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Summary
Recent studies using intracellular recordings in awake
behaving mice  revealed that  cortical  network states,
defined  based  on  membrane  potential  features,
modulate sensory responses and perceptual outcomes.
Single  cell  intracellular  recordings  are  difficult  to
achieve and have low yield compared to extracellular
recordings  of  population  signals,  such  as  local  field
potentials (LFPs). However, it is currently unclear how
to identify these behaviorally-relevant network states
from  the  LFP.  We  used  simultaneous  LFP  and
intracellular recordings in the somatosensory cortex of
awake  mice  to  design  and  calibrate  a  model-based
analysis method, the Network State Index (NSI), that
enables network state classification from the LFP. We
used  the  NSI  to  analyze  the  relationship  between
single-cell (intracellular) and population (LFP) signals
over  different  network  states  of  wakefulness.  We
found that graded levels of population signal faithfully
predicted the levels of single cell depolarization in non-
rhythmic  regimes  whereas,  in  delta  ([2-4  Hz])
oscillatory regimes, the graded levels of rhythmicity in
the  LFP  mapped  into  a  stereotypical  oscillatory
pattern  of  membrane  potential.  Finally,  we  showed
that  the  variability  of  network  states,  beyond  the
occurrence  of  slow  oscillatory  activity,  critically
shaped  the  average  correlations  between  single  cell
and  population  signals.  NSI-based  characterization
provides a ready-to-use tool to understand from LFP
recordings  how  the  modulation  of  local  network
dynamics shapes the flexibility of sensory processing
during behavior.

Introduction
During  wakefulness,  behavioral  and  physiological
markers,  such  as  pupil  diameter,  whisking  activity  or
locomotion  speed  vary  over  time  and  have  been
correlated with distinct membrane potential dynamics in
rodent  sensory  cortices  (Bennett  et  al.,  2013;
Constantinople and Bruno, 2011; Crochet  and Petersen,
2006; Einstein et al., 2017; McGinley et al., 2015a; Neske
et al.,  2019; Nestvogel and McCormick, 2021; Okun et
al., 2010; Poulet and Petersen, 2008; Poulet and Crochet,

*correspondence: yann.zerlaut@icm-institute.org,
                              tommaso.fellin@iit.it, s.panzeri@uke.de 
1 Neural coding laboratory, Istituto Italiano di Tecnologia, Genova, Italy
2 Neural Computation Laboratory, Center for Neuroscience and 
Cognitive Systems @UniTn,Istituto Italiano di Tecnologia, Rovereto, 
Italy
3 Optical Approaches to Brain Function Laboratory, Istituto Italiano di 
Tecnologia, Genova, Italy
4 Sorbonne Université,Institut du Cerveau - Paris Brain Institute – ICM, 
Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
5 Department of Excellence for Neural Information Processing, Center 
for Molecular Neurobiology (ZMNH), University Medical Center 
Hamburg-Eppendorf, Hamburg, Germany

2018; Polack et al., 2013; Reimer et al., 2014; Schiemann
et  al.,  2015;  Schneider  et  al.,  2014).  Intracellular
membrane  potential  recordings  can  thus  be  used  to
provide  a  rich  classification  of  how  network  states,
defined  as  a  set  of  distinctive  dynamical  features  that
include oscillations and activity or depolarization levels,
change  during  behavior.   An  emergent  concept  for  the
modulation of  network activity  in  sensory  cortices  is  a
“U-model” of  network states  (McGinley et  al.,  2015b).
This  model  is  based  on  the  observation  that,  in  some
sensory  detection  tasks,  performance  depends  on  the
arousal level following an inverted U-shape (it is maximal
at  intermediate  arousal  levels  (McGinley  et  al.,  2015a;
Neske et al., 2019). This model posits the existence of a
continuum  of  dynamical  network  states  across  arousal
levels which includes three major and well-documented
patterns  of  membrane  potential  fluctuations.  At  low
arousal levels (low pupil diameter and absence of motor
behavior), membrane potential fluctuations largely exhibit
stereotypical delta-band oscillations. At moderate arousal
(intermediate  pupil  diameter),  single  cells  are
hyperpolarized  and  display  low  amplitude  membrane
potential fluctuations. At high arousal levels (active motor
behavior  and/or  high  pupil  dilation),  the  membrane
potential  exhibits  sustained  depolarization  with  high-
frequency  fluctuations  and  high  firing  activity  occurs.
Network  states  identified  based  on  these  properties  of
membrane  potential  dynamics  profoundly  modulate
perceptual  abilities  and  cortical  processing  of  sensory
stimuli (McGinley et al., 2015a; Neske et al., 2019).
These results shed light on how the internal state of the
animal  modulates  sensory information processing about
external stimuli. However, in many experimental settings
using  awake  animals,  extracellular  measurement  of
population-level  LFP  signals  is  often  preferred  over
single-cell intracellular recordings, because of low yield
and high technical difficulty of intracellular experiments.
Although  LFPs  capture  subthreshold  and  integrative
phenomena in a local neuronal population (Engel et al.,
2001;  Buzsáki  et  al.,  2012;  Panzeri  et  al.,  2015),  it  is
currently unknown how to identify the variety of network
states  previously  described  with  membrane  potentials
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Significance statement
Sensation during behaviour is strongly modulated by
the  animal’s  internal  state.  Such  context-dependent
modulation  of  sensory  processing  is  believed  to
largely stem from top-down control of network states
in  sensory  cortices,  with  different  network  states
being  associated  with  distinct  computational
properties  of  the  circuit.  So  far,  a  detailed
characterization of network states in the awake cortex
has  mostly  been  achieved  through  single-cell
intracellular  recordings,  which  however  cannot  be
easily recorded. Here, we developed a new method to
classify  network  states  from  the  easily  accessible
extracellular  LFP recordings  of  population  activity.
Given the widespread use of LFPs, our work provides
a  critical  methodology  to  greatly  expand  our
understanding  of  the  mechanisms  underlying  state-
dependent computations in neocortex.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479568doi: bioRxiv preprint 

mailto:yann.zerlaut@icm-institute.org
mailto:s.panzeri@uke.de
mailto:tommaso.fellin@iit.it
https://doi.org/10.1101/2022.02.08.479568


from the LFP. Furthermore, while it has been reported that
single-cell  membrane  potentials  and  population-level
LFPs  are  related  and  their  relation  varies  considerably
across  cortical  states  and  behavioral  conditions
(Nestvogel  and  McCormick,  2021 ;  Okun et  al.,  2010;
Poulet and Petersen, 2008; Neske et al.,  2019), it is not
yet fully clear how to predict when they are tightly related
and when they are not. Precise classification of network
state  variability  from  LFPs  and  its  comparison  with
network  state  classification  performed  on  membrane
potentials  could  thus  be  greatly  useful  to  enhance  our
understanding  of  how  network  states  change  during
behavior  and  what  function they may serve.  Moreover,
such a classification would enhance our comprehension of
the  relationship  between  single-cell  and  population
dynamics.
By  combining  simultaneous  intra-  and  extra-cellular
recordings in the somatosensory cortex of  awake head-
fixed  mice  with  novel  analytical  methods,  here  we
developed an approach to identify, from the LFP signal
alone,  low-frequency  rhythmic  states  as  well  as  non-
rhythmic  network  states  with  different  levels  of
depolarization or hyperpolarization. We first characterized
the membrane potential dynamics across different cortical
states  in  awake  mice.  We  then  identified  the  LFP
properties that better distinguished network states and we
used those LFP properties to derive a method for robust
classification of network states. Finally, we show that our
classification  method  enables  to  classify  well  network
states  and  explains  the  variability  of  the  relationship
between LFPs and membrane potentials observed across
recordings of neural activity during wakefulness.  

Results

Simultaneous intracellular and extracellular dynamics
in the somatosensory cortex of awake mice: variability
and network states of wakefulness

We performed simultaneous recordings of the local field
potential  (LFP)  and  the  membrane  potential  (Vm)  of
pyramidal  cells  in  the  superficial  layers  of  the  barrel
cortex  (S1)  in  head-fixed  awake  mice (see  traces  from
two  example  recordings  in  Fig.1a).  Recordings  had  a
duration  of  5.1±2.0  min  (n=14  from  4  mice).  Before
proceeding to use these data to define indices of network
states  from  the  LFP,  we  document  some  of  its  basic
properties. 

