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Abstract 
The Epithelial-to-Mesenchymal Transition (EMT) is a developmental cellular program frequently coopted 

by cancer cells1 and is a key contributor to both heterogeneity in solid tumors2–4 and later stage chemo-resistance 

and metastasis5,6. Rather than being a switch from an epithelial to a mesenchymal state, increasing evidence 

points to the existence of intermediate EMT states, wherein cells co-express both epithelial and mesenchymal 

traits7–13. Multiple stable intermediate EMT states possessing unique characteristics exist across the EMT 

spectrum7,8,14,15, contributing to the complex heterogeneity of tumors to promote metastasis16. While much work 

has been carried out identifying and characterizing EMT-inducing transcription factors17–20, the transcriptional 

and epigenetic networks responsible for the stability and maintenance of the midpoints along the EMT spectrum 

are poorly defined. In addition, there are currently no approaches to identifying and quantifying intermediate EMT 

subpopulations within patient tumors to evaluate their prognostic significance. Using clonally isolated derivatives 

of the SUM149PT breast cancer cell line, we systematically interrogate how each EMT state independently 

contributes to heterogeneity and influences metastatic progression, uncovering the role of RUNX2 in stabilizing 

certain intermediate states. Using SUM149PT-derived tumors as a training set, we develop an entropy-based 

model to quantify phenotypic heterogeneity and EMT status. Remarkably, the majority of cell states captured in 

the SUM149PT model are represented in a selection of patient tumors, laying the foundation for quantification 

of epithelial-mesenchymal heterogeneity and understanding the role of the intermediate EMT state in tumor 

progression. 

 

 We derived single cell clones from the SUM149PT ER-/PR- inflammatory breast cancer cell line21,22 

stratified by expression of CD44 and CD104 (ITGb4)14. Six single-cell derived clonal populations were isolated, 

ranging from epithelial-like (E) to mesenchymal (M1 and M2), including three distinct intermediate states (EM1, 

EM2, and EM3) – hereafter referred to as “EMT clones” (Figure 1A, Supplemental Figure 1A). These clones, 

which stably retain their EMT states in culture, were ranked along the EMT spectrum relative to one another 

based on expression of canonical epithelial and mesenchymal markers such as Vim (Vimentin), CDH1 (E-

cadherin), ZEB1, and SNAI1 (SNAIL) (Figure 1C&D), as well as by variable migratory and invasive 

characteristics in vitro (Figure 1B). In contrast to previous reports23,24, we observe an increase in migratory and 

invasive properties in the intermediate, but not mesenchymal clones, likely pointing to earlier discrepancies in 

discerning these two states from one another. Classic flow cytometry approaches employing 2-3 markers were 

insufficient to distinguish the intermediate states (Supplemental Figure 1D). By other measures, however, the 

intermediate clones exhibit differences in cell migration (Figure 1B), EMT marker expression (Figure 1C&D), cell 

morphology (Figure 1E) and expression of Vimentin and E-cadherin (Figure 1F). Interestingly, the three 

intermediate clones most closely resemble the characteristics of the parental line in migratory and invasive ability 

in vitro (Figure 1B), as well as their overall transcriptional profiles determined by unsupervised hierarchical 

clustering of Pearson’s correlation coefficients following RNA-sequencing (Figure 1G). Notably, there were no 

substantial genetic differences between clones E, EM1, EM2, EM3 and M1, with M2 exhibiting some SNP and 

INDEL variations (Supplemental Figure 1B&C), indicating that the phenotypic and functional differences between 

these intermediate clones are likely driven by non-genetic mechanisms25.  
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Various methods have been developed to quantify the extent to which cells undergo an EMT and 

determine an absolute comparable EMT score26–28, which have been reviewed recently29. When applied to our 

model, all three methods - MLR28, KS27 and 76GS26 - predict that E through EM3, i.e. the epithelial and three 

intermediate clones, fall within the intermediate state, while M1 and M2 are mesenchymal (Figure 1H, 

Supplemental Figure 1E, F, &G). When plotted amongst the 59 breast cancer cell lines from the Cancer Cell 

Line Encyclopedia (CCLE), these clones fall along the intermediate and more mesenchymal end of the spectrum 

(Figure 1I, Supplemental Figure 1E&F, Supplemental Table 1). Notably, the parental line scored most closely to 

the epithelial (E) clone in most methods (Figure 1H, Supplemental Figure 1E&F). Our model, thus, highlights the 

presence of multiple distinct intermediate EMT states, enabling further investigation into how each state may 

individually contribute to tumor development and metastasis.  

 

In vivo tumor initiation and growth further highlighted the individuality of these EMT clones. Upon 

orthotopic injection, the parental cell line was able to initiate and form tumors more rapidly than the other clones 

(Figure 2A). When analyzed with a bimodal linear mixed model fit30, the three intermediate clones were able to 

initiate tumors at the same rate as the parental line (Initial phase Holm adj. p-val > 0.05) (Figure 2A & 2C), but 

exhibited a lag in growth (Exponential phase Holm adj. p-val <0.003). The epithelial (E) and two mesenchymal 

(M1 & M2) clones both failed to initiate tumors as readily or, in the case of the mesenchymal clones, grow as 

rapidly as the parental and intermediate clones (Holm adj. p-value < 0.01). Increased tumor growth corresponded 

with decreased survival, with the parental line exhibiting poorest survival, and the mesenchymal clones the 

longest (Figure 2B). Limiting dilution analyses revealed a high tumor-initiating cell frequency in the parental and 

intermediate clones, with all mice forming tumors by eight weeks (Figure 2C). The two mesenchymal (M1& M2) 

possess the lowest tumor initiating cell frequencies (1/694,444 and 1/75,975, respectively) despite expressing 

high levels of CD44 expression, a marker frequently correlated with increased stemness and tumor initiating  

ability11,12,31 (Supplemental Figure 1D). All clones generated high grade, poorly differentiated, invasive ductal 

carcinomas of no special type (ductal), with clone M1 tumors notably exhibiting 50% squamous differentiation, 

and clone M2 showed abundant spindle cell morphology (Supplemental Figure 2A). Tumor growth and TIC 

frequencies indicate that, while the intermediate EMT clones may represent a population with high tumor-

initiating potential, a heterogeneous population such as the parental line is able to enter an exponential growth 

phase more rapidly.  

 

 To precisely delineate the propensity of the clones to form micro- and macro-metastasis, lungs from 

animals bearing orthotopic tumors were fixed and stained with H&E and counted for micro- (<10 adjacent cells) 

and macro- (>10 adjacent cells) metastases (Figure 2E). The three intermediate (EM1-3) clones seeded higher 

numbers of micro-metastatic lesions per lung, compared to the most epithelial (E) and most mesenchymal (M2) 

(p-value <0.05). Within this group, clones EM1 and EM3 seeded higher numbers of macro-metastases compared 

to EM2 (Figure 2E), although differences between the intermediate clones were not statistically significant. 

