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1 Addressing variance inflation due to correlation

In order to perform inference with CBEA, we estimated the null distribution empirically. This can be done
either non-parametrically by constructing a null distribution through computing scores on multiple permu-
tations of the data, or parametrically via estimating parameters of a distribution using the same permuted
scores. This means that our null distribution for a given set is equivalent to scores computed for sets of
similar sizes but containing randomly chosen taxa. We chose two distributional forms for the null: the
normal distribution and a two-component mixture normal distribution. For the normal distribution, we esti-
mated parameters using the maximum likelihood using the fitdistrplus package [1]. For the mixture normal
distribution, we utilized the expectation-maximization procedure from the package mixtools [2].

An advantage of estimating the null using a parametric approach is the ability to correct for variance inflation
due to inter-taxa correlation within the set compared to overall background correlation [3]. CBEA addresses
this issue by combining the location (or mean) estimate from the column permuted raw score matrix with
the spread (or variance) estimate from the original un-permuted scores. This still allows us to leverage the
null generated via column permutation while using the proper variance estimate taken from scores where
the correlation structure has not been disrupted. As such, this procedure assumes that the variance of the
test statistic under the alternate hypothesis is the same as that of the null.

For the normal distribution, it is straightforward to combine mean and variance estimates from the respective
raw score matrices. For the mixture normal distribution, however, due to the fact that the distribution is
made of component-wise means, variances and mixing coefficients, we decided to take an optimization based
approach to identifying the component wise variances σ1 and σ2 such the overall mean and variance estimates
come from the respective raw cILR score matrices as detailed above. We can write the optimization problem
as follows:

min
σ1,σ2

√(√
(σ1 + µ′1 −M ′)λ′1 + (σ2 + µ′2 −M ′)λ′2 − SD

)2

s.t. σ1 ≥ 10−5, σ2 ≥ 10−5

where M ′, SD, µ′1, µ
′
2, λ
′
1, λ
′
2 are constants

(1)

λ′1, λ′2, µ′1, µ′2, and M ′ are component-wise mixing coefficients, component-wise means, and overall mean of
the mixture distribution estimated from column-permuted scores while SD is the overall standard deviation
of the mixture distribution estimated from unpermuted scores. We solve for this optimization problem using
a quasi Newton method with box constraints (L-BFGS-B) with the default finite-difference approximation
of the gradient, as implemented in the optim function in R.

There are also different variations to this approach. We can choose to vary both σ1 and σ2 or to keep
either σ1 or σ2 constant and varying the remaining component. We can assume that null distribution is a
two-component mixture distribution where there is one major component with smaller mean (representing
the bulk of the distribution centered at the permuted mean) and one minor component with higher mean
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(representing the inflated right tail). Under this assumption, we can modify the optimization problem to
only estimate the variance parameter of the smaller component (i.e. without loss of generalizability keeping
σ1 constant where λ′1 > λ′2). This allows for the optimization procedure to more properly capture the
right tail distribution rather than increasing weight on the left tail of the distribution which impacts the
computation of p-values for a one-sided test. Empirical experiments (data not shown) done on simulated
data and random set analyses suggest that this adjustment improves performance of the adjusted CBEA
under mixture-normal assumption. In the R implementation of CBEA, users can control this behaviour by
specifying the fix comp parameter as part of the control argument.

2 Numerical Simulations

2.1 Design

Even though real data evaluations provide good estimates for performance of CBEA under typical analysis
tasks, it does not allow for understanding of the behavior of the model under different effect sizes, correlations,
and sparsity. As such, we also perform parametric numerical simulations by generating microbiome count
data under the assumption that it follows a zero-inflated negative binomial distribution, which is a good fit
for real microbiome relative abundance data [4]. Suppose Xij are observed counts for a sample i and taxon
j, then we have the following probability model

Xij =

{
0 with probability pj

NB(µj , φj) with probability 1 − pj
(2)

where µj and φj are mean and dispersion parameters, respectively. To incorporate a flexible correlation
structure into our simulation model, we utilized the NorTA (Normal to Anything) method [5]. Given an n
by p matrix of values U sampled from multivariate normal distribution with correlation matrix ρ, we can
generate target microbiome count vector X.j for taxa j following the marginal distribution NB characterized
by the negative binomial cumulative distribution function FNB:

X.j = FNB
−1(ΦUi) (3)

In this instance, for each taxon j, we set elements in U.j to be zero with probability pj and applied
NB−1(µj , φj) on non-zero elements to generate our final count matrix X. To ensure that our simulations
match closely to real data, we fitted negative binomial distribution using a maximum likelihood approach
(with the fitdistrplus package in R [1]) to non-zero counts for each taxon from 16S rRNA profiling of stool
samples from the Human Microbiome Project (HMP). We take the median values of the estimated mean
(µj) and dispersion parameters (φj) as the baseline of our simulations. For simplicity, we assumed that
inter-taxa correlation follows an exchangeable structure with correlation equals to ρ.

