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Abstract 9 

Chemical structure-based read-across represents a promising method for chemical toxicity evaluation 10 

without the need for animal testing; however, a chemical structure is not necessarily related to 11 

toxicity. Therefore, in vitro studies were often used for read-across reliability refinement; however, 12 

their external validity has been hindered by the gap between in vitro and in vivo conditions. Thus, we 13 

developed a virtual DNA microarray, Regression Analysis based Inductive DNA microarray (RAID), 14 

which quantitatively predicts in vivo gene expression profiles based on the chemical structure and/or 15 

in vitro transcriptome data. For each gene, elastic-net models were constructed using chemical 16 

descriptors and in vitro transcriptome data to predict in vivo data from in vitro data (in vitro to in vivo 17 

extrapolation; IVIVE). In feature selection, useful genes for assessing the quantitative structure 18 

activity relationship (QSAR) and IVIVE were identified. Predicted transcriptome data derived from 19 

the RAID system reflected the in vivo gene expression profiles of characteristic hepatotoxic 20 

substances. Moreover, gene ontology and pathway analyses indicated that xenobiotic response and 21 

metabolic activation via nuclear receptors are related to those gene expressions. The identified 22 

IVIVE-related genes were associated with fatty acid-, xenobiotic-, and drug metabolism, indicating 23 

that in vitro studies were effective in evaluating these key events. Furthermore, validation studies 24 

revealed that chemical substances associated with these key events could be detected as hepatotoxic 25 

biosimilar substances. These results indicate that the RAID system could represent an alternative 26 

screening test for repeated-dose toxicity test and toxicogenomic analyses. Our technology provides a 27 

critical solution to IVIVE-based read-across by considering the mode of action and chemical 28 

structures.  29 
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1 Introduction 30 

Non-animal testing for efficacy and safety evaluation of chemical substances is one of the key 31 

concepts of balancing animal welfare and efficient development. Since the marketing ban in the EU 32 

in March 2013 ((EC) No. 1223/2009) (EU, 2009) of cosmetic products and ingredients tested on 33 

animal models, safety assessment methodologies independent of animal testing have attracted much 34 

attention. Simultaneously, the utilization of non-animal high-throughput technology for optimizing 35 

drug discovery processes is becoming highly important in pharmaceuticals (Loiodice et al., 2017; 36 

Rognan, 2017; Amano et al., 2020). 37 

Read-across, a process that estimates substance toxicity based on the concept that substances 38 

with similar chemical structure have similar biological activity, represents a promising approach and 39 

has already been conceptually accepted as a reliable safety risk assessment by some regulatory 40 

authorities (ECHA, 2017; European Commission, 2018). Likewise, quantitative structure activity 41 

relationship (QSAR) has been widely used and impurity characterization received regulatory 42 

acceptance (ICH M7). However, since subtle structural differences may elicit different biological 43 

responses, supporting the read-across robustness by using biological similarities has been considered 44 

important (Ball et al., 2016, 2020; Zhu et al., 2016). Registration, Evaluation, Authorization, and 45 

Restriction of Chemicals (REACH) mentioned that the read-across performed by registrants often fail 46 

to comply with the legal requirements due to defects in the hypothesis and justification of the 47 

toxicological prediction (ECHA, 2020). 48 

There are two approaches to enhance the reliability of read-across: (1) Employment of in vitro 49 

data relevant to specific toxicity. Methodologies to incorporate in vitro data within read-across (Ball 50 

et al., 2016, 2020; ECHA, 2017; Guo et al., 2019) and some case studies (OECD, 2016a, 2016b, 51 

2018; Nakagawa et al., 2020, 2021) have been reported. However, these approaches can be applied 52 
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only to specific toxicity endpoint and substances with a known toxicity and mode of action. Such 53 

conditions were previously termed as “local validity” (Patlewicz et al., 2014). (2) The use of 54 

biologically similar substances based on their profiles obtained from a large number of bioassays. 55 

The United States Environmental Protection Agency’s (US EPA’s) research project, ToxCast and 56 

Tox21, provided hundreds of high-throughput screening assays and several groups employed such 57 

biological activity data for toxicological evaluation (Sipes et al., 2013; Berggren et al., 2015; Richard 58 

et al., 2021). Although this concept could be applied to substances with little information to elucidate 59 

their entire toxicological profiles and find their key mode of action, it is time-consuming and 60 

expensive to conduct numerous bioassays for a new candidate substance. In contrast, transcriptome 61 

data containing approximately 30,000 gene expression values can be used to estimate perturbated 62 

mechanisms through enrichment analysis. Wang et al. (2016) tried to predict drug-induced adverse 63 

effects by employing LINCS L1000 data (Subramanian et al., 2017), whereas Iwata et al. (2019) 64 

developed a computational method to predict missing value from the LINCS L1000 transcriptomic 65 

profiles of various human cell lines and provided new drug therapeutic indications. Genomic data 66 

have been considered to be usable in read-across by Health Canada and a research group from the 67 

U.S. FDA (Health Canada, 2019; Liu et al., 2019). However, several researchers showed that in vitro 68 

gene expression values are not always highly correlated with in vivo data (Sutherland et al., 2016; 69 

Grinberg et al., 2018; Liu et al., 2018). Thus, interpreting toxicological meaning from the in vitro-in 70 

vivo relationship and in vitro to in vivo extrapolation (IVIVE) in omics data represents a big 71 

challenge for chemical risk assessment.  72 

As an IVIVE study in omics data, Liu et al. (2020) developed a useful in silico strategy to 73 

narrow the data gap between in vitro and in vivo conditions. They modified in vitro data using non-74 

generative matrix factorization methods to improve the correlation with in vivo data, which overcame 75 

the shortcomings of previous large-scale genomic data predictions regarding the in vitro-in vivo data 76 
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gap (Liu et al., 2020). Although non-generative matrix factorization enables macroscopic estimation 77 

based on a pattern recognition classifying chemical and biological responses, it does not focus on 78 

each gene estimation. As an alternative solution, microscopic estimation for each gene expression 79 

were performed based on tensor-train weighted optimization using machine learning (Iwata et al., 80 

2019); however, such comprehensive estimation have not been integrated within an IVIVE study. 81 

Therefore, predicting in vivo transcriptomic profiles from in vitro data for IVIVE might not only 82 

enhance the robustness of read-across but could also be utilized in other non-animal testing strategies 83 

as weight of evidence, such as in Integrated Approaches to Testing and Assessment (IATA) and New 84 

Approach methods (NAMs) for safety and drug repositioning research. 85 

In this study, we developed a virtual DNA microarray that quantitatively predicts the in vivo 86 

gene expression profiles based on the chemical structure and/or in vitro transcriptome data. For each 87 

gene, elastic-net models, a regression analysis method that has been used in toxicity prediction with 88 

visualization of feature importance (e.g. Fujita et al., 2020), were constructed using chemical 89 

descriptors and in vitro transcriptome data. We named the set of prediction models “Regression 90 

Analysis based Inductive DNA microarray (RAID)” to inductively analyze the mode of action and 91 

the key event in adverse effects with reference to the Redundant Arrays of Inexpensive Disks, a data 92 

storage virtualization technology also represented as RAID that combines multiple physical disk 93 

drive components with the purpose of data redundancy. As RAID (storage technology) complements 94 

data based on the information of multiple components, we hope that RAID (our microarray) will 95 

complement the relationships between multiple media (in vivo gene expression, in vitro gene 96 

expression, and chemical structure). RAID system achieved the quantitative in vitro to in vivo 97 

extrapolation (QIVIVE) by the integration of a structure-based approach (QSAR) with transcriptomic 98 

data. Whereas general “Q”IVIVE studies predict dose (or concentration) quantitatively in 99 

toxicological or toxicokinetic effects, our “Q”IVIVE predicts in vivo gene expression values 100 
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quantitatively. Finally, the substance similarities were analyzed by principal component analysis 101 

(PCA), which proved useful in understanding the features of toxic substances based on their gene 102 

expression profile (Watanabe et al., 2012), using RAID (the virtual microarray) data, in vivo data, in 103 

vitro data, and chemical structure data to validate the usefulness of read-across. 104 

2 Materials and Methods 105 

2.1 Gene expression and chemical structure data 106 

No animal experiment has been performed in this study. The transcriptome data from DNA 107 

microarrays (Affymetrix Rat Genome 230 2.0 chips; Santa Clara, CA, USA) were extracted from the 108 

Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system (TG-GATEs). TG-GATEs 109 

contains in vitro and in vivo transcriptome data for rat single- and repeated-dose toxicity tests of 170 110 

compounds (Igarashi et al., 2015). The transcriptome data obtained from the livers of rats treated 111 

with high doses for 28 days and primary rat hepatocytes treated with high doses for 24 h were 112 

downloaded and pre-processed using MAS5 (Gautier et al., 2004). In this study, chemical substances 113 

tested in vitro and in vivo, that fulfilled a maximum sample number (n = 2 for in vitro and n = 3 for in 114 

vivo), and had no incalculable chemical descriptors (described below), were analyzed. Thus, 115 115 

compounds were examined in this study (Table 1). 116 

For the chemical structure data, the alvaDesc chemical descriptors (Mauri, 2020) were 117 

calculated using alvaDesc v1.0 software (Alvascience-Srl, Lecco, Italy). AlvaDesc can calculate 118 

3885 2D-descriptors and 1420 3D-descriptors. However, only 2D-descriptors were used excluding 119 

those with a high pair correlation (>0.95), constant for all substances, and at least one missing value. 120 

Consequently, 854 descriptors were calculated. Each descriptor was normalized using the 121 

bestNormalize package (ver. 1.8.0) in R (ver. 4.1.1) (https://cran.r-project.org/). This package 122 

estimates the optimal normalizing transformation from Yeo-Johnson transformation, the Box Cox 123 
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transformation, the log10 transformation, the square-root transformation, and the arcsine 124 

transformation.  125 

2.2 Construction of the RAID system (a virtual microarray) 126 

To extrapolate in vitro transcriptome data to in vivo conditions, we developed predictive models for 127 

each gene. The predictive models predicting in vivo transcriptome data from chemical descriptors and 128 

in vitro data were developed using the elastic-net regression method. The value of each cell in the 129 

matrix was the fold change on a base 2 logarithmic scale. The set of those predictive models was 130 

named a virtual microarray “RAID” (as mentioned in the Introduction) (Figure 1). To suppress over-131 

learning, the hyperparameters (α and λ) of each model were optimized with a 5-fold cross-validation. 132 

We removed the genes that were associated with less than 10 chemical substances inducing 133 

differential expression (<1.5 fold change) since it would be difficult to run machine learning scripts 134 

on such rare genes. Consequently, RAID was composed of 1601 prediction models for each gene. 135 

To construct RAID that correctly predicts the bioactivities of chemical substances, the quality 136 

of training data sets was extremely important, and differentially expressed genes should be 137 

determined strictly considering data noise. Hence, we addressed this issue by data processing (feature 138 

engineering) and model justification. First, after calculating the fold change values (sample treated 139 

groups/solvent control group), the gene differentiation values with low reliability were adjusted. 140 

Briefly, the fold change value increments were changed to half (e.g. 1.5 decreased to 1.25) in the 141 

sample with the number of flag A (low reliability) ≥ 2 out of 3 for in vivo and the number of flag A ≥ 142 

1 out of 2 for in vitro, or in the sample with p-value ranging between 0.05 and 0.1. The fold change 143 

values were changed one-fourth (e.g. 1.4 decreased to 1.1) in the sample with p-value over 0.1, and 144 

were treated as 1 (no differentiation) in the sample with flags all A in both in vivo and in vitro. 145 
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Second, weight parameters were used in model building. The weight of samples with ≥1.5 fold 146 

change was set to 1.5 and ≥4 fold change was set to 2.  147 

2.3 Interpretation of biological meaning of RAID analysis 148 

Considering the application of RAID to read-across, the gene expression data was visualized by PCA 149 

using prcomp function from stats package (ver. 4.1.1) and probability ellipse frames of toxic and 150 

non-toxic substances were drawn using the ggfortify package (ver. 0.4.12) in R to compare in vivo, in 151 

vitro, and chemical descriptor data. The toxic class of chemical substances were determined based on 152 

previously reported histopathological and serum chemistry findings (Table 1) (Low et al., 2011). As a 153 

reference data point, the biological meaning of genes that contributed to the PCA plot of in vivo data 154 

was analyzed using pathway analysis. The loading value of genes in the PCA was defined as length 155 

of loadings calculated using Pythagorean theorem  156 

𝑙𝑒𝑛𝑔𝑡ℎ  𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑜𝑓 𝑃𝐶1  𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑜𝑓 𝑃𝐶2  157 

and genes with top 30 loading value in 1st and 4th quadrant were analyzed. 158 

To analyze the biological consistency with in vivo data, commonality of principal component 159 

related genes (top and bottom 30 rotations in each PC1 and PC2 of PCA) were visualized using the 160 

VennDiagram package (ver. 1.6.20) in R, and enrichment analyses of each categorized gene were 161 

conducted using Gene Ontology-biological process and Reactome pathway by Metascape (Zhou et 162 

al., 2019). Four categorized genes related to in vivo data (in vivo only, in vivo and RAID, in vivo and 163 

in vitro, and all three data) were analyzed to characterize which biological process could be covered 164 

by RAID and in vitro data. Furthermore, to characterize genes whose predictive models in RAID 165 

used in vitro data, enrichment analysis of top 20 genes with the highest importance (contribution) for 166 
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in vitro data in the model was conducted. In the analysis, Affymetrix probe ID was converted to gene 167 

symbol using the biomaRt package (ver. 2.50.2) in R. 168 

2.4 Quantitative IVIVE effects in RAID system 169 

For performance evaluation against the quantitative IVIVE, root-mean-square errors (RMSEs) of 170 

RAID predicted values to in vivo data were calculated and compared to those of in vitro data. To 171 

exclude the difference in gene expression value distribution of each data source, fold change values 172 

were normalized before RMSEs was calculated. The RMSEs were calculated for both all genes and 173 

genes for which in vitro data had importance in the model. 174 

2.5 Read-across application using external data 175 

To validate the usefulness of RAID for functional read-across-based analysis of both predicted gene 176 

expression profiles and chemical structures, substances that did not contain training data sets for 177 

model building (Table 1) were further explored using Ingenuity Pathway Analysis (IPA) (QIAGEN 178 

Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis). Specifically, 179 

substances that may promote the expression of genes (have known relationship with the genes) that 180 

were identified by the PCA and pathway analysis of in vivo data (see section 2.3) were explored 181 

using IPA. Chemical descriptors of each substance were analyzed using alvaDesc v1.0 software 182 

(Alvascience-Srl, Lecco, Italy) and gene expression profiles were fulfilled using median values of 183 

training data sets. Finally, RAID analyses using constructed predictive models for those substances 184 

and re-analyzed PCA data were used to evaluate similarities based on predicted-biological responses. 185 

3 Results 186 

3.1 Biological analysis of RAID compared to that of in vivo and in vitro microarray data 187 
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RAID (predicted transcriptome) data was visualized using PCA (Figure 2). From a higher 188 

perspective, two directions mainly composed of toxic substances were identified and many toxic 189 

substances were separated from non-toxic substances via RAID and in vivo data, whereas they could 190 

not be separated based on in vitro and chemical descriptor data. Moreover, two common toxic-191 

substances groups (e.g. 1st group [TAA, MP, and HCB] placed in 1st quadrant and 2nd group [WY, 192 

FFB, BBr, and GFZ] placed in 2nd quadrant) were distanced from non-toxic substances along PC1 193 

and PC2 in both RAID and in vivo data, nonetheless the PC1 and PC2 replaced. The loading plot 194 

showed that Cyp1a1 (Cytochrome P450, family 1, subfamily A, polypeptide 1), Gpx2 (Glutathione 195 

peroxidase 2), and Gsta3 (Glutathione S-transferase A3) gene expression were commonly observed 196 

in RAID and in vivo data, and enabled the discrimination of TAA, MP, and HCB. Furthermore, Acot1 197 

(Acyl-CoA thioesterase 1), Vnn1 (Vanin1), and Cyp4a11 (Cytochrome P450, family 4, subfamily A, 198 

polypeptide 11) contributed to discriminating WY, FFB, BBr, and GFZ. 199 

Pathway analysis indicated that the 1st group related genes would be associated with 200 

peroxisome proliferative activity characterized by Cyp4a induction via peroxisome proliferator-201 

activated receptor-alpha (PPARa) activation and 2nd group related genes would be associated with 202 

xenobiotic response, including Cyp1a induction via aryl hydrocarbon receptor (AHR) and 203 

carcinogenesis (Figure 3). To clarify the biological functions that RAID covers, the commonalities 204 

between related genes and principal components were explored (Figure 4A and Table 2). As expected 205 

from Figure 2, RAID shared more genes (36; Table 2) with the in vivo data than with the in vitro data 206 