Interestingly, while exhibiting the highest rate of tumor growth and poorest survival, the parental line seeded 
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fewer lung metastases than the intermediate clones, suggesting that other mechanisms could be contributing to 

mortality.  

 

Given the lack of genetic differences between the clones, we hypothesized that the clonal variations in 

EMT state were driven by alterations to their transcriptional profiles. Using RNA-sequencing (RNA-Seq), 

alterations in the expression levels of various transcription factors were analyzed using the epithelial clone E as 

a benchmark. Principal Component Analysis (PCA) demonstrates clustering of the parental line, intermediate 

EM and E clones (Figure 3A, Supplemental Figure 3A), whereas the two mesenchymal clones (M1 & M2) cluster 

separately from each other and the main cluster, indicating that the EMT clones do not reside in a linear 

spectrum, but rather embark on multiple distinct trajectories. Unsupervised hierarchical clustering of the 500 

most variable genes across all clones reveals distinct transcriptional programs separating the three intermediate 

clones from the epithelial (E) and mesenchymal (M1 & M2) ones (Supplemental Figure 3B). Within this 

intermediate cluster, EM2 and E are again distinct from the remaining intermediates and parental line 

(Supplemental Figure 3A). Differential expression analysis revealed 581 genes were significantly differentially 

expressed (adjusted p<0.05) expressed in all clones when compared to E, with 1881 genes shared between the 

two mesenchymal clones and 178 shared between the three intermediate clones (Figure 3B, Supplemental 

Figure 3C, Supplemental Table 2). Indeed, in comparison to the epithelial baseline clone E, more differentially 

expressed genes are exclusive to each clone than are shared between two or more clones (Figure 3B), further 

corroborating the unique EMT states represented by this model. To further explore the epigenetic landscape of 

these clones, we employed ATAC-seq32 to determine the differential chromatin accessibility across EMT clones 

in comparison to the epithelial clone E, which exhibits the most closed chromatin profile (Figure 3C). Notably, 

the chromatin landscape is similarly diverse between mesenchymal and intermediate clones (Supplemental 

Figure 3D). To identify TFs with a significant enrichment of motifs among peaks that were uniquely accessible 

in each clone (relative to E), presence of transcription factor binding motifs was scanned for using Motifmatchr33, 

and tested for enrichment against the background set of all identified peaks (hypergeometric test, p-adj<0.05) 

(Figure 3D). The three intermediate and early mesenchymal clones were highly enriched for motifs of the RUNX 

family transcription factors (Figure 3D, Supplemental Figure 4A). The TFAP2A/B/C TF family also exhibit 

enriched binding accessibility in these intermediate and early mesenchymal clones, albeit less significantly than 

the RUNX family. All three RUNX transcription factors as well as their co-factor CBFb have been previously 

implicated in various cancers34–36 and in metastatic progression of triple negative breast cancer (TNBC)37,38. 

Enrichment of these RUNX TF motifs is unique to the intermediate (EM1, EM2, and EM3) and early 

mesenchymal (M1) clones, those that seeded the highest number of lung metastases (Figure 2E).  

 

To provide a more comprehensive picture of the epigenetic and regulatory landscape of EMT, we utilized 

a new multiomics approach, DiffTF39, to quantify TF activity and regulatory state by combining RNA-seq and 

ATAC-seq data for each clone. Similar to Motifmatchr, TF activity was inferred by computing the fold change in 

chromatin accessibility between each clone compared to E at each binding site of a given TF. Inferred TF activity 

was visualized against RNA-seq log2 fold-change for each transcription factor (Figure 3E, Supplemental Figure 
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3E), facilitating detection of TFs with increased expression in conjunction with increased TF activity (upper right 

quadrant). Analysis of the directional changes of TF expression from RNA-seq also indicated whether the TF in 

question acts as an activator (green) or repressor (red) (Figure 3E). The two mesenchymal clones revealed 

much larger shifts in both fold-change expression and TF activity, indicative of larger changes in their overall 

transcriptional and chromatin profiles relative to E. In the three intermediate and early mesenchymal clones, 

RUNX2 and RUNX3 are both amongst the most highly expressed and exhibit the highest TF activity of all 

significant transcription factors (Figure 3E, Supplemental Figure 3E). A list of all significant transcription factors 

and their relative TF activity and fold change expression are included in Supplemental Table 3.  

 

Unsupervised clustering analysis presents a clearer picture of how these TFs act in a transcriptional 

network, highlighting those which exhibit significant changes in their TF activity in at least one clone (adj. p-value 

<1E-15) (Figure 3F). Cluster 1 is comprised of transcription factors that are upregulated and function as activators 

in the clones that exhibit increased metastatic potential i.e., EM1-3 and M1; the RUNX TF family and co-factor 

CBFb. Cluster 2 includes factors that increase in activity with the progression of EMT e.g., ETS1 and related 

factors, NFkB, RELB, and FLI1. Cluster 3 identifies transcription factors that are activated and remain equally 

active after entrance into the EMT e.g., members and regulators of the AP1 complex. Multiple members of the 

KLF family of transcription factors as well as CTCF are found in cluster 4, which exhibit a consistent decrease in 

TF activity following entrance into an EMT. Cluster 5 highlights transcription factors that may be uniquely active 

in M2, while remaining inactive in the other EMT clones, including FOXJ2 and FOXD3, CEBP complex members, 

and ATF4. Finally, Cluster 6 delineates the transcription factors that have an overall and graded decrease in 

activity as the EMT progresses. This cluster contains multiple EMT TFs such as Snail, Slug, and ZEB1 as well 

as known MET promoting TFs such as GRHL1 and 2. Although these and other canonical EMT transcription 

factors, such as Twist and PRRX1 are expressed at a significantly high levels (p<0.05), non-significant or 

decreased TF activity indicates no change in chromatin accessibility compared to clone E in response to this 

increase in expression (Supplemental Figure 3E, Supplemental Table 3). Indeed, these TFs decrease in activity 

while their overall expression remains high (Supplemental Figure 3E) likely resulting from strong repression of 

chromatin accessibility at their epithelial target genes, potentially through HDAC recruitment40,41 or other 

mechanisms such as the ZEB1 target promoters CDH1, EPCAM, GRHL2 (Figure 3G). 

 

To validate our analyses, we tested the effects of knockdown of TFs in cluster 1, which is uniquely 

expressed and active in the intermediate and early mesenchymal clones. Indeed, knockdown of RUNX2 led to 

a significant upregulation of CDH1 in clones EM2, EM3 and M1, a reduction in Snai1 and increase in OVOL1 

expression across all intermediate clones, indicating the acquisition of epithelial traits (EM1, EM2 & EM3; Figure 

3H, Supplemental Figure 4B&C). In addition to validating our approach of identifying key regulators of the 

intermediate EMT states, RUNX2 presents itself as a viable candidate for potential disruption of this state. 

