Supporting Information

Sucrose-dependence of sugar uptake, quorum sensing and virulence of the rice blight pathogen *Xanthomonas oryzae* pv. *oryzae*

Mayuri Sadoine¹, Juying Long^{2,3,¶}, Congfeng Song^{2,3,¶}, Yugander Arra¹, Wolf B. Frommer^{1,4,*} and Bing Yang^{3,5,*}

<i>Xoo</i> position	Xoo gene	<i>Xcc</i> position	Xcc gene	Name ^a	sim./Id. ^b	Putative function
4257691- 4258722	PXO_02412	3996974- 3998005	XCC3356	suxR	87 %/ 93 %	Transcriptional repressor
4258963- 4260294	PXO_02413	3998233- 3999552	XCC3357	suxC	88 %/ 90 %	Inner membrane sugar transporter
4260568 4263012	PXO_02415	3999800- 4002274	XCC3358	suxA	87 %/ 88 %	TonB-dependent receptor
4263047- 4264963	PXO_02416	4002308- 4004221	XCC3359	suxB	81 %/ 78 %	Amylosucrase

S1 Table. Homologs of the <i>sux</i> gene cluster in <i>Xoo</i> and <i>Xcc</i>
--

^a in reference to *Xcc* homologs from Blanvillain and Meyer (33)

^b Top number identity (nucleotide); lower number identity (amino acid) of *Xoo* and *Xcc* genes and proteins, respectively.

Xanthomon as spp.	suxR	suxC	suxA	suxB	Taxono my ID
	Transcripti onal regulator	Sugar transporter	TonB- dependent receptor	Amylosucra se	
X. citri pv. malvacearu m	GH913_001 80	GH913_001 85	GH913_001 90	GH913_0019 5	NCBI:txi d86040
X. axonopodis pv. citri	XAC3487	XAC3488	XAC3489	XAC3490	NCBI:txi d346
X. fragariae	PD5205_00 656	PD5205_00 655	PD5205_00 654	PD5205_006 53	NCBI:txi d48664
X. gardneri	E1J23_RS0 0750	E1J23_RS0 0745	E1J23_0077 0	E1J23_00765	NCBI:txi d90270
X. euvesicatoria	BJD11_046 20	BJD11_046 15	BJD11_046 10	BJD11_0460 5	
X. perforans	XPE_17325	XPE_17320	XPE_17315	XPE_17310	NCBI:txi d44269 4
X. cucurbitae	EBN15_155 95	EBN15_156 00	EBN15_156 05	EBN15_1561 0	NCBI:txi d56453

S2 Table. Conservation of the *sux* locus among *Xanthomonas* spp.

			XmelCFBP4		
X. melonis	XmelCFBP4 644_08715	XmelCFBP4 644_08720	644_RS087 85	XmelCFBP46 44_08730 (C)	NCBI:txi d56456
X. codiaei	XcodCFBP4 690_RS049 25	XcodCFBP4 690_RS049 20	XcodCFBP4 690_04895	XcodCFBP46 90_RS04910 (s)	NCBI:txi d56463
X. campestris pv. campestris	XCC3356	XCC3357	XCC3358	XCC3359	NCBI:txi d340
X. oryzae pv. oryzae	PXO_02412	PXO_02413	PXO_02415	PXO_02416	NCBI:txi d64187
X. oryzae pv. oryzicola	XOC_3754	XOC_3756	XOC_3757	XOC_3758	NCBI:txi d12939 4
X. axonopodis pv. glycines	supR	supC	supO	supH	NCBI:txi d47342 1
X. translucens pv. undulosa	F0H33_159 25	F0H33_159 30	F0H33_159 35	F0H33_1594 0	NCBI:txi d48790 9
X. campetris pv. vesicatoria	XCV3615	XCV3616	XCV3617	XCV3618	NCBI:txi d45632 7
X. vasicola pv. vasculorum	CXP37_180 50	CXP37_180 60	CXP37_180 65	CXP37_1807 0	NCBI:txi d32577 6
X. axonopodis pv. manihotis	No data	AO826_198 85	AO826_198 80	AO826_1987 5	NCBI:txi d43353
X. arboricola pv. juglandis	AKJ12_147 15	AKJ12_147 20	AKJ12_147 25	AKJ12_1473 0	NCBI:txi d19570 9
X. phaseoli pv. phaseoli	AC610_179 30	AC610_179 35	AC610_179 40	AC610_1794 5	NCBI:txi d19852 54
X. cynarae CFBP 4188	XcyCFBP41 88_RS1092 0	XcyCFBP41 88_RS1092 5	XcyCFBP41 88_RS1093 0	XcyCFBP418 8_RS10935	NCBI:txi d10921 4
X. hortorum VT106	DYQ48_045 80	DYQ48_045 75	DYQ48_045 70	DYQ48_0456 5	NCBI:txi d56454
X. bromi CFBP 1976	XbrCFBP19 76_RS0026 5	XbrCFBP19 76_RS0026 0	XbrCFBP19 76_RS0023 5	?	NCBI:txi d56449
X. prunicola CFBP 8553	XpruCFBP8 353_04425	XpruCFBP8 353_RS044 35	XpruCFBP8 353_RS044 40	XpruCFBP83 53_RS04445	NCBI:txi d20539 30
X. vasicola NCPPB 1060	NX81_0187 10	NX81_0187 15	NX81_0187 20	NX81_01872 5	NCBI:txi d:56459