(9). Enrichment analysis revealed that the biological processes related to metabolism and 207 

detoxification and pathways associated with peroxisomal protein transport were enriched in both in 208 

vivo and RAID data, indicating that RAID could cover these functions, and ultimately indicate key 209 

functions through pathway analysis (Figure 3). Conversely, although several metabolic processes 210 

were enriched within the in vitro data, those biological functions were covered by RAID as well 211 
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(Figure 4B). These results suggest that RAID data allow the detection of more in vivo key toxic 212 

events than in vitro transcriptome data. 213 

3.2 Importance of in vitro data in the RAID system  214 

Enrichment analysis of genes whose predictive model used highly relevant in vitro data (top 20 genes 215 

for which in vitro data had high importance in all predictive models; Table 3) indicated that in vitro 216 

data contributed to estimating the gene expression values associated with metabolic processes of fatty 217 

acid, xenobiotics, and drugs, and peroxisome proliferative activity (Pathway on peroxisome protein 218 

import and biological process associated with the regulation of peroxisome size; Figure 5).  219 

3.3 Quantitative IVIVE performance in the RAID system 220 

To evaluate the RAID performance in terms of gene expression value, RMSEs were calculated for all 221 

genes and the genes for which in vitro data had importance in predictive models. Considering RAID 222 

would be used in read-across, we compared the RMSEs of RAID data to that of in vitro data, which 223 

was conventional non-animal test approaches (Figure 6). As a result, RMSEs decreased in RAID, 224 

indicating a better performance than what could be obtained using in vitro data.  225 

3.4 Validation of prediction models using external data 226 

In PCA using in vivo and RAID data as well as the pathway analysis of PC related genes (Figure 2 227 

and 3), genes related to peroxisome proliferative activity and xenobiotic metabolism activity possibly 228 

leading to liver cancer, which were respectively characterized by Cyp4 induction via PPARa and 229 

Cyp1a induction via AHR, were identified as key features. Thus, potential Cyp4a- and Cyp1a- 230 

inducers were explored using the knowledge-based approach using the IPA software. Moreover, 231 

using the top 30 genes identified using PCA (described in 2.3 section), upstream regulator analysis 232 

focusing on chemical substances was performed and 20 chemicals were identified. Finally, a total of 233 
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21 chemicals (potential Cyp1a inducers: 10 chemicals, potential Cyp4a inducers: 11 chemicals) were 234 

selected as candidates for external validation and subjected to RAID analyses (Table 4). Substances 235 

already present in the TG-GATE (training sets) or had uncalculated chemical descriptors data were 236 

excluded. 237 

For the PCA analysis, approximately half of the substances were plotted with positive PC 238 

scores, which is in consistence with the direction expected from the training data set for both 239 

potential Cyp1a- and Cyp4a-inducers (Figure 7). Lastly, pentachlorobiphenyl, polychlorinated 240 

biphenyls, and pentachlorodibenzofuran were isolated as Cyp1a-inducers, whereas nafenopin, 241 

ciprofibrate, and di(2-ethylhexyl) phthalate were isolated as Cyp4a-inducers. 242 

243 
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4 Discussions 244 

The transcriptome data signatures derived from RAID (the virtual microarray) system were in good 245 

agreement with those of in vivo data, and the technology provided an understanding of the features of 246 

hepatotoxic substances based on the toxicological mechanism interpretation. The mechanism of 247 

action of the two characteristic toxic substances separated using PCA analysis was shown to be 248 

achieved through Cyp4a induction via PPARa and Cyp1a induction via AHR (pathway and gene 249 

ontology analysis). The PPARa-induced drug toxicity requires species differentiation considerations 250 

(Ito et al., 2006) and AHR-induced drugs raise safety concerns during developmental periods (Qin et 251 

al., 2019). Therefore, predicting the involvement of these nuclear receptors and induction of 252 

metabolic enzymes is critical for understanding the molecular initiating events and the key events 253 

associated with adverse outcome pathway. RAID enables the prediction of gene expression levels; 254 

thus, exhibiting properties required for next generation risk assessment methods. 255 

The 1st substance group (TAA, MP, and HCB), representing toxic substances commonly 256 

differentiated from non-toxic substances using PCA on in vivo and RAID data, has been reported to 257 

have carcinogenicity with metabolic activation (Uehara et al., 2008; Hajovsky et al., 2012; US. HSS., 258 

2015). Furthermore, they have been shown to activate xenobiotic related receptors, such as AHR 259 

inducing Cyp1a (Ushel et al., 2002; Yamashita et al., 2014; Clara et al., 2015). Moreover, in vivo 260 

transcriptome data in this study showed that TAA, MP, and HCP induce Cyp1a activation. AHR is 261 

known for mediating the toxicity and tumor promoting properties despite the mechanism through 262 

which AHR activates carcinogenesis remains to be elucidated (Safe et al., 2013; Murray et al., 2014).  263 

The 2nd substance group (WY, FFB, BBr, and GFZ) includes fibrates which are recognized as 264 

PPARa agonists (Schoonjans et al., 1996), implying that induction of Cyp4a via PPARa and 265 

perturbation of lipid-related genes are involved as a series of key events. Although another fibrate 266 
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included in training data, clofibrate (CFB), was classified as a non-toxic substance according to no 267 

serum chemistry findings from a previous study, CFB was shown to act as a PPARa agonist inducing 268 

peroxisomal proliferation on hepatocyte (Low et al., 2011) and was plotted around the 2nd group in 269 

PCA. Sustained activation of PPARa signaling and induction of enzymes, such as CYP4A, to 270 

increased fatty acid oxidation contributes to sustained oxidative stress in liver. These changes lead to 271 

liver cell damage as hypertrophy and proliferation which contribute to the development of 272 

hepatocellular carcinomas (Parimal et al., 2013).  273 

From the perspective of capturing individual gene responses, RAID was able to detect gene 274 

expressions related to major drug metabolism responses in in vivo more broadly (more common 275 

principal component related gene number; Figure 4) and quantitatively (less RMSE value; Figure 6) 276 

than in vitro. The 36 genes that were commonly related to principal components of in vivo and RAID 277 

data contained genes that were known to be involved in drug metabolism and hepatotoxicity. In 278 

addition to the genes described above (Cyp1a and Cyp4a), Acot1 acts as an auxiliary enzyme in the 279 

oxidation process of various lipids in peroxisomes (Hunt et al., 2012). Furthermore, Vnn1 is 280 

expressed by the centrilobular hepatocytes and is involved in lipid and xenobiotic metabolism 281 

(Bartucci et al., 2019), whereas Pex11a (Peroxisomal biogenesis factor 11 alpha) is involved in 282 

peroxisome maintenance and proliferation associated with dyslipidemia (Chen et al., 2018). All of 283 

these genes are known as PPARa target genes (Rakhshandehroo et al., 2010; Lake et al., 2016). Thus, 284 

these features indicate that RAID can predict possible toxicity by taking into account a broader range 285 

of mechanisms than the range of in vitro data. Indeed, the in vivo changes detected using the in vitro 286 

data were limited (Figure 4), and the PCA showed most of the differentially expressed genes were 287 

associated with irrelevant non-physiological conditions. Thus, the IVIVE effect combining QSAR 288 

technique and in vitro data would allow for more precise predictions through denoising this type of in 289 

vitro specific biological responses. 290 
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In vitro data contribute to accurate gene expression predictions that could not be achieved 291 

with QSAR alone (Figure 2D). In vitro data contributed to the prediction of the mechanism shown in 292 

Figure 5. The biological mechanisms related to metabolic processes were consistent with the key 293 

mechanisms of characteristic hepatotoxic substances described above, which indicates that in vitro 294 

data contributes to the precise predictions obtained using RAID. In addition, whether in vitro 295 

responses were observed in the suggested mode of action predicted by the RAID system or not is an 296 

important point in term of weight of evidence. This study provides valuable evidence supporting that 297 

transcriptome data should be considered in light of previous reports indicating that in vitro data does 298 

not necessarily reflect in vivo conditions (Tamura et al., 2006; Sutherland et al., 2016). 299 

