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Abstract 

Sub-heading 

Arising From: Zimmerman, K. D., Espeland, M. A. & Langefeld, C. D. Nature 

Communications (2021). https://doi.org/10.1038/s41467-021-21038-1 

Summary 

Recently, Zimmerman et al.,1 proposed the use of mixed models over pseudobulk aggregation 

approaches, reporting improved performance on a novel simulation approach of hierarchical 

single-cell expression data. However, their reported results could not prove the superiority of 

mixed models as they are based on separate calculations of type 1 (performance of the models 

on non-differentially expressed genes) and type 2 error (performance on differentially 

expressed genes). To correctly benchmark the models, a reanalysis using a balanced measure 

of performance, considering both the type 1 and type 2 errors (both the differentially and non-

differentially expressed genes), is necessary. 

Contact 

Alan Murphy: a.murphy@imperial.ac.uk, Nathan Skene: n.skene@imperial.ac.uk 

Code availability 

The modified version of hierarchicell which returns the Matthews correlation coefficient 

performance metric as well as the type 1 error rates, uses the same simulated data across 

approaches and has checkpointing capabilities (so runs can continue from where they left off 

if aborted or crashed) is available at: https://github.com/neurogenomics/hierarchicell.  

The benchmarking script along with the results are available at:  

https://github.com/Al-Murphy/reanalysis_scRNA_seq_benchmark. 
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Introduction 

The simulation approach of hierarchical single-cell expression data developed by Zimmerman 

et al.,1 (hierarchicell) is used to generate non-differentially expressed genes upon which 

performance is evaluated using the type 1 error rate; the proportion of non-differentially 

expressed genes indicated as differentially expressed by a model. The authors determined that 

pseudobulk methods are “overly conservative" relative to mixed models however this can not 

be determined based on this analysis tool. In single-cell expression analysis, a conservative 

model does a poor job of capturing truly differentially expressed genes. Thus, such a model 

would have a high type 2 error rate. Certain methods’ 1- type 2 error or power were calculated 

on specific simulated dataset sizes in Figure 3 and Supplementary Figures 5-11 of the authors’ 

analysis. Importantly though, a systematic analysis of the models’ type 2 error rates was not 

reported, therefore, the authors’ statement cannot be concluded. 

Considering the systematic analysis of the type 1 error results reported by Zimmerman et al.,1 

across the 20,000 iterations of 5 to 40 individuals and 50 to 500 cells at a p-value cut-off of 

0.05, it was observed that pseudobulk approaches, in fact, have the lowest type 1 error at every 

iteration (Supplementary Figure 1). However, as previously outlined, we need a balanced 

measure of performance that considers both type 1 and type 2 error rate to correctly benchmark 

the models.  

Main 

Here, we modified Zimmerman et al.’s hierachicell approach to simulate both differentially 

expressed and non-differentially expressed genes. The differentially expressed genes were 

randomly simulated with a fold change between 1.1 and 10. We tested the models using the 

Matthews Correlation Coefficient (MCC) giving a balanced measure of performance as well 

as the type 1 error. MCC is a well-known and frequently adopted metric in the machine learning 
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field which offers a more informative and reliable score on binary classification problems2. 

MCC produces scores in [-1,1] and will only assign a high score if a model performs well on 

both non-differentially and differentially expressed genes. Moreover, MCC scores are 

proportional to both the size of the differentially and non-differentially expressed genes, so it 

is robust to imbalanced datasets. Furthermore, hierarchicell uses R’s pseudo-random number 

functionality when generating the single-cell expression data, meaning each iteration will result 

in a different simulated dataset. However, Zimmerman et al.’s approach did not account for 

this in their benchmarks thus, their comparisons were not based on the same data. We further 

modified hierachicell to use the same simulated data for all models, enabling a fair comparison.  

Our analysis demonstrates that pseudobulk approaches are the best performing across all 

number of individuals and cells variations (Figure 1). There is one exception for sum 

pseudobulk which performs worse than Tobit at 5 individuals and 10 cells. Figure 1 also 

highlights a trend whereby pseudoreplication models; Modified t, Tobit, Two-part hurdle: 

Default and Two-part hurdle: Corrected (which take cells as independent replicates) show 

degrading performance as the number of cells increase. This is likely due to the over-estimation 

of power driven by the dependence between cells from the same individual3. On the other hand, 

both sum and mean pseudobulk approaches (Pseudobulk: Mean and Pseudobulk: Sum) show 

improved performance as the number of cells increase. This trend is also noted in two of the 

other models; GEE1 and Tweedie: GLMM. 
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Figure 1: The average Matthews correlation coefficient from the 20,000 iterations; 50 runs 

for each of the 5 to 40 individuals and 50 to 500 cells at a p-value cut-off of 0.05 on 10,000 

genes. Left shows all benchmarked models whereas right focuses on the top four approaches. 

