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Abstract

Motivation: Pangenome variation graphs model the mutual alignment of collections of DNA sequences.
A set of pairwise alignments implies a variation graph, but there are no scalable methods to generate
such a graph from these alignments. Existing related approaches depend on a single reference, a
specific ordering of genomes, or a de Bruijn model based on a fixed k-mer length. A scalable, self-
contained method to build pangenome graphs without such limitations would be a key step in pangenome
construction and manipulation pipelines.
Results: We design the seqwish algorithm, which builds a variation graph from a set of sequences and
alignments between them. We first transform the alignment set into an implicit interval tree. To build
up the variation graph, we query this tree-based representation of the alignments to reduce transitive
matches into single DNA segments in a sequence graph. By recording the mapping from input sequence
to output graph, we can trace the original paths through this graph, yielding a pangenome variation graph.
We present an implementation that operates in external memory, using disk-backed data structures and
lock-free parallel methods to drive the core graph induction step. We demonstrate that our method scales
to very large graph induction problems by applying it to build pangenome graphs for several species.
Availability: seqwish is published as free software under the MIT open source license. Source code
and documentation are available at https://github.com/ekg/seqwish. seqwish can be installed
via Bioconda https://bioconda.github.io/recipes/seqwish/README.html or GNU Guix
https://github.com/ekg/guix-genomics/blob/master/seqwish.scm.
Contact: egarris5@uthsc.edu

1 Introduction
A pangenome models the full genomic information of a species or clade
(Medini et al., 2005; Sherman and Salzberg, 2020). In contrast to reference-
based approaches that relate sequences to a particular reference genome,
methods that use pangenome reference systems attempt to model the
mutual relationship between all represented genomes (Consortium, 2018).
Many approaches model the pangenome alignment as a pangenome graph
(Garrison et al., 2018; Yokoyama et al., 2019; Hickey et al., 2020). A
pangenome graph encodes DNA sequences as walks through an underlying
language encoded in a sequence graph (Hein, 1989). In a pangenome graph,
variation can be understood in the context of any part of any included
genome (Eizenga et al., 2020). This lets us avoid the problem of reference
bias, which can be understood as the limitation of analyses to genome
sequences that are similar to a chosen reference genome.

An unbiased pangenome graph would represent the alignment of
all included genomes to all others. Existing methods approximate this
relationship by progressive alignment to a graph initially based on a

reference genome (Li et al., 2020), through a global structuring of the
genome relationships in a neighbor joining phylogenetic tree (Armstrong
et al., 2020), or via creation of a de Bruijn graph based on a fixed k-
mer length (Minkin et al., 2016; Yu et al., 2021). These methods limit
computational costs by reducing the number of pairwise comparisons, but
in turn their results depend on input genome order, selected reference,
guide-tree topology, or k-mer length.

We consider the problem of building a pangenome graph without
these potential sources of bias. Such a graph would be an ideal system
to represent variation between two or more high-quality genomes. Given
the rapid development of complete genome assemblies for humans and
other vertebrates (Rhie et al., 2021; Nurk et al., 2021), we need a practical
approach that can achieve this for tens to thousands of genomes on
commodity hardware. Here, we present seqwish, an algorithm for the
generation of a pangenome graph from pairwise alignments. Our solution
is simple, but experiments on diverse sequence collections demonstrate
that it easily scales to large pangenome building problems.
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2 Garrison et al.

2 Algorithm
In this section, we provide a formal definition of variation graph induction.
We then examine the bounds of a naïve implementation of this algorithm.
Finally, we propose compression and partitioning techniques to reduce
the space and working memory complexity of the induction process by a
large constant factor modulated by the degree of sequence divergence in
the input pangenome. This yields a practical algorithm for variation graph
induction that can scale to the largest available pangenomes.

