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Abstract 

Recent developments in high-density neurophysiological tools now make it possible to record 

from hundreds of single neurons within local, highly interconnected neural networks. Among the 

many advantages of such recordings is that they dramatically increase the quantity of 

identifiable, functional connections between neurons thereby providing an unprecedented view 

of local circuit interactions. Using high-density, Neuropixels recordings from single neocortical 

columns of primary visual cortex in nonhuman primates, we identified 1000s of functionally 

connected neuronal pairs using established crosscorrelation approaches. Our results reveal clear 

and systematic variations in the strength and synchrony of functional connections across the 

cortical column. Despite neurons residing within the same column, both measures of functional 

connectivity depended heavily on the vertical distance separating neuronal pairs, as well as on 

the similarity of stimulus tuning. In addition, we leveraged the statistical power afforded by the 

large numbers of connected pairs to categorize functional connections between neurons based on 

their crosscorrelation functions. These analyses identified distinct, putative classes of functional 

connections within the full population. These classes of functional connections were 

corroborated by their unique distributions across defined laminar compartments and were 

consistent with known properties of V1 cortical circuitry, such as the lead-lag relationship 

between simple and complex cells. Our results provide a clear proof-of-principle for the use of 

high-density neurophysiological recordings to assess circuit-level interactions within local 

neuronal networks. 
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Introduction 

Understanding the functional logic of local neuronal microcircuits is among the more 

fundamental objectives in the study of neural systems, yet it is also among the most challenging. 

This seems particularly true for mammalian neocortical circuits involved in perceptual and 

cognitive functions, and most notably in nonhuman primate model systems for which the 

available tools to interrogate those circuits are the most limited. The columnar organization of 

the mammalian neocortex (Lorente de No, 1938; Mountcastle, 1957) and its distinctly layered 

structure within different cortical domains are both widely appreciated (Reviewed in Defelipe, 

Markram, & Rockland, 2012; Horton & Adams, 2005; Mountcastle, 1997). In addition, several 

key principles of cortical circuitry, including constituent cell types (Harris & Mrsic-Flogel, 2013; 

Jiang et al., 2015; Katzel, Zemelman, Buetfering, Wolfel, & Miesenbock, 2011; Markram et al., 

2004; Network, 2021; Packer & Yuste, 2011; Yoshimura & Callaway, 2005), input-output 

organization (Callaway, 1998; Douglas & Martin, 2004; Lefort, Tomm, Floyd Sarria, & Petersen, 

2009; Munoz-Castaneda et al., 2021; Thomson & Bannister, 2003; Weiler, Wood, Yu, Solla, & 

Shepherd, 2008) and local microcircuit motifs (Avermann, Tomm, Mateo, Gerstner, & Petersen, 

2012; Frandolig et al., 2019; Karnani et al., 2016; Obermayer et al., 2018; Pfeffer, Xue, He, 

Huang, & Scanziani, 2013; Pi et al., 2013) have emerged in recent years. Although it remains to 

be determined, such principles may turn out to generalize not only across neocortical areas, but 

also across species (Harris & Shepherd, 2015; Karten, 2015; Stacho et al., 2020) (but see 

Campagnola et al., 2021; Wildenberg et al., 2021). Yet, mapping complete cortical microcircuits 

within even a single cortical area remains a tremendous challenge (Adesnik & Naka, 2018).  
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 Recent advances in recording technology have facilitated the development of large-scale, 

high-density micro-electrode arrays resulting in a substantial increment (>10x) in the number of 

neurons that can be studied simultaneously within a localized area of neural tissue. A prime 

example is the recent development of the Neuropixels probe (IMEC, Inc.), which consists of a 

high-channel count Si shank with continuous, dense, programmable recording sites (~1000/cm). 

Numerous recent studies have demonstrated the advantages of such probes, such as their use in 

recording large neuronal populations within deep structures where optical approaches cannot be 

deployed (Jun et al., 2017; Steinmetz, Zatka-Haas, Carandini, & Harris, 2019). In addition, the 

high-density capacity of such probes dramatically increases the quantity of single neurons that 

can be obtained within a localized area of neural tissue (Siegle et al., 2021), thus making them 

well-suited for investigations of local neuronal circuitry. Given that studies of local neuronal 

circuitry within the primate brain are notoriously difficult to achieve, high-density 

electrophysiological approaches may be particularly valuable. However, only a few 

electrophysiological studies of the primate brain using such probes have been carried out thus far 

(Hesse & Tsao, 2020; Paulk et al., 2022; Sun et al., 2022; Trautmann et al., 2019; Zhu, Xia, 

Chen, & Moore, 2020). To date, many studies have leveraged the covariation in spiking activity 

between simultaneously recorded neurons to elucidate underlying neural mechanisms in the 

primate brain with some success, particularly within the visual system (Cohen & Kohn, 2011; 

Hansen, Chelaru, & Dragoi, 2012; Jia, Tanabe, & Kohn, 2013; Kohn & Smith, 2005; Koren, 

Andrei, Hu, Dragoi, & Obermayer, 2020; Smith & Kohn, 2008; Zandvakili & Kohn, 2015). In 

particular, temporally precise crosscorrelations in spiking activity have provided a unique means 

of assessing functional connectivity among neurons in both local and distributed networks 
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(Aertsen & Gerstein, 1985; Aertsen, Gerstein, Habib, & Palm, 1989; Diba, Amarasingham, 

Mizuseki, & Buzsaki, 2014; Moore, Segundo, Perkel, & Levitan, 1970; Nelson, Salin, Munk, 

Arzi, & Bullier, 1992; Nowak, Munk, James, Girard, & Bullier, 1999; Perkel, Gerstein, & 

Moore, 1967; Siegle et al., 2021), and identification of functional connections has played an 

important part in understanding neural circuits in the mammalian visual system (Alonso & 

Martinez, 1998; Alonso, Usrey, & Reid, 1996, 2001; Baker & Bair, 2012; Briggs, Mangun, & 

Usrey, 2013; Hembrook-Short, Mock, Usrey, & Briggs, 2019; Michalski, Gerstein, Czarkowska, 

& Tarnecki, 1983; Reid & Alonso, 1995; Siegle et al., 2021; Toyama, Kimura, & Tanaka, 1981a; 

Ts'o, Gilbert, & Wiesel, 1986; Usrey, Reppas, & Reid, 1998, 1999). However, the extent of 

circuit-level details addressable with crosscorrelation is greatly limited by the low incidences of 

simultaneous recordings from connected neurons when using conventional extracellular 

recording techniques (e.g. Alonso et al., 2001; Hembrook-Short et al., 2019; Nelson et al., 1992; 

Ts'o et al., 1986). The use of high channel-count probes should substantially mitigate that 

limitation by virtue of the large increment in recording yield. Moreover, the high-density of 

recordings should further increase the incidence of isolating functionally connected neurons by 

virtue of the proximity of recorded cells.    

 We assessed the capacity of high-density Neuropixels probes to identify functionally 

connected neurons within cortical columns of primary visual cortex of macaque monkeys. Using 

established crosscorrelation approaches, we identified 1000s of functionally connected neuronal 

pairs during single recordings from neurons situated in different cortical layers. Our results 

demonstrate robust, systematic variations in the strength and synchrony of functional 

connections across the cortical column. In addition, by leveraging the large numbers of 
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connected pairs, distinct classes of functional connections could be identified within the full 

population.  