The different models are pseudoreplication approaches; Reproducibility-Optimized 

Statistical Testings - ROTS (Modified t), Monocole (Tobit) and model-based analysis of 

single-cell transcriptomics – MAST default, corrected, mean and sum pseudobulk 

approaches; from DESeq2 (Pseudobulk: Mean, Pseudobulk: Sum), generalised linear 

models: generalized estimating equation (GEE1) and generalized linear model with Tweedie 

distribution (Tweedie: GLM) and mixed model approaches; generalized linear mixed model 

with Tweedie distribution (Tweedie: GLMM) and model-based analysis of single-cell 

transcriptomics – MAST with a random effect for individuals (Two-part hurdle: RE). The 

performance split by each iteration is given in supplementary table 1. 
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In real datasets there would never be equal numbers of cells in each sample. To mirror this, we 

simulated data with an imbalanced number of cells between case and controls. Pseudobulk 

mean outperformed all other approaches on this analysis (Supplementary Figure 2). The 

pseudobulk approach which aggregated by averaging rather than taking the sum appears to be 

the top performing overall, however, it is worth noting that hierarchicell does not normalise the 

simulated datasets before passing to the pseudobulk approaches. This is a standard step in such 

analysis to account for differences in sequencing depth and library sizes5. This approach was 

taken by Zimmerman et al. as their data is simulated one independent gene at a time without 

considering differences in library size. The effect of this step is more apparent on the 

imbalanced number of cells where pseudobulk sum’s performance degraded dramatically. 

Pseudobulk mean appears invariant to this missing normalisation step because of averaging’s 

own normalisation effect. It should be noted that this is a flaw in the simulation software 

strategy and does not show an improved performance of pseudobulk mean over sum. 

Pseudobulk approaches were also found to be the top performing approaches in a recent review 

by Squair et al.,4. Notably, the pseudobulk method used here; DESeq25, performed worse than 

other pseudobulk models in Squair et al.,’s analysis and so their adoption may further increase 

the performance of pseudobulk approaches o n our dataset. Conversely, Squair et al., did not 

consider all models included in our analysis or the different forms of pseudobulk aggregation. 

Therefore, our results on sum and mean pseudobulk extend their findings and indicate that 

mean aggregation may be the best performing. However, the reader should be cognisant that 

the lack of a normalisation step based on the flaw in the simulation software strategy likely 

causes the increased performance of mean over sum aggregation. Further, the use of simulated 

datasets in our analysis may not accurately reflect the differences between individuals that are 

present in biological datasets. Thus, despite both our results and those reported by Squair et al., 

there is still room for further analysis, benchmarking more models, including different 
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combinations of pseudobulk aggregation methods and models, on more representative 

simulated datasets and biological datasets to identify the optimal approach. Specifically, we 

would expect pseudobulk sum with a normalisation step to outperform pseudobulk mean since 

it can account for the intra-individual variance which is otherwise lost with pseudobulk mean 

but this should be tested, including on imbalanced datasets. 

Conclusion 

In conclusion, our results demonstrate that pseudobulk approaches are far from being too 

conservative and are, in fact, the best performing models based on this simulated dataset for 

the analysis of single-cell expression data. 
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Supplementary Figures 

 

Supplementary Figure 1: The average type 1 error from the 20,000 iterations; 50 runs for 

each of the 5 to 40 individuals and 50 to 500 cells at a p-value cut-off of 0.05 on 5,000 genes 

reported by Zimmerman et al.1. Left shows all benchmarked models whereas right focuses on 

the top four approaches. The different models are pseudoreplication approaches; 

Reproducibility-Optimized Statistical Testings - ROTS (Modified t), Monocole (Tobit) and 

model-based analysis of single-cell transcriptomics – MAST default, corrected, mean and 

sum pseudobulk approaches; from DESeq2 (Pseudobulk: Mean, Pseudobulk: Sum), 

generalised linear models: generalized estimating equation (GEE1) and generalized linear 

model with Tweedie distribution (Tweedie: GLM) and mixed model approaches; generalized 

linear mixed model with Tweedie distribution (Tweedie: GLMM) and model-based analysis 

of single-cell transcriptomics – MAST with a random effect for individuals (Two-part hurdle: 

RE). 
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Supplementary Figure 2: The average Matthews correlation coefficient of all benchmarked 

models across all balanced number of cells and the imbalanced number of cells for 20 

individuals; 50 runs for each at a p-value cut-off of 0.05 on 5,000 genes. The number of cells 

were randomly chosen using a gamma distribution with shape 4 and scale 45 separately for 

cases and controls to produce the imbalanced dataset (giving a mean 150-200 cells). The 

error bars give 1 standard deviation around the mean. The different models are 

pseudoreplication approaches; Reproducibility-Optimized Statistical Testings - ROTS 

(Modified t), Monocole (Tobit) and model-based analysis of single-cell transcriptomics – 

MAST default, corrected, mean and sum pseudobulk approaches; from DESeq2 (Pseudobulk: 

Mean, Pseudobulk: Sum), generalised linear models: generalized estimating equation 

(GEE1) and generalized linear model with Tweedie distribution (Tweedie: GLM) and mixed 

model approaches; generalized linear mixed model with Tweedie distribution (Tweedie: 

GLMM) and model-based analysis of single-cell transcriptomics – MAST with a random 

effect for individuals (Two-part hurdle: RE).  
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