X. axonopodis Xac29-1	XAC29_177 60	XAC29_177 65	XAC29_177 70	XAC29_1777 5	NCBI:txi d53413
X. fuscans subsp. fuscans	AC614_177 55	AC614_177 60	AC614_177 65	AC614_1777 0	NCBI:txi d36664 9
X. citri pv. malvacearu m	GH913_001 80	GH913_001 85	GH913_001 90	GH913_0019 5	NCBI:txi d86040
X. citri subsp. citri	B7L67_073 15	B7L67_073 20	B7L67_0732 5	B7L67_0733 0	NCBI:txi d61130 1
X. pisi DSM 1856	Y887_0487 0	Y887_0487 5	Y887_04880	Y887_04885	NCBI:txi 56457
X. melonis CFBP4644	XmelCFBP4 644_08715	XmelCFBP4 644_08720	XmelCFBP4 644_08725	XmelCFBP46 44_08730	NCBI:txi d56456

S3 Table. Bacterial strains and plasmids used in this study.

Designation	Genotypes or relevant characteristics ^a	Source or reference
Plasmids		
pGEM-T	Resistance to carbenicillin (Cbr)	Promega Corp.
pSKsacB-Kn	Kanamycin (Kn ^r) from pKD13 and <i>sacB</i> gene from pKNG101 fusion in pBluescript KS(+)	Refs. (62,63) Stratagene, Inc., La Jolla, Calif
pHM1	Broad host range vector, spectinomycin resistant, polylinker, cos site	Ref. (64)
pHM1/SuxR	suxR ORF cloned in pHM1	This study
pHM1/SuxA	suxA ORF cloned in pHM1	This study
pHM1/SuxC	suxC ORF and promoter cloned in pHM1	This study
pΔSuxR	5' and 3' sequences of <i>suxR</i> cloned in pGEM-T for a deletion in <i>suxR</i> , and <i>sacB-kn</i> cassette fused in <i>SpeI</i> site of pGEM-T backbone.	This study
p∆SuxA	5' and 3' sequences of <i>suxA</i> cloned in pGEM-T for a deletion in <i>suxA</i> , and <i>sacB-kn</i> cassette fused in <i>Spe</i> I site of pGEM-T backbone	This study
p∆SuxC	5' and 3' sequences of <i>suxC</i> cloned in pGEM-T for a deletion in <i>suxC</i> , and <i>sacB-kn</i> cassette fused in <i>Spel</i> site of pGEM-T backbone	This study
p∆Sux	5' sequence of <i>suxR</i> and 3' sequences of <i>suxC</i> cloned in pGEM-T for a deletion in from <i>suxR</i> to <i>suxC</i> , and <i>sacB-kn</i> cassette fused in <i>Spel</i> site of pGEM-T backbone	This study
Escherichia coli		
XL1-Blue MRF'	<i>F'proAB lacl</i> qZ∆ <i>M15</i> Tn10 (Tet ^r)	Stratagene
Xanthomonas oryzae pv. oryzae		
PXO99 ^A	Philippine race 6; azacytidine resistant clone of PXO99	Ref. (64)
Δsux	suxR-suxC-suxA-suxB deleted in PXO99 ^A	This study
ΔsuxA	suxA mutant of PXO99 ^A	This study
ΔsuxB	suxB mutant of PXO99 ^A	This study
ΔsuxC	suxC mutant of PXO99 ^A	This study
∆suxR	suxR mutant of PXO99 ^A	This study
∆suxA/suxA	$\Delta suxA$ complemented with $suxA$ under the $lacZ$ promoter in pHM1	This study