Results 

Identifying functional connections within single columns of visual cortex 

The activity of V1 neurons was recorded in two anesthetized macaque monkeys (M1, M2) using 

high-density, multi-contact Neuropixel probes (version 3A; IMEC Inc, Belgium) (Fig. 1a) 

(Methods). Each probe consisted of 986 contacts (12 mm x 12 mm, 20 µm spacing) distributed 

across 10 mm, of which 384 contacts could be simultaneously selected for recording. Probes 

were inserted into the lateral operculum of V1 with the aid of a surgical microscope at angles 

nearly perpendicular to the cortical surface. The dense spacing between electrode contacts 

provided multiple measurements of the waveforms from individual neurons (mean = 4.52 

measurements) (Fig 1a, b) and facilitated the isolation of large numbers of single neurons. In 

each of 5 experimental sessions (3 in M1, 2 in M2), we measured the visual responses of 

115-221 simultaneously recorded neurons to drifting gratings presented at varying orientations 

(total = 802 neurons). As expected, neurons were highly orientation selective, and exhibited both 

simple and complex cell properties (De Valois, Albrecht, & Thorell, 1982; Hubel & Wiesel, 

1962, 1968) (Fig. 1b). As in previous studies (Briggs et al., 2013; Hembrook-Short et al., 2019; 

Jia et al., 2013; Kohn & Smith, 2005; Siegle et al., 2021; Smith & Kohn, 2008; Zandvakili & 

Kohn, 2015), we used the visually driven spike trains to measure crosscorrelations between 

simultaneously recorded neuronal pairs. 
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 To estimate the functional connectivity between pairs of neurons recorded simultaneously 

within columns of V1, we computed cross-correlograms (CCGs) using the 802 visually 

responsive neurons recorded across sessions. CCGs were computed from the spike trains of 

68,579 pairs of simultaneously recorded neurons (6,555 – 24,310 pairs/session) (Methods). Each 
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Figure 1. Identifying functional connections within single columns of visual cortex. a, 
Upper left cartoon depicts the angle of Neuropixel probe penetrations made into the lateral 
surface and underlying calcarine sulcus of V1. Upper right, Neuropixels probe base and shank, 
and layout of electrode contacts for a section of the recording shank. Lower, raw voltage traces 
recorded from an exemplar section of channels and time period. b, Example single-neuron 
recordings with Neuropixels probes, three simple cells (orange, blue, green) and one complex 
cell (purple). Top, spike waveforms recorded across multiple adjacent electrode contacts are 
shown for each neuron. Bottom, each neuron’s response to its preferred orientation (rasters and 
instantaneous spike rates) and their corresponding tuning curves. Red arrows (uppler left) denote 
the drift direction of oriented gratings. c, Example CCG between an example pair of V1 neurons. 
Corrected CCGs were generated from the difference between a jittered and an uncorrected CCG. 
Significance of each CCG was determined from comparisons between the peak and the noise 
distribution. d, Distribution of ratios of CCG peaks to the noise (SD) for all recorded pairs. 
Shaded area denotes CCGs with peaks >7 SDs above the mean of the noise distribution. e, Two 
example CCGs differing in both peak lag and peak efficacy.  
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CCG was normalized by the firing rate (FR) and jitter-corrected to mitigate the influences of FR 

(Bair, Zohary, & Newsome, 2001; Mastronarde, 1983) and correlated slow fluctuations (Harrison 

& Geman, 2009; Smith & Kohn, 2008), respectively, yielding a corrected CCG (Fig. 1c). In 

addition, as in previous studies, we considered a CCG significant only if its peak occurred within 

10 ms of zero time lag, and if that peak was > 7 standard deviations above the mean of the noise 

distribution (Siegle et al., 2021). Using this criterion, a total of 10,246 significant CCGs were 

obtained from all recording sessions (Fig. 1d), with each session yielding 755-3,022 significant 

CCGs. The peak lag of each CCG, defined as the differences between zero and the time when the 

peak occurred, estimates the synchrony and/or direction of functional connectivity between 

neuronal pairs; whereas the peak efficacy measures the strength the connectivity (Fig 1e).  

  

Variation in the synchrony and strength of functional connections within cortical columns 

A number of previous studies using low-channel count probes or chronically implanted electrode 

arrays have shown that correlated activity in primate V1 declines with the horizontal distance 

separating pairs of neurons (Kruger & Aiple, 1988; Maldonado, Friedman-Hill, & Gray, 2000; 

Smith & Kohn, 2008) (see also Chu, Chien, & Hung, 2014). Evidence from these studies suggest 

that correlations are greatest for pairs of neurons located within the same column, and diminish 

with greater columnar distance. Other evidence shows variation in the spike timing correlations 

between neuronal pairs located within different laminar compartments (Smith, Jia, Zandvakili, & 

Kohn, 2013). However, considerably less is known about how the nature of correlations varies 

across the depth of individual columns where the degree of shared input and connectivity is at its 

highest. We therefore leveraged the large numbers of significantly correlated pairs obtained from 
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high-density recordings to examine how the synchrony and strength of correlations depended on 

the vertical distance separating neurons within V1 columns. Figure 2a shows data from an 

example recording session in which 221 visually responsive neurons were recorded and 2,453 

significantly correlated pairs were obtained. All neurons are shown along the ~2 mm depth of 

cortex. Shown also are two example correlated pairs whose CCGs are shown in Figure 1e. Of the 

two pairs, the vertical distance separating neurons in one pair was 138 µm greater than that of the 

other. In spite of this small difference, CCG of the closer pair was both more synchronous and 

stronger than the more distant pair. This pattern of results was observed across all significantly 

correlated pairs and in all sessions (Fig. 2b-c) (Figs S1-S2). The synchrony of correlated spiking 

diminished several fold across neuronal pair distance. This change could be fit with a linear 

function (r = 0.42; P<10-5) in which the (absolute) peak lag increased at a rate of 1.3 ms / 500 µm 

of vertical distance. Peak efficacy of the significant CCGs also depended heavily on pair 

distance. This effect could be fit with an exponential decay function (r = -0.34; P<10-5) in which 

the peak efficacy decreased by half within 154 µm. Thus, both measures of functional 

connectivity depended heavily on the vertical distance separating neuronal pairs. In addition, we 

confirmed that the effects of vertical distance on both the synchrony and strength were 

independent of whether neuronal pairs were located within the same or different cortical layers 

(Fig. S3). 

Dependence of synchrony and strength of functional connections on tuning similarity 

In addition to the dependence of correlated activity on the distance between neuronal pairs, many 

studies have shown that greater functional and synaptic connectivity typically occurs between 
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neurons with similar stimulus preferences (Chu et al., 2014; Constantinidis, Franowicz, & 

Goldman-Rakic, 2001; Cossell et al., 2015; DeAngelis, Ghose, Ohzawa, & Freeman, 1999; 

Denman & Contreras, 2014; Funahashi & Inoue, 2000; W. C. Lee et al., 2016; Ts'o et al., 1986) 