 

 To better understand the role that epithelial-mesenchymal (E-M) heterogeneity plays on tumor 

progression and metastasis, we utilized a multi-round, multiplexed tyramide signal amplification (TSA) 
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approach42 to assess protein levels of EMT markers while segregating the epithelial component of tumors from 

stromal elements that could obfuscate EMT scoring. To capture the full spectrum of EMT states, we designed a 

panel of six EMT markers, containing three intermediate filament proteins (KRT8, KRT14 and VIM), two EMT 

transcription factors (ZEB1 and Snail), and an adherens junction protein that serves as a hallmark epithelial 

marker (E-cadherin). Tumors from each of the clones was stained and divided into 50 regions of interest (ROI) 

and processed with the InFormä analysis software (PerkinElmer) to generate composite images (Figure 4A). 

Image training algorithms were used to discern tumor and stromal composition, as well as cell segmentation 

(Supplemental Figure 5A). Normalized percentile distributions of the arbitrary fluorescent units (AFU) of each 

EMT marker, per cell, across all images provided an overview of the overall composition of these tumors (Figure 

4B), indicating that no one unique marker signature defined any individual tumor. Overall, clone M2 tumors 

expressed less E-cadherin and more ZEB1, while clone E tumors contain less Vimentin, indicative of their initial 

EMT states in-vitro. To determine the extent of E-M heterogeneity within the stained images, a scoring metric 

was developed using the SUM149PT clones as a training set. Tumor images were scored based on a rubric of 

low (one major cell trait with up to one minor trait), mid (two major cell traits with up to three minor traits), and 

high (three or more major cell traits present with two or more minor traits) (Figure 4C). Scoring based on these 

criteria revealed that the intermediate EMT clones form tumors that contain more regions of higher heterogeneity 

than the parental cell line (Figure 4C). Thus, increasing levels of heterogeneity may not linearly correlate with 

tumor growth or metastasis, but rather, there exists an optimal ratio of cell traits within the tumor that determines 

its growth and metastatic potential. Indeed, the requirement for this optimal ratio may explain the growth lag 

observed in the intermediate clones when compared to the parental line, which likely results from constraints in 

the generation of a requisite level of heterogeneity from a homogenous cell culture (Figure 2A).  

 

In a parallel method to assess tumor diversity and phenotypic composition, the InForm analysis software 

was trained on a subset of tumor images to recognize seven distinct cell phenotypes encompassing the majority 

cell states present in all tumor images (Supplemental Figure 5A). These phenotypes, spanning from most 

epithelial to most mesenchymal are: E-cadherin only, KRT8 & E-cadherin, KRT14 only, Triple positive (KRT8+E-

cadherin+Vimentin), Snail only, Vimentin only, and Vimentin+ZEB1. Phenotypes were validated manually and 

by fluorescent marker distribution (Supplemental Figure 5B). Similar to EMT marker distribution, there were no 

phenotypes unique to any individual state, indicating that optimal tumor progression may be determined by ratios 

of cell states rather than by presence or absence of a particular cell type. On either end of the spectrum, clone 

E and clone M2 derived tumors are made up of over 75% epithelial (E-cad only, KRT8+E-cad, or KRT14 only), 

or mesenchymal (Snail only, Vimentin only, or Vimentin+ZEB1) phenotypes, respectively, whereas tumors 

derived from the intermediate clone and the parental line contain equal distribution of epithelial and mesenchymal 

phenotypes (Figure 4D). These data further support the notion that the ratio of EMT states (phenotypes), rather 

than the presence of any particular state, is more reflective of tumor growth and metastatic potential.  

 

In order to develop a scoring algorithm to assess E-M heterogeneity, three feature extraction methods 

were tested using the segmented cell data files (Supplemental Figure 5A). These three approaches sought to 
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determine the best method to assess heterogeneity: (1) an entropy-based  approach43,44 using mean marker 

expression of cells per image, (2) a nearest neighbor analysis approach45 using cell phenotypes as determined 

above (Figure 4D), and (3) a hybrid approach combining approaches 1 and 2. All three approaches were 

developed and evaluated using a randomized subset of clone tumor images and their corresponding 

heterogeneity scores according to the rubric outlined in Fig 4C as ground truths. Logistic regression performance 

on unseen test data indicated 78% accuracy for entropy-based features of mean marker cell expressions. Five-

fold cross-validation determined that the entropy-based approach 1 (F1-score= 0.78, Wilcoxon ranking test p-

value=0.004) proved to be the most accurate at correctly assessing tumor heterogeneity (Supplemental Figure 

5C). This shows that E and M2 clones consisted largely of areas of low or mid-level heterogeneity, whereas all 

intermediate clones were comprised of regions of high heterogeneity (Figure 4C, Supplemental Figure 5C).  

 

In addition to scoring E-M heterogeneity, we sought to assign EMT scores to tumors based on the ratios 

of epithelial and mesenchymal traits they exhibit. EMT scores were generated by calculating the composition of 

cell phenotypes per image (50 images per clone) using the linearly weighted average of cell ratios expressing 

each phenotype from epithelial to mesenchymal. EMT scores range from 0 to 1, with zero being comprised of all 

epithelial phenotypes and one comprised of all mesenchymal phenotypes. Rather than attaining an equilibrated 

EMT state, clonal tumors held true to the EMT state of their starting populations, with clone E tumors being 

predominantly epithelial (mean=0.35), intermediate (EM1, EM2, EM3) and parental tumors maintaining an 

intermediate EMT score (mean=0.65-0.7), and the most mesenchymal (M2) scoring >0.8 (mean=0.86) (Figure 

4E). Clone M1 tumors also scored as intermediate despite starting as a quasi-mesenchymal, further validating 

this clone as a late intermediate (Figure 4E). Interestingly, the variation in EMT scores between images in the 

intermediate clones (EM1, EM2, EM3, & M1) and parental line was highest of all of the groups, indicating higher 

intra-tumoral heterogeneity (Figure 4E). In exploring the connection between heterogeneity and EMT scores, we 

uncovered that low heterogeneity tumor regions correlated with higher EMT scores, as can be seen in M2 tumors 

(Figure 4A & 4G, Supplemental Figure 5D). Medium and high heterogeneity regions were characterized by 

intermediate EMT scores despite encompassing a more diverse array of possible EMT states (Figure 4G).  