2.1 Variation graph induction

Definition 2.1. Variation graphs are a common formalism to encode
pangenome graphs (Garrison, 2019). In the variation graph V =

(N , E,P), nodes N = n1 . . . n|N| contain sequences of DNA. Each
node ni has a unique identifier i and an implicit reverse complement n̄i. A
node strand s corresponds to one node orientation. Edges E = e1 . . . e|E|
connect ordered pairs of node strands (ei = (sa, sb)), encoding the
base topology of the graph. Paths P = p1 . . . p|P| describe walks over
node strands (pi = s1 . . . s|pi|), representing the collection of genomes
embedded in the graph.

Theorem 2.1. A variation graph represents pairwise alignments between
its embedded paths.

Proof. By definition 2.1, two paths have identical subsequences where
they walk (or step) through the same series of oriented nodes (e.g.
s1s2s3). An identical set of path steps is thus equivalent to a sequence
match. Pairwise alignments are by definition collections of character-level
matches between sequences. The variation graph thus models a set of
pairwise alignments between paths in P .

Theorem 2.2. We can build a variation graph from sequences and pairwise
alignments. The resulting variation graph fully embeds both the sequences
and all pairwise relationships in the input.

This follows from 2.1. Our input Q = S ∨ S̄ is a set of N DNA
sequences S = g1 . . . gN and their reverse complements S̄ = ḡ1 . . . ḡN .
A match m = (i, j) asserts the aligned equivalence of two characters in
sequences in Q. Pairwise alignments between sequences in Q are a set
of matches A = {m1 . . .m|A|}. By standard definition, each sequence
matches its own reverse complement, that is g[i] = ḡ[j] for all j = |g|−i,
and we assume these matches are included in A. The transitive closure of
a match, m+ = {i . . . j}, is a set of characters in Q that are transitively
linked together by other matches. By definition of m, each m+ implies a
single, identical character c(m+).

We build a graph V inductively. We take the first match in A, m1, and
execute a union-find operation to obtain m+

1 . We add the character of the
match c(m+

1 ) as a noden1 inV , and record the mapping fromm+
1 → n1.

To induce the graph, we take the next unused match inA : mi /∈ ∀j<im
+
j ,

obtain m+
i , and add c(m+

i ) to V . To allow the annotation of paths, we
record the set of characters inQ that match to a given node inV in mapping
Z = Q→ N = m1 . . .m|N|. We continue until all matches have been
used. Finally, we establish paths (P) by walking them in V using Z, and
record edges (E) where nodes occur successively in paths.

Proof. After the first step of induction, the graph represents all pairwise
matches in m+

1 . Each subsequent step includes progressively more of A,
until at completion, all pairwise relationships are accounted for in V .

The set of alignments represented by a variation graph is strictly larger
than the set of alignments used to induce it. The graph must contain at
least the set of alignments given in input. It may also contain new implied
pairwise relationships that arise due to transitive match relationships, as
shown in Figure 1 for closures 1 and 6. However, by definition of V ,
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Fig. 1: A visual description of variation graph induction. Top: an alignment
graph model for three sequences and their alignments. Nodes are single
characters (DNA base pairs, of which the forward strand is shown)
in individual sequences. Solid edges link successive characters in each
sequence, and are colored (red, green, blue) to identify each. Dashed
edges indicate aligned pairs of characters. Bottom: a variation graph model
induced from the alignment graph. Each transitive match closure (gray
shaded edges, of increasing darkness) in the alignment graph results in
a single node in the output graph, which is labeled by the rank of the
transitive closure operation that produced it. By recording the full set of
match closures, we can project the sequences in the input through to paths
in the variation graph (colored edges). The unique set of node pairings in
the paths provide the edges of the output graph. Closures 1 and 6 imply
pairwise relationships between sequences text1 and text3, and text1 and
text2, respectively, that are both absent in the input alignments.

it cannot contain less match information than represented in the set of
matches (A).

2.2 Induction algorithm sketch

For the sake of time and space complexity analysis, we consider a simple
algorithm to implement the induction process. The induction depends on
our ability to compute transitive closures of matchesm+. IfA is sorted, we
can find the matches of a given character in Q using binary search, which
allows us to computem+ for each character. We do so non-redundantly by
marking each used character in Q in an auxiliary data structure X , which
could be encoded as a bitvector of length |Q|. As we compute the transitive
closures, we emit both the nodes (single characters) of the graphN and the
sequence-to-graph mapping Z, which, like A, consists of match pairs, but
rather than mapping Q→ Q, maps Q→ N . As with A, we can sort Z to
obtain random access via binary search. Finally, we derive elements in P
by iterating through the characters of Q and looking up their mapping in
Z using binary search. The edge set E are the unique pairs of steps found
in P , and can be computed by sorting pairs of steps in P .

