sum tests were performed on the AUCell activity scores 

between young versus aged cells in batch A and B separately. Only regulons with an activity 

in at least 10% of either young or aged cells of the state in both batches were tested. The 
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two p-values for each regulon were combined using the Tipett’s method (minimum_p_pval 

column). In each cluster only regulon differences presenting the same variation and with an 

average score difference > 0.001 in the two batches were kept. 

 

Supplementary Table 5: Influence graph interactions. A Interactions between the 15 

components considered in the influence graph. List of the transcription factors (TFs) with 

their mode of regulation (mor: 1 for activation, -1 for inhibition) of a target. When available, 

references characterizing experimentally the interaction are given. In that case the 

interaction proof level can be a transcriptional regulation, a physical protein-protein 

interaction (physical interaction), or a functional interaction: Knock Down (KD), KO (Know 

Out), retrieved in the specified cell line (cell_line) and or cell type/tissue (cell_type_tissue). 

The interactions were reliably identified by SCENIC (present in more than 90% of the runs) 

analysis or not and when it was possible a Cistrome Regulatory Score (CRS) was computed. 

For cell cycle complexes (CIP/KIP, CDK4/6-CycD) the CRS is the sum of the CRS of each 

regulation of a considered TF toward one of the genes of the complex. A confidence level 

of A (high) or B (low) was given depending of references information and CRS and NIS (see 

B) score. After the pruning of low confidence level interactions 36 interactions remained in 

the solution (solution = TRUE). B SCENIC interactions considered for the influence graph. 

The table gives all the transcriptional interaction recovered in at least 90% (45) runs of 

SCENIC on all cell dataset from a TF head of a regulon toward a target gene with a mor 

(mode of regulation) of 1 for activation and -1 for inhibition. The 

recoveredTimes(_young/_aged) columns give the number of SCENIC runs on all dataset 

(young dataset/aged dataset) in which the regulation is recovered. NIS(_young/_aged): 

Normalized Interaction Score computed from importance score of SCENIC on all dataset 

(young dataset/aged dataset). NIS_diff = NIS_aged – NIS_young. NIS difference is set to 1 

when the interaction is recovered in young (aged) cell analysis and not in aged (young) cell 

analysis. NIS is set to 0 when the interaction is recovered neither in young or aged cell 

analysis and only in all dataset analysis. Cistrome_BM column indicates if some ChIP-seq 

experiments in the Cistrome database for the TF head of regulon were available and 

analyzed (TRUE) or not (FALSE) enabling the computation of the CRS: Cistrome Regulatory 

Score for the interaction. After the pruning of low confidence level interactions 36 

interactions remained in the solution (solution = TRUE). C List of all the references used to 

support some interactions. 
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Supplementary Table 6: Comparison of in silico KO perturbations in the final BN 
selected with previous in vivo/in vitro mutant studies. 
For each altered gene (KO perturbation), the reachability of fixed points from iHSC in the 

perturbed BN was assessed. References presenting in vivo/in vitro related experiments are 

provided. Some additional fixed points compared to wild type conditions were found (column 

Remarks). In the last column precises      if the perturbed      behavior is constrained in the 

inference process (only the mutant behaviors observed in the 1000 selected BN solutions 

are constrained for the inference of the final solution).  

 

Supplementary Table 7: Possible rules for CDK46CycD, Fli1, Gata1 and Gata2 after 
the final inference. The rules manually selected to select a final solution are in red. Of the 

77 possible rules for Gata2 only the 7 ones with two clauses are presented.  
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Figure 1: Regulon analysis identified distinct HSPC states with specific 
transcription factor activities and interactions.
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𝐺𝑎𝑡𝑎2
(G𝑎𝑡𝑎2 ∧ 𝐺𝑎𝑡𝑎1 ∧ 𝑍𝑓𝑝𝑚1) ∨ (Egr1 ∧ 𝐺𝑎𝑡𝑎1 ∧ 𝑍𝑓𝑝𝑚1 ∧
𝑆𝑝𝑖1)

𝑆𝑝𝑖1 (𝑆𝑝𝑖1 ∧ 𝐺𝑎𝑡𝑎1) ∨ (Cebpa ∧ 𝐺𝑎𝑡𝑎1 ∧ 𝐺𝑎𝑡𝑎2)
𝐶𝑒𝑏𝑝𝑎 (𝐺𝑎𝑡𝑎2 ∧ 𝐼𝑘𝑧𝑓1) ∨ (𝑆𝑝𝑖1 ∧ 𝐼𝑘𝑧𝑓1)
𝐺𝑎𝑡𝑎1 𝐹𝑙𝑖1 ∨ (𝐺𝑎𝑡𝑎2 ∧ 𝑆𝑝𝑖1) ∨ (𝐺𝑎𝑡𝑎1 ∧ 𝐼𝑘𝑧𝑓1 ∧ 𝑆𝑝𝑖1)
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Figure 2: Inference of a gene Boolean network to model HSC priming.
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Figure 3: Analyses of the Boolean model evidence a sequence of transcriptional
events to prime HSCs.
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Figure 4: Perturbations of early hematopoiesis model explains some HSC aging
features.
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pLymph pNeuMast pEr pMk preDiff scRNAseq observations

WT X X X X X

Junb KI X Junb ↑ in iHSC, qHSC, preDiff, 
pLymph, pMk

Egr1 KI X X Egr1 ↑ in iHSC, qHSC, preDiff, 
pMk

Fli1 KI X X Fli1 ↑ in iHSC, preDiff, pEr, pMk  

Spi1 KO X X X Spi1 ↓ in iHSC, preDiff, pLymph, 
pEr

Edgetic
Gata2-
Cebpa

X X Gata2 -> Cebpa ↓
Spi1 -> Cebpa ↑

Table 1: Aging perturbations of the early hematopoiesis Boolean model.
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Supplementary Figure 2: Venn diagrams of influence graph interactions sources.

Supplementary Figure 1: Discretization of gene expressions for genes and regulons
with less than 10 targets.
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Supplementary Figure 3: Constraints and discretization used for the influence
graph pruning and the final rule inference.
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Supplementary Figure 4: HSPC state repartition of the regulon activity alterations
upon aging.
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Supplementary Figure 5: Heatmap of AUCell scores of regulon activity averaged
by group of cells from the HSPC states in young and aged cells.
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All

Supplementary Figure 6: Retrieved scenic interaction from all cell analysis in aged
or young only cell analysis.

Supplementary Figure 7: Histogram of normalized interaction score differences
with aging.
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