 

To establish whether the EMT phenotypes observed in our model are representative of those observed 

in human breast cancer specimens, we carried out TSA immunostaining of 20 TNBC patient tumors 

(Supplemental Figure 5E & F) selected for TNBC status and poorly differentiated histopathology. Six out of seven 

phenotypes identified from the SUM149PT clone tumors were reproducibly represented across all patient 

tumors, with the exception of Snail only (Figure 4F, Supplemental Figure 5E). Ratios of epithelial and 

mesenchymal phenotypes follow similar trends to the SUM149PT clones, skewing towards more mesenchymal 

cells (Supplemental Figure 5G). These data serve to validate the SUM149PT clones as a model to study various 

states along the EMT spectrum. Heterogeneity score and EMT score algorithms were applied to these patient 

tumors (Supplemental Figure 5G, H, & I) and, as observed in the EMT model clones, relative intra-tumoral 

heterogeneity and EMT scores were not always correlated e.g., patient tumor A5 and A8 exhibit similar ratios of 

low, mid, and high intra-tumoral heterogeneity, however, their EMT scores are markedly different (Supplemental 
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Figure 5G&H), which suggests that these two metrics may determine patient outcomes in different ways. This 

uncoupling of heterogeneity and EMT scores was also observed in the SUM149PT parental tumors compared 

to those from clone E which exhibit similar ratios of low and mid-level heterogeneity but are scored differently on 

the EMT scale. The observed uncoupling of heterogeneity from EMT state raises the notion that cells which 

exhibit high plasticity leading to the formation of heterogeneous tumors do not reside in a highly mesenchymal 

state, but rather, fall in the mid-range of EMT scores. Thus, TFs identified in cluster 1 such as RUNX2 which are 

associated with the intermediate state likely regulate cell plasticity, while not directly contributing to a more 

mesenchymal state.  

 

Our study encompasses a comprehensive analysis of the spectrum of EMT states represented within a 

single cell line to interrogate the nuances of each state, their respective contributions to tumor initiation and 

metastasis, and their epigenetic regulatory networks. We uncover the presence of multiple unique EMT states 

within the intermediate EMT category, as well as two distinct mesenchymal-like states, suggesting multiple, non-

linear trajectories for EMT. The intermediate EMT state is maintained by a unique set of transcription factors, 

including the RUNX family, which are necessary for its stability. We also uncover that the intermediate EMT state 

exhibits higher levels of cellular plasticity, manifesting in tumors as high levels of E-M heterogeneity. Moreover, 

this plasticity-induced heterogeneity plays a key role in the metastatic propensity and tumor-initiating potential of 

these clones. Finally, we develop an approach to quantifying E-M heterogeneity and “EMTness” within human 

tumors, the former showing promise in its ability to inform disease prognosis.  

 
 
Materials and Methods 

 

Cell culture 
The human derived SUM149PT cell line was obtained from the Weinberg lab, who in turn acquired it from Dr. 

Stephen P. Ethier (Michigan). All derivative cell lines were maintained in F12 medium (Gibco #11765-054) 

supplemented with 10% fetal bovine serum (FBS) (Gibco #10438-026) insulin (1 mg/ml; Gibco #12585-014), 

and hydrocortisone (1 mg/ml; Sigma # H4001) and 5% Penicillin-Streptomycin (Corning #10-002-cl). All cell 

lines were incubated at 37ºC with 5% CO2-air atmosphere with constant humidity. Cells were passaged with 

0.25% Trypsin (Corning 25-053-Cl); passage number was kept on all cell lines, and cultures were discarded 

past a total of twenty passages to maintain their respective EMT phenotypes. 293T cell line was maintained in 

DMEM + 10% fetal bovine serum (Gibco #10438-026) + 5% Penicillin-Streptomycin (Corning #10-002-cl).  

 

Lentiviral Vectors 
Lentivirus was made with 293T cells plated at 60% confluency in 10cm tissue culture treated plates and 

transfected using X-tremeGENE HP DNA Transfection Reagent (Sigma # 6365779001) with lentiviral vectors, 

psPAX2 (1.5ug, Addgene #12260), pCMV-VSV-G (1.5ug, Addgene #8454), and pcDNA3-eGFP (0.5ug, 

Addgene #13031) plus the lentiviral vector of interest (3ug). Supernatant collected at 48 and 72 hours post-
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transfection, concentrated using Lenti-X concentrator (TakaraBio #631232), and titer determined with Lenti-X 

GoStix (TakaraBio #631243).  

 

Cell line Generation 
Parental cell line SUM149PT was maintained in standard media. To generate single cell clones, fluorescence 

assisted cell sorting (FACS) was performed on SUM149PT with the FACSAria III Cell Sorter. Cells were 

stained with CD44-PeCy7 1:100 (Biolegend 103030), CD104-APC 1:200 (Invitrogen #50-1049-82), or Epcam-

BV510 1:100 (BioLegend #324235) for 30 minutes on ice before addition of DAPI 1:1000 (SigmaAldrich 

10236276001, 10mM stock). Gating and compensation were done on single stained controls, and cells were 

sorted into collection tubes and immediately plated at a dilution of 0.5 cells per well into a 96-well plate. Single 

cell clones were then expanded and assessed for EMT characteristics.  
ZsGreen expressing cells 

All SUM149PT clones and parental line were infected with high titer pHIV-Luc-ZsGreen (Addgene #39196) 

virus so as to generate ZsGreen and Luciferase expressing tumor cells for metastasis tracking in mouse. 6x105 

cells were infected in 6-well plates with 125uL of high titer virus in standard media with 5ug/mL Polybrene 

(Sigma-Aldrich). Media was changed after 24 hours, and cells allowed to expand for 48 hours before sorting for 

ZsGreen positive population on the FACSAria III Cell Sorter, as above. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Flow Cytometry 
Flow experiments were performed in the same manner as above, on a 10-color Gallios FACS cytometer 

(Beckman Coulter). Compensation, file analysis, and plot generation was conducted using FlowJo (BD). 

ZEB2 F CAAGAGGCGCAAACAAGC Zeb1 F TGCACTGAGTGTGGAAAAGC 
ZEB2 R GGTTGGCAATACCGTCATCC Zeb1 R TGGTGATGCTGAAAGAGACG 
PRRX1 F CTGATGCTTTTGTGCGAGAA Ecad F TTGCACCGGTCGACAAAGGAC 
PRRX1 R ACTTGGCTCTTCGGTTCTGA Ecad R TGGATTCCAGAAACGGAGGCC 
Twist2 F GCAAGAAGTCGAGCGAAGAT Fibronectin1 F GAGAATGGACCTGCAAGCCCA 
Twist2 R GCTCTGCAGCTCCTCGAA Fibronectin1 R AGTGCAAGTGATGCGTCCGC 
OVOL1 F CCGTGCGTCTCCACGTGCAA Vimentin F ACCCGCACCAACGAGAAGGT 
OVOL1 R GGCTGTGGTGGGCAGAAGCC Vimentin R ATTCTGCTGCTCCAGGAAGCG 
OVOL2 F CCGATGGACACCTGGCGACC RUNX1 F CAGCTGCGGCGCACA 
OVOL2 R GACGGTTCAGCATGCGCTGC RUNX1 R GGATCTGCCTTGTATCCTGCAT 
Twist1 F TGCGGAAGATCATCCCCACG RUNX2 F AGCCCTCGGAGAGGTACCA 