2.1.1 Simulation scenarios for enrichment analysis at the sample level

To assess type I error rate and power for enrichment significance testing at the sample level, we simulated
data based on the schema above, and assessed enrichment for one focal set. Type I error was obtained under
the global null as the number of samples where the null hypothesis was rejected at α = 0.05 over the total
number of samples (which represents the total number of hypotheses tested). Power was obtained using the
same formulation as type I error rate but under the global alternate. We treated type I error and power as
estimates of binomial proportions and utilized the Agresti-Couli [6] formulation to calculate 95% confidence
intervals. Across both analyses, we varied sparsity levels (p = 0.2, 0.4, 0.6) and inter-taxa correlation within
the set (ρ = 0, 0.2, 0.5). For type I error analysis, we also varied the size of the set (50, 100, 150). For power
analyses, set size was kept constant at 100 but different effect sizes (fold change of 1.5, 2, and 3). All sample
sizes were set at 10,000.

For classifiability, we evaluated the scores against the true labels per sample (indicating the sample has a set
with inflated counts) using the area under the receiving operator curve (AUROC). This is a strategy used
in Frost [7] which evaluates the informativeness of scores by assessing the relative ranking of samples (i.e.
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whether samples with inflated counts are highly ranked using estimated scores). DeLong 95% confidence
intervals for AUROC [8] were obtained for each estimate. Simulation settings for classification performance
were identical to power analyses as detailed in the previous paragraph.

2.1.2 Simulation scenarios for enrichment analysis at the population level

To assess type I error rate and power for inferece at the population level, we simulated data based on
the schema above, and assessed the enrichment of 50 sets (with 100 taxa per set) across 10 replicates per
simulation condition. Type I error is calculated as the number of enriched sets over the total number of sets
for each simulation under the global null. Power is defined similarly, but instead under the global alternate
hypothesis. Estimates and confidence intervals for type I error and power are calculated as cross-replicate
mean and standard error. Across both analyses, we varied sparsity levels (p = 0.2, 0.4, 0.6), and inter-taxa
correlation within the set (ρ = 0, 0.2, 0.5). For power analyse, we defined an enriched set as a set where
all taxa within a set have inflated means of the same effect size. Half of the sets are defined as enriched
across case/control status with varying effect sizes (fold change of 1.5, 2, and 3). Due to the compositional
nature of microbiome taxonomic data, simple inflation of raw counts would cause an artificial decrease in the
abundance of the remaining un-inflated sets. As such, we applied a compensation procedure as described in
Hawinkel et al. [9] to ensure the validity of simulation results. All sample sizes were set at 500.

2.1.3 Simulation scenarios for downstream prediction

To assess predictive performance, we generated predictors based on the simulation schema presented above
and evaluated prediction for both binary and continuous outcomes using a standard random forest model [10].
For binary outcomes, we use AUROC similar to the classification analyses above. For continuous outcomes,
we used root mean squared error (RMSE). All predictive model fitting was performed using tidymodels [11]
suite of packages. Across both learning tasks, we varied sparsity (p = 0.2, 0.4, 0.6), and inter-taxa correlation
(ρ = 0, 0.2, 0.5). Continuous outcomes Ycont were generated as linear combinations of taxa counts.

Ycont = f(X) + ε (4)

where ε ∼ N(0, σ2
ε ) and f(X) = β0 + Xβ. For each simulation, we set β0 to be 6√

10
similar to [12]. The

degree of model saturation (the number of non zero β values) were varied between 0.1 and 0.5, and signal

to noise ratio (SNR = σ(f(X))
σε

) was varied between 1.5, 2, and 3.

For binary outcomes, we generate Ybinary as Bernoulli draws with probability pbinary, where

pbinary =
1

1 + exp(f(X) + ε)
(5)

To ensure a balance of classes, we applied the strategy described in Dong et al. [13] where the associated β
values are evenly split between positive and negative associations. All data sets generated from prediction
tasks have 2,000 samples with 5,000 taxa over 50 sets with a size of 100 taxa per set.