(but see Das & Gilbert, 1999; Maldonado et al., 2000). Within primate V1, stimulus selectivity is 

notably similar for neurons within the same column, particularly for orientation selectivity 
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Figure 2. Dependence of synchrony and strength of functional connectivity on vertical 
distance within single cortical columns. a, Example session (M1, session 3) with 221 visually 
responsive neurons recorded simultaneously and their locations across cortical depth.  
(Horizontal axis is magnified for visualization). Cortical depth 0 denotes the boundary between 
Layer 4C and Layer 5. Laminar boundaries were determined using histological data and current-
source-density (CSD) profile for each session (Methods). Two example correlated pairs from 
Figure 1e with varied CCGs are shown in color (blue-yellow pair and pink-red pair 
corresponding to Figure 1e top and bottom, respectively). b, Linear dependence of synchrony on 
vertical pair distance. c, Strength of CCGs decay with greater pair distance. In b and c, all 
significantly correlated pairs from all sessions are combined and each dot denotes the mean peak 
lag or median peak efficacy of significantly correlated CCGs within a (10% quantile) vertical 
distance bin. Error bars denote 95% confidence intervals. Black lines denote the linear and 
exponential fits in b and c, respectively; slope (b) and decay constant (λ) are shown. Red lines 
denote marginal distributions.  
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(Blasdel & Salama, 1986; Hubel & Wiesel, 1968, 1974; Ts'o, Frostig, Lieke, & Grinvald, 1990), 

and this was evident in our recording sessions, where the peak visual responses were largely 

aligned at the same stimulus orientation across cortical depth (Fig. 3a). We considered that 

within orientation columns, functional connectivity could be homogenous for populations of 

similarly tuned neurons. Alternatively, it could be that even small variations in tuning similarity 

could result in robust differences in the synchrony and strength of correlated activity. To address 

this, we examined the dependence of synchrony and strength on the similarity of visual 

properties of neurons within the same cortical column. As in previous studies (Shadlen & 

Newsome, 1998; Zohary, Shadlen, & Newsome, 1994), we quantified tuning similarity by 

computing signal correlations (rori) for each neuronal pair (Methods). Across the total number of 

neuronal pairs (N = 68,579), the mean rori was 0.25. For the significantly correlated neuronal 

pairs, the mean rori was 0.33. Signal correlations for the two previous example neuronal pairs are 

shown in Fig 3b. The responses of both pairs are positively correlated, yet that correlation is 

much higher in the second, more proximal, pair (Fig. 2a) and the one with more synchronous and 

stronger CCG (Fig 1e). Overall, we found that both the peak lag and peak efficacy of CCGs for 

significantly correlated neuronal pairs varied monotonically with tuning similarity across the 

range of signal correlations (Fig. 3c, d). Neuronal pairs with the highest signal correlations 

exhibited half the peak lags and twice the peak efficacies of uncorrelated pairs. This pattern was 

observed in each of the individual recording sessions (Figs S4-S5). 

 We considered that the apparent relationship between the synchrony and strength of 

functional connections and signal correlation might result indirectly from a collinear effect of 

vertical distance on CCGs (Fig. 2). To address this, we examined differences in the peak lags and 
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peak efficacies of CCGs between combinations of two neuronal pairs separated by comparable 

cortical distances. Specifically, we sorted all significantly correlated CCGs by their vertical 

distances, and then examined whether differences in signal correlations (rori) among adjacently 

sorted (distance-matched) pairs, were still associated with differences in CCG peak lags and peak 

efficacies (Methods). Indeed, we found that the differences in peak lags of distance-matched 

CCGs were positively correlated with signal correlation (Fig. 3e) and the differences in peak 
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Figure 3. Dependence of synchrony and strength of functional connectivity on tuning 
similarity within single cortical columns. a, Heat map of visual responses across drift 
directions of oriented gratings and across cortical depth. The response tuning of each of 802 
neurons was aligned to the overall preferred orientation shared by neurons recorded from the 
same session, and all sessions were combined. b, Signal correlation between exemplar neurons. 
Left, Scatter plot of normalized responses to different stimulus orientations (n=36) for the two 
example pairs shown in Figure 1e and Figure 2a. Signal correlations (rori) are also shown. Right, 
each neuron’s orientation tuning curve. c, Linear dependence of synchrony on the corresponding 
signal correlation. d, Linear dependence of CCG strength on the corresponding signal 
correlation. e, Difference in peak lag of distance-matched CCGs was positively correlated with 
difference in signal correlation. f, Difference in peak efficacy of distance-matched CCGs was 
negatively correlated with difference in signal correlation. In c-f, all significantly correlated pairs 
from all sessions are combined and each dot denotes mean peak lag or median peak efficacy of 
significantly correlated CCGs within a (10% quantile) signal correlation bin. Error bars denote 
95% confidence intervals. Black lines denote linear fits; slopes (b) are shown. Red lines denote 
marginal distributions.  
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efficacies of distance-matched CCGs were negatively correlated with signal correlation (Fig. 3f). 

These results indicate that signal correlations within the column predicted both the synchrony 

and strength of functional connections independent of vertical pair distance. Nonetheless, the 

distance-matched correlations (Fig. 3e-f) were smaller than their corresponding unmatched 

correlations (Fig. 3c-d), suggesting that the vertical distance between neurons and their 

orientation signal correlations exhibit distinct, but overlapping, effects on the strength and timing 

of functional connections within a single cortical column.   

 To quantify the distinct contributions of vertical pair distance and orientation signal 

correlation to the synchrony and strength of CCGs, we fit GLMs to predict CCG peak lag and 

peak efficacy using pair distance and signal correlation as predictors (Methods). Predictors were 

standardized so their relative effects could be compared, and peak outliers (1.5*IQR criterion) 

were removed. The resulting regression equations were:  

 

Regressions explained 19% of variance in peak lag ) and 20% of variance in peak 

efficacy ). In the regression predicting CCG peak lag, the coefficient of pair distance 

was nearly three times the coefficient of signal correlation. In contrast, for CCG peak efficacy, 

the coefficient of signal correlation was nearly twice that of pair distance. Furthermore, whereas 

signal correlation was less predictive of CCG peak lag, it was more predictive of CCG peak 

efficacy than pair distance.  

(R2 = 0.191

(R2 = 0.195
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peak lag = 2.48 + 0.94 × pair dist .   − 0.37 × rori 

peak e f f icac y = 0.018 − 0.0017 × pair dist .   + 0.0029 × rori 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2022. ; https://doi.org/10.1101/2022.02.18.481095doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481095


Classification of functional connections  

CCG peak lags and peak efficacies are often the parameters of interest in crosscorrelations 

(Briggs et al., 2013; Hembrook-Short et al., 2019; Smith & Kohn, 2008), yet they are 

simplifications of the more complex, underlying crosscorrelation functions. The shape of these 

correlation functions may offer additional insights into the distinct types and properties of 

functional connections present among neurons within a network. Several theoretical studies have 

suggested a correspondence between CCG shape and underlying pairwise connectivity (Aertsen 

& Gerstein, 1985; Melssen & Epping, 1987) that can be further influenced by overall network 

structure and background noise (Ostojic, Brunel, & Hakim, 2009). For example, synchronous 

CCGs tend to correspond to pairs of neurons that receive input from a common source, while 

asynchronous CCGs tend to correspond to pairs that have direct synaptic connections (Ostojic et 

al., 2009). Moreover, synchronous CCGs with narrow peaks and synchronous CCGs with broad 

peaks may correspond to pairs of neurons that receive input from common sources with shorter 

and longer autocorrelation timescales, respectively (Ostojic et al., 2009). Experimental studies 

have corroborated these findings, identifying similar CCG shapes in different cortical regions 

and species (Alonso & Martinez, 1998; Constantinidis et al., 2001; Hembrook-Short et al., 2019; 

Siegle et al., 2021). However, the distribution of these CCG shapes within a single cortical 

column remains unknown. Furthermore, whether that distribution within V1 corroborates other 

evidence about the functional and/or anatomical relationships among V1 laminae and cell types 

remains unclear.  

