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Abstract 

Background  

Although many studies have explored atypicalities in gray and white matter (GM, WM) 

morphology of autism, most of them rely on unimodal analyses that do not benefit from the 

likelihood that different imaging modalities may reflect common neurobiology. We aimed to 

establish multimodal brain patterns that differentiate between autism and typically 

developing (TD) controls and explore associations between these brain patterns and clinical 

measures.  

Methods  

We studied 183 individuals with autism and 157 TD individuals (6-30 years) in a large deeply 

phenotyped autism dataset (EU-AIMS LEAP). Linked Independent Component Analysis was 

utilized to link all participants’ GM and WM images, and group comparisons of modality shared 

variances were examined. Subsequently, we performed a canonical correlation analysis to 

explore the aggregated effects between all multimodal GM-WM covariations and clinical 

profiles.  

Results  

One multimodal pattern was significantly related to autism. This pattern was primarily 

associated with GM in bilateral insula, frontal, pre- and post-central, cingulate, and caudate 

areas, and co-occurred with altered WM features in the superior longitudinal fasciculus. The 

canonical analysis showed a significant multivariate correlation primarily between multimodal 

brain patterns that involved variation of corpus callosum, and symptoms of social affect in the 

autism group. 

Conclusions 

Our findings demonstrate the assets of integrated analyses of GM and WM alterations to study 

the brain mechanisms that underpin autism, and show that the complex clinical autism 

phenotype can be interpreted by multimodal brain patterns that are spread across the brain 
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involving both cortical and subcortical areas.  
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Introduction 

Autism Spectrum Disorder (autism) is a heterogeneous condition characterized by 

difficulties with social and communicative behaviors, repetitive, rigid behaviors and altered 

sensory processes (1). In search of the brain basis of autism, the condition has been associated 

with multiple morphological differences in gray matter (GM) and white matter (WM) (2, 3), as 

reported by magnetic resonance imaging (MRI) studies. However, former studies have shown 

heterogeneous findings of the alterations in both cortical (e.g., cortical thickness, surface area, 

volume) and subcortical (e.g., volume) morphometry in multiple brain regions making it 

difficult to define the neural correlates of autism. For example, researchers found either 

greater (4) or lower (3) cortical thickness values in temporal areas in autism; and two large-

scale studies found different results with respect to the subcortical volume variations (smaller 

volumes (3) and no difference (5)) in individuals with autism. Additionally, voxel-wise GM 

volume analyses revealed divergent results in autism, for instance, studies reported increased 

(6), decreased (7) or unchanged volume (8) in temporal areas. Studies of WM microstructural 

associations in autism are similarly heterogenous in their findings. Studies have reported that 

several areas are involved, such as, the corpus collosum (CC), inferior longitudinal fasciculus 

(ILF) and superior longitudinal fasciculus (SLF) (2, 9, 10). One explanation for discrepant and 

heterogeneous findings is that the studies differ widely in sample size, sample characteristics, 

and data analytic strategy - i.e., these studies rely on unimodal analyses techniques that do 

not benefit from the potentially common neurobiology that different imaging modalities 

might reflect (11). Additionally, when integrated together these modalities might provide 

additional analytical sensitivity. 

This prompted research to move beyond unimodality and incorporate and connect data 

from different imaging modalities. For example, (12) suggested that GM variation in autism is 

generally accompanied by WM variation; (13) showing higher axial diffusivity (L1) in the WM 

fiber tracts originating and/or terminating in the GM clusters with increased local gyrification 
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in adults with autism. Despite the progress away from unimodal approaches, in essence, these 

MRI studies which correlate GM and WM measures do so after separate unimodal statistical 

analyses. This likely has less sensitivity to assess the biological variance than fully integrating 

multimodal data analysis across participants.  