Simultaneously, in vitro studies focusing on a specific mechanism should consider the external 300 

validity of their findings and whether the findings reflect in vivo situations.  301 

Evaluating the read-across performance using external substances, such as 3,4,5,3',4'-302 

pentachlorobiphenyl, 2,2',4,4'-tetrachlorobiphenyl (a type of polychlorinated biphenyl) and 303 

pentachlorodibenzofuran (dioxin-like compounds) (Figure 7A), which are known as IARC group 1 304 

carcinogens and Cyp1a1 inducers (EPA, 1996; Walker et al., 2005; National Toxicology Program, 305 

2006), were separated as toxic-substances. Additionally, benzo(a)pyrene, 3-methylcholanthrene, and 306 

9,10-dimethyl-1,2-benzanthracene plotted apart from origin of coordinates (PC1 = 0 and PC2 = 0) 307 

and are polycyclic aromatic hydrocarbons inducing Cyp1a1 (Moorthy et al., 2007; Pushparajah et al., 308 

2008). Non-carcinogenic chemical substances, such as foods components or preservatives, were 309 

positioned near the origin, second quadrant or third quadrant, indicating low risk. Furthermore, 310 

substances interacting with Cyp4a (Figure 7B), such as ciprofibrate, nafenopine, clofenapate, 311 

clofibric acid, and di(2-ethylhexyl) phthalate, which are plotted in the area of the 2nd substance group 312 

(PC1 > 0), are also known as PPARa agonist (Bocos et al., 1995; Roberts et al., 2002; Yadetie et al., 313 

2003; Currie et al., 2005; Pyper et al., 2010). Chemicals that were not characterized by the PC1 314 
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component (PC1 < 0) are not hyperlipidemia drugs. These results suggest that the RAID system 315 

effectively classifies substances that based on the mode of action as well as the strength of toxicity, 316 

and ultimately contributes to precise read-across. Thus, the RAID system provides a new method for 317 

read-across in line with IATA that should be called “a virtual functional read-across”. Here, we 318 

showed that compounds without high structural similarities might have similar toxicological 319 

properties, and our new approach interpreted the shared mechanism of action. This means that RAID 320 

considers the qualitative and quantitative similarities of biological responses, which was one of the 321 

major issues of QSAR-based read-across. The structural similarities of TAA, MP, and HCB observe 322 

using correlation coefficient of the chemical descriptor used for the predictive model and the 323 

maximum common substructure (MCS) similarities with the Tanimoto coefficient is less than 0.5; 324 

however, the homology of RAID and in vivo data is as high as 0.8. Furthermore, achieving such an 325 

accurate read-across without using in vitro data will provide a new perspective on the structural 326 

information-based predictions. 327 

 PCA analysis was used to understand the features of substances to predict the modes of action 328 

and identify biologically similar compounds for read-across in this study. Hence, focusing on certain 329 

specific toxicity, discriminant analysis, classifier model, or biomarker analysis might improve the 330 

separation of toxic substances. Indeed, the use of RAID data instead of experimental transcriptome 331 

data would achieve previously reported biomarker-based classification without using animals. For 332 

example, Liu et al. (2017) indicated that certain genes associated with hepatocellular hypertrophy and 333 

hepato-carcinogenesis, and markers, such as Cyp1a1, Acot1, Stac3 (SH3 and cysteine rich domain 3), 334 

and Hdc (Histidine decarboxylase), which were correctly evaluated in the present study to 335 

characterize hepatotoxic compounds in PCA. Similarly, the constructed RAID system could be 336 

applied to previous studies to predict carcinogenicity or estimate transcriptional benchmark dose by 337 
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toxicogenomics analysis of short term in vivo studies (Ellinger-ziegelbauer et al., 2008; Thomas et 338 

al., 2013; Matsumoto et al., 2014; Kawamoto et al., 2017). 339 

One important issue that should be considered in toxicological evaluation using the RAID 340 

system is consideration of species differences. The RAID system provides mechanistic insights on 341 

repeated-dose toxicity in animal models; however, since some species differences have observed, the 342 

suggested mode of action and the corresponding molecules need to be confirmed by toxicologists. 343 

Moreover, evaluation on RAID usefulness for various toxicities is required. 344 

 The present approach integrates QSAR and IVIVE and will contribute to other areas of 345 

research, such as drug repositioning, which recently attracted attentions towards pharmaceuticals that 346 

are available on the market and might be repurposed for new diseases (Jourdan et al., 2020). 347 

However, the previously proposed methodologies (Iwata et al., 2018; Lippmann et al., 2018; Zhu et 348 

al., 2020; He et al., 2021) have a room for improving the IVIVE aspect of in vivo prediction. Thus, 349 

our system provides an alternative to screen candidate drugs and explore new biologically similar 350 

drugs at a low cost. 351 

In conclusion, we developed a virtual DNA microarray system that quantitatively predicts in 352 

vivo gene expression profiles based on the chemical structure and/or in vitro transcriptome data. 353 

Estimated transcriptomes are considered scientifically relevant from PCA data interpretation as well 354 

as pathway and GO analysis. Based on its external validation, our system works as an alternative test 355 

for repeated dose toxicity tests with toxicogenomic analysis enabling IVIVE and mechanism 356 

estimation. Although our technology might have limited applicability domain due to the small data 357 

size of chemical substances and their characteristic (using hepatotoxic substances), the concept of the 358 

virtual microarray analysis contributes to 3Rs and might benefit every future animal testing. 359 

5 Conflict of Interest 360 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
18 

The authors declare that the research was conducted in the absence of any commercial or financial 361 

relationships that could be construed as a potential conflict of interest. 362 

6 Author Contributions 363 

YA and HH contributed to conception and design of the study. YA and HH constructed in silico 364 

models, performed enrichment analyses, interpret the biological meanings of the models, and 365 

contributed to statistical analyses. HH collected the datasets from TG-GATE. HH and MY supervised 366 

this project. YA and HH drafted the manuscript. All authors contributed to manuscript writing, 367 

confirmed the final version of the manuscript, and agreed to the contents.  368 

7 Funding 369 

This research received no external funding.  370 

8 Acknowledgments 371 

We thank Dr. Osamu Morita, Dr. Kaede Miyata, and Mr. Yasuaki Inoue for their helpful suggestions 372 

and valuable discussions to the present study. 373 

9 References  374 

Amano, Y., Honda, H., Sawada, R., Nukada, Y., Yamane, M., Ikeda, N., et al. (2020). In silico 375 

systems for predicting chemical-induced side effects using known and potential chemical 376 

protein interactions, enabling mechanism estimation. J. Toxicol. Sci. 45, 137–149. 377 

doi:10.2131/jts.45.137. 378 

Ball, N., Cronin, M. T. D., Shen, J., Blackburn, K., Booth, E. D., Bouhifd, M., et al. (2016). Toward 379 

Good Read-Across Practice (GRAP) Guidance. ALTEX 33, 149–166. 380 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
19 

Ball, N., Madden, J., Paini, A., Mathea, M., Palmer, A. D., Sperber, S., et al. (2020). Key read across 381 

framework components and biology based improvements. Mutat. Res. Gen. Tox. En. 853, 382 

503172. doi:10.1016/j.mrgentox.2020.503172. 383 

Bartucci, R., Salvati, A., and Olinga, P. (2019). Vanin 1 : Its physiological function and role in 384 

diseases. Int. J. Mol. Sci. 20, 3891. 385 

Berggren, E., Amcoff, P., Benigni, R., Blackburn, K., Carney, E., Cronin, M., et al. (2015). Chemical 386 

safety assessment using read-across: Assessing the use of novel testing methods to strengthen 387 

the evidence base for decision making. Environ. Health Perspect. 123, 1232–1240. 388 

doi:10.1289/ehp.1409342. 389 

Bocos, C., Gttlicher, M., Gearing, K., Banner, C., Enmark, E., Teboul, M., et al. (1995). Fatty acid 390 

activation of peroxisome proliferator-activated receptor (PPAR). J. Steroid Biochem. Molec. 391 