To address these questions, we clustered the entire population of CCGs, taking advantage 

of the large number of connected pairs to identify robust CCG templates. To do this, we first 

 14
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normalized significant CCGs, and utilized t-distributed Stochastic Neighbor Embedding (t-SNE) 

to map CCGs to a lower-dimensional space, and then clustered CCGs in the resulting space using 

k-means (Methods). To select a statistically reasonable number of clusters, we examined how 

the total variance and the silhouette score explained by clustering changed as a function of the 

number of clusters (Fig. 4a). From this, we selected four as the optimal number of clusters given 

that silhouette score peaked ~3-4 clusters, and 4 clusters explained more variance than 3.  

CCG shape was relatively heterogenous within each of the four clusters (Fig. 4b). 

Nonetheless, by averaging over all CCGs in each cluster, we could construct CCG templates that 
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Figure 4. Identification of distinct classes of functional connections within the full 
population. a, Explained variance (left) and silhouette score (right) as a function of number of 
clusters. The dashed vertical line indicates the selected number of clusters (n=4). b, Scatter plot 
of dimensionality-reduced CCGs in the first two dimensions of t-SNE space. Randomly selected 
example CCGs are overlayed on the scatterplot in their corresponding location in t-SNE space. c, 
CCG templates generated by averaging over all the CCGs in each cluster. The templates include 
a ‘sharply synchronous’ class (Ssync) with a narrow peak at , a ‘broadly synchronous’ class 
(Bsync) with a wide peak at , a ‘forward’ class (Fasync) (leading) with more probability 
density before  and a ‘reverse’ class (Rasync) (lagging) with more probability density after 
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summarized key characteristics of the clusters (Fig. 4c). Within the full population, we identified 

two synchronous classes of functional connections, a ‘sharply synchronous’ class (Ssync) with a 

narrow peak at  and a ‘broadly synchronous’ class (Bsync) with a wide peak at . In 

addition, two asynchronous classes were identified, a ‘forward’ class (Fasync) (leading) and a 

‘reverse’ class (Rasync) (lagging) with more probability density before and after  (median 

 ), respectively (Fig. 4c). Aside from clear differences in peak lags between subsets of 

the putative classes (e.g. synchronous vs. asynchronous), CCGs of different classes also differed 

in their peak efficacies; synchronous classes exhibited higher average peak efficacies than 

asynchronous classes (median peak efficacy: Ssync 0.021, Bsync 0.020, Fasync 0.015, Rasync 0.014).  

Importantly, our objective was not to find the exact number of distinct classes of functional 

connections in V1 or to perfectly categorize every functional connection into a homogenous 

cluster. Instead, we sought to identify at least one set of clusters that is consistent with that 

expected in local microcircuits.  

Corroboration of putative CCG classes with V1 microcircuitry 

We next examined the extent to which the putative CCG classes were also distinguishable from 

one another along anatomical and functional lines given other known properties of V1 

microcircuits. First, we considered that the identified classes might differ in their vertical pair 

distances and signal correlations. Indeed, we found that vertical pair distances were larger and 

orientation signal correlations were smaller in asynchronous (Fasync and Rasync) than in 

synchronous (Ssync and Bsync) classes (Fig 5a-b) (significant pairwise comparisons: p<10-5). 

Although, this result is expected given that both the peak lag and peak efficacy components of 

τ = 0 τ = 0

τ = 0

τ = 3ms
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CCGs were clearly predicted by distance and signal correlation (Figs. 2-3), additional differences 

emerged between the identified classes. For example, we found that in spite of similar CCG peak 

lags, Bsync pairs were separated by greater vertical distances than Ssync ones (Fig. 5a) (p<10-5). 

Furthermore, in spite of being separated by a greater cortical distance, Bsync pairs exhibited 

 17

Figure 5. Corroboration of putative classes of functional connections with V1 
microcircuitry. a, b, Boxplots of vertical pair distance (a) and orientation signal correlation (b) 
across the 4 identified CCG classes. Boxplots illustrate the medians, first and third quartiles, 
and non-outlier (1.5*IQR method) minima and maxima. Asterisks denote significant 
differences in medians between pairs of classes (Wilcoxon rank-sum test; p<10-5). c, Proportion 
of CCGs in each class composed of two neurons from the same (‘within layer’) or different 
layers (‘between layer’). d, Proportion of CCGs in each class composed of a simple cell and a 
complex cell computed with either the simple cell (S-C) or the complex cell (C-S) as the first 
neuron in the crosscorrelation function. In c and d, error bars indicate margin of error with a 
95% confidence interval. 
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higher signal correlations than Ssync pairs (Fig 5b) (p<10-5). These findings thus provide some 

validation of the apparent subtypes of CCGs.  

Next, we examined whether the identified classes of functional connections differed in 

their laminar distributions. Indeed, we found that different classes were differentially distributed 

across V1 layers such that one or more of the identified classes were often overrepresented 

among functional connections within particular layers (Fig. S6) (p<10-5). To simplify this result, 

we compared the proportion of CCGs in each class composed of two neurons in the same layer 

or different layers. We found that most of the asynchronous pairs were composed of neurons 

from different layers, while most of the synchronous pairs, particularly the Ssync ones, were 

composed of neurons from the same layer (Fig 5c) (within vs between proportion: Ssync [0.65 vs 

0.35], Bsync [0.52 vs 0.48], F [0.28 vs 0.72], R [0.28 vs 0.72], one proportion z-test: p<10-3). This 

observation dovetails the relationship between pair distance and CCG class described above. 

Nonetheless, we found that cortical layer had an independent effect of distance on CCG class 

assignment among nearby pairs of neurons. The laminar composition of functional connections 

(within vs between) was a significant predictor if CCGs were members of the Bsync class, but not 

the Ssync, Fasync, or Rasync classes when controlling for the effects of vertical distance (Table S2; 

logistic regression, p<10-5). More specifically, CCGs composed of two neurons within the same 

layer had a higher probability of falling in the Bsync class than CCGs with comparable vertical 

distances composed of two neurons in different cortical layers. 

In addition to its laminar organization, V1 neurons exhibit clear differences in their 

receptive field properties. In particular, V1 neurons classically fall into two broad functional 

types: simple (S) and complex (C) cells (De Valois et al., 1982; Hubel & Wiesel, 1962, 1968; 
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Movshon, Thompson, & Tolhurst, 1978; Skottun et al., 1991) (see also Chance, Nelson, & 

Abbott, 1999; Mechler & Ringach, 2002; Priebe, Mechler, Carandini, & Ferster, 2004). Complex 

cells appear to receive converging input from groups of simple cells, and this fact suggests that 

simple cells should lead rather than lag complex cells in their CCGs. To test this in our data, we 

compared the proportion of significant CCGs in each class composed of one simple and one 

complex cell. Among the significant CCGs, a majority were comprised of pairs of complex cells 

(S-S=0.052, C-C=0.630; S-C or C-S=0.318; one-proportion z-test: p<10-5). Among the mixed (S-

C or C-S) pairs, CCGs were computed with either functional type as the first or second neuron in 

the crosscorrelation function, i.e., S-C or C-S (Methods). Thus, we could compare the 

proportions of those two subsets among the different CCG classes (Fig. 5d). We found that the 

proportion of ‘forward’ (Fasync) CCGs was larger when simple cells were chosen as the first 

neuron than when complex cells were chosen as the first neuron. Likewise, the proportion of 