ΔsuxA/pA-suxA	$\Delta suxA$ complemented with <i>suxA</i> under putative promoter of <i>suxA</i> in the opposite direction of the <i>lacZ</i> promoter in pHM1	This study
ΔsuxB/suxB	$\Delta suxB$ complemented with $suxB$ under the <i>lacZ</i> promoter in pHM1	This study
∆suxB/pA-suxB	$\Delta suxB$ complemented with $suxB$ under the putative promoter of $suxB$ in the opposite direction of the <i>lacZ</i> promoter in pHM1	This study
∆suxC/suxC	$\Delta suxC$ complemented with $suxC$ under the <i>lacZ</i> promoter in pHM1	This study
ΔsuxC/pC-suxC	$\Delta suxC$ complemented with $suxC$ under putative promoter of $suxC$ in the opposite direction of the <i>lacZ</i> promoter in pHM1	This study
∆suxR/suxR	$\Delta suxR$ complemented with $suxR$ under the <i>lacZ</i> promoter in pHM1	This study
ΔsuxR/pR-suxR	$\Delta suxR$ complemented with $suxR$ under the putative promoter of $suxR$ in the opposite direction of the <i>lacZ</i> promoter in pHM1	This study

S4 Table. Oligonucleotides

Name	Sequence (5′ - 3′)	Use
SuxA-F1	CGCGGATCCCGGCGCCCAGATAGTTGT	PCR-amplification of
	AG	upstream sequence of suxA
SuxA-R1	CGGAATTCCGCAGGAAGATGTCGGAGTT	for suxA deletion
SuxA-F2	CGGAATTCGATCCAACCGGTGGAACAAC	PCR-amplification of
SuxA-R2	AACTGCAGGTACAACGTCTGCAAGGCAT	downstream sequence of
	С	suxA for suxA deletion
suxA (p+ cds) F-u	CCCATGTACGGCATGCGCC	
(Sacl)		PCR-amplification and
suxA (p+ cds) F-d	GCGCGAGATGGGATGC	reconstruction of suxA for
suxA (p+ cds) R-u	CGAATTTCCGCAGCGACATC	complementation of $\Delta suxA$
suxA (p+ cds) R-d	CCCGTGCTATTAGAAACCGCCG	
(HindIII)		
suxAcds-u (HindIII)	AAGCTT	PCR-amplification and
	TTAAAAGTCGTAACGCAGGCTGAT	reconstruction of suxA for
suxAcds-d (Sacl)	GAGCTCATGTCCACCTTGCACACCCT	complementation of ∆suxA
SuxB-F1, (<i>Pst</i> I)	CTGCAGAAATCACCAGCCAGCGTTTC	PCR-amplification of
SuxB-R1, (Sacl)	GAGCTCGAGATCGCCCAGTTCTCCCA	upstream sequence of suxB
		for suxB deletion
SuxB-F2, (Sacl)	GAGCTCGCACGATGCAGAGAGCCTAA	PCR-amplification of
SuxB-F2, (<i>BamH</i> I)	GGATCCATGACCAAGATCGTGCCGTT	downstream sequence of
		suxB of suxB deletion
suxAp-u, (Sacl)	GAGCTC ATCGGCCCGGCCAG	PCR-amplification of suxA
suxAp-d,	ATTGATCGGGGAGGTGCTCATTGCGATT	promoter sequence
	CTCTCTCTCTCTCACG	
suxBcds-u	CGTGAGAGAGAGAGAGAGAATCGCA	PCR-amplification and
	ATGAGCACCTCCCCGATCAAT	reconstruction of suxB for
suxBcds-d, (KpnI)	GGTACCTCAGGCACCGCGCTGC	complementation of $\Delta suxB$
suxBcds-u (KpnI)	GGTACC ATGAGCACCTCCCCGATCAAT	
suxBcds-d (Sacl)	GAGCTCTCAGGCACCGCGCTGC	
SuxC-F1 (Pstl)	CTGCAG GCTTCGACGATATCCCGCTG	PCR-amplification of
SuxC-R1 (<i>BamH</i> I)	GGATCC GATGGTGTGTGTGCGCTTG	upstream sequence of suxC
		for suxC deletion
SuxC-F2 (BamHI)	GGATCC TGCAATACCAAGCCGGTCAT	PCR-amplification of
SuxC-R2 (Xbal)	TCTAGA AGGAAACGACCGCACAGG	downstream sequence of
		suxC for suxC deletion
suxC (p+cds)-u	GAGCTCCCGAGACGCTGGATTTCAATTT	
(Sacl)		