2.3 Naïve algorithm bounds

The inductive proof of theorem 2.2 demonstrates how to build a variation
graph from sequences and their pairwise alignments. However, a naïve
algorithm based on this model would require a very large amount of
space. Take Q = |S|. Although our identifier space Q must include
all of Q, in practice, we only store S, as S̄ can be trivially computed.
Assume an all-to-all alignment of N sequences in A as input, and that
all sequences are approximately identical, so that the induced variation
graph has Q/N nodes. The induction must maintain reference to all
characters in all input sequencesO(Q), all character-to-character matches
O(|A|) ≈ O(QN2), the mapping of Q into the graph O(|Z|) ≈ O(Q),
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Unbiased pangenome graphs 3

the nodes of the graph O(|N |) ≈ O(Q/N), the size of the edge set
O(|E|) ≈ O(Q), and the set of paths O(|P|) ≈ O(Q). We also maintain
the bitvector X to mark seen characters of Q during graph induction,
which requiresO(Q) bits, equivalent toO(Q/ log2Q) integer identifiers.
In total, naïve theorem 2.2-based induction would require approximately
O(Q(N2 + 1/N + 1/log2Q + 4)) space.

Assuming that we want to build a graph of 100 haploid human genomes
of 3× 109 bp, where N = 100 and Q ≈ 1011, we might expect to use
≈ 1015 identifiers to store the full model. Such a design is almost infeasible
for inputs larger than a handful of genomes. For instance, we would need
≈ 3× 1012 identifiers for just 5 human genomes. Although it is feasible to
compute such a graph using external memory, the approximately 200-fold
increase in space relative to the input renders this clearly impractical.

Considering the time complexity of induction, we anticipate
O(|A| log |A|) time to sort the match set and O(N log |A|) to query
it and compute our N transitive closures. Computing the variation graph
paths P involves converting sequences in S to walks throughN . We first
sort the sequence-to-graph mapping array Z in O(Q logQ) operations,
and then computeP inO(Q) queries which each costO(logQ). To obtain
unique edges and generate E , we must build and sort an array of O(2P),
and then iterate through it for O(2P log 2P + 2P) operations. In sum,
we would expect to require O(|A| log |A|+N log |A|+ 2(Q logQ) +

2(P log 2P + P)). Using our approximate relationships to Q given
previously and simplifying, we arrive at O[Q(2N2 logN/ logQ +

(1/N + 4) logQ+ 2 + log(4))].
Due to our dependence on sorting, and the logarithmic-time cost of

queries, growth inQ drives Ω(Q logQ) growth in overall complexity. As
N grows, both time and space complexity are dominated by the number of
alignments, which in the case of our example isO(N2). For large numbers
of highly-similar genomes, we may not require all pairs of alignments to
build a graph that contains all pairwise alignments. Various approaches
could be used to reduce the size ofAwithout disrupting the induced graph.
We leave these to later work.

2.4 Match compression

As the bounds analysis shows, space requirements make it impractical to
apply a trivial version of theorem 2.2 to generate a large pangenome graph.
Therefore, we need a compression approach that exploits redundancy in
the input genomes to reduce the costs of the algorithm. When working
with large numbers of genomes, alignments dominate the computational
costs. A simple technique is to generalize matches m = (i, j), which
are between individual characters, to range-matches over pairs of ranges
of characters in Q. For highly-similar sequences, our expectation is that
exact matches will occur in long runs. If the average pairwise diversity of
sequences in our input is 1/k, we expect exact matches to be around k

characters long. By encoding matches as pairs of ranges of characters, r =

(a, b) : a, b = (i, j) : i, j ∈ Q, we can obtain a ≈ k-fold compression
of A, yielding the range-match arrayA.