‘reverse’ (Rasync) CCGs was larger when instead complex cells were chosen as the first neuron 

than when simple cells were chosen as the first neuron (chi-squared test; p<10-5). Notably, 

although the dominant lead-lag relationship between simple and complex cells is consistent with 

established models of V1 (Alonso & Martinez, 1998; Martinez & Alonso, 2001; Yu & Ferster, 

2013), there were also many CCG pairs in which complex cells led simple cells or where the pair 

fired synchronously. This heterogeneity in functional interactions between simple and complex 

cells is consistent with studies suggesting that simple and complex cells might arise from 

variations in a continuous process as opposed to being two clearly distinct populations (Chance 

et al., 1999; Kim, Jang, & Paik, 2021; Mechler & Ringach, 2002; Priebe et al., 2004). 
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Corroboration of different classes with V1 input and local circuitry 

Previous studies have characterized the anatomical organization of dorsal lateral geniculate 

nucleus (dLGN) input to V1 in extensive detail (Blasdel & Lund, 1983; Hendrickson, Wilson, & 

Ogren, 1978; Hubel & Wiesel, 1972). In the macaque brain, dLGN magnocellular and 

parvocellular axons primarily project to V1 layers 4c and , respectively, along with inputs 

that terminate in layer 6 (reviewed in Briggs & Usrey, 2011; J. S. Lund, 1988; Merigan & 

Maunsell, 1993; Nassi & Callaway, 2009) (Fig. 6a). However, the extent to which functional 

connections within layers of V1 reflect these anatomical projections remains unclear. Thus, we 

examined the distribution of CCG classes across pairs of V1 input layers 4c , and 6. We 

found that for the 4c - - , and 6-6 pairings, Ssync CCGs were observed much more 

frequently than other CCG classes (Fig. 6b) (chi-squared test; p<10-5). This overrepresentation of 

Ssync CCGs may reflect the fact that neurons in 4c ,  and 6 receive common and converging 

input from the dLGN. Furthermore, it is noteworthy that the Ssync class was overrepresented in 

V1 input layers but the Bsync class was not.  

 In contrast to the overrepresentation of Ssync CCGs within the input layers, this class of 

CCGs was not overrepresented in functional connections between input layers. Of the four CCG 

classes, the proportions of each found among pairs composed of one neuron in layer 4c  and one 

neuron in layer  were statistically indistinguishable (Fig. 6c) (chi-squared test; ). 

The lack of an overrepresentation of Ssync CCGs among 4c  pairs could reflect the lack of 

synchrony between magnocellular (fast) and parvocellular (slow) inputs to V1. This result is 

noteworthy given that the average distance between neuronal pairs across 4c  and  was 

comparable to the distances between neuronal pairs within V1 input layer 6 (mean distance: 4c -

α  4cβ

α,  4cβ

α 4cα,  4cβ 4cβ

α 4cβ,

α

4cβ p = 0.27

α − 4cβ

α 4cβ

α
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 = 106 µm; 6-6 = 80 µm). In examining functional connections between layers 4C and 6, we 

considered that a temporal offset between layer 6 and 4C neurons might exist given extensive 

projections from layer 6 pyramidal neurons to layer 4C (Wiser & Callaway, 1996)  To test this, 

we examined the 6-4c  and 6-  subsets of pairs in which the layer 6 neuron was the first 

neuron in the crosscorrelation function. Indeed, in addition to observing that Ssync CCGs were 

poorly represented, we found that the Fasync class was significantly overrepresented in these pairs 

(Fig. 6d) (p < 10-5).   

4cβ

.

α 4cβ

 21

Figure 6. Distribution of different putative classes of functional connections within V1 
input layers. a, Diagram of dLGN input to V1 layers 4c , 4c , and 6; dLGN axons terminate in 
layers 4c and  and layer 6, and layer 6 projects to layers 4c  and 4c  b, Percentage of 
CCGs in each class composed of two neurons in layer pairings of 4c -4c , 4c - 4c , or 6-6, out 
of all the pairwise layer pairing combinations. c, Percentage of CCGs in each class composed of 
one neuron in layer 4c  and one in 4c  (4c -4c  or 4c -4c ). d, Percentage of CCGs in each 
class composed of one neuron in layer 6 and the other in 4c  (left) and 4c  (right) computed 
with the layer 6 neuron as the first neuron in the crosscorrelation function (6-4c , 6-4c ). For b-
d, error bars denote 95% confidence intervals. Large asterisks in the upper right denote 
significant chi-squared test of all classes versus the selected layer pairing (Bonferonni correction 
for 60 comparisons, . Small asterisks near each dot denote significant chi-

squared test of layer pairing versus the class with asterisk and the class with maximum 
proportion in the panel . 
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 Lastly, we examined the distribution of CCG classes across pairs of neurons involving 

layer 2/3 neurons. A wealth of evidence indicates that layer 2/3 neurons provide a major source 

of output to other neocortical areas (reviewed in Callaway, 1998; Douglas & Martin, 2004; 

Felleman & Van Essen, 1991; Harris & Shepherd, 2015; Thomson & Lamy, 2007)). In macaque 

V1, layer 2/3 neurons send projections to higher visual areas such as V2 (Livingstone & Hubel, 

1984; Rockland, 1992; Sincich & Horton, 2005) and V4 (Yukie & Iwai, 1985), and receive 

inputs from all the deeper cortical layers, including layer 4C , 4C , 4A, 4B, 5 and 6 (Blasdel, 

Lund, & Fitzpatrick, 1985; Callaway, 1998; Callaway & Wiser, 1996; Fitzpatrick, Lund, & 

Blasdel, 1985; Kisvarday, Cowey, Smith, & Somogyi, 1989; Lachica, Beck, & Casagrande, 

1992; Jennifer S Lund & Boothe, 1975; Sawatari & Callaway, 2000; Vanni, Hokkanen, Werner, 

& Angelucci, 2020; Wiser & Callaway, 1996; Yarch, Federer, & Angelucci, 2017; Yoshioka, 

Levitt, & Lund, 1994) (Fig. 7a). Consequently, one might predict that a predominant proportion 

of projections to 2/3 neurons from other layers might be forward ones (Callaway, 1998; Mejias, 

Murray, Kennedy, & Wang, 2016; Schmidt et al., 2018). Consistent with this prediction, we 

found that the forward (Fasync) class was overrepresented among functional connections from 

layers 6, 5,  4c , and 4A/B to layer 2/3 (Fig. 7b) (chi-squared test; 6: p<10-5; 5: p<10-5; 4cβ: 

p<10-5; 4cα: p<10-3; 4A/B: p<10-5). In contrast, functional connections within layer 2/3 exhibited 

a very different pattern. Within the same layer, the classes of 2/3-2/3 CCGs were more evenly 

represented, in stark contrast to the pattern of within-layer CCGs observed in the input layers 

(Fig. 6b). Within layer 2/3, the Ssync and Bsync CCGs were overrepresented among functional 

connections (Fig. 7c) (chi-squared test: p<10-5), and there was an equal representation of Ssync 

and Bsync CCGs among 2/3-2/3 pairings. 

α β

4cβ, α
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Figure 7. Distribution of different putative classes of functional connections with layer 2/3. 
a, Diagram of input to layer 2/3 from V1 laminar compartments. b, Percentage of CCGs in each 
class composed of one neuron in layer 2/3 and the other neuron in layer 6, 5, 4c , 4c , or 4A/B 
computed with the layer 2/3 neuron as the second neuron in the crosscorrelation function. c, 
Percentage of CCGs in each class composed of two neurons in layer 2/3. For b-c, conventions 
are the same as in Fig. 6. 
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Discussion 

Using high-density recordings from single neocortical columns of macaque V1, we identified 

1000s of functionally connected neuronal pairs using established crosscorrelation approaches. 