Biol. 53, 467–473. 392 

Chen, C., Wang, H., Chen, B., Chen, D., Lu, C., Li, H., et al. (2018). Pex11a deficiency causes 393 

dyslipidaemia and obesity in mice. J. Cell. Mol. Med. 23, 2020–2031. doi:10.1111/jcmm.14108. 394 

Clara, A., Portaz, D. T., Caimi, G. R., Sánchez, M., Chiappini, F., Randi, A. S., et al. (2015). 395 

Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) 396 

in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of 397 

ERK1 / 2 signaling, and cell cycle regulation in HCB-treated HepG. Toxicology 336, 36–47. 398 

doi:10.1016/j.tox.2015.07.013. 399 

Currie, R. A., Bombail, V., Oliver, J. D., Moore, D. J., Lim, F. L., Gwilliam, V., et al. (2005). Gene 400 

ontology mapping as an unbiased method for identifying molecular pathways and processes 401 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
20 

affected by toxicant exposure: Application to acute effects caused by the rodent non-genotoxic 402 

carcinogen diethylhexylphthalate. Toxicol. Sci. 86, 453–469. doi:10.1093/toxsci/kfi207. 403 

ECHA (2017). Read-Across Assessment Framework (RAAF). doi:10.2823/619212. 404 

ECHA (2020). The Use of Alternatives to Testing on Animals for the REACH Regulation. 405 

doi:10.2823/092305. 406 

Ellinger-ziegelbauer, H., Gmuender, H., Bandenburg, A., and Juergen, H. (2008). Prediction of a 407 

carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in 408 

vivo studies. Mutat. Res. 637, 23–39. doi:10.1016/j.mrfmmm.2007.06.010. 409 

EPA, U. S. (1996). PCBs : Cancer Dose-Response Assessment and Application to Environmental 410 

Mixtures. 411 

EU (2009). Regulation (EC) no. 1223/2009 of the European parliament and of the council of 30 412 

November 2009 on cosmetics products. Off. J. Eur. Union L 342, 59–209. 413 

European Commission (2018). The SCCS Notes of Guidance for the Testing of Cosmetic Ingredients 414 

and their Safety Evaluation 10th revision. 415 

https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o416 

_224.pdf [Accessed February 14, 2022]. 417 

Fujita, Y., Morita, O., and Honda, H. (2020). In silico model for chemical-induced chromosomal 418 

damages elucidates mode of action and irrelevant positives. Genes (Basel). 11, 1181. 419 

Gautier, L., Cope, L., Bolstad, B. M., and Irizarry, R. A. (2004). Affy - Analysis of Affymetrix 420 

GeneChip data at the probe level. Bioinformatics 20, 307–315. 421 

doi:10.1093/bioinformatics/btg405. 422 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
21 

Grinberg, M., Stöber, R. M., Albrecht, W., Edlund, K., Schug, M., Godoy, P., et al. (2018). 423 

Toxicogenomics directory of rat hepatotoxicants in vivo and in cultivated hepatocytes. Arch. 424 

Toxicol. 92, 3517–3533. doi:10.1007/s00204-018-2352-3. 425 

Guo, Y., Zhao, L., Zhang, X., and Zhu, H. (2019). Using a hybrid read-across method to evaluate 426 

chemical toxicity based on chemical structure and biological data. Ecotoxicol. Environ. Saf. 178, 427 

178–187. doi:10.1016/j.ecoenv.2019.04.019. 428 

Hajovsky, L., Hu, G., Koen, Y., Sarma, D., Cui, W., Moore, D. S., et al. (2012). Metabolism and 429 

toxicity of thioacetamide and thioacetamide S-Oxide in rat hepatocytes. Chem. Res. Toxicol. 25, 430 

1955–1963. doi:10.1021/tx3002719. 431 

He, B., Hou, F., Ren, C., Bing, P., and Xiao, X. (2021). A review of current in silico methods for 432 

repositioning drugs and chemical compounds. Front. Oncol. 11, 711225. 433 

doi:10.3389/fonc.2021.711225. 434 

Health Canada (2019). Evaluation of the Use of Toxicogenomics in Risk Assessment at Health 435 

Canada: An Exploratory Document on Current Health Canada Practices for the Use of 436 

Toxicogenomics in Risk Assessment. https://www.canada.ca/en/health-437 

canada/services/publications/science-research-data/evaluation-use-toxicogenomics-risk-438 

assessment.html [Accessed February 14, 2022]. 439 

Hunt, M. C., Siponen, M. I., and Alexson, S. E. H. (2012). The emerging role of acyl-CoA 440 

thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim. 441 

Biophys. Acta 1822, 1397–1410. doi:10.1016/j.bbadis.2012.03.009. 442 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
22 

Igarashi, Y., Nakatsu, N., Yamashita, T., Ono, A., Ohno, Y., Urushidani, T., et al. (2015). Open TG-443 

GATEs: A large-scale toxicogenomics database. Nucleic Acids Res. 43, D921–D927. 444 

doi:10.1093/nar/gku955. 445 

Ito, O., Nakamura, Y., Tan, L., Ishizuka, T., Sasaki, Y., Minami, N., et al. (2006). Expression of 446 

cytochrome P-450 4 enzymes in the kidney and liver : Regulation by PPAR and species-447 

difference between rat and human. Mol. Cell. Biochem. 284, 141–148. doi:10.1007/s11010-005-448 

9038-x. 449 

Iwata, M., Hirose, L., Kohara, H., Liao, J., Sawada, R., Akiyoshi, S., et al. (2018). Pathway-based 450 

drug repositioning for cancers: computational prediction and experimental validation. J. Med. 451 

Chem. 61, 9583–9595. doi:10.1021/acs.jmedchem.8b01044. 452 

Iwata, M., Yuan, L., Zhao, Q., Tabei, Y., Berenger, F., Sawada, R., et al. (2019). Predicting drug-453 

induced transcriptome responses of a wide range of human cell lines by a novel tensor-train 454 

decomposition algorithm. Bioinformatics 35, i191–i199. doi:10.1093/bioinformatics/btz313. 455 

Jourdan, J. P., Bureau, R., Rochais, C., and Dallemagne, P. (2020). Drug repositioning: a brief 456 

overview. J. Pharm. Pharmacol. 72, 1145–1151. doi:10.1111/jphp.13273. 457 

Kawamoto, T., Ito, Y., Morita, O., and Honda, H. (2017). Mechanism-based risk assessment strategy 458 

for drug-induced cholestasis using the transcriptional benchmark dose derived by 459 

toxicogenomics. J. Toxicol. Sci. 42, 427–436. 460 

Lake, A. D., Wood, C. E., Bhat, V. S., Chorley, B. N., Carswell, G. K., Sey, Y. M., et al. (2016). 461 

Dose and effect thresholds for early key events in a PPARa-mediated mode of action. Toxicol. 462 

Sci. 149, 312–325. doi:10.1093/toxsci/kfv236. 463 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
23 

Lippmann, C., Kringel, D., Ultsch, A., and Lötsch, J. (2018). Computational functional genomics-464 

based approaches in analgesic drug discovery and repurposing. Pharmacogenomics 19, 783–465 

797. doi:10.2217/pgs-2018-0036. 466 

Liu, S., Kawamoto, T., Morita, O., Yoshinari, K., and Honda, H. (2017). Discriminating between 467 

adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression 468 

analysis of toxicogenomic data: The mode of action and predictive models. Toxicol. Appl. 469 

Pharmacol. 318, 79–87. doi:10.1016/j.taap.2017.01.006. 470 

Liu, Y., Jing, R., Wen, Z., and Li, M. (2020). Narrowing the gap between in vitro and in vivo genetic 471 

profiles by deconvoluting toxicogenomic data in silico. Front. Pharmacol. 10, 1489. 472 

doi:10.3389/fphar.2019.01489. 473 

Liu, Z., Delavan, B., Roberts, R., and Tong, W. (2018). Transcriptional responses reveal similarities 474 

between preclinical rat liver testing systems. Front. Genet. 9, 1–10. 475 

doi:10.3389/fgene.2018.00074. 476 

Liu, Z., Huang, R., Roberts, R., and Tong, W. (2019). Toxicogenomics: A 2020 vision. Trends 477 