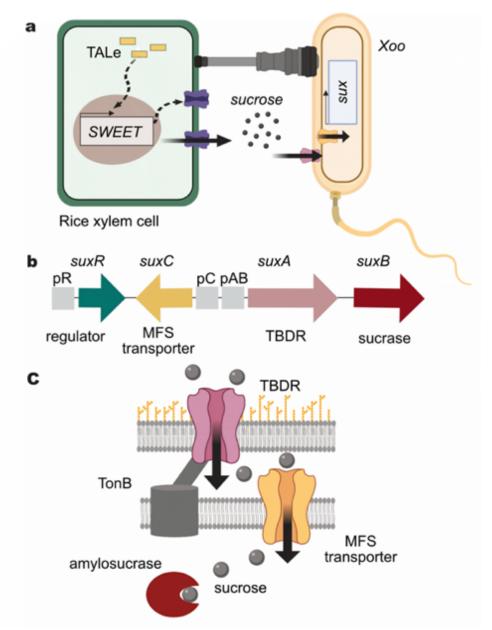

suxC (p+cds)-d (<i>Hind</i> III)	AAGCTTTTATGAGCGGCTCTCAACCAA	PCR-amplification and reconstruction of $suxC$ for complementation of $\Delta suxC$
suxCcds-u (<i>Hind</i> III)	AAGCTT ATGTCGTCGACCGTTCC	PCR-amplification and
suxCcds-d (Sacl)	GAGCTCTTATGAGCGGCTCTCAACCAA	reconstruction of $suxC$ for complementation of $\Delta suxC$
SuxR-F1 (BamHI)	GGATCC CCTCGATCAGCAGCTTTCCA	PCR-amplification of
SuxR-R1 (Kpn1)	GGTACC CACCGTGTTGGAGCGTTTG	upstream sequence of <i>suxR</i> for <i>suxR</i> deletion
SuxR-F2 (Kpn1)	GGTACC AAGATGCGTACCGCCTCAC	PCR-amplification of
SuxR-R2 (<i>Pst</i> 1)	CTGCAGGCAACCCCTACCTGATGCTG	downstream sequence of <i>suxR</i> for <i>suxR</i> deletion
suxR (p+cds)-u (Sacl)	GAGCTCCGGTCAATGGCGGGCTCC	PCR-amplification and reconstruction of <i>suxR</i> for
suxR (p+cds)-d (<i>Hind</i> III)	AAGCTTTCACGCCGACTCGCGCA	complementation of ∆suxR
suxRcds-u (<i>Hind</i> III)	AAGCTTATGGCCAAACCTTCAGAACGC	PCR-amplification and
suxRcds-d (<i>Sac</i> l)	GAGCTCTCACGCCGACTCGCGCA	reconstruction of $suxR$ for complementation of $\Delta suxR$
Sux-F1 (<i>Pst</i> I)	CTGCAG CAATTTCGCTACCGCCAAGG	PCR-amplification of
Sux-R1 (<i>BamH</i> I)	GGATCC GCAATCTGCTTGATGTAGGCG	upstream sequence of <i>sux</i> for <i>sux</i> deletion
Sux-F2 (BamHI)	GGATCC CTGGATGATCCTCGCCTGTTC	PCR-amplification of
Sux-R2 (<i>Xba</i> l)	TCTAGA ATCGCGTCACTGGCTTCAC	downstream sequence of <i>sux</i> for <i>sux</i> deletion
2413F1	CAGGAACGCGACGAAATTATAG	RT-PCR detection of suxC
2413R1	AACGCGCACCATATTCCTTAC	
2416F1	ACTTCGTCCTCAACCACACC	RT-PCR detection of suxB
2416F1	CGGATTGCTCCAGTTCAAATC	

Table S5: Threshold cyc	le (range) for various and	alyzed genes relative to 16S rRNA
-------------------------	----------------------------	-----------------------------------

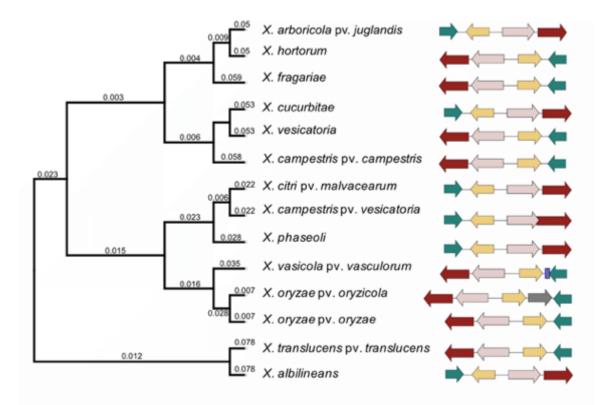
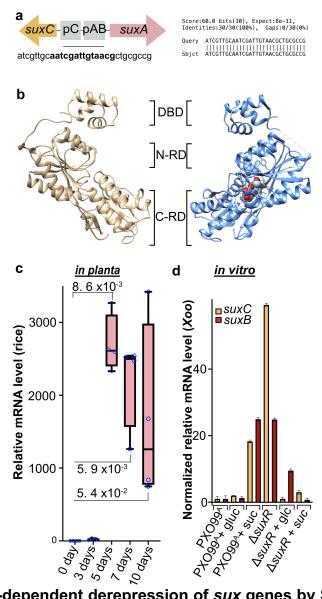
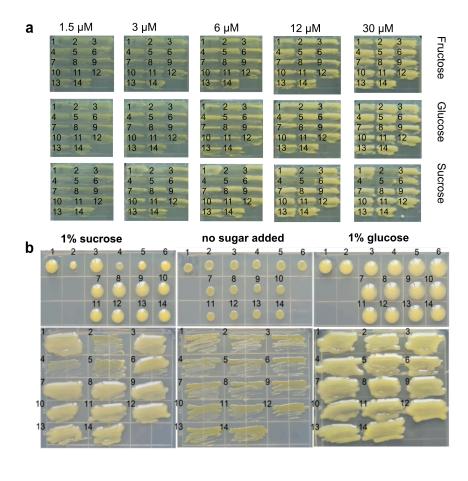
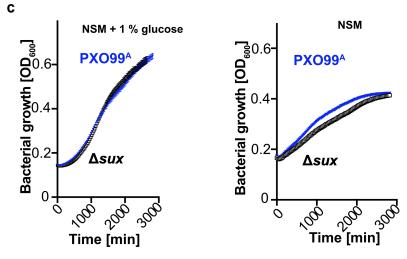