First, we found a notable heterogeneity across recordings
(compare recording #2 with #11 in Fig. 1a). In particular,
the  relationship  between  extracellular  population  (LFP)
and intracellular (Vm) signals was highly variable (Fig 1c,
recordings  were  sorted  by  their  level  of  absolute
correlation, note the large range of observed correlation
values). Second, intracellular and extracellular dynamics
had a rich repertoire of activity patterns (illustrated in Fig.
1b).  As  previously  reported  under  similar  conditions
(Poulet and Petersen, 2008; Chen et al., 2017; Einstein et
al.,  2017;  McGinley  et  al.,  2015a;  Vinck  et  al.,  2015),
both  LFP and  Vm traces  displayed  epochs  of  rhythmic
activity in the delta-band (defined as time samples with
high [2,4] Hz envelope, see the Vm and LFP spectrums in
Fig.  1d  and 1i  respectively,  peaks  were  observed  at

3.0±0.3  Hz  for  the  Vm and  3.3±0.5  for  the  LFP,  n=14
recordings).  Those  rhythmic  epochs  presented  a  high
synchronization  between  LFP  and  Vm (correlation
between Vm and LFP delta envelopes across time samples:
0.55±0.11,  one-sample  t-test  for  positive correlation,
p=2e-10, n=14). Examples epochs of rhythmic activity are
shown in traces number 1 and 2  of recording #11 (Fig.
1b). Next, confirming previous observations (McGinley et
al., 2015a; Neske et al., 2019; Nestvogel and McCormick,
2021; Zerlaut et al. 2019), we found non-rhythmic epochs
(here defined as  time samples with a Vm delta envelope
lower than  6mV, see Fig. 1e) at different depolarization
levels (see the population histogram on  Fig.  1f  ranging
from  ~-80mV  hyperpolarization  levels  to  ~-45mV
depolarization levels).  Example  epochs of non-rhythmic
activity  patterns  at  different  depolarization  levels
(increasing  from  epoch  3  to  7)  are  shown  in  Fig.  1b.
Taken together, the epochs 1-7 of Fig.1b recapitulate the
different  states  described  by  the  “U-model”  of  cortical
states (McGinley et al., 2015b), that is rhythmic states of
delta-band  activity  and  non-rhythmic  states  at  various
membrane  potential  depolarization  levels  (from
hyperpolarized  to  depolarized). Finally,  recordings  also
differed not only in terms of the average strength of delta
rhythmicity,  but  also in  terms of the distribution of  Vm

levels over time (Fig 1f). Recordings with lower average
delta  envelope  tended  to  have  lower  variability  of  Vm

levels over time in non-rhythmic states (Fig. 1g, Pearson
correlation  between  mean  Vm delta  envelope  per
recording and Vm standard deviation of non-rhythmic time
samples,  c=0.83,  p=2e-4).  The  diversity  of  recordings
thus  filled  a  continuum  between  two  qualitatively
different cases of either recordings displaying mostly non-
rhythmic states at an almost constant depolarization level
(e.g.  rec.  #2  in  Fig  1a,  see  Vm histogram  on  Fig.  1f
showing a low variability of  mean Vm over  time )  and
recordings exhibiting overall stronger time-averaged delta
Vm envelope  and  a  much  wider  variation  of  the  Vm

depolarization levels (e.g. recording #11 in Fig 1a, see Vm

histogram  on  Fig.  1f).  These  latter  cases  exhibited a
complex  dynamics  with  the  alternation  of  oscillatory
delta-band activity together with non-rhythmic activity at
very  different  Vm depolarization  levels  (see  example
epochs of recording #11 in Fig 1b). In the next sections,
we  investigate  how  to  quantitatively  classify  and
differentiate  these  network  states  based  on  the
extracellular LFP.

Limitations of the existing spectral analysis of LFP for
the characterization of  network states  with different
degrees  of  membrane  potential  rhythmicity  and
depolarization

Because  of  the high impact  of  different  strength of  Vm

rhythmicity and Vm depolarization levels on behavior and
sensory function, we next considered how to determine a
quantitative  index  of  networks  states  with  such  Vm

features from the more easily accessible LFP signal. Ideal
properties  of  this  index would include:  i)  the ability  to
predict the rhythmicity and depolarization of Vm  from the
LFP;  ii)  a  U-shaped  dependence  of  the  index  on
depolarization levels of membrane potential and of firing
of  local  neural  populations to  directly  map onto  the  U
model of network states.
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Figure 1. Network states of wakefulness in the mouse somatosensory cortex: electrophysiological signature and
characterization based on spectral  analysis.  (a) Two example of  simultaneous recordings (top:  rec.#2,  bottom:
rec.#11) of the extracellular LFP and of the membrane potential Vm of a layer II/III pyramidal cell in awake mouse. (b)
Episodes of duration 1.5 s extracted from rec.#11 at the times points highlighted in  a (LFP on top and Vm on the
bottom panel).  In the middle panel,  the time-varying standard deviation σ(LFP) evaluated over a 500 ms sliding
window (brown line), the delta-envelope δenv (purple line), and the gamma envelope γenv (green line) of the fluctuations
are shown. (c) Sorted histograms of the absolute correlation coefficient between LFP and Vm over recordings (n=14,
gray). Blue (rec. #2) and orange (rec. #11) indicate the example recordings shown in a. (d) Frequency spectrum of the
Vm signal obtained with wavelet-based time-frequency analysis (see Methods). The power-line frequency was blanked
(50Hz±2Hz). We highlighted the delta (2-4 Hz) and gamma (30-80 Hz) bands in purple and green, respectively.  (e)
Histogram of Vm delta envelope across recordings. Time samples classified as “rhythmic” are shown in purple (see
main text). (f) Histogram of Vm depolarization level for non-rhythmic samples. (g) Relationship between mean delta
envelope of the Vm and standard deviation in non-rhythmic episodes per recording for all recordings. (h) Same as in d
for the extracellular LFP. (i) Histogram of the delta envelope (δenv, left) and the gamma envelope (γenv, right) of the LFP
over recordings. In the top inset, we show the histogram of the resulting gamma-to-delta ratio. (j) Mean depolarization
level (shown as mean ± s.e.m over time samples at a given gamma-to-delta level) as a function of the gamma-to-delta
ratio for a single recording (rec.#11, shown in a and b). We highlight how the gamma-to-delta measure classifies the
episodes shown in  b (see main text).  (k) Mean depolarization level as a function of the gamma-to-delta ratio for
rec.#11. (l) Mean depolarization level as a function of the gamma-to-delta ratio over time samples.  (m) Relationship
between Multi-Unit-Activity (MUA, see Methods) and gamma-to-delta ratio over time samples. For panels d,e,f, h, i,
k ,l, we show two example recordings (rec. #2 in blue and rec. #11 in orange) and the population data as mean ± s.e.m.
over x-axis levels (n=14, gray line with shaded area).

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479568doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479568


We  first  evaluated  whether  existing  methods  based  on
simple spectral properties, could be used to characterize
in this way, using only the LFP, the diversity of network
states  observed  in  the awake  neocortex.  Previous LFP-
based characterization of  different  network states  relied
on the ratio between delta and gamma power (Cheng-yu
et al., 2009; Saleem et al., 2010). We therefore computed
the time-varying delta  [2,4]  Hz and gamma [30,80] Hz
envelope of  the LFP,  and the gamma-to-delta  envelope
ratio over time samples (see example single recording and
population  histograms  in  Fig.  1j).  We  investigated  the
ability  of  the  gamma-to-delta  ratio  to  differentiate
between epochs of activity that have dynamical features
resembling  the  network  states  previously  documented
with Vm and described by the U-model of cortical states
(McGinley  et  al.,  2015b).  To  gain  intuition,  we  first
considered  the  example  epochs  1-7,  which  were  sorted
according  to  the  gamma-to-delta  ratio  of  their  LFP
(Fig.1k,  see  the  corresponding  time-varying  delta  and
gamma envelopes for those epochs in Fig. 1b). While this
ratio could distinguish the strongly rhythmic epochs (1,2)
from  the  high-gamma  and  highly  depolarized  non-
rhythmic epoch 7 (Fig. 1k), it could not distinguish well
different  Vm depolarization  levels  within  the  non-
rhythmic  sets  of  epochs.  Epoch  6  had  a  mean  Vm

depolarization value > 15mV higher than that of epochs
3,5 , but all these 3 epochs had similar gamma-to-delta
ratios (Fig. 1k). Moreover, a non-rhythmic epoch (4) had
similar gamma-to-delta ratio to the two rhythmic epochs
(1,2). Overall, when quantifying the dependence of mean
depolarization level on the gamma-to-delta ratio across all
epochs for either the example recording #11 (Fig 1k) or
across all sessions (Fig 1l), it was apparent that, using the
gamma-to-delta  LFP ratio,  it  would be very difficult  to
distinguish  between  rhythmic  states  and  non-rhythmic
hyperpolarized  states,  and  to  distinguish  between
hyperpolarized  and  depolarized  states  within  the  non-
rhythmic range. Next, because states with non-rhythmic
and  hyperpolarized  Vm are  accompanied  by  a  reduced
level of spiking activity (McGinley et al., 2015a; Neske et
al., 2019; Nestvogel and McCormick, 2021; Zerlaut et al.,
2019), we also analyzed the level of population firing by
computing  the  multi-unit  activity  (MUA)  from  the
extracellular  recordings  (see  Methods).  Similar  to  what
we observed with the average Vm depolarization (Fig. 1l),
we found that the gamma-to-delta LFP ratio had a very
weak predictive power with the regard to the population
spiking activity (Fig. 1m). Thus, the gamma-to-delta ratio
could not  be used to  identify states  of  reduced  spiking
network  activity  during  non-rhythmic  activity.  Reduced
depolarization levels and spiking activity are important as
they  identify  specific  network  states  which  are
characterized  by  different  properties  of  sensory
information processing during wakefulness (McGinley et
al., 2015a; Neske et al., 2019; Reimer et al., 2014; Vinck
et al., 2015).

We concluded that the gamma-to-delta LFP ratio poorly
differentiated rhythmic and non-rhythmic states and, more
importantly, did not enable to evidence different levels of
depolarization within the non-rhythmic states observed in
cortical  dynamics  under  awake  condition.  In  the  next
section, we introduce a processing step of the LFP that
allows such characterization.

Using the  time-varying high-gamma envelope  of  the
LFP for a richer network state characterization 

Because  the  membrane  potential  Vm is  the  reference
signal for cortical state classification (Arroyo et al., 2018;
Einstein et al., 2017; McGinley et al., 2015a; Polack et al.,
2013; Poulet and Petersen, 2008; Reimer et al., 2014), and
because  we  wanted  to  capture  from the  LFP the  finer
features  of  Vm dynamics  (including  the  variations  in
rhythmicity  and  depolarization  levels  posited  by  the  U
model)  that  cannot  be  captured  by the  simple  delta-to-
gamma  ratio,  we  next  investigated  whether  simple
mathematical  transformations  of  the  LFP  displayed
temporal fluctuations more qualitatively similar to those
of the membrane potential.