Twist1 R GCTGCAGCTTGCCATCTTGGA RUNX2 R CGGAGCTCAGCAGAATAATTTTC 

Snai1 F CTGGGTGCCCTCAAGATGCA RUNX3 F GTTCAACGACCTTCGCTTC  

Snai1 R CCGGACATGGCCTTGTAGCA RUNX3 R GTCCACGGTCACCTTGATG  

Snai2 F TACCGCTGCTCCATTCCACG CBFB F CTTAGAAAGAGAAGCAGGCAAGG 

Snai2 R CATGGGGGTCTGAAAGCTTGG CBFB R AACTCCAGACAGCCCATACCA 
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RT-qPCR 
RNA was harvested from 6-well plates of cells at confluency, extracted using the Qiagen RNeasy plus kit 

(Qiagen 74034) and quantified using a NanoDrop (Thermo Fisher Scientific - ND-2000-US-CAN). Reverse 

transcriptase PCR (AppliedBiosystems #4368814) was performed to generate cDNA and Power SYBR green 

PCR mastermix (Applied Biosystems) was used for qPCR. 

 

Western Blot 
For western blot, lysates were collected on-plate with 1x RIPA buffer (EMD Millipore #20-188) with protease 

and phosphatase inhibitors (ThermoScientific #1861280). Lysates were sonicated and cleared before 

quantification with a Bradford Protein assay (BioRad) and loaded at 50ug per lane and run on a NuPage Bis-

Tris gel (ThermoFisher) and transferred to nitrocellulose membrane with the iBlot semi-dry transfer system 

(ThermoFisher) and blocked in 5% milk in TBST before staining with Fibronectin (BD #610078, 1:10,000), 

ZEB1 (LSBio ## 1:2000), E-cadherin (BD #610182, 1:1000), Vimentin (Cell Signaling Technology; CST #5741, 

1:2000), RUNX1 (CST #4336, 1:2000), RUNX2 (CST #12556, 1:2000),  RUNX3 (CST #9647, 1:2000), CBFb 

(Abcam ab33516, 1:2000), Snail (CST #3879, 1:1000), Twist1/2 (abcam ab50887, 1:50), and CoxIV (CST 

#11967, 1:2000) overnight in 5% milk in TBST. LiCor secondary antibodies, IRDye goat anti-rabbit and goat 

anti-mouse, 800CW (LiCor #925-32219) and 680RD (LiCor #925-68076), applied at 1:10,000 for 1 hour RT in 

5% milk in TBST before imaging on the LiCor Oddessey CLx Digital Imager. 

 

Transwell Assay 
Transwell assays were conducted using Costar Transwell plates (#3422 8.0 µm) in triplicate. For migration 

assays, 2.5E5 cells were added to the top of each well in 10% complete medium, with 100% complete medium 

beneath the transwell. Cells were incubated for 16-18 hours at 37ºC. Media was aspirated and cells were 

permeabilized with 100% methanol for 5 minutes RT followed by staining with crystal violet (0.5% crystal violet 

in 20% methanol). Transwells were imaged on a Nikon Eclipse TS100 and migrated cells were counted using 

ImageJ. Invasion assays were conducted as above on plates that were coated with 100uL of 5% Matrigel to 

the top of each transwell and allowed to set at 37ºC for two hours before seeding. 

 

shRNA knockdown 
RUNX2 knockdown was achieved by cloning RUNX2 hairpins (below) into Tet-pLKO-puro (addgene #21915) 

via AgeI and EcoRI. Constructs were confirmed by Sanger sequencing and used as vectors in lentivirus 

production as stated above. Cells were infected with 1/8th lentiviral product from a 10cm plate in 6-well plates. 

Media was changed after 24 hours and puromycin selection (2ug/mL) was applied at 48 hours until stable cell 

lines generated. 

Cells were plates at 2x105 cells per well in 6-well plates and treated with doxycycline (2ug/mL) for 72 hours 

before on-plate lysis for RNA of protein collection. 
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Cell Imaging 
Bright Field 

Images were taken on a Nikon Eclipse TS100 under 20x magnification to determine cell morphology 

ImmunoFluorescence  

Cells were grown to 60% confluency in chamber slides (Falcon 354118) with standard media. Cells were fixed 

and permeabilized prior to staining with primary antibody (Vimentin CST # 1:100 and E-cadherin BD number 

1:100) overnight followed by secondary (anti-rabbit ThermoFisher #31466 1:10000, anti-mouse ThermoFisher 

#31431 1:10000) for one hour. Slides were washed and mounted using ProLong Diamond (Invitrogen P36961) 

before imaging on Zeiss LSM 800 with Airyscan (63X) 
 

In Vivo Studies 
Cell lines were resuspended in 30% Matrigel (VWR 47743-706) and injected in limiting dilutions (250k, 25k, 

and 2.5k cells per flank) orthotopically into the inguinal mammary fat pat (no. 4) of NOD-scid IL2Rgnull (Stock 

No: 005557; Jackson Laboratory). Tumor growth was monitored weekly and tumor volume was measured 

along 3 axes with calipers (VWR 62379-531). Tumors and lungs were harvested at time of tumor burden (total 

tumor volume of 2cm3) and fixed overnight with 10% neutral buffered formalin. Tumor growth curves and 

survival statistically analyzed using TumGrowth30. Tumor initiating potential calculated with Extreme Limiting 

Dilution Analysis (ELDA)46.  

 

Tumor and Lung staining 
Tumors and lungs were extracted at time of tumor burden (total tumor volume of 2cm3) and fixed overnight with 

10% neutral buffered formalin. All samples were then processed and stained for Hematoxylin & Eosin (H&E) by 

the Dartmouth Hitchcock Pathology Shared Resource. Lungs bearing ZsGreen positive EMT clones were 

counted by eye on Nikon Eclipse TS100 and select images taken at 4x magnification. 

 

Metastasis counting 
H&E stained lung slides were scanned on a PerkinElmer Vectra3 slide scanner at 10x and counted by eye for 

micro (> 10 adjacent cells) and macro (10+ adjacent cells) metastatic tumors. 

 

Whole Exome Sequecing 
Whole Exome sequencing and subsequent SNP and INDEL alignment and discovery was performed by 

BGISeq on all EMT clones. They obtained 9,242.46 Mb raw bases. After removing low-quality reads we 

obtained averagely 91,977,846 clean reads (9,197.79 Mb). The clean reads of each sample had high Q20 and 

Q30, which showed high sequencing quality. The average GC content was 50.63%. Reads were aligned with 

Burrows-Wheeler Aligner (BWA). The HaploTypeCaller of GATK(v3.6) was used to call and identified 190,503 

SNPs	and 33,385 InDels between all samples. SNPs and InDels for each clone were tested against the 

consensus set for clone E to determine possible genetic mutations with a Fishers Exact Test and plotted as 

Odds Ratios.  
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RNA-seq data processing  
RNA was collected using Qiagen RNeasy plus kit (Qiagen 74034) and quantified using a NanoDrop (Thermo 

Fisher Scientific - ND-2000-US-CAN). 