Here, we aim to utilize an integrative multivariate approach, linked independent 

component analysis (LICA), to simultaneously incorporate several imaging modalities allowing 

the investigation of inter-subject variability across modalities in one analysis (14, 15). So far, 

studies that highlight the underlying shared variance between modalities using LICA in autism 

remain scarce. Previous studies revealed case-control differences between adults with autism 

and typically developing (TD) individuals in linked voxel-based morphometry (VBM) and 

diffusion tensor imaging (DTI) measures patterns in several brain regions (16, 17). However, 

these studies focused exclusively on adult individuals with high functioning autism and were 

comprised of relatively small sample sizes (<100 individuals) (16, 17). Additionally, the study 

by (16) only included male participants. Autism is a highly diverse condition; we therefore 

investigate multimodal patterns in a broader more representative autism sample which might 

help better characterize brain patterns of autism - one of the aims of the current study. 

In addition to identifying categorical group differences, dimensional analyses, i.e., 

analyses of continuous scores of autism symptoms might capture more of the heterogeneity 

of autism compared to categorical diagnostic labels. Many studies have demonstrated the 

univariate connections between GM or WM patterns and the core symptoms of autism (e.g., 

(2, 3)). Nonetheless, the relationships between brain substrates and clinical phenotypes are 

potentially the outcome of integrative effects across multiple autism symptom domains and 

brain areas, and therefore the multidimensional associations between brain GM-WM 

covariations and core symptoms of autism need to be clarified. Consequently, canonical 

correlation analysis (CCA), as a multivariate approach, is effective to learn such associations 

from a more comprehensive perspective in autism (18). 
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This study was designed to overcome the aforementioned limitations of previous work by 

applying LICA to the Longitudinal European Autism Project (LEAP) dataset (19) to link GM and 

WM sources of variance. The LEAP dataset provides a deeply phenotyped and 

comprehensively biologically assessed multisite sample of individuals with/without autism 

that allows relating the results of LICA to clinical characteristics of the participants. More 

specifically, we applied (a) a univariate approach to identify categorical group difference of 

linking GM-WM brain patterns, and subsequently their one-to-one relations to continuous 

measures of autism symptoms; (b) a multivariate method (i.e., CCA) to further quantify the 

association between two datasets of brain inter-modalities patterns and autism symptoms in 

the autism group.  
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Methods and Materials 

Participants 

The participants were part of the EU-AIMS and AIMS-2-TRIALS Longitudinal European 

Autism Project (LEAP) dataset - a large multicenter study aimed at identifying and validating 

biomarkers in autism (19, 20). Individuals with autism were included based on an existing 

clinical diagnosis according to DSM-IV, DSM-IV-TR, DSM-5, or ICD-10. Each participant 

underwent clinical, cognitive, and MRI assessment at one of six collaborative centers. We refer 

to (19, 20) for further details on experimental design and clinical characterization. In the 

present study, diffusion-weighted image (DWI) data at timepoint 1 were only available from 

participants in three centers. Therefore, the participants were selected who had both T1-

weighted and DWI data available from the following centers: Institute of Psychiatry, 

Psychology and Neuroscience, King’s College London, United Kingdom; Radboud University 

Medical Centre, Nijmegen, the Netherlands; Central Institute of Mental Health, Mannheim, 

Germany (Supplementary Table S1).  

Clinical measures 

The Autism Diagnostic Interview-Revised (ADI) (21) and the Autism Diagnostic 

Observational Schedule 2 (ADOS) (22) were used to measure the past (ever and previous 4-to-

5 years) and current core symptom severities of autism from social interaction, 

communication, and restricted repetitive behaviors (RRB) domains. Additionally, we used 

several parent-reported scales to assess autism symptoms, including the Social 

Responsiveness Scale 2nd Edition (SRS) (23) capturing the social-communication variations, 

the Repetitive Behavior Scale-Revised (RBS) (24) identifying the repetitive and rigid behaviors, 

and the Short Sensory Profile (SSP) (25) evaluating the sensory processing variations. 