The results demonstrate clear and systematic variations in the synchrony and strength of 

functional connections within single V1 columns. Notably, we observed that in spite of residing 

within the same column, the functional connectivity between pairs of V1 neurons depended 

heavily on their vertical distance within the column; both the peak lag and peak efficacy of 

CCGs between neuronal pairs changed dramatically within only a few hundred micrometers of 

vertical distance within the column. In addition, we found that the synchrony and strength of 

CCGs also depended on laminar location and the similarity of orientation tuning between 

neuronal pairs. We leveraged the statistical power provided by the large numbers of connected 

pairs to categorize functional connections between neurons based on their crosscorrelation 

functions. These analyses identified distinct classes of functional connections within the full 

population. Those distinct classes exhibited different distributions across defined laminar 

compartments, and those differences were consistent with known and/or expected properties of 

V1 cortical circuitry. The results demonstrate a novel utility of high-density neurophysiological 

recordings in assessing circuit-level interactions within local neuronal networks. Below, we 

discuss both the implications and the limitations of this approach. 

 

Effect of cortical distance on functional connectivity  

A wealth of previous evidence has established a clear effect of cortical distance on functional 

connectivity, yet a majority of past studies have focused on the effect of horizontal distance 
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across which large changes in shared input between neurons are expected. Evidence that spiking 

correlations and synchrony decline with horizontal cortical distance within V1 has been shown in 

cats (Das & Gilbert, 1999; Gray, Konig, Engel, & Singer, 1989; Hata, Tsumoto, Sato, & Tamura, 

1991) (but see Samonds, Zhou, Bernard, & Bonds, 2006; Schwarz & Bolz, 1991), monkeys (Chu 

et al., 2014; Kruger & Aiple, 1988; Maldonado et al., 2000; Smith & Kohn, 2008), and in mice 

(Denman & Contreras, 2014). Very few studies have examined crosscorrelations among pairs of 

neurons within a single column, where the feedforward input is largely shared (e.g. DeAngelis et 

al., 1999). Longer timescale, spike count (‘noise’), correlations, which have been widely 

assessed in studies of primate visual cortex (Averbeck, Latham, & Pouget, 2006) have been 

shown to be layer dependent within macaque V1 where weaker correlations occur in layer 4 

(Hansen et al., 2012). However, no evidence that such correlations depend on distance 

independent of layer was observed. In contrast, measurement of crosscorrelations in earlier 

studies of V1 columns in cat indeed suggest that functional connectivity is restricted to local 

regions across cortical depths (Toyama, Kimura, & Tanaka, 1981b). Within rat auditory cortex, 

functional connectivity diminishes dramatically within ~300 µm of vertical columnar distance 

(Atencio & Schreiner, 2013), similar to what is observed in rat somatosensory cortex (Khateb, 

Schiller, & Schiller, 2021). A dependence of connectivity on vertical distance is further supported 

by evidence from multiple whole-cell recordings in mouse visual cortex which demonstrates that 

connection probability decreases sharply within a distance of 250 µm (Jiang et al., 2015). Our 

observation that the peak efficacy of CCGs was greatly diminished within <200 µm within 

macaque V1 is thus consistent with estimates from other sensory cortices and species.  
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Distinct classes of functional connections  

Upon clustering the full population of significant CCGs, we identified four putative classes of 

functional connections. Notably, these classes of CCGs depicted the set of pairwise 

connectivities that one might logically expect, namely two directional classes (forward and 

reverse) and two synchronous ones (sharply and broadly synchronous). More importantly, the 

clustering based evidence of distinct classes of CCGs was corroborated by the observation of 

highly differential distributions of those putative classes across cortical layers. For example, 

asynchronous CCG classes were more often observed among neuronal pairs within different 

layers, whereas synchronous pairs more often resided within the same layer. This corroboration 

of distinct classes extended to functional properties of V1 neurons as well in that simple cells 

were more often paired in a forward manner with complex cells, whereas the reverse was true for 

complex cells. Nevertheless, the existence of exactly four distinct classes among V1 pairs is by 

no means certain. Indeed, the choice of three classes was almost as valid as that of four in the 

clustering procedure (Fig. 4). Yet, given the clear evidence of two asynchronous classes, and the 

differential distributions of broadly and sharply synchronous pairs across cortical layers, the 

choice of only three classes of CCGs seems less parsimonious than four. Although there 

appeared to be less evidence for the existence of five or more classes of functional connections, 

that possibility cannot be ruled out either. For example, additional distinct classes of CCGs might 

be present, but significantly less frequent or weaker than the other four. Indeed, given their low 

incidence, our selection criteria already excluded CCGs with significant inhibitory peaks. As in 

previous studies, the frequency of excitatory CCGs in our dataset was considerably higher than 

that of inhibitory CCGs (Aertsen & Gerstein, 1985; Hembrook-Short et al., 2019) (Table S1).  
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Consequently, these additional classes were eliminated by the statistical threshold employed to 

identify significant CCGs. It is likely that additional distinct classes, excitatory or inhibitory, 

were also eliminated and/or simply fell within a mixture of the more dominant four classes that 

exceeded the statistical criterion. Future work will therefore be needed to more extensively 

characterize the distribution of distinct classes of spiking crosscorrelations among neuronal pairs 

in cortical columns.   

Classes of functional connections and V1 microcircuitry 

We found that the four putative classes of functional connections were differentially distributed 

across the cortical column and across functional pairs of neurons. Most notably, the different 

CCG classes were observed in different proportions across V1 layers. In spite of those 

differences however, it need not follow that the relative proportion of any specific putative class 

(e.g. sharply synchronous) fits with the known (or predicted) connectivity between different V1 

neurons. For example, our observation that asynchronous CCGs (Fasync and Rasync) were 

considerably more frequent among neuronal pairs situated in different laminae, and that 

synchronous CCGs (Ssync and Bsync) were found among neurons in the same laminae, would not 

be expected if the differences in synchrony resulted primarily from measurement noise. 

Likewise, the observed disproportionality of Fasync and Rasync CCGs among functional 

connections between simple and complex cells would not be expected if the two asynchronous 

classes were indistinguishable in our measurements. Instead, not only were the two classes 

disproportionate among simple and complex cells, but the overall direction of disproportionality 
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was consistent with the known connectivity between the two functional classes of cells (Alonso 

& Martinez, 1998; Martinez & Alonso, 2001; Yu & Ferster, 2013).  

 Overall, we found that the pattern of differential distributions of the putative classes of 

CCGs across the column and across functional pairs of neurons was largely consistent with 

known properties of V1 microcircuitry. Nevertheless, it is important to emphasize that spike 

crosscorrelations are in no way a substitute for more direct measures of synaptic connectivity, 

e.g. multi-patch recordings (Jiang et al., 2015). Instead, the relative instances of different types of 

crosscorrelations observed among large populations of neuronal pairs, as shown here, provide a 

means of constraining models of cortical microcircuits. This approach should prove particularly 

valuable in less experimentally tractable model systems such as nonhuman primates, or perhaps 

even in the human brain, where direct measurements are not yet possible. In such cases, the 

ability of high-channel count, high-density, probes to dramatically increase the number of 

identifiable functional connections within a local network of neurons is among their greater 

benefits. Our results thus far suggest that this approach works well and could be extended to 

examine higher-order connectivities among larger sets of neurons, and to identify neuronal 

ensembles with distinct functional properties (Fujisawa, Amarasingham, Harrison, & Buzsaki, 

2008; Miller, Ayzenshtat, Carrillo-Reid, & Yuste, 2014; See, Atencio, Sohal, & Schreiner, 2018). 