Pharmacol. Sci. 40, 92–103. doi:10.1016/j.tips.2018.12.001. 478 

Loiodice, S., Nogueira da Costa, A., and Atienzar, F. (2017). Current trends in in silico, in vitro 479 

toxicology, and safety biomarkers in early drug development. Drug Chem. Toxicol. 42, 1–9. 480 

doi:10.1080/01480545.2017.1400044. 481 

Low, Y., Uehara, T., Minowa, Y., Yamada, H., Ohno, Y., Urushidani, T., et al. (2011). Predicting 482 

drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chem. Res. Toxicol. 483 

24, 1251–1262. doi:10.1021/tx200148a. 484 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
24 

Matsumoto, H., Saito, F., and Takeyoshi, M. (2014). CARCINOscreen ® : New short-term prediction 485 

method for hepatocarcinogenicity of chemicals based on hepatic transcript pro fi ling in rats. J. 486 

Toxicol. Sci. 39, 725–734. 487 

Mauri, A. (2020). “alvaDesc: A tool to calculate and analyze molecular descriptors and fingerprints,” 488 

in Roy K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. (Humana, 489 

New York, NY), 801–820. doi:10.1007/978-1-0716-0150-1_32. 490 

Moorthy, B., Muthiah, K., Fazili, I. S., Kondraganti, S. R., Wang, L., Couroucli, X. I., et al. (2007). 491 

3-Methylcholanthrene elicits DNA adduct formation in the CYP1A1 promoter region and 492 

attenuates reporter gene expression in rat H4IIE cells. Biochem. Biophys. Res. Commun. 354, 493 

1071–1077. doi:10.1016/j.bbrc.2007.01.103. 494 

Murray, I. A., Patterson, A. D., and Perdew, G. H. (2014). Aryl hydrocarbon receptor ligands in 495 

cancer: Friend and foe. Nat. Rev. Cancer 14, 801–814. doi:10.1038/nrc3846. 496 

Nakagawa, S., Okamoto, M., Nukada, Y., and Morita, O. (2020). Comparison of the potential 497 

mechanisms for hepatotoxicity of p -dialkoxy chlorobenzenes in rat primary hepatocytes for 498 

read-across. Regul. Toxicol. Pharmacol. 113, 104617. doi:10.1016/j.yrtph.2020.104617. 499 

Nakagawa, S., Okamoto, M., Yoshihara, K., Nukada, Y., and Morita, O. (2021). Grouping of 500 

chemicals based on the potential mechanisms of hepatotoxicity of naphthalene and structurally 501 

similar chemicals using in vitro testing for read-across and its validation. Regul. Toxicol. 502 

Pharmacol. 121, 104874. doi:10.1016/j.yrtph.2021.104874. 503 

National Toxicology Program (2006). NTP toxicology and carcinogenesis studies of 3, 3', 4, 4', 5-504 

pentachlorobiphenyl (PCB 126)(CAS No. 57465-28-8) in female Harlan Sprague-Dawley rats 505 

(Gavage Studies). Natl. Toxicol. Program. Tech. Rep. Ser. 520, 4–426. 506 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
25 

OECD (2016a). Case study on the use of an integrated approach to to testing and assessment for 507 

hepatotoxicity of allyl esters (Series on Testing and Assessment No. 253). 1–33.  508 

https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)5509 

1&doclanguage=en [Accessed February 14, 2022]. 510 

OECD (2016b). Case study on the use of integrated approaches for testing and assessment for in vitro 511 

mutagenicity of 3,3’ dimethoxybenzidine (DMOB) based direct dyes (Series on Testing and 512 

Assessment No. 251). 1–49.  513 

https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)4514 

9&doclanguage=en [Accessed February 14, 2022]. 515 

OECD (2018). Case study on grouping and read-across for nanomaterials ─ genotoxicity of nano-516 

TiO2 (Series on Testing and Assessment No. 292). 1–56. 517 

https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(20518 

18)28&docLanguage=En [Accessed February 14, 2022]. 519 

Parimal, M., Navin, V., and Janardan K, R. (2013). “Peroxisome Proliferator-Activated Receptor-α 520 

Signaling in Hepatocarcinogenesis” in Peroxisomes and their Key Role in Cellular Signaling 521 

and Metabolism (Vol. 69), ed L. A. del Río (Dordrecht, Springer). http://doi.org/10.1007/978-522 

94-007-6889-5. 523 

Patlewicz, G., Ball, N., Becker, R. A., Booth, E. D., Cronin, M. T. D., Kroese, D., et al. (2014). 524 

Read-across approaches - Misconceptions, promises and challenges ahead. ALTEX 31, 387–396. 525 

doi:10.14573/altex.1410071. 526 

Pushparajah, D. S., Umachandran, M., Nazir, T., Plant, K. E., Plant, N., Lewis, D. F. V, et al. (2008). 527 

Up-regulation of CYP1A / B in rat lung and liver , and human liver precision-cut slices by a 528 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
26 

series of polycyclic aromatic hydrocarbons ; association with the Ah locus and importance of 529 

molecular size. Toxicol. Vitr. 22, 128–145. doi:10.1016/j.tiv.2007.08.014. 530 

Pyper, S. R., Viswakarma, N., Yu, S., and Reddy, J. K. (2010). PPARα: Energy combustion, 531 

hypolipidemia, inflammation and cancer. Nucl. Recept. Signal. 8, e002. doi:10.1621/nrs.08002. 532 

Qin, C., Aslamkhan, A. G., Pearson, K., Tanis, K. Q., Podtelezhnikov, A., Frank, E., et al. (2019). 533 

AhR activation in pharmaceutical development: Applying liver gene expression biomarker 534 

thresholds to identify doses associated with tumorigenic risks in rats. Toxicol. Sci. 171, 46–55. 535 

doi:10.1093/toxsci/kfz125. 536 

Rakhshandehroo, M., Knoch, B., Michael, M., and Kersten, S. (2010). Peroxisome proliferator-537 

activated receptor alpha target genes. PPAR Res. 2010. doi:10.1155/2010/612089. 538 

Richard, A. M., Huang, R., Waidyanatha, S., Shinn, P., Collins, B. J., Thillainadarajah, I., et al. 539 

(2021). The Tox21 10K compound library: Collaborative chemistry advancing toxicology. 540 

Chem. Res. Toxicol. 34, 189–216. doi:10.1021/acs.chemrestox.0c00264. 541 

Roberts, R. A., Chevalier, S., Hasmall, S. C., James, N. H., Cosulich, S. C., and Macdonald, N. 542 

(2002). PPAR alpha and the regulation of cell division and apoptosis. Toxicology 181–182, 167–543 

70. doi:10.1016/s0300-483x(02)00275-5. 544 

Rognan, D. (2017). The impact of in silico screening in the discovery of novel and safer drug 545 

candidates. Pharmacol. Ther. 175, 47–66. doi:10.1016/j.pharmthera.2017.02.034. 546 

Safe, S., Lee, S. O., and Jin, U. H. (2013). Role of the aryl hydrocarbon receptor in carcinogenesis 547 

and potential as a drug target. Toxicol. Sci. 135, 1–16. doi:10.1093/toxsci/kft128. 548 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
27 

Schoonjans, K., Staels, B., and Auwerx, J. (1996). Role of the peroxisome proliferator-activated 549 

receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid 550 

Res. 37, 907–925. doi:10.1016/S0022-2275(20)42003-6. 551 

Sipes, N. S., Martin, M. T., Kothiya, P., Reif, D. M., Judson, R. S., Richard, A. M., et al. (2013). 552 

Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem. 553 

Res. Toxicol. 26, 878–895. doi:10.1021/tx400021f. 554 

Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X., et al. (2017). A 555 

next generation Connectivity Map: L1000 platform and the first 1,000,000 profiles. Cell 171, 556 

1437-1452.e17. doi:10.1016/j.cell.2017.10.049. 557 

Sutherland, J. J., Jolly, R. A., Goldstein, K. M., and Stevens, J. L. (2016). Assessing concordance of 558 

drug-induced transcriptional response in rodent liver and cultured hepatocytes. PLoS Comput. 559 

Biol. 12, 1–31. doi:10.1371/journal.pcbi.1004847. 560 

Tamura, K., Ono, A., Miyagishima, T., Nagao, T., and Urushidani, T. (2006). Profiling of gene 561 

expression in rat liver and rat primary cultured hepatocytes treated with peroxisome 562 

proliferators. J. Toxicol. Sci. 31, 471–490. doi:10.2131/jts.31.471. 563 

Thomas, R. S., Wesselkamper, S. C., Wang, N. C. Y., Zhao, Q. J., Petersen, D. D., Lambert, J. C., et 564 

al. (2013). Temporal concordance between apical and transcriptional points of departure for 565 

chemical risk assessment. Toxicol. Sci. 134, 180–194. doi:10.1093/toxsci/kft094. 566 