Concerning the potential effect of Attention Deficit Hyperactivity Disorder (ADHD) co-

occurrence, we included the two dimensions (inattention and hyperactivity/impulsivity 

symptoms) of ADHD DSM-5 rating scale (26) as the additional covariates in the post-hoc 
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analyses. The ADHD rating scale we used was based on parent-report. There was a substantial 

amount of missing clinical data (e.g., for the SSP only 108 out of 185 participants had available 

data in the autism group) which could greatly reduce the power of our analysis. To tackle the 

missing clinical data and fully harness the large LEAP sample size we used imputed clinical data 

(27).  

MRI data acquisition 

All participants were scanned on 3T MRI scanners. High-resolution structural T1-weighted 

images were acquired using magnetization-prepared rapid gradient-echo sequence with full 

head coverage, at 1.2 mm thickness with 1.1×1.1 mm in-plane resolution. Diffusion-weighted 

imaging (DWI) scans were acquired using echo-planar imaging sequence, at 2 mm thickness 

with 2.0x2.0 mm in-plane resolution. 

MRI data acquisition parameters can be found in the Supplementary Table S2. 

Image processing 

GM volume estimation 

 Structural T1 images were preprocessed according to CAT12 toolbox 

(https://dbm.neuro.uni-jena.de/cat/) pipeline in SPM12 (Wellcome Department of Imaging 

Neuroscience, London, UK) to obtain VBM data, which is a spatially-unbiased whole-brain 

approach extracting voxel-wise GM volume estimations. T1-weighted images were 

automatically segmented into GM, WM, and cerebrospinal fluid and affine registered to the 

MNI template. A high-dimensional, nonlinear diffeomorphic registration algorithm (DARTEL) 

(28) was used to generate a study-specific template from GM and WM tissue segments of all 

participants, and then to normalize all segmented GM maps to MNI space with 2mm isotropic 

resolution. All GM images were smoothed with a 4mm full-width half-max (FWHM) isotropic 

Gaussian kernel. 

Diffusion parameters 

 DWI images from all sites were preprocessed using the same pipeline. De-nosing was 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 17, 2022. ; https://doi.org/10.1101/2022.02.16.480649doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.16.480649


6 
 

performed using the Marchenko-Pastur principal component analysis (MP-PCA) method (29). 

Subsequently, Gibbs-ringing artefacts were removed according to (30). FSL eddy was employed 

to correct the eddy-current induced distortions and subject motion (31). To improve the final 

quality of data and recover most the motion artefacts, we utilized intra-volume slice motion 

correction (32). Quality control reports were then generated for each subject and each site 

(33).  

 Individual voxel-wise FA, mean diffusivity (MD), mode of anisotropy (MO), L1 and radial 

diffusivity (RA) maps were derived using dtifit in FSL (34). FA images were processed using 

Tract-Based Spatial Statistics (TBSS) pipeline including registration of all images to FMRIB58_FA 

standard space, skeletonization of the mean group white matter and projection of each 

individual’s data onto the skeleton (35). The mean skeleton image was thresholded at FA 0.2. 

Other DTI measures (MD, MO, L1, RD) were projected onto the FA skeleton using the 

tbss_non_FA option. All DTI data had 1mm isotropic resolution when entering the following 

data fusion model. 

A full quality control report and additional preprocessing details of the GM and WM 

images are included in the Supplementary Section 3. 

Modalities fusing analysis 

 The shared inter-participant variations across six features (i.e., VBM, FA, MD, MO, L1, RD) 

were explored using LICA (11). LICA is able to factorize the multiple input modalities 

simultaneously into modality-wise independent components (ICs) while importantly 

constraining all decompositions to be linked through a shared participant-loading matrix, 

which describes the amount of contribution of each participant to a specific IC. In addition to 

the participant-loading matrix, this method provides, per IC, a vector reflecting the 

contribution (weight) of each modality and a spatial map per modality showing the extent of 

the spatial variation. All mathematical algorithms of LICA are detailed in (11). As the model 

order is recommended to be less than 25% of the sample size (11, 14), 80-dimensional 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 17, 2022. ; https://doi.org/10.1101/2022.02.16.480649doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.16.480649


7 
 

factorization was chosen to perform LICA. A multimodal index (36) was calculated to present 

the contribution uniformity of the modalities in each IC, in which a value of 1 denotes the 

involved modalities contributing equally to the given IC, and a value close to 0 means one 

modality dominating the IC variability. Note, our study aimed at detecting autism-related 

multimodal inter-subject variations, we therefore excluded the ICs comprising one single 

modality weighted more than 50% (36). 