In addition, future studies should be able to compare local connectivities across different putative 

cell types estimated from their spike waveforms (Johnston, DeSouza, & Everling, 2009; E. K. 

Lee et al., 2021; Mitchell, Sundberg, & Reynolds, 2007; Wilson, O'Scalaidhe, & Goldman-

Rakic, 1994) and/or spiking patterns (Onorato et al., 2020). Combined with measurements of 

functional connectivity, such an approach could be used to constrain models of microcircuit 

 28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2022. ; https://doi.org/10.1101/2022.02.18.481095doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481095


architecture from neurophysiological data obtained from any number of uniquely evolved 

primate brain structures.   
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Methods 

Experimental Model and Subject Details 

Anesthetized recordings were conducted in 2 adult male macaques (M1, 13 kg; M2 8 kg). All 

experimental procedures were in accordance with National Institutes of Health Guide for the 

Care and Use of Laboratory Animals, the Society for Neuroscience Guidelines and Policies, and 

Stanford University Animal Care and Use Committee.  

Electrophysiological Recordings 

Prior to each recording session, treatment with dexamethasone phosphate (2 mg per 24 h) was 

instituted 24 h to reduce cerebral edema. After administration of ketamine HCl (10 mg per 

kilogram body weight, intramuscularly), monkeys were ventilated with 0.5% isoflurane in a 1:1 

mixture of N2O and O2 to maintain general anesthesia. Electrocardiogram, respiratory rate, body 

temperature, blood oxygenation, end-tidal CO2, urine output and inspired/expired concentrations 

of anesthetic gases were monitored continuously. Normal saline was given intravenously at a 

variable rate to maintain adequate urine output. After a cycloplegic agent was administered, the 

eyes were focused with contact lenses on a CRT monitor. Vecuronium bromide (60 µg/kg/h) was 

infused to prevent eye movements. 

With the anesthetized monkey in the stereotaxic frame, an occipital craniotomy was 

performed over the opercular surface of V1. The dura was reflected to expose a small (~3 mm2) 

patch of cortex. Next, a region relatively devoid of large surface vessels was selected for 

implantation, and the Neuropixels probe was inserted with the aid of a surgical microscope. 

Given the width of the probe (70 um x 20 um), insertion of it into the cortex sometimes required 
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multiple attempts if it flexed upon contacting the pia. The junction of the probe tip and the pia 

could be visualized via the (Zeiss) surgical scope and the relaxation of pia dimpling was used to 

indicate penetration, after which the probe was lowered at least 3-4 mm. Prior to probe insertion, 

it was dipped in a solution of the DiI derivative FM1-43FX (Molecular Probes, Inc) for 

subsequent histological visualization of the electrode track. 

Given the length of the probe (1 cm), and the complete distribution of electrode contacts 

throughout its length, recordings could be made either in the opercular surface cortex (M1) or 

within the underlying calcarine sulcus (M2), by selecting a subset of contiguous set of active 

contacts (n = 384) from the total number (n=986). Receptive fields (RFs) from online multi-unit 

activity were localized on the display using at least one eye. RF eccentricities were ~ 4-6° (M1) 

and ~ 6-10° (M2). Recordings were made at 1 to 3 sites in one hemisphere of each monkey. At 

the end of the experiment, monkeys were euthanized with pentobarbital (150 mg kg−1) and 

perfused with normal saline followed by 1 liter of 1% (wt/vol) paraformaldehyde in 0.1 M 

phosphate buffer, pH 7.4.   

Visual Stimulation 

Visual stimuli were presented on a LCD monitor NEC-4010 (Dimensions= 88.5 (H)* 49.7 (V) 

cm, pixels=1360 * 768, frame rate= 60 Hz) positioned 114 cm from the monkey. Stimuli 

consisted of circular drifting Gabor gratings (2 deg./sec., 100% Michelson contrast) positioned 

within the joint RFs of recorded neurons monocularly. Gratings drifted in 36 different directions 

between 0 to 360° in 10° steps in a pseudorandom order. Four spatial frequencies (0.5, 1, 2, 4 

cycle/deg.) were tested and optimal SFs were determined offline for data analysis. The stimulus 
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in each condition was presented for 1 second and repeated 5 or 10 times. A blank screen with 

equal luminance to the Gabor patch was presented for 0.25s during the stimulus interval.     

Layer Assignment 

The laminar location of our recording sites was estimated based on a combination of 

functional analysis and histology results. For each recording, we first performed the current 

source density (CSD) analysis on the stimulus-triggered average of local field potentials (LFP). 

LFP were low-pass filtered at 200 Hz and recorded at 2500 Hz. LFP signals recorded from each 

4 neighboring channels were averaged and realigned to the onset of visual stimulus. CSD was 

estimated as the second-order derivatives of signals along the probe axis using the common five-

point formula (Nicholson & Freeman, 1975). The result was then smoothed across space (σ = 

120 µm) to reduce the artifact caused by varied electrode impedance. We located the lower 

boundary of the major sink (the reversal point of sink and source) as the border between layer 4C 

and layer 5/6. Based on this anchor point, we assign other laminar compartment borders using 

the histological estimates. 

Single neuron properties 

To characterize the visual properties of each neuron, the stimulus evoked activity was 

assessed using mean firing rate (spikes/sec) over the entire stimulus presentation period, offset 

by a response latency of 30 ms. Only responses to the preferred spatial frequency were used. 

Modulation ratio was defined as F1/F0, where F1 and F0 are the amplitude of the first harmonic 

at the temporal frequency of drifting grating and constant component of the Fourier spectrum to 
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the neuron’s response to preferred orientation. Simple cells were defined as cells with 

modulation ratio larger than 1, and complex cells have modulation ratios smaller than 1 (De 

Valois et al., 1982; Skottun et al., 1991).  

Signal Correlations 

 To measure the similarity of orientation tuning between neuronal pairs, we computed an 

orientation signal correlation (rori). The orientation signal correlation was defined as the 

Pearson’s correlation coefficient between the mean responses of two neurons to each of the 36 

stimulus orientations (Smith & Kohn, 2008). For each neuron and orientation, a single mean 

response was computed by averaging spiking activity over the entire duration of stimulus 

presentation (1 second) across all trials with a particular orientation. 

Cross-correlograms (CCGs) 

 To measure correlated firing, we computed the crosscorrelation between spike trains of 

all pairs of simultaneously recorded neurons (Jia et al., 2013; Siegle et al., 2021; Smith & Kohn, 

2008; Zandvakili & Kohn, 2015). We focused on the spiking activity within the 0  second 

window of each visual stimulus presentation, which ensured that the analysis was not affected by 

the transient response to stimulus onset. To mitigate firing rate effects, we normalized the 

crosscorrelation for each pair of neurons by the geometric mean of their firing rates. Thus, the 

cross-correlogram  for a pair of neurons ( )was defined as follows: 

. 4 − 1

(CCG ) j,  k
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where  is the number of trials,  is the number of time bins within a trial,  is the time lag, and 

 is one if neuron  fired in time bin  of trial  and zero otherwise. We denote the CCG 

computed with neuron j as the first neuron in the correlation function as j-k and the CCG 

computed with neuron k as the first neuron as k-j.  