The inverted LFP (-LFP) displays high correlation values
(cc~0.5) with the membrane potential in awake animals
(Poulet and Petersen, 2008; Arroyo et al., 2018) and could
thus  potentially  provide  a  basis  signal  for  the
characterization  of  network  states.  However,  the
amplitude of the LFP is strongly dependent on the depth
of the recording (Kajikawa and Schroeder, 2011; Herreras
et al., 2015; Lindén et al., 2011; Sakata and Harris, 2009;
Smith et al.,  2012) and is subjected to drifts over short
(<10s, Fig.2a, epochs (i) and (ii)) and long (>1min) time
scales. These factors limit the similarity between Vm and -
LFP and they were shown in previous work to prevent
robust  classification of  network state  during slow wave
(<1Hz) activity (Mukovski et al., 2006).
Guided by the previous findings in anesthetized animals
(Mukovski et al.,  2006), we hypothesized that the high-
frequency  content  (f>40Hz,  including  the  gamma band
activity) of the LFP would provide a good predictor of the
depolarization level  Vm.  We therefore  applied a wavelet
transform  to  the  extracellular  LFP  and  identified  the
frequency band maximizing the cross-correlation with the
simultaneously  recorded  membrane  potential  in  our
dataset  (Fig.2b).  This  was  performed  by  independently
varying a root frequency f and a width factor w, yielding
the frequency band [f/w, f·w]. For each frequency band,
we  divided  the  band  into  20  evenly  spaced  wavelet
frequencies, we computed the mean over frequencies of
the wavelet envelope of the LFP (resulting in the time-
varying envelope shown in Fig.2a), and we analyzed the
correlation between this  transformed LFP trace  and the
Vm trace  after  averaging  over  recordings  (see  the
individual  values  per  recording  in  Fig.2c  sorted  by
recording  index  in  the  inset).  We  found  that  the  band
maximizing this correlation was achieved for  fopt=72.8Hz
and wopt=1.83, i.e. the [39.7, 133.6] Hz band (see Fig.2b).
We  also  found  that  a  temporal  smoothing  of  the  LFP
envelope (with an optimal value Topt=42.2 ms, see Fig. 2d)
enhanced its correlation with the  Vm signal.  We refer in
the following to such smoothed high-gamma envelope as
the “pLFP” (processed Local Field Potential, in analogy
with  the  terminology  of  Mukovski  et  al.  (2006)).
Following previous literature, we interpreted this quantity
as  an  approximation to  the  time-varying recruitment  of
synaptic activity from a local region (diameter: ~100-200
μm) surrounding the extracellular  electrode (Buzsáki  et
al.,  2012;  Gaucher  et  al.,  2012;  Katzner  et  al.,  2009;
Lindén et al., 2011; Mazzoni et al., 2011; Einevoll et al.,
2013).
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After  this  transformation  of  the  LFP,  we  observed  a
qualitative  match  between  the  previously  reported  Vm

signatures of network states (McGinley et al., 2015b) and
specific  features  of  the  pLFP signal.  We illustrate  this
finding on the recording shown in Fig.3a.  We observed
rhythmic  activity  at  different  envelope  levels  (example
epochs  #1,#2)  as  well  as  non-rhythmic  fluctuations  at
various mean levels of pLFP signal (example epochs #3-
#7).  This  similarity  encouraged  us  to  develop  a
quantitative network state index based on the pLFP.

Designing  a  Network  State  Index  (NSI)  from  the
processed LFP

To  better  discriminate  specific  network  states  of
wakefulness  from  the  LFP,  we  thus  developed  a
quantitative  index  from  the  pLFP:  the  pLFP-based
Network  State  Index  (NSIpLFP).  The  rationale  and
procedure  to  compute  the  NSI  from  the  pLFP  are
described in the following text and is sketched graphically
with example data in Fig.3a.

To capture the slow fluctuations of network activity over
time, we computed the sliding mean Y(t) of the pLFP over
a slow time scale (Tmean=500ms). Because the pLFP signal

had  a  non-zero  value  at  all  points,  we  quantified  the
baseline of the raw pLFP signal p0 (set as the lowest 100th

percentile of the pLFP distribution, and a measure of the
level  of  baseline  noise  in  the  extracellular  signal).  We
then analyzed pLFP fluctuations relative to this baseline
level.  We classified the pLFP fluctuations at  such slow
time  scale  as  either  rhythmic  or  non-rhythmic.
Rhythmicity  was  quantified  by  the  time-varying  low
frequency envelope of the pLFP fluctuations δenv(t) using
a wavelet  transform.  We observed  that  establishing the
rhythmic condition by only thresholding δenv(t) would be
misleading. Indeed, the δ-band envelope was strongly co-
modulated by the mean activity level Y(t) even for non-
rhythmic  epochs  (correlation  coefficients  between  Y(t)
and  δenv(t)  in  the  non-rhythmic  epochs  defined  as
NSIpLFP>0:  c=0.39±0.16  across  the  n=14  recordings,
significance  of  a  positive  correlation:  p=3.3e-10,  one-
sample t-test).  This indicated that  the δ envelope could
reach  high  values,  and  cross  an  arbitrary  threshold  in
absence  of  strong  rhythmicity.  This  phenomenon  is
visible on Fig.3a: the envelope in epoch 7 is equivalent to
the  envelope  in  epoch  2  without  exhibiting  the  clear
rhythmicity  in  the  pLFP  or  in  the  Vm signal  that
characterized  epoch  2  (middle  and  top  plots,
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Figure  2.  The  time-varying  high-gamma  envelope  of  the  LFP displays  strong  correlations  with  the
membrane potential of pyramidal neurons in awake mice S1. (a) Example simultaneous recording of the LFP
(top)  and  Vm  of  a  layer  2/3  pyramidal  cell  (bottom).  In  the  middle,  we show the  time-varying  high-gamma
envelope (brown thin line) and its smoothed fluctuations (brown thick line, the pLFP signal). The  p0 value (brown
dotted line) corresponds to the first 100th percentile of the pLFP distribution over the whole recording. (b) Cross-
correlation between Vm and the envelope of the LFP wavelet transform in the frequency band [f/w, f·w] (f is a root
frequency and w is a width factor). We show the cross-correlation value after averaging over n=14 recordings (see
the individual values per  recording in  c).  Note the optimal  band found for  fopt=72.8Hz and  wopt=1.83 (brown
circle). (c) The effect of temporal smoothing on the cross-correlation between the LFP and Vm signals. Shown for
all  recordings  (individual  recordings  are  color-coded  according  to  their  cc(Vm,pLFP)  value,  we  show  the
correspondence with the rec. index of Fig.1c in the inset). At Tsmoothing=0ms, one can see the mean value of b and its
variability over recordings (black errorbar). (d) Cross-correlation between LFP and Vm as function of the temporal
smoothing parameter plotted after normalizing the raw cross-correlation levels of c by their maximum amplitude
and subtraction of their level at Tsmoothing=0ms. With this normalization, a peak is clearly visible at Topt=42.2ms.
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respectively).  We therefore  introduced  a simple model-
based  criterion  for  evaluating  rhythmicity  based  on the
following  reasoning.  In  a  noiseless,  purely  rhythmic
setting  defined  by  pLFP(t)=p0+δenv·(1+sin(2·π·fδ·t)),
where  δenv is  the  envelope  of  the  oscillation,  we  have
Y(t)=p0+δenv.  If  Y(t)  has  an  additional  non-rhythmic
component,  we  get  Y(t)>p0+δenv(t)  (i.e.  the  oscillation
alone does not account for the mean level of the signal).
We  adapted  this  last  relation  to  build  our  rhythmicity
criterion:  a  higher  signal  mean  Y(t)  than  the  mean
expected  from  the  delta  component  implies  non-
rhythmicity. Given the non-ideal nature of the signal and
to  compensate  for  the  misestimation  of  rhythmicity  in
fluctuating regimes, we rescaled the slow oscillation with
a parameter α (see the next section for the determination
of  α),  i.e.  we  introduced  the  time-varying  quantity
X(t)=p0+α·δenv(t).  We  compared  the  estimate  of  the
rhythmic contribution, X(t), with the mean activity, Y(t),
to quantify rhythmicity: if X(t) ≥ Y(t) activity was set as
“rhythmic” (because the slow oscillation pattern is able to

account for the mean activity level). Activity was defined
as “non-rhythmic” otherwise.  Finally, we quantified the
amount of the pLFP activity in the two regimes. In the
rhythmic  regime,  the  amount  of  network  activity  was
captured by the amplitude of the oscillation, 2·δenv(t).  In
the  non-rhythmic  regime,  the  pLFP  deviations  from
baseline Y(t)-p0 estimated the level of ongoing activity.