Statistical approach 

The participant-loadings characterize the inter-individual variations of the multi-modal 

effects, and in the current study, they were used for the analyses of group differences between 

autistic and TD individuals, and for associations with behavioral measures. Results reported in 

the main text are performed using imputed data to maximize the statistical power. All analyses 

were replicated using the original non-imputed data (Supplementary Section 4).      

Case-control difference 

A generalized linear model (GLM) was utilized to examine group differences of the brain’s 

inter-participant variations in multimodal (i.e., no single modality contributed more than 50%) 

LICA outputs while controlling for age, sex, IQ and scanner site. Multiple comparison 

correction was implemented using false discovery rate (FDR) (p<0.05) (37).  

Brain-behavior associations 

Similarly, we used a GLM to explore the univariate associations between each multimodal 

IC and subscales of ADI and ADOS, SRS, RBS, and SSP in the autism group while controlling for 

age, sex, IQ and scanner site. We corrected for multiple comparisons with FDR (p<0.05). 

Subsequently, we utilized CCA (18) to better picture the overall association between all 

multimodal brain ICs and all symptom phenotypes in the autism group. In this study, we 

referred to each pair of canonical variates as CCA mode. The statistical significance of CCA 

modes was assessed by permutation inference (38). Since the behavior profiles were 

evaluated by either qualified examiners or parent-reporting, we performed two separate CCA 
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analyses on the basis of the assessment type to relate multimodal ICs to subsets of behavioral 

measures; in the first CCA analyses (CCA1) we included the subscales of ADI and ADOS, which 

were rated by qualified examiners, while in the second (CCA2) we used total scores of parent-

rated SRS, RBS, and SSP within autistic individuals. For each CCA’s multiple testing correction, 

we used stepwise cumulative maximum approach, p<0.05, see details in (38). The evaluation 

of the contribution of each IC and each clinical measure to the canonical correlation was 

according to the structural coefficient of each variable described previously (39). 
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Results 

The quality of all raw T1, DWI and preprocessed data was carefully checked resulting in 

the exclusion of 4 individuals based on the presence of structural abnormalities, visible 

artifacts, or preprocessing failures (for details, see Supplementary Section 3). This resulted in 

a final sample of 344 participants, including 185 individuals with autism and 159 TD 

individuals. The demographic and clinical information of the final sample is summarized in 

Table 1. 

Group effect of multimodal integration components  

We obtained 80 ICs from the multimodal integration analysis, 75 ICs of which were 

identified as multimodal components (i.e., no single modality weighted more than 50%). The 

modality contributions (for 80 ICs) and multimodal index of each IC can be found in 

Supplementary Figure S3. We subsequently used the participant-loadings of the 75 ICs to test 

for group differences and found one component (IC58) with a significant case-control 

difference (β=-0.192, FDR corrected p=0.028; Figure 1). The respective contributions of the 

modalities in IC58 are 26% from VBM, 18% from FA, 18% from MO, 14% from L1, 14% from 

RD, and 10% from MD, indicating that various MRI features share variance associated with 

autism. In Figure 1, we present the summarized images of each modality’s spatial map of IC58. 

The spatial patterns show autism-related smaller GM volume in the bilateral insula, inferior 

frontal gyrus (IFG), orbitofrontal cortex (OFC), precentral, postcentral gyrus, lateral occipital 

cortex (LOC), inferior temporal gyrus (ITG), angular gyrus (AG), posterior division of cingulate 

gyrus (PCC), and precuneus cortex, and larger GM volume in calcarine cortex, bilateral middle 

frontal gyrus (MFG), caudate and anterior division of cingulate gyrus (ACC). Correspondingly, 

autism-related DTI features were found in bilateral SLF, corticospinal tract (CST), and inferior 

fronto-occipital fasciculus (IFOF). In addition to these fasciculi, RD and MD in the cingulum and 

anterior thalamic radiation were also implicated. Taken together, the implication of superior 

longitudinal fasciculi and their adjacent GM volumes; frontal, precentral, and postcentral areas 
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(Supplementary Figure S4) in autism indicate that variations of GM volumes and WM 

microstructure are linked in these brain locations, rather than modality or tissue dependent. 