	16S	RpoN1	RpoN2	gumB	gumD	rpfF	rpfC	rpfG
Suc 2 h	25-26	19-20	19-20	23-24	19-20	25-26	23-24	23-24
Glc 2 h	17-21	20-21	24-25	25-28	25-27	29-30	26-27	24-25

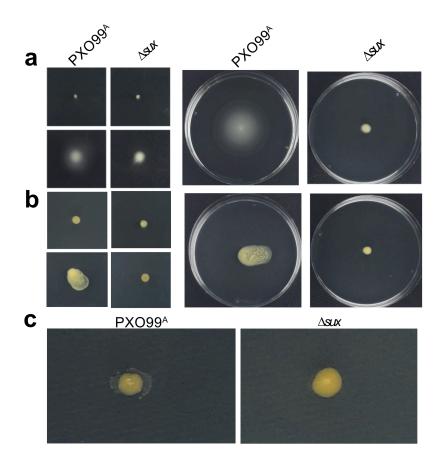
Table S6: Comparison cfu/mL and OD₆₀₀


	OD ₆₀₀	Log CFU/mL
	0.015	6.47 ± 0.04
	0.025	6.90 ± 0.13
	0.102	7.87 ± 0.09
	0,129	8.21 ± 0.003
PXO99 ^A	0,217	8.36 ± 0.03
	0.359	9.18 ± 0.55
	1.555	9.59 ± 0.12
	2.702	9.63 ± 0.04

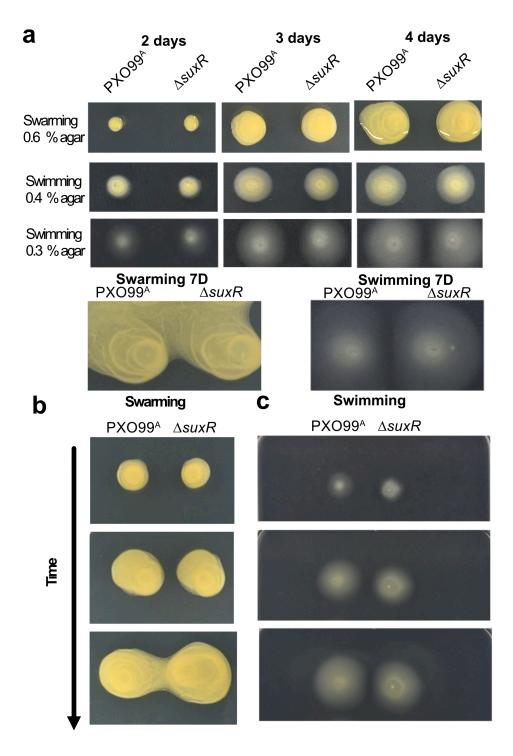

S1 Figure. Potential functions of *Xoo*-encoded *sux* gene products in sucrose uptake and utilization in the rice leaf xylem. Model of the feeding hypothesis in which the *sux* gene cluster components enable *Xoo* to utilize sucrose exported by SWEETs from the xylem parenchyma into the apoplasmic space. The activity of the SWEETs is triggered by TAL effectors from *Xoo*. Sucrose is imported across the outer membrane of *Xoo* by SuxA, a TonB-dependent receptor, then taken up across the inner membrane with the help of SuxC, a major facilitator superfamily (MFS) sucrose transporter. Intracellular sucrose is detected by SuxR, a LacI-type repressor, which derepresses the other *sux* genes in a sucrose-dependent manner. SuxB hydrolyzes sucrose to produce glucose and fructose, which are further metabolized in the cell. TonB is typically involved in transducing energy to multiple TBDRs, and is encoded by a separate gene.