The  pLFP-derived  NSI  was  defined  as  the  amount  of
pLFP activity projected on the negative and positive axis
for the rhythmic and non-rhythmic regimes respectively.
Such a definition resulted  in  a  continuous index  where
states with stronger delta components had negative values
while  non-rhythmic  states  with  stronger  high-gamma
components  had  higher  positive  values  (Fig.  3a).  As
highlighted by the colored area  (Fig.  3a,  bottom plot  –
purple  and  kaki  colors  for  rhythmic  and  non-rhythmic
epochs, respectively), the classification into the two states
relied on the sign of the difference between the X(t) and
Y(t)  signals  (Fig.  3a,  middle  plot)  followed  by  a
projection on either the negative part of the axis weighted
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Figure 3. The Network State Index based on the processed LFP (NSIpLFP).  We define a graded measure of network
states based on the mean level (for non-rhythmic activity) or the low frequency envelope (for rhythmic activity) of the
time-varying pLFP signal. (a) Example epochs of activity at different NSIpLFP levels (see bottom plot), the epochs are
identical to those of Fig.1b (rec. #11). In the top plot, we superimpose the pLFP fluctuations and the Vm fluctuations. In
the middle plot, we illustrate the signal processing steps leading to the NSIpLFP measure (see main text and Methods). Two
time-varying quantities derived from the pLFP signal are used to classify network states: a weighted estimate of the low
frequency content of the pLFP signal X(t) (purple line, shown for α=2.87) and the pLFP sliding mean Y(t) (black line). A
consistency criterion validates a fraction of those as “validated” network states (brown dots).  (b) Fraction of rhythmic,
non-rhythmic and unclassified states as a function of the parameter α (weighting the propensity to classify as rhythmic
states). (c) Vm envelope of the [2,4] Hz band averaged across all identified rhythmic states (mean ± s.e.m over the n=14
recordings) for different values of the parameter α. We fit the decay with an exponential function (dashed red line) and
take its decay parameter as the optimal value αopt for the classification. (d) Mean depolarization level (shown as mean ±
s.e.m over episodes at a given NSIpLFP level) as a function of the NSIpLFP measure for a single recording (rec.#11). We
highlight how the NSIpLFP measure classifies the episodes shown in a (see main text). (e) Mean depolarization level as a
function of NSIpLFP for the n=14 recordings of the dataset. We show the mean relation per recording (color-coded dots) and
the mean and variability over recordings after Gaussian smoothing of 5μV width (black curve and gray area, respectively).
(f) Relationship between Multi-Unit-Activity (MUA, see Methods) and NSIpLFP over episodes for all recordings (color-
code following e).
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by the oscillation amplitude 2·δenv(t) for rhythmic epochs,
or the positive part of the axis weighted by the increase
from  baseline  Y(t)-p0 non-rhythmic  epochs  (Fig  3a,
bottom  plot).  The  described  procedure  for  the
computation of the NSI is formalized in Eq.4 of Methods.

As  the  time-varying  signal  NSI(t)  might  exhibit
fluctuations  due  to  noise  in  both  the  Y(t)  and  X(t)
quantities (X and Y are derived from the noisy LFP signal
and their difference might amplify noise, see for example
the signal  jumps in  epochs  2,3 of  Fig.3a),  we added a
consistency  criterion  to  NSI(t)  to  obtain  a  robust  state
classification  of  individual  epochs.  We  first  defined
network state “episodes” with a window of Tstate=400ms
and an  update  every  Tstate/2=200ms.  The  motivation
behind  the  choice  of  this  time  scale  Tstate was  that  it
offered a good compromise between two constraints: Tstate

was long enough to get well defined states (e.g. more than
half a cycle for oscillations in the [2,4] Hz range) and it
was short enough to catch the fast and frequent switches
of network  states  during wakefulness  (McGinley et  al.,
2015b).  The  consistency  criterion  for  episode
classification required that, within a given time window
of  duration  Tstate,  the  fluctuations  of  the  NSI  signal
remained within a fluctuation threshold, equal to the pLFP
noise  level  p0 (because  this  noise  level  provided  an
estimate of the amount of signal below which a variation
is not a robust signal variation). If this stability condition
was met, a network state in this time window was labelled
as “validated”. The “validated” states are highlighted with
brown dots  over some sample epochs in Fig.3a.  If  this
stability condition was not met, a network state at a well-
defined level could not be assessed and the network state
was labelled as “unclassified”. The consistency criterion
prevented  state  validations  in  the  presence  of  strong
fluctuations in the time-varying NSI signal (epochs 3,4 in
Fig.3a, bottom).

Calibration  of  the  rhythmicity  threshold  in  the  NSI
definition

The  parameter  α  in  the  pLFP-based  NSI  weights  the
propensity to classify the network activity as rhythmic. Its
effect is illustrated in Fig.3b. Increasing α increased the
proportion of rhythmic states from ~0% at α<1 to ~100%
at α>6. We used simultaneous Vm recordings to optimize
α to ensure that  the classification of  states  as  rhythmic
using the LFP actually finds states that would be defined
as rhythmic based on the membrane potential. In Fig.3c,
we  show,  as  a  function  of  α,  the  average  across  all
episodes  classified  as  rhythmic  of  the  [2,4]  Hz  delta
envelope  of  the  membrane  potential  Vm.  The  delta
envelope  of  Vm of  the  states  classified  as  rhythmic
decreased exponentially when α increased. We thus set α
to a value αopt=2.87 that was equal to the decay constant
of the Vm envelope as a function of α. This choice ensures
we detect a large enough number of rhythmic states with a
genuine  amount  of  Vm rhythmicity.  When  classifying
rhythmic states using such a value in the pLFP-based NSI
algorithm, we indeed obtained that the states classified as
rhythmic had Vm delta envelope systematically larger than
the  states  classified  as  non-rhythmic  (paired  t-test,
p=1.2e-7, n=14 recordings). Importantly, such a α value
was found to be very close to the value maximizing the

fraction of unclassified states (α=2.95, thin grey dashed
line  in  Fig.3b),  thus  corresponding  to  the  most
conservative setting to classify network states.

Electrophysiological  signatures  of  NSIpLFP-defined
network states

We then analyzed additional electrophysiological features
of network regimes defined by the NSIpLFP measure. We
show the relationship between the NSIpLFP level and the
mean Vm depolarization value for  a single recording in
Fig. 3d and across all recordings in Fig. 3e. In Fig.3f, we
show the relationship between the NSIpLFP level and the
multi-unit activity (MUA) across recordings.

States of robust rhythmicity (high δ envelope, e.g. epoch
1 in Fig.3a) showed strongly negative NSIpLFP values and
were associated to intermediate depolarization and MUA
levels  (see  population  data  in  Fig.3e,f).  When  the
rhythmicity was not present (low values of pLFP delta-
envelope,  as  e.g.  in  epochs  3,4  in  Fig.3a),  both  the
depolarization and the MUA levels  had values  close to
their minimum (see population data in Fig.3e,f). States for
which  the  delta  component  did  not  significantly
contribute  to  the  network  activity  (quantified  by  the
pLFP) were classified as non-rhythmic (i.e.  NSIpLFP >0)
and both  their  depolarization and  MUA levels  strongly
increased  with  the  mean  level  of  network  activity  as
captured  by  the  NSIpLFP (epochs  4  to  7  in  Fig.3a  and
population  data  in  Fig.3e,f).  Importantly,  the  values  of
mean depolarization and of mean spiking activity in Fig
3e,f had a much lower standard error for any given value
of  the   NSIpLFP than  the  one  that  was  found  when
considering the dependence of mean depolarization and of
mean spiking activity on the gamma-to-delta ration (Fig
1f,1g),  suggesting  that  the  NSIpLFPis  a  much  tighter
predictor of membrane potential and of spiking dynamics
than the gamma-to-delta ration of the LFP. 

We  conclude  that  the  NSIpLFP,  has  several  strengths,
especially  when  compared  to  previous  indices.  The
NSIpLFP captured  key  features  of  Vm-defined  network
states  during  wakefulness  (McGinley  et  al.,  2015b):  it
enabled extraction of membrane potential activity regimes
ranging from delta-band activity, to asynchronous regimes
at low activity levels and asynchronous regimes at high
activity levels (Fig.3e,f). The NSIpLFP therefore provided a
quantitative  measure  of  network  states  that  allowed
extracting the U-shape nature of cortical states from LFP
recordings  previously  documented  with  intracellular
recordings (Fig.3e,f).

Evaluation  of  the  pLFP-based  NSI  accuracy  in
estimating membrane potential based features

The  above  considerations  suggest  that  it  should  be
possible  to  use  the  NSIpLFP ,  a  measure  only  based  in
LFPs, to identify reasonably well states that have either
rhythmic or non-rhythmic membrane potential properties,
and  to  identify  among  the  states  with  non-rhythmic
membrane potentials, those that have either depolarization
or  hyperpolarization  of  membrane  potential.  In  this
section,  we  quantified  the  accuracy  of  such  state
characterization using the pLFP-based NSI. 
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To this aim, we first computed the NSI on the Vm signal.
The lower bound of the signal p0 was translated into the
Vm0 value  by  taking  the  first  percentile  of  the  Vm

distribution  (see  Fig.2a  and  Fig.4a).  We  computed  the
sliding  mean  and  the  time-varying  low  frequency

envelope with the same parameters as for the pLFP signal.
We derived the  X(t) and  Y(t) and the “Vm -defined NSI”
(NSIVm)  according  to  Eq.4  (see  Methods).  This  Vm -
defined NSI has (by construction) negative values for the
states with Vm rhythmicity, low positive values for states

Classification of Cortical Waking States from LFP, Zerlaut et al., Biorxiv (2022) 8/17

Figure  4.  The pLFP-based NSI across  multiple recordings:  variability  and estimated  accuracy.  We show 7
recordings (from i to vii) covering the whole range of observed values of correlations between the intracellular (V m)
and extracellular (pLFP) signals.  (a)  A 60s sample of the simultaneous LFP(gray) and Vm (black) signals.  At the
bottom, we show the validated network states with their NSI value both for the “pLFP-defined NSI” (NSIpLFP, brown
dots) and “Vm-defined NSI” (NSIVm, black dots). (b) Histogram of the NSIpLFP over the whole recording length for each
recording. The color code per recording (from red to blue, see also Fig.2c) represents the value of the correlation
coefficient between the Vm and pLFP signals. (c) Scatter plots of the “Vm-defined NSI” (NSIVm) and the “pLFP-defined
NSI” (NSIpLFP) values for all validated episodes in a given recording (i.e., extending before and after the recording
sample shown in a). We highlight the correct area with a green color and the incorrect area with a red color. The large
red circles give examples of the different sort of rejections that may happen during cross-validation (see main text).
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with hyperpolarized non-rhythmic Vm, and high positive
values  for  states  with  depolarized  non-rhythmic  Vm.
Thus, comparing the value of the Vm-defined and pLFP-
defined NSI during the validated network states enables a
simple quantification of  how good is  the pLFP-defined
NSI  at  identifying  states  of  rhythmic,  non-rhythmic,
depolarized and hyperpolarized membrane potential. 