These results were not significantly driven by scan site (Supplementary Section 7). 

Post-hoc, to assess the influence of co-occurring ADHD symptoms on the multimodal IC 

found significantly associated with group, we additionally included inattention and 

hyperactivity/impulsivity scores of parent-reported ADHD rating scale (26) as covariates in the 

GLM of IC58. The analysis showed that the group effect of IC58 was also robust to the inclusion 

of continuous scores of inattention and hyperactivity/impulsivity symptoms as additional 

covariates in the model (β=-0.192, p=0.002).  

Relating multimodal integration pattern to behavior profiles   

We conducted the univariate (GLM) and multivariate (CCA) correlation analyses on brain 

and behavior data in the autism group only. No significant univariate brain-behavior 

relationship in the autism group were found (FDR corrected p>0.300). We did however find a 

significant multivariate association pattern of CCA1 (linking ADI and ADOS subscales to 

multimodal ICs) (r=0.788, corrected p=0.002, Figure 2). In this multivariate associated pattern, 

multimodal IC1 (canonical weight: 0.407) and IC33 (canonical weight: -0.096) showed the 

strong contribution to the correlation with autism core symptoms, while from a phenotypic 

perspective this multivariate pattern demonstrated a strong association with the ADOS social 

affect (SA) and RRB subscales. WM microstructure mainly dominated in IC1 and IC33. IC1 

primarily involved shared variations in CC, bilateral anterior thalamic radiation and CST, while 

IC33 was governed by variation in CC. These two predominant ICs highlight the involvement 

of CC in autism symptoms.  
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Discussion  

We examined autism-related inter-individual variance of integrated GM and WM 

morphology in a large representative sample of individuals with and without autism. Analyses 

showed a significant diagnostic-group effect of the linked GM-WM pattern that supports our 

hypothesis of the link between GM and WM morphology alterations in individuals with 

autism. In particular, the GM volume variation in pre- and post-central areas converged with 

the WM microstructural variation in the SLF. This spotlights the shared variances between GM 

and WM morphology in these brain areas in autism, and suggests the structural associations 

in autism are not only limited to localized regions but also involve the WM pathways 

connecting these brain areas. In a next set of analyses, we found a significant integrative 

association between brain multimodal patterns and autism core symptoms using CCA in the 

autism group, where the identified brain multimodal patterns underline the important role of 

WM morphology, particularly the involvement of CC.  

Notably, the autism-specific VBM pattern on this multimodal analysis corroborates our 

previous unimodal GM volume covariation study in a larger sample of the EU-AIMS project (8). 

The areas of bilateral insula, IFG, OFC, and caudate form a steady autism-related covariation 

pattern in previous and current studies. These areas were demonstrated previously to relate 

to repetitive behaviors and reward-based decision-making abilities in autism (40, 41). The 

covariation of insula and frontal areas in our studies indicates the consistency and stability of 

the co-occurring GM morphological alterations in autism. Moreover, in agreement with the 

effectiveness of multimodal/multivariate approaches suggested by previous studies (42, 43), 

the application of the LICA approach provides increased sensitivity to detect autism-related 

brain regions. In our study, this extends identified GM associations to pre-central, post-central, 

occipital and temporal areas compared to unimodal analysis, and incorporates significant WM 

findings of DTI measures. These otherwise unrecognized small effects in each modality were 

detected by modeling the variances across modalities. In deviance from our previous study 
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(Mei et al., 2020), the current results did not include significant autism-related alterations of 

limbic-crucial areas (amygdala and hippocampus), which might be attributed to the smaller 

sample size. 