If sorted, A can be treated as an implicit interval tree (Li and Rong,
2020), which allows queries of containment and overlap in O(log |A|)
time. This compression requires trivial changes to our graph induction
model. To obtain our match transitive closures (m+), we query A
for the range of a single character in Q, computing the character-level
transitive relationships from the relative offsets of the ranges inA. Match
compression thus reduces our alignment storage memory bounds by a
factor of k without affecting our time complexity bounds.

The same encoding can be used to replace the sequence-to-graph
mapping Z, yielding Z . Rather than pairs of characters in Q and N ,
we record runs of matches between them as range matches. Although in
expectation the length of these matches should be strictly less than k, due
to the interruption of the graph by variation between genomes, this still

allows us to reduce the size of Z using runs of matches between Q andN .
Additionally, we store the inverse ofZ , which maps ranges fromN → Q,
as Z̄ . We useZ to compact non-branching regions of V into single nodes,
and Z̄ to accelerate our calculation of links in the graph.

2.5 Node compaction

For simplicity, we have thus far presented a character-level model of
variation graph induction. However, range (or run) compression can also
reduce the representation size of the graph. Rather than recording an
identifier for each character in a sequence graph, it is useful to compact
characters that form trivial linear components in the graph into single
nodes. Broadly, the size of nodes will be bounded by the average distance
between variants, which, for pangenomes built from ~100 individuals of
the same species, often provides a great reduction in the total number of
nodes (and thus identifiers) required for V and its components.

To compactV , we traverseQ, finding each entry inZ in turn, recording
its start and end in N , which can be understood as a character vector or
string containing all the sequence in the nodes of V . We subsequently
use these markings to subdivide N into a compacted version N ′ where
compacted node boundaries are marked in a auxiliary bitvector B : |B| =
|N |where the first character in each compacted node is marked by a 1 and
other characters are marked 0. B allows us to compute compacted node
ids using efficient rank operations (Gog et al., 2014).

2.6 Induction partitioning

Although match compression provides an approximate factor k

improvement in memory bounds for key data structures used in the
induction, the approach we present in section 2.4 requires working memory
in the order of the set of transitive match closures in the graph. A simple
approach to reduce this bound is to divide the induction problem into
smaller pieces. We do so by computing the graph induction for a collection
of initial characters in Q. In each partition, we apply a lock-free parallel
union-find algorithm to derive the match closures (Anderson and Woll,
1991), appending results to appropriate data structures. This partitioning
can introduce boundary effects which change the contents of Z and Z̄ by
splitting ranges at the boundaries of our partitions. However, while this
will affect the compressed node definition N ′, it does not affect N , and
it can be corrected via a post-processing step to sort and compact the id
space.

3 Implementation
We have presented a complete model for variation graph induction from
sequences and their pairwise alignments (Algorithm 1). Here, we describe
our specific implementation of this algorithm: seqwish. In general, our
approach uses external memory to elaborate the graph, taking advantage
of the availability of low-latency storage media, like solid-state drives
(SSDs), to maximize the performance of this approach.

3.1 Input and output processing

Our implementation reads standard data formats, FASTA or FASTQ for
the input sequences, and PAF (Li, 2018) for pairwise alignments. It writes
the graph in standard Graphical Fragment Assembly (GFA) format (GFA
Working Group, 2016).

In PAF, the input set of alignments is not directly expressed in terms
of matches between specific characters in Q. Rather, each record lists the
name of the aligned pair of query and target sequences and offsets in each.
To efficiently process the input PAF, we thus need to build a sequence index
that allows us to generate A. In particular, we build a compressed suffix
array (CSA) (Sadakane, 2000) over sequence names, that we call seqidx,
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4 Garrison et al.

and provide auxiliary supporting data structures that allow us to map
between our input and the abstract concatenation of all input sequences
and their reverse complements (Q). We often build graphs from very large

input : sequences S and their alignment A
output: variation graph V = (N , E,P)