Fig  4a  shows  the  time  course  over  different  recording
sessions of the NSI computed either on the pLFP or on
Vm.  From these  plots,  it  is  apparent  that  the  two  NSI
indices are remarkably well matched over the time epochs
of  the  recordings,  with  the  occasional  presence  of
episodes in which the two indices were mismatched (e.g.
those marked by red circles in Fig 4A). To assess when
the pLFP-based NSI did and did not correctly predict the
NSI  measured  on  the  membrane  potential,  we
implemented  the  criterion  displayed  in  Fig.4c.  We first
determined  the  scaling  factor  F  between the  Vm-based
NSI and the pLFP-based NSI, by performing the linear fit
of the data predicting either both rhythmicity or both non-
rhythmicity (i.e. on the lower left or the upper right of the
plots  in  Fig.4c).  This  linear  relationship  yielded  a
prediction for the NSIVm value from a NSIpLFP value. Then,
at a given time-point  ti, the prediction was considered as
correct  if  the  difference  between  the  predicted  and
observed value of NSIVm lied within a tolerance interval

defined by two free parameters, ptol and V m
tol. We set the

value of ptol as the average noise level of the pLFP signal

across  recordings,  i.e.  pnoise=2.85μV.  For  the  tolerance

value V m
tol, we took V m

tol=2mV to be well above the noise

level  of Vm recordings (~0.1mV) and still  have a high
resolution  in  the  [0-35]  mV  range  of  observed
depolarization levels (see Fig.3e). Correct detection thus
occurred  when  the  following  conditions  were  met:

F· ( NSIV m
(t i )+V m

tol)<NSI pLFP (t i )+ pnoise and

F· ( NSIV m
(t i ) −V m

tol)>NSI pLFP (t i )− pnoise.  The

strictness of this criterion is illustrated in Fig.4c.  States
were  taken  as  incorrect  when  there  was  a  mismatch
between the rhythmic vs non-rhythmic  classification (as
shown for cases ii,iv-vii in Fig.4, see the non-matching
events  highlighted  with  a  red  circle).  Importantly,  state
classification was also taken as incorrect when the graded
level of the rhythmicity or the non-rhythmicity was not
predicted  well  enough  (see  Fig.4i,iii).  For  example,  in
rec.#11 (Fig.4i), the NSIVm value did not display a high
enough  value  to  be  linearly  related  to  NSIpLFP level
according to the relationship F .

Using  the  tolerance  criteria  defined  in  the  above
paragraph, the accuracy of detection of a Vm-based NSI
value from the pLFP-based NSI value was 79.7±10.2%
(mean ± s.e.m. over the n=14 recordings and all validated
episodes).  Decreasing the tolerance parameter  values  to

ptol=1μV  and  V m
tol=1mV  (corresponding  to  extremely

strict matching criteria) led to an accuracy of 57.2±15.1%,
meaning that, in more than half of the cases, the network
state could be identified even with such remarkably high
precision. 

We  noted  that  the  misclassifications  were  not
homogeneously  distributed  across  different  states  (see
Table 2). A specific set of network state misclassifications
represented  65.3%  of  the  misclassifications  over  the
merged episodes across all recordings (i.e. 13.1% of all
episodes). In this set, rhythmic activity predicted from the
Vm  (NSIVm≤0) was misclassified as non-rhythmic activity
from the pLFP (NSIpLFP>0). We analyze in the next section
the reasons behind this finding.

Graded aspect of network states in terms of pLFP and
Vm fluctuations: rhythmic versus non-rhythmic states

The  above  analysis  revealed  a  stronger  tendency  to
classify network states as rhythmic from the Vm than from
the  pLFP fluctuations.  This  difference  in  classification
suggested  that  the  NSI  measures  revealed  previously
unexplored  asymmetries  between  the  characteristics  of
fluctuations  of  pLFP  and  Vm signal  across  different
network states.  We therefore analyzed more closely the
correspondence  between  pLFP and  Vm fluctuations  for
different levels of pLFP-based NSI and how this impacted
our classification results

For  non-rhythmic  activity  (NSIpLFP>0),  the  level  of  the
NSIpLFP was given by the mean pLFP deflection (Y-p0) in
the  time  window  Tstate=400ms.  We  thus  compared  the
positive  NSI  values  to  the  mean  membrane  potential
depolarization  level  in  the  same  window  Tstate.  For
rhythmic  activity  (NSIpLFP≤0),  the  level  of  the  network
state index was proportional to the delta envelope of the
pLFP. We thus compared the negative NSI values to the
delta envelope in the Vm signal. We show the relationship
between  those  pLFP-defined  and  Vm-defined  levels  for
two  recordings  in  Fig.5a,b  (for  rec.  #1  and  rec.  #11
respectively) and for the population data on Fig.5c.

Overall,  we  found  (Fig.  5)  that  the  membrane
depolarization  exhibited  a  strong  dependency  on  the
pLFP-based  NSI  level  for  non-rhythmic  activity
(NSIpLFP>0).  We  showed  single  episodes  of  increasing
NSIpLFP levels  (numbered  3,4,5,6  in  Fig.5a,b)  and  their
respective  episode  averages  at  all  NSIpLFP>0  levels  for
those  two  recordings  (kaki  curves  in  Fig.5a,b).  The
~15μV  variability  in  terms  of  pLFP based  NSI  levels
corresponded  to  a  ~30mV variability  of  depolarization
level  with a clear monotonic relationship for those two
sample  recordings.  This  behavior  was  confirmed at  the
population  level  (Fig.5c).  We standardized  the  analysis
across all recordings by binning the NSIpLFP levels from
0μV to 30μV (a range covering all  observed values) in
bins  of  1μV.  We  found  that  all  recordings  exhibited
depolarizations with a  steep dependency on the NSIpLFP

level 1.5±0.7mV/μV, significantly deviating from the null
hypothesis  of  a  zero  slope  (p=1.2e-5,  n=13 recordings,
paired t-test). On the other hand, we found that the value
of pLFP-based NSI for rhythmic activity (NSIpLFP ≤0) had
a  much  lower  impact  on  the  membrane  depolarization
level, see Fig.5. The ~10μV variability in terms of pLFP
based NSI levels translated into a weakly modulated Vm

oscillation  with  a  5-10mV amplitude  (purple  curves  in
Fig.5a,b).  We  highlight  this  weak  dependency  on  the
selected  samples  shown  in  Fig.5a,b.  We  extended  the
analysis to all recordings, after standardizing the data by
binning the pLFP-based NSI levels from -30μV to 0μV.
At  the  population  level,  we  confirmed  that  the  mean
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membrane depolarization had a weak dependency on the
pLFP-based NSI level (-0.2±0.3mVμV) , which was not
significantly deviating from the null hypothesis of a zero
slope  (p=0.14,  over  the  n=6  recordings  displaying
rhythmic activity within multiple NSIpLFP bins, paired t-
test).  It  should  be  noted  that  the  lack  of  graded  Vm

variations  for  rhythmic  activity  was  not  related  to  our
“rhythmicity  threshold”  limiting  the  set  of  rhythmic
samples to a potentially-biased subset. When varying the
rhythmicity-factor α up to α=5 (where the occurrence of
rhythmic NSIpLFP ≤0 states reaches ~80%, see Fig.3b), the
depolarization level still showed a very weak dependency
to  the  NSI  level  compared  to  that  for  non-rhythmic
activity (Fig.5d, top) with similar statistical significance
values (see Fig.5d, bottom). 

We concluded  that  the  graded  levels  of  neural  activity
captured by the NSIpLFP had a strong correlate in terms of
membrane  potential  depolarization  for  non-rhythmic
activity (NSIpLFP>0),  while  the various pLFP-based NSI
levels  of  rhythmic  activity  (NSIpLFP≤0)  rather
corresponded to a  stereotypical  Vm oscillation with ~5-
10mV amplitude. 

Those  observations  explained  the  results  of  our  cross-
validation analysis (Table 2).  The high precision of the
classification in the jointly non-rhythmic case (“NSIpLFP>0
and  NSIVm>0”  in  Table  2,  only  5.4%  of  the
misclassifications)  resulted  from the  strong relationship
between the pLFP and Vm signals  during non-rhythmic

states  (Fig.5a-c,  kaki  curves).  On  the  other  hand,  the
existence of a few episodes showing a high envelope delta
oscillation  in  the  Vm with  a  low delta  envelope  in  the
pLFP (cases such as episode 2 in Fig.  5a,b) created an
ambiguous situation for the classifier because rhythmicity
was  hard  to  establish  from  the  pLFP  signal  in  those
episodes.  The  cases  with  mixed  rhythmic/non-rhythmic
predictions  indeed  represented  90.3%  of  the
misclassifications  (“NSIpLFP >0  and  NSIVm≤0”  and
“NSIpLFP ≤0  and  NSIVm>0”  in  Table  2).  In  particular,
predicting rhythmicity from the Vm and non-rhythmicity
from the pLFP was the prevalent  misclassification case
(65.3%  for  the  case  “NSIpLFP ≤0  and  NSIVm>0”),
consistent  with  the  stronger  representation  of  the  delta
pattern in the Vm than in the pLFP (NSIpLFP ≤0 range in
Fig. 5a-c). We confirmed that such misclassification cases
originated  from  episodes  of  low  delta  envelope  in  the
pLFP  signal:  the  mean  δenv in  misclassified  cases  was
significantly  lower  than  in  accurately  classified  cases
(1.5±0.3μV versus 2.7±0.5μV, p=3.3e-10 paired t-test, in
the n=13 recordings displaying both conditions).