Uehara, T., Kiyosawa, N., Hirode, M., Omura, K., Shimizu, T., Ono, A., et al. (2008). Gene 567 

expression profiling of methapyrilene-induced hepatotoxicity in rat. J. Toxicol. Sci. 33, 37–50. 568 

doi:10.2131/jts.33.37. 569 

US. HSS. (2015). Toxicological Profile for Hexachlorobenzene. doi:10.1201/9781420061888_ch20. 570 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
28 

Ushel, P. I. R. B., Toll, R. A. S., Lanchard, K. E. B., Ayadev, S. U. J., Ennant, R. A. W. T., 571 

Unningham, M. I. L. C., et al. (2002). Methapyrilene toxicity : anchorage of pathologic 572 

observations to gene expression alterations. Toxicol. Pathol. 30, 470–482. 573 

doi:10.1080/01926230290105712. 574 

Walker, N. J., Crockett, P. W., Nyska, A., Brix, A. E., Jokinen, M. P., Sells, D. M., et al. (2005). 575 

Dose-additive carcinogenicity of a defined mixture of “dioxin-like compounds.” Environ. 576 

Health Perspect. 113, 43–48. doi:10.1289/ehp.7351. 577 

Wang, Z., Clark, N. R., and Ma’ayan, A. (2016). Drug-induced adverse events prediction with the 578 

LINCS L1000 data. Bioinformatics 32, 2338–2345. doi:10.1093/bioinformatics/btw168. 579 

Watanabe, T., Suzuki, T., Natsume, M., and Nakajima, M. (2012). Discrimination of genotoxic and 580 

non-genotoxic hepatocarcinogens by statistical analysis based on gene expression profiling in 581 

the mouse liver as determined by quantitative real-time PCR. Mutat. Res. 747, 164–175. 582 

doi:10.1016/j.mrgentox.2012.04.011. 583 

Yadetie, F., Laegreid, A., Bakke, I., Kusnierczyk, W., Komorowski, J., Waldum, H. L., et al. (2003). 584 

Liver gene expression in rats in response to the peroxisome proliferator-activated receptor-α 585 

agonist ciprofibrate. Physiol. Genomics 15, 9–19. doi:10.1152/physiolgenomics.00064.2003. 586 

Yamashita, Y., Ueyama, T., Nishi, T., Yamamoto, Y., and Kawakoshi, A. (2014). Nrf2-inducing 587 

anti-oxidation stress response in the rat liver - New beneficial effect of lansoprazole. PLoS One 588 

9, e97419. doi:10.1371/journal.pone.0097419. 589 

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., et al. (2019). 590 

Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. 591 

Commun. 10, 1523. doi:10.1038/s41467-019-09234-6. 592 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.15.480621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480621
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 
29 

Zhu, H., Bouhifd, M., Donley, E., Egnash, L., Kleinstreuer, N., Kroese, E. D., et al. (2016). 593 

Supporting read-across using biological data. ALTEX 33, 167–182. doi:10.14573/altex.1601252. 594 

Zhu, L., Roberts, R., Huang, R., Zhao, J., Xia, M., Delavan, B., et al. (2020). Drug repositioning for 595 

Noonan and LEOPARD syndromes by integrating transcriptomics with a structure-based 596 

approach. Front. Pharmacol. 11, 927. doi:10.3389/fphar.2020.00927. 597 

 598 

10 Data Availability Statement 599 

Publicly available datasets were analyzed in this study. This data can be found here: 600 

https://toxico.nibiohn.go.jp/open-tggates/english/search.html.  601 

 602 

11 Figure Legends 603 

Figure 1. Approach to construct a virtual microarray (RAID). The predictive model for 604 

comprehensive in vivo transcriptome data was constructed using elastic-net regression as well as 605 

chemical descriptors and in vitro transcriptome data. 606 

 607 

Figure 2. PCA score plots for chemical substances and the gene loading in the transcriptome data of 608 

A) in vivo, B) virtual microarray (RAID), and C) in vitro data. PCA score plot with D) chemical 609 

descriptor data. Uppercase letters in PCA score plots: abbreviations of chemical substances are 610 

described in Tab.1. Color 1: non-toxic substances. Color 2: hepatotoxic substances. Gene symbols are 611 

presented on the arrowhead (loading). 612 
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 613 

Figure 3. List of genes that have high loading values in the PCA plot of in vivo data and their 614 

pathway map. The loading value was defined as the loading length in the 1st or 2nd quadrant 615 

calculated using the Pythagorean theorem. The pathway map was drawn by upstream regulator 616 

analysis using IPA. 617 

 618 

Figure 4. Commonalities of principal components related genes and their biological functions 619 

analyzed by gene ontology and pathway analyses. Venn diagram of genes related to the 1st and 2nd 620 

principal components of in vivo, a virtual microarray (RAID), and in vitro data. 621 

 622 

Figure 5. Enrichment analysis of in vitro-in vivo extrapolation (IVIVE) related genes identified in a 623 

virtual microarray (RAID) system. Top 20 most important (contribution) genes from the predictive 624 

models were analyzed. 625 

 626 

Figure 6. Distribution of RMSEs of a virtual microarray (RAID) and in vitro data of A) all genes and 627 

B) in vitro genes having importance (contribution) in predictive models. **p < 0.01 (Welch’s t-test). 628 

 629 

Figure 7. Read-across using PCA plot of external data predicted by a virtual microarray (RAID). A) 630 

Cyp1a and B) Cyp4a inducing chemical substances were analyzed for validation.  631 
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Figure 1  632 
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Figure 2  636 
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Figure 3 639 
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Figure 4 645 
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Figure 5 649 
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Figure 6 654 
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Figure 7 659 
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Tables 663 

Table 1. List of compounds used in the present study and their toxicological classes. 664 

Tox 
class1) 

Compound name 

Toxic Allyl alcohol (AA), 2-acetamidofluorene (AAF), α-naphthyl isothiocyanate (ANIT), 
Acetaminophen (APAP), Aspirin (ASA), Benzbromarone (BBr), Bromobenzene 
(BBZ), Bucetin (BCT), Bendazac (BDZ), Benziodarone (BZD), carboplatin (CBP), 
Coumarin (CMA), Chlormezanone (CMN), Chloramphenicol (CMP), Colchicine 
(COL), Cyclophosphamide monohydrate (CPA), Clomipramine hydrochloride 
(CPM), Chlorpropamide (CPP), Cyclosporine A (CPA), Diltiazem hydrochloride 
(DIL), Disopyramide (DIS), Disulfiram (DSF), Dantrolene sodium 
hemiheptahydrate (DTL), Diazepam (DZP), Ethambutol dihydrochloride (EBU), 17-
α-ethinylestradiol (EE), DL-ethionine (ET), Fenofibrate (FFB), Flutamide (FT), 
Gemfibrozil (GFZ), Hexachlorobenzene HCB), Lomustine (LS), Mexiletine 
hydrochloride (MEX), Methapyrilene hydrochloride (MP), Methyltestosterone 
(MTS), Methimazole (MTZ), Nimesulide (NIM), Phenacetin (PCT), Promethazine 
hydrochloride (PMZ), Propylthiouracil (PTU), Sulfasalazine (SS), Simvastatin 
(SST), Sulindac (SUL), Thioacetamide (TAA), Terbinafine hydrochloride (TBF), 
Ticlopidine hydrochloride (TCP), Trimethadione (TMD), Vitamin A (VA), WY-
14643 (WY) 