A ← MakeMatchIITree(A) // alignment matches

N ← ∅ // vector containing the set of nodes

X ← BitVector(0, |S|) // seen characters of S

// for each character in the input

for i← 1 to |S| do
// this character is not yet in V
if X [i] = 0 then

// characters in S matched to i

m+
i ← GetTransitiveMatches(A, i)
N ← AddNode(N , c(m+

i )) // new node in V
j ← |N| // the node id or rank in V
for z ∈ m+

i do
X[z]← 1 // mark seen character

Z ← ExtendRanges(Z , z, j) // query→graph

Z̄ ← ExtendRanges(Z̄ , j, z) // graph→query

end
end

end
// set up our S → N mappings

Z ← MakeIITree(Z); Z̄ ← MakeIITree(Z̄)
// compact nodes in N yielding N ′

N ′ ← ∅ ; l← ∅ ; b← 0 ; B ← BitVector(0, |N |)
for i← 1 to |N | do

m← Overlaps(Z̄ , i)
if m 6= l then

B[i] = 1 // record a node boundary

N ′ ← AddNode(N ′,N [b . . . i])

b← i // record last node boundary

end
l← m // our last set of matching ranges

end
P ← ∅; E ← ∅ // paths and edges

q ← 1 // for each sequence in the input

for i← 1 to N do
pi ← ∅ ; j ← q ; y ← 0

do
// extend our path with the next step

(a, b)← FirstOverlap(Z, j)
x← NodeMatching(N ′, B, (a, b))

pi ← pi + x // extend the path

j ← j + (b− a) // increment offset in S

E ← E ∪ {(y, x)} // add to our edge set

y ← x // record last step

while j < q + |gi|;
q ← j // increment our pointer in S

end
return V ← (N ′, E,P)

Algorithm 1: The seqwish graph induction algorithm. For the sake
of simplicity, we omit the details of several query algorithms that
interact with the input alignments, the transitive match closure, implicit
interval tree construction and query, node generation, and bitvector rank
queries used in node compaction. Similarly, we omit the details of the
input partitioning that we use to reduce maximum resident memory
requirements.

collections of sequences, such as raw sequencing reads or contigs from
many thousands of samples. This seqidx avoids the overheads associated
with a hash table on string names of input sequences. To enable highly-
efficient random access, we cache the input sequences in a disk-backed
version of Q, into which our queries of sequence name and offset point.
This trades time that might be spent accessing a compressed representation
of the input for space in external memory.

For output in GFA, we iterate over nodes in N ′, writing each
as a node record. Edges are similarly produced from the disk-backed
multiset representing E . The most computationally expensive part of graph
emission is the rendering of the input sequences S as paths P through the
graph. For each input sequence in the seqidx, we walk through the offsets
in S contained in the sequence and look up their mapping into N ′ using
Z . Range compression allows us to complete one lookup per range. By
definition, each character in S is covered by only one range in Z . We can
thus iterate through the ranges in Z without considering each character.
Following the GFA format, we are able to independently generate P , as
each path is represented on a separate record in the GFA.

3.2 Key disk-backed data structures

In our implementation, we rely on several basic external memory kernels.
To reduce working memory requirements to an absolute minimum, we use
a disk-backed version of the implicit interval tree that memory-maps the
sorted array of intervals (Garrison, 2021). Indexing the implicit interval
tree requires a sorting step which dominates the runtime of our algorithm.
We adapt the current best-performing in-place parallel sorting algorithm,
In-place Parallel Super Scalar Samplesort (IPS4o), to work on a disk-
backed, memory-mapped array (Axtmann et al., 2017). This allows us
work withA,Z , and Z̄ in external memory. By storing pairs of numerical
identifiers in the backing array, we are able to generate a disk-backed
multiset model which we use to compute the unique set of edges E in
terms of offsets in N . The graph sequence vector N is simply written
by appending characters to a file. We mark nodes to generate N ′ using
a bitvector kept in main memory, over which we subsequently generate a
rank/select dictionary (Gog et al., 2014) for support of the final emission
of the graph V .