Using  the  NSIpLFP to  quantify  network  state
distributions  in  the  somato-sensory  cortex  of  awake
head-fixed mice

We analysed the NSIpLFP state  distribution in  the whole
dataset (n=14 simultaneous Vm and LFP recordings in the
somato-sensory cortex of awake head-fixed awake mice).
Fig. 4 shows eight example recordings representative of
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Figure  5. Relationship between pLFP-derived population
activity  (NSIpLFP)  and  single  cell  depolarization  (Vm)  in
rhythmic  and non-rhythmic  regimes.  (a) Relationship,  at
the single recording level  (shown for rec.  #1),  between the
NSIpLFP levels and the properties of the Vm fluctuations. For
rhythmic  states  (NSIpLFP≤0,  purple  color),  we  show  the
relationship between the NSI level and the Vm amplitude of
the delta-band envelope. For non-rhythmic states (NSIpLFP>0,
kaki color), we show the link between the NSI level and the
mean Vm depolarization level over a Tstate=400ms window. We
highlight  with  gray  dots  the  values  of  the  single  episodes
visible on Fig.3a (reproduced on the top inset, Vm in black and
pLFP in  brown).  We  show  the  linear  regressions  for  the
rhythmic and non-rhythmic data (dashed red line). Note that
the  plain  curve  does  not  reach  episode  3  because  the
minimum number of episodes for averaging is not reached at
that  level  (see  Methods).  (b) Same than  a for  rec.#11.  (c)
Reproducing the analysis of a,b over all n=14 recordings (see
main text). We show the mean relations over recordings (thin
gray lines) and the mean (wide curve) and standard deviation
(shaded  area)  across  recordings.  Evaluated  only  for  the
NSIpLFP levels  displayed  by  multiple  recordings  (i.e.  n=6
recordings for rhythmic activity and n=13 recordings for non-
rhythmic activity).  For each recording, we perform a linear
regression with respect to the NSIpLFP levels, we compute the
mean across recordings 〈s〉 and the probability of a deviation
from the 0-slope hypothesis p (paired t-test). (d) Relationship
between  the  α  parameter  (that  sets  the  proportion  of  non-
rhythmic episodes, see Fig. 3c) and the mean slope over cells
(top, 〈s〉cells) together with the p-value testing the significance
of a non-zero slope (bottom), i.e. reproducing the analysis of
c for different α values.
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the  dataset,  spanning  the  full  range  of  correlations
between the pLFP and Vm fluctuations (see Fig.2c).  We
show  a  60s  sample  of  the  intra-  and  extracellular
recordings together with the time-varying NSIpLFP (Fig.4a)
and the histogram of the NSIpLFP levels across the whole
recording (Fig.4b).

Overall,  the  dataset  was  dominated  by  non-rhythmic
activity  with  a  fraction  of  non-rhythmic  states:  FNSI >0

=81.1±15.9%. The fraction of rhythmic activity exhibited
a large variability with n=3 recordings below FNSI ≤ 0=2%

and  n=3  recordings  above  FNSI ≤ 0=35%  (peaking  at

FNSI ≤ 0=46.8% for recording #1, see Fig.4b).

The mean absolute NSIpLFP value over rhythmic periods
(i.e.  NSIpLFP≤0)  was  5.65±1.02μV (mean  ±  s.e.m  over
n=14  recordings)  and  6.67±1.34μV  for  non-rhythmic
periods  (i.e.  NSIpLFP>0),  yielding  a  significant  increase
from rhythmic to non-rhythmic states (p=3.0e-5, paired t-
test).  The  increased  amplitude  in  terms  of  pLFP signal
(i.e. high frequency content of the LFP) suggested that, as
an  average,  synaptic  activity  was  stronger  in  the  non-
rhythmic  periods  that  in  the  rhythmic  ones  (see
Discussion). This increased range of pLFP level was also
true  for  the  maximum  level  displayed  by  single
recordings  with  9.52±2.25μV  versus  12.06±3.4μV
(p=9.8e-3,  paired t-test)  for  rhythmic and  non-rhythmic
activity,  respectively.  During  non-rhythmic  periods,  we
found a  mild  but  significant  increase  of  the  variability
(standard  deviation,  from 1.29±0.32μV to 1.56±0.71μV,
p=8.9e-2,  paired  t-test)  and  skewness  of  the  pLFP
distributions  (from  0.35±0.33  to  0.7±0.41,  p=8.2e-2,
paired t-test).

Network state variability within individual recordings
predicts  the  average  correlation  between  population
and single cell signals

We next analysed whether the NSIpLFP state distributions
could  explain  the  variability  of  the  correlation  cc(Vm,
pLFP)  between  the  time-varying  population  signal
pLFP(t) and the single cell signal Vm(t) in our recordings
(see Fig.  4a,b).  We reduced the NSIpLFP distribution  per
recording to a few components (detailed below) and we
used  univariate  and  multivariate  linear  regressions  to
analyse how the variability of those components across
recordings  explained  the  variability  of  the  observed
correlation values.

From  top  to  bottom  in  Fig.4b  (i.e.  from  high  to  low
correlation recordings), the distribution of NSIpLFP levels
across recordings was quantitatively different. At the top
(high  correlations,  cc(Vm,  pLFP)>0.4,  panels  i-v),
distributions were bimodal with two high peaks both in
the  rhythmic  (NSIpLFP≤0)  and  non-rhythmic  (NSIpLFP>0)
areas. At the bottom (low correlations, cc(Vm, pLFP)<0.4,
panels  vi,vii),  distributions  were  dominated  by  non-
rhythmic  episodes  with  rather  narrow  range  of  NSIpLFP

values within the (NSIpLFP>0) domain. To quantify these
features  within  the  single  recording  distributions,  we
decomposed  each  distribution  into  the  following
quantities:  i) the  mean  NSIpLFP>0  over  the  whole
recording μNSI;  ii) the variability (standard deviation) of
the full NSI distribution σNSI; iii) the fraction of rhythmic
episodes FNSI ≤ 0; iv) the mean in NSIpLFP values restricted

to non-rhythmic episodes  μNSI> 0;  v) the mean in NSIpLFP

values  restricted  to  rhythmic  episodes  μNSI ≤0;  vi) the
variability in  NSIpLFP  values  restricted to non-rhythmic
episodes  σ NSI >0 ; vii) the  variability  in  NSIpLFP  values

restricted to rhythmic episodes σ NSI ≤ 0.
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Figure  6. Features in the distribution of
the  pLFP-based  NSI  explain  the
diversity  over  recordings  of  the
correlation value between the population
(pLFP) and single  cell  (Vm)  signals.  (a)
We perform a linear-regression between the
correlation coefficient cc(Vm,pLFP) and the
following  quantities  characterizing  the
NSIpLFP distribution:  1)  the variability  σNSI

(standard  deviation)  of  the  NSIpLFP values
across  the  whole  recording,  2)  the
variability  in  NSIpLFP values  restricted  to
non-rhythmic  episodes  σNSI>0 ,  3)  the
fraction of rhythmic episodes FNSI≤0 , 4) the
mean NSIpLFP over the whole recording μNSI,
5)  the  variability  in  NSIpLFP values
restricted  to  rhythmic  episodes  σNSI≤0 ,  6)

the mean in NSIpLFP values restricted to non-rhythmic episodes μNSI>0 , 7) the mean in NSI values restricted to rhythmic
episodes μNSI≤0. We show the explained variance for all quantities on the x-axis and the statistical significance of those
linear models (p-values). We also performed multiple linear regressions with all those factors (dark gray bar) and the
best three-component model (light gray bar: σNSI>0,  FNSI≤0,  σNSI≤0). We report the variance corrected by the number of
linear factors (adjusted R2). (b) Scatter plot between the value of a given factor and the Vm-pLFP correlation coefficient
across individual recordings. Shown for the first five factors of the NSIpLFP distribution with the highest percentage of
explained variance (see variance explained and p-values in a). The color code of individual recordings matches that of
Fig.2c.
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We show the results  of  a  linear  regression  analysis  for
each factor in Fig.6a (ordered by explained variance) and
their relationship with the correlation value in Fig.6b. The
factor explaining the highest percentage of the variability
(55.27% of the full variability) was the standard deviation
of the NSI distribution  σ NSI .  Strikingly,  the fraction of
(synchronous)  rhythmic  states  was  only  the  third  most
important factor with an explained variance of 33.89%. A
more important factor was found to be the variability of
network states within non-rhythmic states σ NSI >0 with an
explained  variance  of  41.5%.  Recording  #14 in  Fig.4ii
provided an example of these observations.  It  exhibited
strong  variability  in  terms  of  non-rhythmic  states  and
relatively low occurrence of rhythmic activity (e.g. lower
than  recording  #1).  However,  it  still  displayed  high
correlation coefficient (with cc(V m,  pLFP)=0.66). Other
individual  factors  had  weak  statistical  significance
(p>0.04,  see  Fig.6a).  However,  using  a  multiple  linear
regression including all  factors,  we found that  different
components of the NSI distributions had complementary
contributions  in  shaping  the  average  correlation  per
recording.  The  full  linear  model  indeed  yielded  an
explained  variance  of  69.17%  (after  correction  by  the
number  of  linear  factors,  f-test  p=3.1e-2).  Reduce  the
dimensionality  of  the  linear  model  (up  to  three
components),  we  found  that  combining  the  significant
sub-components  of  the  NSI  variability  (σ NSI >0 and

FNSI ≤ 0) with the variability within rhythmic states σ NSI ≤ 0

produced a statistically-significant model (f-test, p=6.6e-
3) predicting 59.84% of the variability (corrected by the
number of factors).