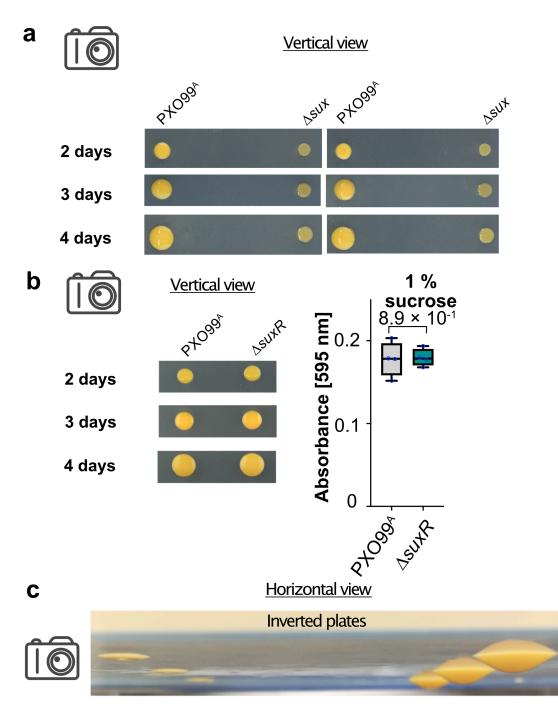


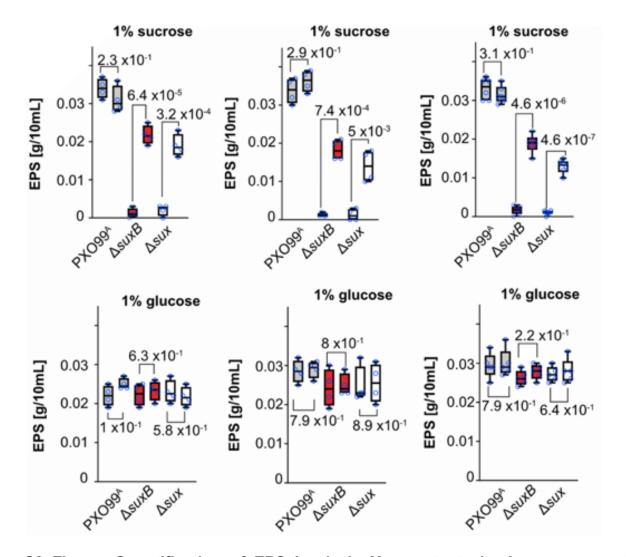
S2 Figure. Conservation of *sux* gene cluster in different *Xanthomonas* spp. Phylogenetic tree was generated using an alignment of a concatenated *sux* ORF cluster sequence (only coding regions were used in concatenated form). Sequences from 14 species: *X. arboricola* pv. *juglandis*, *X. citri* pv. *malvacearum*, *X. vasicola* pv. *vasculorum*, *X. cucurbitae*, *X. phaseoli*, *X. oryzae* pv. *oryzicola*, *X. oryzae* pv. *oryzae*, *X. hortorum*, *X. fragariae*, *X. campestris* pv. *vesicatoria*, *X. vesicatoria*, *X. campestris* pv. *campestris*, *X. translucens* pv. *translucens*, and *X. albilineans*.

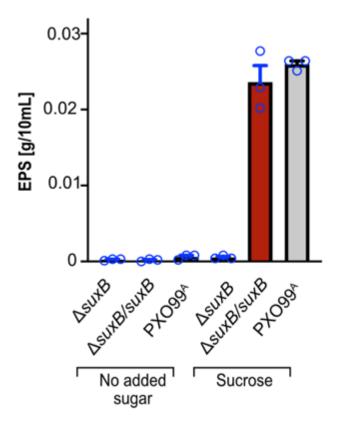


S3 Figure: Sucrose-dependent derepression of sux genes by SuxR. a. Predicted binding region for the Lacl-type HDH domain transcriptional regulator SuxR found by homology to the predicted binding site of Xam and Xag homologs from the RegPrecise database (54). b. 3D homology model of SuxR (Magenta) based on the structure of the LacI transcriptional regulator CeIR in complex with cellobiose (PDB ID: 5ysz). c. suxA transcript levels during infection of Kitaake as determined using gRT-PCR (0, 3, 5, 7 and 10 days after infection). d. qRT-PCR analyses of suxB and suxC mRNA levels in Xoo growing on NB without sugar or 1 % sucrose or glucose in $\Delta suxR$. Values are derived from four biological replicates, each with three technical replicates. Boxes extend from 25th to 75th percentiles and display median values as center lines. Whiskers plot minimum and maximum values and individual data points. Significance was calculated between two groups using unpaired two-tailed Student's T test at the 95 % confidence level and Welch's correction of unequal variances. The 2-^{ΔΔ}Ct method was used for relative guantification with 16S rRNA as reference. Relative mRNA levels in vitro are normalized to 1 for values for data from PXO99^A without added sugar. Relative mRNA levels in planta are normalized to 1 for values for data at 0 day. Comparable results were obtained in three independent experiments. DBD: DNA binding domain; N-RD: N-terminus regulatory domain; C-RD: C-terminus regulatory domain.