Quality of raw single-end RNA-seq data was confirmed using FastQC47 (v0.11.8) before read trimming of polyA 

sequences and low quality bases using Cutadapt48 (v2.4). Reads were aligned to human genome hg38 using 

STAR49 (v 2.7.2b) with parameters “--outSAMattributes NH HI AS NM MD --outFilterMultimapNmax 10 --

outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 

1000000 --alignMatesGapMax 1000000 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1”. Quality of 

alignments was assessed using CollectRNASeqMetrics (Picard Tools50) and duplicate reads were identified 

(but retained) with MarkDuplicates (Picard Tools50). Gene-level abundance estimates were generated using 

RSEM51 (v1.3.2) using the rsem-calculate-expression command with the parameters “--strandedness reverse -

-fragment-length-mean 313 --fragment-length-sd 91”.  

 

Downstream RNA-seq data analysis  
Gene-level abundance estimates generated with RSEM were imported into R and analyzed using R-package 

DESeq252. Tp perform exploratory analysis of global transcriptional profiles, abundance were transformed 

using the regularized logarithm approach53 implemented in R-package DESeq2, and the top 500 most variable 

genes across all clones were supplied to the prcomp() command in R to perform principal components analysis 

(PCA). The 500 most variable genes were also used to perform Unsupervised hierarchical clustering with the 

R-package ComplexHeatmap. Differential expression analysis was performed on the raw gene-level 

abundance estimates assuming a negative binomial distribution, with clone E used as the reference group in 

all comparisons. Gene-wise dispersion estimates were reviewed in all analyses to confirm the selected model 

was an appropriate fit for the data. Genes with a Benjamini-Hochberg adjusted P-value < 0.05 (Wald-test) were 

considered statistically significant. 

 

ATAC-seq data processing  
Tagmented DNA and library prep for ATAC-sequencing was performed according to the protocol detailed in 

Buenrostro et. al. 201532 

Prior to analysis, quality of raw DNA sequences (in FASTQ format) was confirmed using FastQC47 (v0.11.8). 

ATAC-seq data was then processed using the publicly available ENCODE ATAC-seq pipeline 

(https://www.encodeproject.org/pipelines/ENCPL792NWO/), and relevant commands and options used are 

described in detail below. Illumina adapter and transposase sequences were trimmed using Cutadapt48 (v1.9.1) 

with parameters “--minimum-length 5 -e 0.1”. Trimmed reads were then aligned to human genome hg38 using 

Bowtie254 (v2.2.6) in “--local” mode with parameters “-X 2000 -k 2”. Duplicate reads were identified using 

MarkDuplicates (Picard Tools50) and filtered from final alignments, in addition to unmapped reads and reads 

aligning to mitochondrial DNA, retaining only alignments formed by properly paired reads. For multi-mapping 

reads, one paired-end alignment was randomly selected as the primary alignment while the remaining 
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alignments were discarded. Alignments (in BAM format) were converted to tagAlign files and shifted +4 bp and 

-5 bp on the + and – strands, respectively, to account for insertion of adapter sequences by Tn5 transposase. 

Peaks were called for each replicate using the MACS255 (v2.1.1) callpeak command with parameters “--shift -75 

--extsize 150 --nomodel --keep-dup all --call-summits -p 1.0E-10” and filtered against the ENCODE hg38 

blacklist. The Irreproducible Discovery Rate (IDR) method was used to identify a set of reproducible peaks across 

biological replicates using an IDR threshold of 0.05. For visualization purposes, position-shifted (to account for 

Tn5 insertion) BAM files for biological replicates were merged MergeSamFiles (Picard Tools50) and used to 

generate counts per million (CPM)-normalized signal-tracks (in BigWig format) via the deepTools56 (v3.4.3) 

bamCoverage command with parameters “--binSize 5 --normalizeUsing CPM --effectiveGenomeSize 

2913022398 --ignoreForNormalization chrX”. Heatmaps of normalized Tn5 insertions in peak regions or specific 

regions were generated using deepTools commands computeMatrix and plotHeatmap.   

 

Several metrics were used to confirm ATAC-seq data quality. To confirm sequencing libraries were of sufficient 

complexity, three specific quality control metrics were evaluated: non-redundant fraction (NRF, number of 

uniquely mapping reads / total read number), PCR bottlenecking coefficient 1 (PBC1, number of genomic 

positions with at least 1 read mapped / number of distinct genomics position to which a read maps uniquely), 

and PCR bottlenecking coefficient 2 (PBC2, number of locations where one read maps uniquely / number of 

genomic regions where two reads map uniquely). Fragment length distributions were generated and reviewed 

in R using the “Rsamtools” package. The fraction of reads in nucleosome-free regions (NFRs) was calculated to 

confirm a sufficient fraction of reads were located in NFRs. Fraction of reads in peak regions (FRiP score) was 

calculated to assess the quality of the final IDR peak set. Enrichment of accessibility over transcriptional start 

sites (TSSs), calculated as the maximum number of normalized Tn5 insertions across a +/- 2kb region flanking 

hg38 TSS regions, was used to was to confirm data quality in a peak agnostic fashion. 

 

Downstream ATAC-seq data analysis  
Basic peak annotation was performed using the annotatePeak() function from the ChIPseeker57 package, using 

a range of +/- 3kb to define promoter-associated regions. R-package TxDb.Hsapiens.UCSC.hg38.knownGene 

was used to define gene models and coordinates of genomic features. To create a set of consensus peaks, the 

IDR peak sets for each sample groups were merged using the GenomicRanges R-package. Tn5 insertions 

occurring in each peak of the consensus peak set were counted from position-shifted BAM files using the 

featureCounts() function (from the Rsubread package) with options “isPairedEnd=TRUE, 

countMultiMappingReads=FALSE”. To perform exploratory analyses of global chromatin accessibility profiles, 

raw counts were transformed using the regularized logarithm approach53 implemented in R-package DESeq2. 

Principal components analysis (PCA) was performed on the 3000 most variable consensus peak regions using 

the prcomp() function in R. The most variable peaks were defined as those with the greatest standard deviation 

across all samples. Unsupervised hierarchical clustering was performed with the ComplexHeatmap R-package, 

also using the 3000 most variable consensus peaks. Differential accessibility analysis of the consensus peak 

was also performed using the DESeq2 R-package, modelling raw counts using a negative binomial distribution, 
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with clone E used as the reference group in all comparisons. Peaks with a Benjamini-Hochberg corrected P-

value < 0.05 (Wald-test) were considered statistically significant.  