We  concluded  that,  in  the  present  dataset,  the  average
correlation  between  a  single  cell  signal  (Vm)  and  the
population signal (pLFP) could be largely explained (up
to ~70%) by features  of  the NSIpLFP distributions.  State
variability among all NSIpLFP-defined states (σ NSI) was a
critical  factor  in determining such a variability (blue in
Fig. 6a). We decomposed this state variability and found
that  the  two most  prominent  factors  are  the  variability
within  non-rhythmic  states  (σ NSI >0,  orange  in  Fig  6a)
followed  by  the  occurrence  of  synchronous  rhythmic
activity (FNSI ≤ 0, green in Fig. 6a).

Discussion
In this study, we developed a method to extract from LFP
recordings  in  the  awake  mouse  cortex  network  states
information that previously could be obtained only with
intracellular Vm recordings (Arroyo et al., 2018; Einstein
et  al.,  2017;  McGinley  et  al.,  2015a;  Nestvogel  and
McCormick,  2021;  Polack  et  al.,  2013;  Poulet  and
Petersen,  2008;  Reimer  et  al.,  2014).  Prolonged
membrane  potential  recordings  are  difficult  to  achieve,
and most of the times require head-fixation (but see Lee
et al., 2006). This strongly limits our ability to describe
the  complexity  of  network  states  and  their  relationship
with behavior. Achieving precise state classification based
on  LFP  recordings,  which  are  technically  easier  to
perform and can be performed in freely moving animals,
will greatly increase our ability to understand the cellular
and network mechanisms underlying cortical  processing

during  behavior.  Previous  attempts  to  classify  network
states from the LFP have been limited to the delta-band
activity (Chen et al., 2017; Pala and Petersen, 2018; Vinck
et  al.,  2015).  When  applied  to  data  gathered  in  awake
animals,  the delta-to-gamma state  classification used in
anesthetized preparations (Cheng-yu et al., 2009; Saleem
et al., 2010) was shown to only separate between the two
extremes of the spectrum of cortical states: synchronized
delta-band  activity  and  desynchronized  activity  at  high
gamma power. In contrast, the new classification method
developed in this study, NSI, captured the large spectrum
of network states in the awake neocortex. Importantly, it
provided quantitative measurement of the “U-model” of
cortical  states,  which  was  previously  developed  only
based  on  intracellular  membrane  potential  recordings
(McGinley et al., 2015b).

Prior  to the NSI classification,  we found it  essential  to
apply a pre-processing step to the extracellular LFP. We
computed  the  time-varying  envelope  after  a  wavelet
transformation  in  the  high-gamma  band  (yielding  the
pLFP  signal).  In  a  previous  study  in  cat  neocortex
(Mukovski et al., 2006), the authors identified active and
silent  states  (Up  and  Down  respectively)  under
anaesthesia from the pLFP signal (with a slightly different
frequency  band of  the  LFP:  20-100 Hz,  instead  of  the
data-driven [39.7,133.6] Hz band used here). We showed
that  such  a  signal  processing  step  enabled  capturing
various states of wakefulness, ranging from delta (~3 Hz)
oscillatory  activity  to  desynchronized  states  at  various
levels of spiking activity.

We then used the NSI to analyze how the distribution of
network  states  within  a  recording  period  shaped  the
average correlations between the single cell (intracellular)
and  population  (extracellular)  signals.  In  anesthetized
preparations,  a consolidated  view suggests  that  low
frequency activity is the main source for neural synchrony
in  cortical  networks  and  thus  for  cell-to-population
correlation  (Steriade  et  al.,  1993).  Also  in  our  dataset
recorded during wakefulness, the fraction of slow (delta-
band)  oscillatory  episodes  was  a  factor  significantly
contributing to the level of correlation between single cell
and  population  signal  (Fig.  6).  However,  and
unexpectedly, we found that this was a weaker factor than
the variability in the set of non-rhythmic states NSI values
of  cortical  activity  (Fig.  6).  This  observation  was
explained  by  the  fact  that  synchronized  delta  activity
represented  only  a  modest  fraction  of  network  activity
during wakefulness (18.9% here) and by the fact that the
diverse  non-rhythmic states  corresponded  to  strongly
differing  levels  of  both  the  Vm depolarization  and  the
high-gamma  activity (Reimer et  al.,  2014; McGinley et
al.,  2015a; Zerlaut et al.,  2019,  Fig. 2,3,4).  Importantly,
the  diversity  of  network  state  distributions  across
recordings largely contributed to  the high variability  in
the measured cell-to-population correlations (70% of this
variability  could  be  explained  by  recording-specific
features  of  the  NSIpLFP distribution,  Fig.  6).  This
observation further  highlights  the necessity  of  network-
state  monitoring  in  the  interpretation of  experimental
results in the awake cortex (McGinley et al., 2015b), and
it  suggests  the  possible  importance  of  NSI  indices  to
understand and characterise how the degree of coupling
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between  single-cell  and  population-level  activity  varies
across different behavioural states.

 Our  results  provide  possible  insights  on  the  circuit
dynamics during different cortical states observed during
wakefulness. First, non-rhythmic episodes had population
activity  levels  (pLFP)  varying over  a  wide  range  and
seemed to reach up to levels  never observed in rhythmic
episodes (Fig 3f).  Second,  in such  non-rhythmic  states,
we observed a tight relationship between the population
activity  and  single-cell  depolarization  (Fig.  5).  This
suggests that local recurrent spiking activity plays a major
role is  shaping the  dynamics of  non-rhythmic states.  It
also corroborates, at the level of population signals, that
the  hyperpolarized  non-rhythmic states  observed  at
intermediate  arousal  when  sensory  detection  is  optimal
are  characterized  by  lower  levels  of  ongoing  recurrent
synaptic activity in local cortical populations  (McGinley
et  al.,  2015;  Neske  et  al.,  2019;  Nestvogel  and
McCormick,  2021).  Instead,  during  rhythmic  states,
population  activity varied  over  a  much  more  limited
range,  and  the  relationship  between population  activity
(pLFP) and single-cell membrane potential was much less
tight  (Fig. 5). This suggests that in rhythmic states local
recurrent cortical  activity plays a lesser role in shaping
cortical dynamics when compared to non-rhythmic states.
This  view  is  consistent  with  the  critical  role  of  the
thalamus  in  shaping  ~3Hz  oscillatory  activity  in  the
cortex (Nestvogel and McCormick, 2021). Because of the
occasionally low level of the pLFP signal during rhythmic
activity, the NSIpLFP was biased towards low activity non-
rhythmic  states  when  evaluated  from  extracellular
recordings.  Despite  this  limitation,  the  overall  high
matching value obtained through cross-validation (~80%
correct)  suggested  that  the  pLFP-based  NSI  is  a  valid
index  to  characterize  the  different  network  states
occurring during wakefulness.

Given the widespread use of extracellular recordings in
neuroscientific  research  in  both  head  fixed  and  freely
moving  preparations  (Jun  et  al.,  2017;  Panzeri  et  al.,

2015) and the relevance of state  modulation in sensory
processing  (Arandia-Romero  et  al.,  2016;  Ayaz  et  al.,
2013; Busse et  al.,  2017; Bennett et al.,  2013; Dadarlat
and Stryker,  2017; Davies et al.,  2020; Destexhe, 2011;
Ecker et al., 2014; Einstein et al., 2017; Fu et al., 2014;
Lee et al., 2014; ; Muller et al., 2018; Niell and Stryker,
2010; Pachitariu et al., 2015; Pakan et al., 2016; Pinto et
al., 2013; Polack et al., 2013; Poulet and Crochet, 2018;
Reimer et  al.,  2014;  Vijayan et  al.,  2010;  Vinck et  al.,
2015; Zhou et al., 2014), the presented method provides a
potentially  important  analytical  tool  to  document  the
properties and functions of state-dependent computations
in  neocortex  (Buonomano  and  Maass,  2009;  Cardin,
2019).

Material and Methods

Animals 
Experimental  procedures  involving  animals  have  been
approved  by  the  IIT Animal  Welfare  Body and by  the
Italian  Ministry  of  Health  (authorization  #  34/2015-PR
and  125/2012-B),  in  accordance  with  the  National
legislation (D.Lgs. 26/2014) and the European legislation
(European  Directive  2010/63/EU).  Experiments  were
performed  on  young-adult  (4-6  weeks  old,  either  sex)
C57BL/6J mice (Charles River, Calco, Italy). The animals
were housed in a 12:12 hr light-dark cycle in singularly
ventilated cages, with access to food and water ad libitum.