Non-
toxic 

Acarbose (ACA), Acetazolamide (ACZ), Adapin (ADP), Ajmaline (AJM), 
Amiodarone hydrochloride (AM), Amitriptyline hydrochloride (AMT), Allopurinol 
(APL), 2-bromoethylamine hydrobromide (BEA), Caffeine (CAF), Captopril (CAP), 
Carbamazepine (CBZ), Clofibrate (CFB), Chlorpheniramine maleate (CHL), 
Cimetidine (CIM), Chlormadinone acetate (CLM), Cephalothin sodium (CLT), 
Ciprofloxacin hydrochloride (CPX), Chlorpromazine hydrochloride (CPZ), 
Diclofenac sodium (DFNa), Danazol (DNZ), Erythromycin ethylsuccinate (EME), 
Enalapril maleate (ENA), Ethanol (ETN), Etoposide (ETP), Famotidine (FAM), 
Fluphenazine dihydrochloride (FP), Furosemide (FUR), Glibenclamide (GBC), 
Griseofulvin (GF), Gentamicin sulfate (GMC), Haloperidol (HPL), Hydroxyzine 
dihydrochloride (HYZ), Ibuprofen (IBU), Imipramine hydrochloride (IMI), 
Isoniazid (INAH), Iproniazid phosphate (IPA), Ketoconazole (KC), Methyldopa 
(MDP), Mefenamic acid (MEF), Metformin hydrochloride (MFM), Moxisylyte 
hydrochloride (MXS), Nitrofurantoin (NFT), Nitrofurazone (NFZ), Nicotinic acid 
(NIC), Nifedipine (NIF), Omeprazole (OPZ), Papaverine hydrochloride (PAP), 
Phenobarbital sodium (PB), D-penicillamine (PEN), Perhexiline maleate (PH), 
Phenylbutazone (PhB), Phenytoin (PHE), Pemoline (PML), Quinidine sulfate 
(QND), Ranitidine hydrochloride (RAN), Rifampicin (RIF), Sulpiride (SLP), Tannic 
acid (TAN), Tetracycline hydrochloride (TC), Tiopronin (TIO), Tolbutamide (TLB), 
Tamoxifen citrate (TMX), Triamterene (TRI), Thioridazine hydrochloride (TRZ), 
Triazolam (TXM), Sodium valproate (VPA) 
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1) The toxicological classes of chemical substances were referred to a previous report (Low et al., 665 

2011). The authors classified these compounds into histopathological and serum chemistry classes. 666 

Compounds with hepatotoxic histopathological findings and other histopathological findings with 667 

biochemical marker changes in serum chemistry were defined toxic-compounds in this study. 668 

 669 

Table 2. Principal components relating common genes in a virtual microarray (RAID) and in vivo 670 

data. 671 

Probe ID Symbol Description 

1398250_at Acot1 Acyl-CoA thioesterase 1 

1370269_at Cyp1a1 Cytochrome P450, family 1, subfamily a, polypeptide 1 

1387022_at Aldh1a1 Aldehyde dehydrogenase 1, family member A1 

1368934_at Cyp4a1 Cytochrome P450, family 4, subfamily a, polypeptide 1 

1388211_s_at Acot1 Acyl-CoA thioesterase 1 

1374070_at Gpx2 Glutathione peroxidase 2 

1367811_at Phgdh Phosphoglycerate dehydrogenase 

1389253_at Vnn1 Vanin 1 

1388210_at Acot2 Acyl-CoA thioesterase 2 

1371089_at Gsta3 Glutathione S-transferase alpha 3 

1370491_a_at Hdc Histidine decarboxylase 

1379275_at Snx10 Sorting nexin 10 

1370902_at Akr1b8 Aldo-keto reductase, family 1, member B8 

1367733_at Car2 Carbonic anhydrase 

1386889_at Scd2 stearoyl-Coenzyme A desaturase 2 
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1386901_at LOC103690020 Platelet glycoprotein 4-like 

1391187_at Ppl Periplakin 

1384225_at Dab1 DAB adaptor protein 1 

1384274_at AABR07037307 similar to Spindlin-like protein 2 

1395403_at Stac3 SH3 and cysteine rich domain 3 

1375845_at Aig1 Androgen induced 1 

1368283_at Ehhadh Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase 

1387740_at Pex11a Peroxisomal biogenesis factor 11 alpha 

1370067_at Me1 Malic enzyme 1 

1370870_at Me1 Malic enzyme 1 

1371886_at Crat Carnitine O-acetyltransferase 

1379361_at Pex11a Peroxisomal biogenesis factor 11 alpha 

1386885_at Ech1 Enoyl-CoA hydratase 1 

1367659_s_at Eci1 Enoyl-CoA delta isomerase 1 

1378169_at Acot3 Acyl-CoA thioesterase 3 

1374475_at Abhd1 Abhydrolase domain containing 1 

1387783_a_at Acaa1a Acetyl-Coenzyme A acyltransferase 1A 

1390591_at Slc17a3 Solute carrier, family 17, member 3 

1368607_at Cyp4a8 Cytochrome P450, family 4, subfamily a, polypeptide 8 

1370698_at Ugt2b10 UDP glucuronosyltransferase, family 2, member B10 

1370387_at Cyp3a9 Cytochrome P450, family 3, subfamily a, polypeptide 9 

 672 

 673 

 674 
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 675 

Table 3. List of top 20 genes with high importance in vitro data in the predictive models in RAID. 676 

Probe ID Symbol Description 
Importance of in vitro 
data 

1398250_at Acot1 Acyl-CoA thioesterase 1 0.549873 

1368934_at Cyp4a1 Cytochrome P450, family 4, subfamily a, polypeptide 1 0.411661 

1367659_s_at Eci1 Enoyl-CoA delta isomerase 1 0.35992 

1368283_at Ehhadh 
Enoyl-CoA hydratase and 3-hydroxyacyl CoA 
dehydrogenase 

0.348306 

1387740_at Pex11a Peroxisomal biogenesis factor 11 alpha 0.313967 

1370269_at Cyp1a1 Cytochrome P450, family 1, subfamily a, polypeptide 1 0.284354 

1386885_at Ech1 Enoyl-CoA hydratase 1 0.251545 

1389253_at Vnn1 Vanin 1 0.243576 

1387783_a_at Acaa1a Acetyl-Coenzyme A acyltransferase 1A 0.238282 

1371076_at Cyp2b1 Cytochrome P450, family 2, subfamily a, polypeptide 1 0.220351 

1375845_at Aig1 Androgen induced 1 0.166297 

1388211_s_at Acot1 Acyl-CoA thioesterase 1 0.126502 

1379361_at Pex11a Peroxisomal biogenesis factor 11 alpha 0.125313 

1386901_at LOC103690020 Platelet glycoprotein 4-like 0.114874 

1370397_at Cyp4a3 Cytochrome P450, family 4, subfamily a, polypeptide3  0.11374 

1386880_at Acaa2 Acetyl-CoA acyltransferase 2 0.095809 

1384244_at Hsdl2 Hydroxysteroid dehydrogenase like 2 0.074349 

1370698_at Ugt2b10 UDP glucuronosyltransferase, family 2, member B10 0.073172 

1397468_at Hsdl2 Hydroxysteroid dehydrogenase like 2 0.07087 

1367777_at Decr1 2,4-dienoyl-CoA reductase 1 0.069522 
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Table 4. List of chemical substances used for external validation of RAID system. 677 

Name CAS No. Name in PCA plot 

Potential Cyp1a inducers   

2,3,4,7,8-pentachlorodibenzofuran 57117-31-4 Pentachlorodibenzofuran 

3,4,5,3',4'-pentachlorobiphenyl 57465-28-8 Pentachlorobiphenyl 

3-methylcholanthrene 56-49-5 Methylcholanthrene 

9,10-dimethyl-1,2-benzanthracene 57-97-6 Dimethylbenzanthracene 

Benzo(a)pyrene 50-32-8 Benzo(a)pyrene 

Dexamethasone 8054-59-9 Dexamethasone 

Genistein 446-72-0 Genistein 

2,2',4,4'-tetrachlorobiphenyl 1336-36-3 Tetrachlorobiphenyl 

Quercetin 117-39-5 Quercetin 

Resveratrol 501-36-0 Resveratrol 

Thiabendazole 148-79-8 Thiabendazole 

Potential Cyp4a inducers   

Streptozotocin 18883-66-4 Streptozotocin 

2-ethylhexanol 104-76-7 Ethylhexanol 

Di(2-ethylhexyl) phthalate 117-81-7 Di(2-ethylhexyl)_phthalate 

Clofenapate 21340-68-1 Clofenapate 

Clofibric acid 882-09-7 Clofibric_acid 

Ciprofibrate 52214-84-3 Ciprofibrate 

Nafenopin 3771-19-5 Nafenopin 

TO-901317 293754-55-9 TO-901317 
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Acetaminophen 719293-04-6 Acetaminophen 

Diltiazem 33286-22-5 Diltiazem 

 678 
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