Our results indicated one covarying set of brain GM and WM areas associated with autism 

diagnosis. In this multimodal set, GM volume in cortical and subcortical regions and 

microstructure in WM tracts (mainly SLF, CST and IFOF) were implicated and these 

regions/tracts have previously been identified in unimodal analyses (10, 40, 44-46). This broad 

range of brain regions along with large WM bundles associated with autism is in accord with 

the notion that the neural correlates of autism are widespread in brain regions and 

connectivity patterns (47-49). This also corresponds with another multimodal autism study 

reporting extensive autism-related brain areas (16). The areas of this IC have been linked 

previously to both social and non-social cognitive difficulties in individuals with autism, varying 

from visual, sensory and motor processing to high-order cognitive abilities (10, 50-53). For 

example, pre-central, post-central gyrus, SLF and CST are related to (sensory-)motor 

processing and have been implicated in autism (10, 46, 54). Additionally, the LOC and IFOF are 

two areas implicated in varied visuospatial processing in autism (51, 55). These adjacent 

affected areas (grouped areas of pre-, post-central areas and SLF, CST; grouped areas of LOC 

and IFOF occipital section) in our findings logically is in line with the brain organization 

principles during development, which states that nearby areas tend to be more 

interconnected (56, 57). In summary, the autism diagnosis-related co-varying GM-WM pattern 

reflect that autism is a complex condition associated with neural morphology. However, we 

did not find any significant univariate relationship between behavioral phenotypes and GM-

WM patterns. This is probably a result of the diverse phenotypes in our sample (i.e., complex 

and heterogenous nature of autism), therefore, the compound variances of the symptom 

profiles cannot be explained by single multimodal brain patterns. Additionally, imaging studies 

suggested that individuals with autism develop alternative processing strategies (48) that 
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might mix or neutralize the manifestations of behavioral phenotypes in autism moderating 

detection of well-established brain-behavior relations. 

Although we do not observe an association between autism diagnosis-related IC and 

symptom/behavior profiles, there is one prominent WM dominated multivariate relation 

between all multimodal brain patterns and subscales of ADI and ADOS. The top two ranking 

ICs emphasize the importance of WM connection to the core traits of autism, especially the 

microstructure of CC. Multivariate/multimodal analysis increase the difficulty in interpreting 

findings, as it’s challenging to clarify the direction of each association. Nonetheless, coinciding 

with previous studies (2, 58), the alterations of CC microstructural measures are evidently 

associated with more severe core symptoms in autism, which were frequently reported in 

previous autism research, including its genu, body and splenium parts (10, 59, 60). 

Significantly, GM volume contributed only by a small amount to the multivariate correlation, 

which implicates WM morphology has a stronger connection to the autism behavioral 

phenotypes compared to GM. In our previous GM work a multivariate correlation pattern 

exhibited a strong association between RRB scores of ADI and ADOS and GM covariations in 

autism, while here when including WM microstructural measures, the multimodal brain 

patterns demonstrated a strong association with SA and RRB domains of the ADOS. This 

multivariate brain-behavior association needs further investigation to determine the 

relationship between the development of WM microstructure and behaviors, which might 

expand our knowledge of current brain-behavior association patterns. 

Our findings should be interpreted with regard to several limitations. First, to generalize 

our pattern of brain alterations associated with autism requires replication in other large-scale 

datasets. Second, the current multimodal data set included fewer participants than our 

previous work (8), which may have lowered statistical power when detecting the group effects 

and brain-behavior associations in autism group. Despite that, this is still the largest 

multimodal MRI study of autism to date and includes a diverse sample of autistic and 
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neurotypical participants.  