Experimental design
The experimental procedure for simultaneous extra- and
intra-cellular recordings in awake head-fixed mice have
been  previously  described  (Zucca  et  al.,  2017)  and  the
present dataset was used in a previous study (Zerlaut et
al., 2019). Briefly, a custom metal plate was fixed on the
skull of n=4 young (P22-P24) mice two weeks before the
experimental sessions. After a 2-3 days recovery period,
mice were habituated to sit  quietly on the experimental
setup  for  at  least  7-10  days  (one  session  per  day  and
gradually  increasing  session  duration).  The  day  of  the
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Parameter Symbol Value

pLFP root freq. f 0
72.8 Hz

pLFP band factor w0
1.83

pLFP smoothing T smoothing
42.2ms

percentile for pLFP lower bound p0
thre 1%

pLFP lower bound p0
2.85±0.73μV

State window T state
400ms

Sliding mean window T mean
500ms

pLFP threshold for state validation pfluct
thre 2.85±0.73μV

factor for rhythmicity threshold α 2.87

Table1. Parameters of the NSIpLFP characterization. Note that the p0 and pfluct
thre  parameters are data-driven quantities, i.e. varying

from recording to recording, deriving from the value of p0
thre

 (reported as mean ± s.e.m over the n=14 recordings).
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experiment, mice were anesthetized with 2.5% isoflurane
and a small craniotomy (0.5x0.5 mm) was opened over
the  somatosensory  cortex.  A 30-minute  long  recovery
period  was  provided  to  the  animal  before  starting
recordings. Brain surface was kept moist with a HEPES-
buffered artificial cerebrospinal fluid (aCSF). Local field
potential (LFP) recordings were performed by lowering a
glass pipette filled with aCSF into the tissue with the tip
placed  at  ~300  µm  from  pial  surface.  Simultaneous
current-clamp patch-clamp recordings were carried out on
superficial layers (100– 350 µm), all recorded cells had a
regular-spiking  response  to  current  pulses  (data  not
shown)  and  were  therefore  identified  as  putative
pyramidal neurons (Connors and Gutnick, 1990). 3–6 MΩ
borosilicate  glass  pipettes  (Hilgenberg,  Malsfeld,
Germany) were filled with an internal solution containing
(in mM): K-gluconate 140, MgCl2 1, NaCl 8, Na2ATP 2,
Na3GTP 0.5, HEPES 10, Tris-phosphocreatine 10 to pH
7.2  with  KOH.  Current-clamp  recordings  were  not
corrected  for  liquid  junction  potential  offset.  Electrical
signals  were  grounded  at  the  top  of  the  skull  (at  the
location  of  the  craniotomy)  and  were  acquired  using  a
Multiclamp 700B amplifier, filtered at 10 kHz, digitized
at 50 kHz with a Digidata 1440 and stored with pClamp
10  (Axon  Instruments,  Union  City,  CA).  Multi-Unit
Activity  (MUA)  was  computed  by  band-pass  filtering
(0.3-3  kHz)  the  extracellular  signal  and  taking  the
absolute  value  of  the  resulting  signal  (Einevoll  et  al.,
2013).

Wavelet Transform
Our signal processing pipeline of the LFP was based on
the  wavelet  transform.  We  implemented  a  wavelet
transform based  on  the  Morlet  wavelet,  which  has  the
following equation (Mallat, 1999):

M d0
( f , t )=Cd0

( f )⋅e2 iπft ⋅e
−(√

2 πft
d0 )

2

     (1)

where f  is the frequency of the wavelet and d0 the decay

parameter  of  the  envelope.  We  used  a  value  of  d0=6

throughout  the  study.  The  coefficient  Cd0
(f ) is  the

normalization  coefficient  of  the  wavelet.  Note  that,  to
keep  a  meaningful  link  with  the  physical  units  of  the
signal, we did not normalize the wavelet with respect to
itself,  but  with  respect  to  a  sinusoid  (otherwise  the
wavelet  transform  with  standard  normalization  of  a
sinusoid  of  frequency  f  and  amplitude  1  has  a  value
greater  than  1  at  the  frequency  f ).  The  wavelet
normalization  coefficient  was  therefore  defined,  for  a

wavelet frequency f  and an extent Ω , as:

Cd0
( f )=∫

−∞

∞

cos (2 πfs ) ⋅M d0
( f , s ) ds

Cd0
(f )=

d0

2√2 π f
(1+e

−d 0
2

2 )
The  transform  was  implemented  by  a  convolution
between  the  complex  conjugate  of  the  Morlet  wavelet
(Eq.1) and the signal S ( t ), i.e.:

W ( f , t )=∫
− T f

T f

(S (t − s )− ⟨ S ⟩t ,T f )⋅M d 0
( f , s )ds (2)

where  ⟨ S ⟩t ,T f
 is  the  signal  average  in  the  window

centered at t  of extent T f . T f  is the frequency-dependent
window on which the convolution is performed,  it  was
defined as the extent of the wavelet where its amplitude

decays by (1 −e− 4 )=98.2%, i.e. T f =√2
d0

πf
. From Eq.2,

we computed the envelope and the phase at time  t  of a
given frequency  f  in the signal by taking the norm and

argument of the complex number W ( f , t ). 

Computing the pLFP signal
From  the  LFP time  series,  we  computed  a  “processed
LFP”  (Mukovski  et  al.,  2006),  shortened  to  “pLFP”,
which  corresponds  to  the  temporally-smoothed  high-
gamma envelope variations of the LFP fluctuations (see
main  text).  The  pLFP  was  computed  as  follows.  We
consider  a  frequency  band  spanning  [f 0/w0,  f 0⋅w0],

where f 0 is a root frequency and w0 the width parameter

of the band. We take a set of  N=5 wavelets uniformly

spanning  this  band  (i.e.  evenly  space  from  f 0/w0 to

f 0⋅w0). The pLFP signal was computed as the sum over

N  of  the  k  wavelet  envelopes  of  frequency

f k ∈ [ f 0/w0 , f 0⋅w0 ], i.e.:

pLFP (t )= ∑
k ∈ [1 , N ]

❑ ∥W ( f k ,t ) ∥
N

 (3)

This time-varying signal is then smoothed over time with
a  Gaussian  filter  to  yield  the  final  pLFP  signal  (see
Fig.2a). The parameters  f 0,  w0, and the time smoothing

width  T smooth were  set  to  maximise  the  correlations
between the time course of the membrane potential and
the pLFP (see Results) and their value is reported in Table
1.

Computing the Network State Index (NSI)
Then,  from the  pLFP we  computed  the  Network  State
Index (NSI), as follows. The pLFP was first downsampled
by  averaging  over  bins  of  1ms  (keeping  the  50kHz
sampling  of  electrophysiological  signals  is  unnecessary
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Misclassification cases percentage

NSIpLFP >0 and NSIVm≤0 65.3%

NSIpLFP ≤0 and NSIVm>0 25.0%

NSIpLFP>0 and NSIVm>0 5.4%

NSIpLFP ≤0 and NSIVm≤0 4.3%

Table 2.  Misclassifications in the pLFP-based (NSIpLFP)
versus  Vm-based  (NSIVm)  NSI  characterization.
Proportions  of  the  misclassifications  splitted  into  the
rhythmic (NSI≤0) and non-rhythmic (NSI>0) cases for both
the  pLFP and  Vm signals  over  all  episodes  in  the  n=14
recordings (related to Fig.4c).
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given the much slower time scale of state transitions, see
Results). We then computed the distribution of the pLFP
over  the  whole  recording  and  we  extract  the  baseline
noise level of the pLFP signal  p0 by taking the value of
the  first  (lowest)  percentile  of  the  distribution.  We
interpret this recording-specific  p0 value as the residual
high-gamma envelope in absence of neural activity (see
the systematic depolarization from the activity at pLFP≤p0

in Fig.3f) and we therefore considered it as an estimate of
the noise level in the pLFP signal.
We computed the time-varying envelope of the [2,4] Hz
band  δ env of  the  pLFP signal  using  the  above wavelet
transform (Eq.2). We took a set of 20 wavelets uniformly
sampling the [2,4] Hz band and, at every 1ms time point,
we extract the maximum envelope from this band (and the
phase  of  this  maximum  envelope  in  Fig.3f).  We
constructed  a  weighted  estimate  X ( t ) of  the  low-
frequency  content  of  the  pLFP  signal  by
X (t )= p0+α δenv ,  where  α  is  the  threshold parameter
for  the  rhythmic/non-rhythmic  classification  (see
Results). We also computed a slow average of the pLFP
fluctuations with a Gaussian smoothing of time constant
T mean=500ms, yielding the signal Y (t ). 
Finally, the Network State Index (NSI) was defined from
the above computed signals by the following equation:
NSI (t )=−2 ⋅δ env ⋅H ( X −Y )+( Y − p0 )⋅H (Y − X )

(4)
where H  is the Heaviside step function.
From  this  time-varying  signal,  we  computed  what  we
termed “validated” network states by running through the
time axis in steps of T state/2=200ms and identifying those

time  periods  in  which  t  the  T state=400ms  window
surrounding each time point does not contain variations of
the  NSI  signal  larger  than  the  noise  level  p0.  When
averaging quantities for a given NSI level (Figure 3,4,5),
we considered only the NSI levels including more than 5
validated episodes to get a meaningful average.
The  signal  processing  steps  of  this  procedure  are
illustrated on Fig.3a and all parameters of the analysis are
summarized in Table1. 

Statistical analysis
Experimental data were imported in Python using the neo
module (Garcia et al., 2014).  All signal processing steps
(sub-sampling, convolution, filtering) were implemented
in  numpy (Harris  et  al.,  2020).  Statistical  analysis  was
performed with the scipy.stats module of SciPy (Oliphant,
2007).  We  analysed  the  linear  relationship  between
continuous  samples  with  a  Pearson  correlation  analysis
(function  scipy.stats.pearsonr) and we reported the two-
tailed p-value of the null correlation hypothesis. For the
statistics  of  samples  consisting  of  an  averages  over  a
given recording  session  (n=14 recordings  sessions),  we
tested the significance using two-tailed t-tests (functions
scipy.stats.ttest_rel, scipy.stats.ttest_ind or
scipy.stats.ttest_1samp for  paired  samples,  unpaired
samples  and  single  samples  respectively).  The  multiple
linear regressions of Fig. 6 was performed with the OLS
(ordinary  least  squares)  function  of  the  statsmodel
module.  We  analysed  the  statistical  significance  of  the

single or multi-component models with an F-test and we
report the variance adjusted by the numbers of factors.

Software Accessibility
We implemented the described analysis  into a  software
publicly  available  at  the  following  link
https://github.com/yzerlaut/Network_State_Index.  The
software  contains  the  described  algorithm,  a  graphical
user  interface  and  the  support  for  a  few
electrophysiological data formats.
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