 
Differential TF activity analyses  
Differential TF activity between single-cell derived clones, as well as TF mode of action (i.e. activator, repressor) 

was estimated using diffTF39. Briefly, when used with ATAC-seq data, diffTF computes the fold change in 

chromatin accessibility between two conditions at each binding site of a given TF, and the distribution of fold 

changes is compared to a set of background fold-change values to assess statistical significance of differences 

in TF activity between the conditions. DiffTF was used in conjunction with matched RNA-seq (classification 

mode) to classify each TF into one of the following modes of action (activator, repressor, not-expressed, 

undetermined) through correlation of TF expression levels with target site accessibility. DiffTF was used with 

options “pairedEnd” and “RNASeqIntegration” set to ‘true”, with all remaining options using default settings. In-

silico predicted binding sites based on the HOCOMOCO v11 database58 and PWMScan59 for hg38 across 768 

human TFs was used to define the atlas of TFBS for diffTF analyses. To concentrate on the TFs with the most 

confidently estimated TF activity scores (weighted_meanDifference), we restricted our downstream analysis to 

TFs that achieved an adjusted P-value of 1E-15. To identify modules of cooperatively regulated TFs, 

unsupervised hierarchical clustering was performed on the diffTF activity scores using R-package 

ComplexHeatmap.   

 
Enrichment of TFBS in clone-specific peak sets  
To identify potential TFs responsible for mediating clone-specific phenotypes, we tested the differentially 

accessible peaks between clone E and each clone for over-representation of TF binding site motifs. We first 

restricted each peak set to regions that demonstrated statistically significant increases in chromatin 

accessibility compared to clone E (see description of differential accessibility analyses above) and scanned 

these peaks for TF motif occurrences using R-package motifmatchr33. Position frequency matrices for human 

TF motifs used as input to motifmatchr were downloaded from the JASPAR database60 using R-packages 

JASPAR2018 and TFBSTools61. Over-represented TF motifs in each peak set were identified through 

hypergeometric testing using the R function phyper(), with all peaks identified in that clone used as the 

background set. TF motifs with a Bonferroni corrected hypergeometric P-value <0.05 were deemed as over-

represented. To identify potential groups of coordinately regulated TFs across the respective clones, -log10-

transformed P-values from hypergeometric testing were subjected to hierarchical clustering and visualized 

using R-package pheatmap. To prevent extreme motif enrichments from dominating the heatmap scale, -

log10-transformed P-values were capped at a maximum value of 20 (highlighted with an asterisk).  

 

Multiplexed TSA staining 
Tumors were selected from each EMT clone at approximately 1cm3 and stained with (in order) Snail (CST 

#3895, 1:400), KRT8 (Invitrogen PA5-29607, 1:300), KRT14 (Invitrogen MA5-11599, 1:1000), Vimentin (CST 

#5741, 1:500), E-cadherin (BD #610182, 1:500), and ZEB1 (Invitrogen PA5-82982, 1:1000). Antibody 
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optimization and multiplexed staining was done according to PerkinElmer OPAL Assay Development Guide 

(August 2017) and previous literature42,62. Briefly, slides were baked to remove paraffin wax, and then 

sequentially washed with Xylene, rehydrated with decreasing concentrations of ethanol, and finally ddH20 

before blocking. Then slides were incubated with primary antibody then secondary antibodies for 30 minutes at 

RT. Following washes, the selected OPAL fluorophore was applied to slides for precisely 6 minutes at RT in 

the dark, washed off, and slides microwaved at 20% power for 15 minutes to affix OPAL to target regions and 

remove primary and second antibody. Slides were blocked again and staining process repeated for each 

marker, and finally spectral DAPI (PerkinElmer, 2 drops per mL) before mounting on coverslips with ProLong 

Diamond (Invitrogen P36961). 

 
Primary Antibody Secondary Antibody Opal (TSA) 
Snai1 1:400             
CST #3895 

Goat anti-mouse HRP 
1:1500 

Opal 620 1:500 

K8 1:300          
Invitrogen PA5-29607 

Goat anti-rabbit HRP   
1:1500 

Opal 540 1:1,000 

K14 1:1000      
Invitrogen MA5-11599  

Goat anti-mouse HRP 
1:1500 

Opal 520 1:150 

Vimentin 1:300        
CST #5741 

Goat anti-rabbit HRP   
1:1500 

Opal 690 1:150 

E-cadherin 1:500       
BD #610182  

Goat anti-mouse HRP 
1:1500 

Opal 650 1:500 

ZEB1 1:1000    
Invitrogen PA5-82982 

Goat anti-rabbit HRP   
1:1500 

Opal 570 1:600 

 
 

Image Analysis 

Whole slide scans were captured at 10x with the PerkinElmer Vectra3 Slide Scanner and ~50 regions of 

interest (ROIs) per tumor chosen manually with PhenoChart (PerkinElmer). ROIs were imaged at 20x 

resolution and imported into InForm analysis software (PerkinElmer). Spectral unmixing single-stains and 

background fluorescence slides were generated from the Parental tumor according to the OPAL Assay 

Development Guide. ROIs were spectrally unmixed and assigned colors and exported as composite images 

(Figure 4A). Tissue (Trainable to 98% accuracy) and cell segmentation were performed (Nuclear compartment 

– DAPI, Cytoplasm – Vimentin & KRT8, Membrane – E-cadherin) and cells were phenotyped based on 

expression of one or multiple markers (E-cadherin only, KRT8 & E-cadherin, KRT14 only, Triple positive 

(KRT8+E-cadherin+ Vimentin), Snail only, Vimentin only, and Vimentin+ZEB1) and validated by marker 

distribution (Supplemental Figure 5A&B). Entire Cell Mean Fluorescent units extracted for each marker and 

normalized as a percentile of maximum and minimum fluorescence across all cells in all images.  

 

Heterogeneity and EMT Scores 

Approach 1: Heterogeneity scores were generated using penalized logistic regression based on entropies of 

mean marker cell expressions to identify markers and cellular compartments (Nucleus, Cytoplasm, and 

Membrane) that contributed most to the variability in the ranked tumor images (Supplemental Figure 5C). In total 
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134 entropy-based features extracted, and 13 of them were selected by Recursive Feature Elimination 

(RFECV)63 as most relevant. Logistic regression classified sample heterogeneity into levels mid, low and high. 

Ground truths were determined from the rubric: low (one major cell trait with up to one minor trait), mid (two 

major cell traits with up to three minor traits), and high (three or more major cell traits present with two or more 

minor traits). These were used to train and validate the algorithm using 70% training and 30% test images 

(n=409) in a five-fold cross validation. 

Approach 2: Nearest Neighbor analysis was conducted with the scikit-learn python package45 using cell 

phenotypes determined from InForm. Similar feature selection methods were applied to nearest neighbors, with 

26 out of 49 features selected.  