In current study, we demonstrate autism-related inter-individual covariations of GM 

volume in frontal, pre-central, post-central and occipital areas and microstructure in 

associated WM fasciculi. Together, these GM and WM alterations are part of the underlying 

neural substrates of the phenotypes in autism. Subsequently, we highlight the potential role 

of WM, specifically CC, in the relation to the core symptoms of autism. Further studies may 

link our GM-WM morphometric findings with brain function acquired from cognitive 

assessments and/or functional MRI data. 
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Table 1. Demographic information of participantsa 

Demographic 
Autism, n = 185 TD, n = 159 

t/𝒳𝒳2 p value 
Mean SD Mean SD 

Age, yearsb 17.30  5.22 17.51  5.19 0.369  0.712  

FSIQb, c  98.90  20.44 102.68  19.10 1.769  0.079 

 FSIQ>=75  105.47 15.30 107.32 14.04 1.083 0.028 

 FSIQ<75  66.28 6.95 63.88 8.55 -0.994 0.329 

    n % n %     

Sex, male/femaled  133/52 71.9/28.1 99/60 62.3/37.7 3.610 0.057 

Symptom Profiles Mean SD Mean SD     

ADHD rating scalee       

 Inattentiveness 4.23 3.08 1.83 2.21   

 Hyperactivity/impulsivity 2.40 2.62 0.72 1.49   

ADI        

 Social Interaction 16.54  6.95      

 Communication 13.35  5.57      

 RRB 4.07  2.58      

ADOS        

 Total 5.40 2.75     

 Social Affect 6.06  2.64      

 RRB 4.70  2.77     

SRS T-scoree  70.80  11.55  55.78 11.89   

RBSe 15.54  13.54  5.30 6.05   

SSPe 142.16  23.63  166.66 17.76     
a FSIQ and symptoms profiles reported are the imputed data (27). 

b Statistical differences were assessed by two-sample t-test. 

c There are 154 autistic individuals and 142 TD individuals with FSIQ larger than or equal to 75. 

And there are 31 participants with autism and 17 participants with TD having FSIQ smaller 
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than 75. 

d Sex difference was examined by the chi-square test.  

e In ADHD rating scale, SRS, RBS and SSP questionnaires, we used parent-rated report.  

TD, typically developing; SD, standard deviation; FSIQ, full-scale intelligence quotient; ADHD, 

Attention Deficit Hyperactivity Disorder; ADI, Autism Diagnostic Interview-Revised; RRB, 

restricted, repetitive behaviors; ADOS, Autism Diagnostic Observational Schedule 2; SRS, 

Social Responsiveness Scale 2nd Edition; RBS, Repetitive Behavior Scale-Revised; SSP, Short 

Sensory Profile. 
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Captions 

Figure 1 The multimodal component shows significant case-control difference. The relative 

contribution of each feature is displayed in brackets. The VBM spatial map is thresholded at 

5<|Z|<10. Clusters of DTI features were filled and thresholded at 3<|Z|<10, then smoothed 

using a 0.3mm Gaussian kernel in FSL for visualization purposes. VBM, voxel-based 

morphometry; FA, fractional anisotropy; MO, mode of anisotropy; L1, axial diffusivity; RA, 

radial diffusivity; MD, mean diffusivity; TD, typically developing. 

Figure 2 The multivariate association pattern is found significant between multimodal 

components and subscales of ADI and ADOS. A displays the scatterplot of this association 

pattern, and x, y axes are the pair of variates that derives from CCA. One dot in each participant 

is coded with gradient color regarding to the SA subscale of ADOS. B demonstrates the loading 

of each behavior subscale in this association pattern. C shows the modality contributions of 

the multimodal components displayed in D. D exhibits the two multimodal components 

contributed most to the association pattern. The weights of each component are showed in 

the brackets. The modality spatial maps are thresholded at 3<|Z|<10. All CCAs were only 

performed in autism group. CCA, canonical correlation analysis; ADI, Autism Diagnostic 

Interview-Revised; ADOS, Autism Diagnostic Observational Schedule 2; SA, social affect; RRB, 

restricted repetitive behavior; IC, independent component; MO, mode of anisotropy; RA, 

radial diffusivity; MD, mean diffusivity; FA, fractional anisotropy; L1, axial diffusivity; VBM, 

voxel-based morphometry. 
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