2.2 Results

2.2.1 Statistical Inference

Fig S1 demonstrate type I error evaluations for sample-level inference with CBEA compared to the Wilcoxon
rank sum test, which uses a rank-based statistic to compare the mean count difference between taxa in the set
its complement. All methods demonstrate good type I error control at α = 0.05 under zero correlation across
all simulation conditions. However, under both medium (ρ = 0.2) and high (ρ = 0.5) correlation settings,
both the Wilcoxon test and unadjusted CBEA variants show high levels of inflated type I error, where
Wilcoxon test performed the worst. On the other hand, adjusted CBEA methods (under both distributions)
control for type I error at the appropriate α level even at high correlations. This is opposite from our real data
evaluations, where adjusted CBEA demonstrated inflated type I error under random set evalutions.

We also assessed the ability to perform inference at the population level using CBEA similar to GSVA [14].
Here, we test for enrichment of sets across case/control status by generating CBEA scores and performing
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Figure S1. Simulation results for type I error evaluation for CBEA sample-level
inference. Type I error rate (y axis) was estimated for each approach across data sparsity
levels (x axis) across different set sizes (horizontal) and inter-taxa correlation within the set
(vertical). We compared variatns of CBEA against a Wilcoxon rank sum test at α of 0.05.
For each scenario, a data set of 10,000 samples (equivalent to 10,000 hypotheses) was utilized.
Confidence bounds were obtained using Agresti-Couli [6] approach.

Welch’s t-test as a difference in means test. We compared the performance of this approach with CBEA and
two commonly used methods for differential abundance testing in the microbiome literature: DESeq2 [15]
and corncob [16]. Fig. S2 present results for simulation studies for both type I error evaluations. All methods
were able to control for type I error across both sparsity and correlation levels, where medium level sparsity
(p = 0.4) and correlation (ρ = 0.2) showed the strongest performance. In these scenarios, the CDF values of
CBEA generated under the adjusted mixture normal distribution performed the best. This is different than
our real data evaluations, where corncob and DESeq2 showed increased type I error.

2.2.2 Phenotype relevance

We assessed phenotype relevance similar to the main manuscript by assessing statistical power and score
rankings via AUROC. Results for this analysis is shown in Fig S3. For statistical power (panel A), under
low-correlation settings, all CBEA approaches demonstrate similar power, with the unadjusted methods
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Figure S2. Simulation results for type I error evaluation for CBEA population-level
inference. Type I error (y-axis) was estimated as the average proportion of sets with significant
enrichment at 0.05 across 10 replications per simulation condition under the global null. Error
bars were estimated using standard errors computed across 10 replicated data sets. Performance
was evaluated across different sparsity (x -axis) and inter-taxa correlation levels. For CBEA
methods, enrichment analysis was performed using a Welch’s t-test across case/control status
with single sample scores representing set-based features generated by CBEA (across different
output types and distributional assumptions). For corncob and DESeq2, set-based features
were constructed using element-wise summations.

being slightly more performant at low effect sizes. Notably, all CBEA variants outperformed the Wilcoxon
rank sum test. However, as correlation increases, the adjusted CBEA variants showed much lower power,
congruent with the perspective that the adjustment process is conservative and trades off power for type I
error control. Even at the highest effect size (fold change of 3 in means) adjusted CBEA does not approach
0.8. For score rankings (panel B), all methods are close together in performance, with the Wilcoxon W
statistic being the worst performer. These results are similar to that of our real data evaluations. Notably,
performance values were not affected by sparsity and increases to near perfect prediction at higher effect
sizes.

For population-level analyses, we assessed phenotype relevance as statistical power to detect sets that were
simulated to be significantly enriched. Fig S4 showed these results. As expected, power decreases with
increasing sparsity, where the effect was attenuated at lower effect sizes. Correlation did impact power,
however the difference was not notable. Interestingly, at lower effect sizes both DESeq2 and corncob has
comparable power with CBEA, however as effect size increases, the difference in performance values became
more stark. This is different than our real data evaluations, where power was more comparable (with slight
advantage to corncob and DESeq2).
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Figure S3. Simulation results for phenotype relevance valuation for CBEA sample-
level inference. (A) demonstrate statistical power (y-axis) across different data sparsity levels
(x -axis) and power (B) for differential abundance test across different parametric simulation
scenarios. For CBEA methods, differential abundance analysis was performed using a difference
in means test (either Wilcoxon rank-sum test or Welch’s t-test) across case/control status
using single sample scores generated by CBEA (across different output types and distributional
assumptions). CBEA associated methods demonstrated similar type I error to conventional
differential abundance analysis methods but with more power to detect differences even at
small effect sizes.