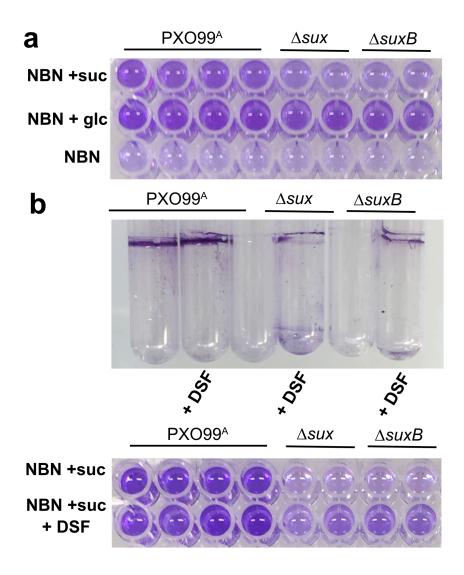



S4 Figure. Growth and colony phenotypes of *sux* **mutants. a.** Mucoid and dry colony phenotypes of *sux* mutants on NB with low concentration of sugar (1.5, 3, 6, 12 and 30 μ M) and **b.** on NBN, NBN + 1 % sucrose or NBN + 1 % glucose **c.**. Growth curves of PXO99A and Δsux synthetic minimal medium (NSM) and NSM + 1 % glucose (n=4). *In vitro* experiments were conducted at least three times independently. Genotypes are numbered: 1 Wild type control, PXO99; the mutants 2 Δsux ; 3 $\Delta suxA$; 4 $\Delta suxB$; 5 $\Delta suxC$; 6 $\Delta suxR$; complementation with constructs using E. coli Lac promoter 7 $\Delta suxA/suxA$; 9 $\Delta suxB/suxB$; 11 $\Delta suxC/suxC$; 13 $\Delta suxR/suxR$; and complementation with constructs using native *Xoo* promoters 8 $\Delta suxA/pA-suxA$; 10 $\Delta suxB/pA-suxB$; 12 $\Delta suxC/pC-suxC$; and 14 $\Delta suxR/pR-suxR$

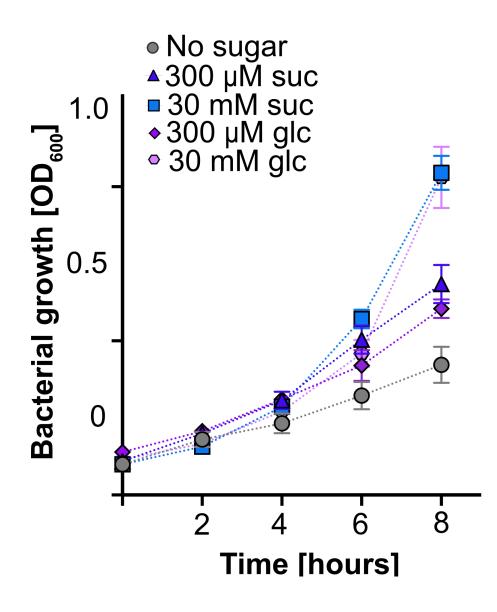

S5 Figure. Swimming and swarming motility of Δ *sux* **mutant. a.** swimming on solid NBN + 1 % sucrose and 0.3 % agar **b.** swarming assays on solid NBN + 1 % sucrose and 0.6 % agar. **c.** Twitching assays. Comparable results were obtained in three independent experiments.


S6 Figure. Swimming and swarming motility of Δ *suxR* **mutant. a.** swimming and swarming on solid NBN + 1 % sucrose with 0.3 % agar or 0.6 % agar, respectively. **b.** similar assays for swarming motility and **c.** for swimming motility on circulate petri dishes . Comparable results were obtained in three independent experiments.