3.3 Short match filter

Building a graph from an all-to-all alignment does not guarantee that
the local structure of the graph is easy to understand. The all-to-all
alignment is not coordinated, with each mapping aligned in isolation,
and in consequence it fails to resolve the indel alignment normalization
problem (Mose et al., 2019). This ambiguity can introduce deeply looping
structures in the graph which collapse polymorphic microsatellites and
other short VNTRs into very small numbers of nodes with very complex
local topologies. Such motifs can cause problems with downstream
analysis. We find that ambiguity about the arrangement of very short
matches tends to drive complex local structures in the graph.

We mitigate this issue with a simple filter, seqwish -k, which simply
ignores exact matches that are shorter than k characters. This filter
necessarily increases the size of the induced graph. But, it also replaces
complex motifs shorter than k with single bubbles. In doing so, it also
removes short, expensive matches, reducing the overall space requirements
for seqwish. When set very high, this filter can be used to generate a
coarse, high-confidence graph built only from very long exact matches
which will tend to be unique in the genome. Although the application of
the k > filter can result in a graph that is relatively “under-aligned”, we
can further refine it through the application of local multiple sequence
alignment (Gao et al., 2020), or graph normalization (Doerr, 2022). In a
pangenomic context, underalignment caused by k > match filtering can
be mitigated by transitive relationships present in the pangenome.
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species sequences haplotypes fasta.Gbp min.match.bp time.seconds memory.Gbytes disk.Gbytes graph.Gbp components
A. thaliana 922 16 1.90251 49 468 43.1287 7.1218 0.234284 100
H. sapiens 17478 38 114.627 49 46268 347.4983 604.4261 4.47126 474
H. pylori 292 250 0.407782 49 777 74.9484 20.2070 0.01421 5
Z. mays 46289 41 90.2491 49 31043 351.1235 402.8716 13.8838 925

Table 1: Performance of the graph induction algorithm. For each pangenome we report a single experiment with seqwish -k filter set to 49bp. From left to
right, the columns indicate the species, the number of sequences (that is, the number of contigs), number of haplotypes (that is, number of individuals),
the sum of the length of all sequences in Gbp, the length of the short match filter applied in bp, the time in seconds and the amount of memory and disk
space in Gbytes required for the graph induction, the length of the resulting graph in Gbp and the number its connected components.

4 Results
We evaluate seqwish through application to four pangenomes collected
from A. thaliana, H. sapiens, H. pylori, and Z. mays. This limited survey
is intended to demonstrate basic scaling properties of the method, and its
practicality when applied to real pangenomes. We also consider the effect
of the minimum match length filter described in section 3.3. Experiments
were conducted on compute nodes with 386GB of RAM and AMD EPYC
7402P processors with 48 vCPUs.

To construct the graph we first generate alignments with wfmash
(Guarracino et al., 2021b), a DNA sequence aligner designed specifically
for high performance all-to-all alignment of fully-assembled genomes.
wfmash combines an algorithm for generating whole-genome homology
maps (MashMap2) (Jain et al., 2018) with an extension of the wavefront
algorithm (WFA) (Marco-Sola et al., 2020) capable of obtaining base-level
alignments for whole chromosomes. MashMap2 allows the user to define a
homology length and pairwise divergence, expressed as a percent identity,
over which to generate homology maps. This is useful when constructing
pangenome graphs, because, in contrast to methods that are based on k-
mer chaining (Harris, 2007; Li, 2018), it allows us to query the homology
space of input genomes using two easily-interpretable parameters. The
version of wfmash used in these experiments allows us to align sequences
with up to 10% divergence between them, providing highly-sensitive input
for our experiments.

In table 1 we provide input and constructed graph parameters for a
single parameter setting of wfmash and seqwish, obtaining graph statistics
with the ODGI toolkit (Guarracino et al., 2021a). Figure 2 displays
runtime versus graph size relative to the average input genome length
across the range of parameters chosen for each pangenome. These provide
a consistent set of insights. Reducing the sensitivity of alignments by
increasing the identity threshold results in larger graphs. Filtering short
matches results in larger graphs too, and for higher divergence collections
of genomes, like H. pylori, tends to obliterate much of the homology
information in the pangenome graph. This is visible from the fact that
the "graph length / average genome length" ratio grows strongly as k

increases. Such a reduction of the size of the set of matches considered for
graph inductions also greatly reduces runtime. In all cases, we find that
the initial alignment step takes longer than graph induction.