Approach 3: A hybrid approach used combined the 134 and 49 features from approach 1 and 2 and selected 18 

out of 183 features. 

To generate the EMT score, the seven derived phenotypes were weighted from epithelial to mesenchymal (E-

cadherin only -3, KRT8 & E-cadherin -2, KRT14 only-1, Triple positive +1, Snail only +2, Vimentin only +3, and 

Vimentin & ZEB1 +4) and applied to a multivariate logistic regression.  

 

Raw Data 
Raw data from RNA-seq and ATAC-seq experiments that support the findings in this study are currently being 

deposited in GEO. Accession codes will be provided once the submission is complete.   

 

Research Animals 
All animal experiments were carried out under ethical regulations approved by the Dartmouth College IACUC 
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 Figure 1: Heterogeneous cell line SUM149PT contains multiple distinct EMT states that can be isolated as single cell clones.  
A) A schematic of the Flow cytometry method used to isolate single cell clones that present as an epithelial (E), three distinct intermediate (EM1, 
EM2, and EM3), and two mesenchymal (M1 and M2) EMT states. B) In vitro assessment of clonal migratory and invasive characteristics as 
measured in a standard transwell assay (n=3, SD, p-value ***<0.001, *<0.05). Canonical EMT marker expression levels as determined by (C) 
Quantitative RT-PCR (SD, n=4) or (D) immunoblotting to rank SUM149 clones along the EMT spectrum. E) Bright field and F) immunofluorescent 
images of EMT clones in vitro stained with Vimentin and E-cadherin displaying cell morphology and marker expression & localization, respectively. 
G) Unsupervised hierarchical clustering of Pearson correlation coefficients of clone-specific gene expression profiles derived from RNA-sequencing. 
Correlation coefficients were determined using a total of 3207 genes, each of which was differentially expressed between epithelial clone, E, and 
at least one of the comparison clones. Yellow indicates low correlation whereas blue indicates higher correlations. H) EMT signature of EMT clones 
and parental line generated from the ordinal Multinomial Logistic Regression method of gene scoring and I) distribution of EMT score of the EMT 
clones among other breast cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE).   
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Figure 2: Differences in primary tumor growth and metastatic potential between EMT clones.  
A) Tumor growth curves measured weekly following orthotopic injection of clonal and parental cell lines at 2,500 cells exhibit exponential 
growth differences between EMT states (TumGrowth30 piecewise regression model breakpoint = 6wks, ***Holm adj.  p-value <0.0001, **Holm 
adj.  p-value< 0.01, n=10). B) Survival curve of EMT clones and parental line displaying differences in survival across the parental line and 
early intermediate EMT states. Cox regression analysis (***Holm adj. p-value <0.0001, *Holm adj. p-value< 0.015). C) Tumor initiating cell 
frequency calculated by limiting dilution assay with cells injected at 250k, 25k, and 2.5k cells per flank. TIC calculated at 8 weeks post 
injection. D) Lung sections collected at time of maximum tumor burden (2cm3), with GFP labeled metastatic cells, following orthotopic 
injections in (A). E) Lungs fixed and stained from (A) with H&E and enumeration of micro (<10 adjacent cells) and macro (10+ adjacent cells) 
metastatic regions (SD, n=5, micro p-val < 0.02 macro p-value = n.s.). F) Representative brightfield images of micro- and macro- metastases 
from the parental line.  
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Figure 3: Identification of stabilizing transcription factors in the intermediate EMT state by multi-omics analysis 
A) Principal Component Analysis (PCA) of the 500 most variable genes between all EMT clones and SUM149 Parental line from RNA-sequencing. B) C) ATAC-seq peak 
accessibility measured as counts per million (CPM) normalized Tn5 insertions surrounding consensus peaks, promoter-associated, and distal-intergenic peaks, 
respectively, for each EMT clone D) Unsupervised hierarchical clustering of transcription factor motif enrichment (-log10 adjusted p-value, hypergeometric test) among 
accessible chromatin peaks unique to each clone, relative to E. Presence of motifs obtained from the JASPAR database were identified using motifmatchr (P<0.05) and 
tested for enrichment against the background set of all peaks identified in the respective clone using the hypergeometric test. Asterisk indicates a -log10 p-value enrichment 
threshold greater than 20, scaled to fit. E) Advanced volcano plot of highly significant transcription factors, highlighting the RUNX family Transcription Factor activity, 
relative to clone E determined by diffTF from ATAC-seq along the X-axis (label cutoffs at 0.1, -0.1 TF activity), plotted against Log2 fold gene expression values of 
transcription factors on the y-axis (label cutoffs at 1, -1 log2 fold). Transcription Factor classification, determined by transcription factor expression, displayed in bubble 
color, and number of transcription factor binding sites used to determine TF activity plotted as bubble size. F) Unsupervised hierarchical clustering of TF activity scores 
(Z-score transformed) compared to clone E (adj. P-value <1E-15). Right hand side displays TF classification, determined by changes in TF expression (diffTF), as an 
activator, repressor, not expressed, or undetermined. G)  Peak accessibility of Tn5 normalized, merged coverage of three canonical ZEB1 target genes, CDH1, EPCAM, 
and GRHL2 across all clones from ATAC-sequencing. ZEB1 TF motifs highlighted above signal tracks. H) mRNA levels of canonical EMT markers determined by qRT-
PCR following inducible shRNA knockdown of RUNX2 at 72 hours post-induction in intermediate, mesenchymal, and parental clones. Fold change relative to a LacZ non-
targeting control (dotted line at 1) (SD, n=4, * <0.01, **<0.005, *** < 0.001, ****< 0.0001, no star = n.s.) 
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Figure 4: Multiplexed staining of tumors reveals shared phenotypes also found in patient tumors A) EMT clone-derived tumors resected at 
1.5cm3 and stained with six markers using TSA (n = 50 images) B) Percentile normalized distributions of Arbitrary Fluorescent Units (AFU) for 
each marker across all tumors. C) Empirically determined heterogeneity scores of EMT clone-derived tumors. Rubric: Low (one major cell trait 
with up to one minor trait), Mid (two major cell traits with up to three minor trait), and High (three or more major cell traits present with two or more 
minor traits). D) Boxplot of EMT phenotypes determined from InForm Analysis software displaying the composition of each clonally derived tumor 
(n=~50 images per tumor). E) EMT score distribution in clonally derived tumors generated from weighted multivariable logistic regression of the 
phenotypes present in each tumor. F) Phenotypic composition of 20 patient tumors (n=3-7 punches per tumor) stained with the TSA marker panel. 
Colored dots correspond to patient prognosis, either No Recurrence, Local metastasis, metastatic disease, or no data G) Dotplot of correlations 
between heterogeneity score and EMT score in SUM149PT clone tumors and H) matching pattern in patient tumors.  
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