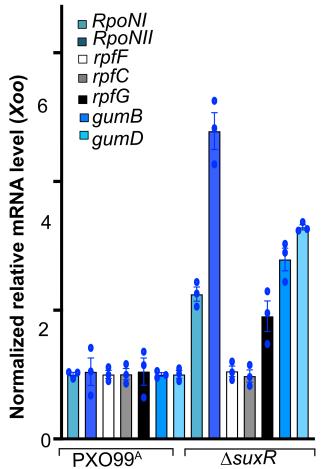
S7 Figure. Δsux and $\Delta suxB$ mutants show complete EPS deficiency. a. Colony phenotype of PXO99^A and Δsux mutant and b. $\Delta suxR$ mutant on solid NBN + 1 % of sucrose grown uninverted for day 2, day 3 and day 4. Photography was performed vertically (from the top). Biofilm formation was determined in *Xoo* cultures in NBN + 1 % sucrose followed by crystal violet staining (n=4) c. Colony morphology on inverted plates (NBN + 1 % of sucrose). Photography was performed horizontally (from the side). Boxes extend from 25th to 75th percentiles and display median values as center lines. Whiskers plot minimum and maximum values and individual data points. Significance was calculated between two groups using unpaired two-tailed Student's *t*-Test at the 95 % confidence level and Welch's correction of unequal variances. Comparable results were obtained in three independent experiments.

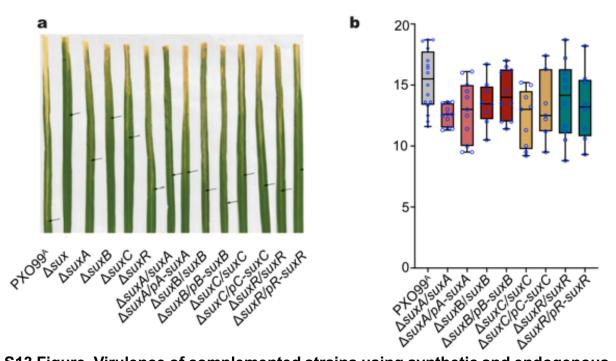


S8 Figure. Quantification of EPS levels in Xoo mutants in the presence of sucrose or glucose. The ability of wild-type PXO99A and *sux* mutant strains to produce EPS was assessed in the presence of sucrose or glucose. Data from three biological samples. Boxes extend from 25th to 75th percentiles and display median values as center lines. Whiskers plot minimum and maximum values and individual data points. Significance was calculated between two groups using unpaired two-tailed Student's t test at the 95 % confidence level and Welch's correction of unequal variances. Comparable results were obtained in three independent experiments.



S9 Figure. Sucrose uptake-dependent EPS production in complemented strains.


Quantification of EPS production in the wild type strain PXO99^A, in the $\triangle suxB$ mutant and in a $\triangle suxB$ mutant complemented with the *suxB* gene driven from the lacZ promoter in the presence and absence of sucrose (n=3). Comparable results were obtained for the sucrose induction in three independent experiments.


S10. Figure. Sucrose uptake and biofilm formation. a. Biofilm formation assays of the wild type strain PXO99^A and the Δsux and $\Delta suxB$ mutants in a 96-well plate. b. Qualitative and quantitative assays for biofilm formation assays in glass tube when complemented with DSF. Biofilm formation was determined in *Xoo* cultures in NB + 1 % sucrose followed by crystal violet staining. Comparable results were obtained for the sucrose induction in three independent experiments.

S11 Figure. Growth of Xoo on sugar. a. Growth of PXO99^A in the presence or absence of 300μ M sucrose or glucose. Similar results were obtained in three independent experiments.

S12 Figure. Regulation of genes in $\Delta suxR$ mutant. Gene expression on mRNA levels in PXO99^A and $\Delta suxR$ mutant. The 2- $\Delta\Delta$ Ct method was used for quantification. The 2- $\Delta\Delta$ Ct method was used for relative quantification with 16S rRNA as reference. Relative mRNA levels *in vitro* are normalized to 1 for values for data from PXO99^A without added sugar without SuxR-mediated derepression.

S13 Figure. Virulence of complemented strains using synthetic and endogenous promoters of *sux* genes. **a.** Leaf phenotypes in rice cultivar Nipponbare after clip infection with PXO99A, *sux* mutants and complementation strains at 12 DPI. **b.** Quantification of lesion length for two types of complementation strains: complementation with constructs using *E. coli* Lac promoter in $\Delta suxA/suxA$; $\Delta suxB/suxB$; $\Delta suxC/suxC$; and $\Delta suxR/suxR$; and complementation with constructs using native *Xoo* promoters in $\Delta suxA/pA-suxA$; $\Delta suxB/pA-suxB$; $\Delta suxC/pC-suxC$; and $\Delta suxR/pR-suxR$. Boxes extend from 25th to 75th percentiles and display median values as center lines. Whiskers plot minimum and maximum values and individual data points. Significance was calculated between two groups using unpaired two-tailed Student's t test at the 95 % confidence level and Welch's correction of unequal variances. Similar results were obtained in three independent experiments. Significance listed only for pairs that showed a significant difference (p < 0.05).