2.2.3 Prediction analysis

Fig S5 shows results for simulation studies as detailed in the Methods section. Panel A presents results for a
regression learning task with a continuous outcome. We observed no difference in performance values across
different evaluation models. Overall, prediction error did not change across sparsity levels, and decreases with
increasing signal-to-noise ratio (SNR). However, at higher correlation levels, the pattern was more erratic.
For example, when ρ is set at 0.5, higher SNR decreases performance only at low sparsity p = 0.2, but had
the expected pattern medium sparsity p = 0.4, where higher SNR correlates with improved performance.
This effect seems to be specific to low effect saturation scenarios (only a limited number of taxa sets are
associated with the outcome). Interestingly, higher sparsity levels produces better performance.

Panel B represent results for a classification task with a binary outcome with AUROC as the evaluation
criteria. Here we observed similar results as that of our real data evaluations, where using CLR transfromed
data produces more predictive models across all scenarios. Conversely, GSVA and ssGSEA were consistently
under performing when compared to CBEA and CLR. Interestingly, the degree of difference varies across
sparsity and inter-taxa correlations. We noticed that increasing sparsity and correlation decreases the gap
in performance between CBEA and CLR, while increasing the gap in performance between CBEA/CLR
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Figure S4. Simulation results for phenotype relevance evaluation for CBEA
population-level inference. Power (y-axis) was estimated as the average proportion of sets
correctly identified as significantly enriched (at 0.05) across 10 replications per simulation con-
dition under the global null. Error bars were estimated using standard errors computed across
10 replicated data sets. Performance was evaluated across different sparsity (x -axis) and inter-
taxa correlation levels. For CBEA methods, enrichment analysis was performed using a Welch’s
t-test across case/control status with single sample scores representing set-based features gen-
erated by CBEA (across different output types and distributional assumptions). For corncob
and DESeq2, set-based features were constructed using element-wise summations.

and GSVA/ssGSEA. As such, we can hypothesize that both GSVA and ssGSEA are more sensitive to the
degree of inter-taxa correlation and sparsity. Finally, effect saturation did not change model rankings, but
did decrease overall performance.

3 Runtime

We implemented CBEA in the package CBEA on GitHub (https://www.github.com/qpmnguyen/CBEA).
We evaluated computational time using the bench package in R. We applied CBEA to a standard data set
generated using our simulation model consisting of 40 sets (of size 20 each) and 500 samples. Benchmark
was performed on a single core using a node on the computing cluster (Specifications: Intel Xeon E5-2690
(2.6GHz) with 4GB of RAM).

In general, using the normal distribution is the fastest approach regardless of the total number of permuta-
tions performed (2 minutes). However, using the mixture normal distribution increased the runtime many
folds, especially for the adjusted approach (highest was 5.53 hours). This time scales with the number of sets
evaluated, as well as the number of samples. We believe this is due to the procedure used to estimate pa-
rameters of the mixture normal distrubiton as implemented in the mixtools package. The default parameters
used in CBEA also increased the runtime in order to reduce convergence issues.
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Figure S5. Simulation results for predictive performance evaluation for CBEA.
Predictive performance of a random forest model (with no hyperparameter tuning) trained on
set-based features as inputs. Methods to generate these features include CBEA, ssGSEA, GSVA,
and the CLR transformation applied on sum-aggregated sets. Simulation data was generated
across different levels of data sparsity, inter-taxa correlation, effect saturation, and signal-to-
noise ratio. Panel (A) presents performance on a regression task using RMSE (root mean
squared error) as the evaluation measure. Panel (B) presents performance on a classification
task with AUROC as the evaluation measure

In order to reduce runtime, users can attempt the following: Since CBEA fits parametric distributions over
permuted values of all samples within a data set (i.e. for N = 100 and 10 permutations, the fitting procedure
will attempt to estimate parameters from a vector of size 1000 for each set), if the sample size is high users
can reduce the number of permutations. Additionally, CBEA also implements a procedure to parallelize
computation across sets, which might be applicable to situations where there are a lot of sets to evaluate.
Finally, a lot of CBEA approaches work well without parametric fit, so users can use the non-parametric
approaches like the permutation test or using raw CBEA scores.

4 Single sample type I error diagnostic plot
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Figure S6. Runtime performance. Overall runtime of CBEA under different parameters
for a data set of 500 samples, 800 taxa (40 sets of size 20 each). This data set was generated
via simulations.
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Figure S7. Distribution of type I error values across app relications in real data
random set evaluations for CBEA inference at the sample level. Density (y-axis) for
type I error values (x -axis) of each evaluated approach for sample-level inference using real data
across 500 replications. Here, type I error was estimated as the proportion of samples where a
randomly sampled set of different sizes where identified to be statistically significant at p-value
threshold of 0.05
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