Although we use disk-backed data structures to represent the graph,
the maximum memory requirements of seqwish are governed by the
largest transitive match closure in the pangenome graph. We find that
our particular partitioning scheme (we compact the graph in chunks as
described in 2.6, using 50 Mbp chunks in all the experiments) does not
allow us to complete the graph induction for p = 95 and k = 0 for the H.
sapiens set, nor for Z. mays with k ≤ 29, where we run out of working
memory. In practice, setting the chunk size lower tends to resolve this
problem, but will also increase runtime. To simplify comparisons between
the different parameter settings, we have not re-run these settings with a
different partition size nor on computer nodes with a larger, then different,
amount of RAM.

5 Discussion
We have presented a straightforward algorithm to generate a pangenome
graph from a collection of genomes and alignments between them. By
exploiting a simple model of this algorithm, we provide computational
bounds that give insight into the complexity of the problem. We
then make this approach practical by applying the concept of match
compression, which reduces the expected computational complexity by
a factor proportional to the diversity of input sequences. Our experimental
results demonstrate that we can apply our method to various collections of
sequences and alignments. It easily scales to some of the largest species
pangenome construction problems possible using publicly-available, high-
quality genome assemblies. seqwish is a generic sequence graph inducer
of potentially many uses. We envision that it can serve as a component
in diverse sequence analysis and assembly pipelines, and hope that our
thorough description of its core algorithm and functionality will enable its
reuse by other researchers.

It is also a potentially novel approach. Despite the existence of many
methods for pangenome building, we are not aware of any comparable
method which can losslessly convert an all-to-all alignment to a variation
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Fig. 2: Experimental results from the application of seqwish to four
different pangenomes. Each plot shows the runtime (in hours) versus the
average input genome length calculated as the total length of all sequences
in the pangenome divided by the number of included haplotypes. Multiple
minimum identity settings for the mapping (wfmash -p) and different
minimum match length filter settings (seqwish -k) result in a collection
of graph builds per pangenome input. We compare the runtime in hours
with the size of the resulting graphs relative to the average size of an input
genome in the particular set. Lower limits on pairwise identity result in
more compact graphs. Similarly, filtering short matches increases graph
size relative to not (seqwish -k=0, red). The other way around, increasing
the seqwish -k parameter tends to increase the size of the graph.
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graph. This direct relationship allows users to adjust the shape of the
resulting graph by modifying alignment parameters, allowing the design of
custom graph construction processes based on domain-specific knowledge
and potentially manual curation of assembly alignments. In contrast to
existing methods, which depend on particular structuring of their input
(Li et al., 2020; Armstrong et al., 2020), seqwish is unbiased in that
as it directly and uniformly represents sequence relationships given on
input in the resulting graph. Although we did not compare with de Bruijn
graph methods, which are also unbiased in their uniform treatment of
input genomes (Minkin et al., 2016; Yu et al., 2021), we believe such
methods are fundamentally different in that because they collapse all exact
matches of a given lengthk. This prevents high-level structuring of patterns
of homology and orthology in the resulting graph, and they furthermore
cannot be guided by a specific alignment set.

Our presentation is necessarily limited, in order to focus on and
describe the unique problem of variation graph induction. Thus, in this
manuscript and our experiments, we have not explored the full problem of
pangenome graph building, which include both the initial alignment step
and downstream processing of the resulting graph. These topics lie outside
of the scope of the presented work, wherein we have focused on a key
kernel which is a bottleneck in the pangenome graph construction process.
But, they are important for readers to consider. Although seqwish perfectly
represents its input alignments, the problem of generating and filtering an
alignment set remains critical, as it determines the structure of the built
graph. And this lossless property does not guarantee that the resulting
graph is easy to work with or navigate; in practice, downstream processing
is usually required to normalize the graph for many applications. We will
cover these topics in future work.
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