To correct for correlation due to stimulus-locking or slow fluctuations in population 

response (e.g., gamma-band activity), we computed a jitter-corrected cross-correlogram by 

subtracting a jittered cross-correlogram from the original cross-correlogram: 

The jittered cross-correlogram ( ) reflects the expected value of cross-correlograms 

computed from all possible jitters of each spike train within a given jitter window (Harrison & 

Geman, 2009; Smith & Kohn, 2008). The jittered spike train preserves both the PSTH of the 

original spike train across trials and the spike count in the jitter window within each trial. As a 

result, jitter correction removes the correlation between PSTHs (stimulus-locking) and 

correlation on timescales longer than the jitter window (slow population correlations). Here, a 

25-ms jitter window was chosen based on previous studies (Jia et al., 2013; Siegle et al., 2021; 

Zandvakili & Kohn, 2015). 

 We classified a CCG as significant if the peak of the jitter-corrected CCG occurred within 

 ms of zero and was more than seven standard deviations above the mean of the noise 

distribution. The noise distribution for a CCG was defined as the flanks of the jittered-corrected 

CCG (  This significance criterion was chosen based on that of 

M N τ

xi
j (t) j t i

CCGjittered

10

{CCG (τ) |100 ≥ τ ≥ 50}) .
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Siegle et al. 2021. All analyses presented here involve only significant, jitter-corrected cross-

correlograms. Note that the criterion identifies only positive peaks in the CCG and excludes 

significant inhibitory correlations. However, consistent with earlier studies (Aertsen & Gerstein, 

1985; Hembrook-Short et al., 2019), we found that the frequency of CCGs with significant 

troughs was approximately 40x lower than those with significant peaks (Table S1). 

Classification of Cross-correlogram 

To identify distinct classes of crosscorrelation functions, we clustered significant 

crosscorrelations. We only analyzed crosscorrelation functions between  and 

such that our input CCGs had 21 features, corresponding to the 21 crosscorrelation values 

between  and . For clustering, we included two crosscorrelation functions for 

each pair of neurons , one computed using the above CCG function with neuron j as the 

first neuron  and the other with neuron k as the first neuron . This corresponds to 

reflecting the CCG function across the vertical line . We z-scored each input CCG prior to 

clustering to encourage clustering based on the shape of the correlation function rather than its 

magnitude. 

To simplify the clustering problem, we used t-distributed stochastic neighbor embedding 

(t-SNE) to reduce our input data with 21 features to 3 features (tsne, MATLAB R2019a). t-SNE 

was used instead of principal component analysis (PCA) because it is more robust to outliers 

since it captures neighbor relationships in the input space. We clustered the dimensionality-

reduced data using k-means with  to (50 replicates, 100 max iterations, kmeans 

MATLAB R2019a). To determine the optimal number of clusters, we used two complementary 

τ = − 10 τ = 10 

τ = − 10 τ = 10

( j, k)

(j − k) (k − j )

τ = 0

k = 1 10 
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approaches, the elbow method and silhouette method. The elbow method selects based on the 

magnitude of the change in the variance explained by clustering as  increases. For a set of 

points divided into  clusters , the percent of variance explained 

by clustering  is: 

 

 

where  denotes the total sums of squares and  denotes the sum of within cluster sums 

of squares over all clusters. The optimal number of clusters occurs at the point where the percent 

of explained variance plateaus (or ‘elbows’) as the number of clusters increases. The silhouette 

criterion captures how similar a point is to its own cluster versus how different it is from the 

nearest cluster that it is not a member of. We computed the silhouette criterion using MATLAB’s 

evalclusters function with default parameters (MATLAB R2019a). 

Statistical Analyses 

The effects of vertical pair distance and orientation signal correlation on CCG peak lag 

and peak efficacy were fit using linear and exponential functions. In linear regressions predicting 

CCG peak lag, all significant CCGs were included, and mean squared error was used as the cost 

function for regressions. In linear and exponential regressions predicting CCG peak efficacy, 
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only significant CCGs with non-outlier peaks (1.5*IQR criterion) were included, and mean 

absolute error was used as the cost function for regressions to encourage fit of the plotted median 

peak efficacies. 

 The relationships between classes of functional connections and signal correlation/pair 

distance were evaluated using Wilcoxon rank-sum tests, and the relationship between functional 

class and layer/cell type pairings was assessed using chi-squared tests or one proportion z-tests. 

Finally, the dependence of functional class on whether a CCG was composed of two neurons 

within the same or different cortical layer(s) with comparable vertical distance was assessed 

using logistic regression. 

Distance matching 

Distance matching was used to compare the effects of orientation signal correlation on 

CCG peak lag and peak efficacy among neuronal pairs with comparable cortical distances. To 

match pairs with comparable distances (Fig. 3C), we sorted significant CCGs by cortical 

distance, then paired the CCGs with the smallest and second smallest distances and paired the 

CCGs with the third and fourth smallest distances and so forth. Thus, every significant CCG was 

paired with exactly one other significant CCG, resulting in 5,122 pairs. To verify that this 

procedure effectively matched pairs of CCGs with comparable cortical distance, we examined 

the difference in cortical distance for distance-matched pairs. More than 99% (5,067/5,122) of 

the distance-matched pairs had a difference in cortical distance of less than 2 µm. Finally, we 

examined the correlation between the difference in CCG peak lag or peak efficacy and difference 
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in signal correlation for matched pairs to determine whether signal correlation predicts peak lag 

or peak efficacy when controlling for distance. 
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Figure S1. Dependence of synchrony on vertical distance within single cortical columns 
for all individual sessions. Linear dependence of synchrony on vertical pair distance for each 
of the 5 sessions (a-e). Plots follow the conventions used in Figure 2. 
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Figure S2. Dependence of the strength of functional connectivity on vertical distance within 
single cortical columns for all individual sessions. Peak efficacy of CCGs decays with greater 
pair distance in each of the 5 sessions (a-e). Plots follow the conventions used in Figure 2. 
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Linear dependence of CCG peak lag on the distance between neurons for pairs of neurons 
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Figure S4. Dependence of synchrony on tuning similarity within single cortical columns 
for all individual sessions. Linear dependence of synchrony on tuning similarity in each of the 
5 sessions (a-e). Plots follow the conventions used in Figure 3. 
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Figure S5. Dependence of the strength of functional connectivity on tuning similarity 
within single cortical columns for all individual sessions. Peak efficacy of CCGs is positively 
correlated with tuning similarity in each of the 5 sessions (a-e). Plots follow the conventions 
used in Figure 3. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 21, 2022. ; https://doi.org/10.1101/2022.02.18.481095doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481095


 

2/3
-2/

3

2/3
-4a

/b

2/3
-4c
2/3

-4c 2/3
-5
2/3

-6

2/3
-W

M

4a
/b-

4a
/b

4a
/b-

4c

4a
/b-

4c
4a

/b-
5
4a

/b-
6

4a
/b-

W
M

4c
-4c

4c
-4c4c

-5
4c

-6

4c
-W

M

4c
-4c4c

-5
4c

-6

4c
-W

M 5-5 5-6
5-W

M 6-6
6-W

M

W
M-W

M

0

200

400

600

800

1000

1200

1400

1600

N
um

be
r o

f p
ai

rs

Trepka et al.
Figure S6
2-column

a

2/3
-2/

3

2/3
-4a

/b

2/3
-4c
2/3

-4c 2/3
-5
2/3

-6

2/3
-W

M

4a
/b-

4a
/b

4a
/b-

4c

4a
/b-

4c
4a

/b-
5
4a

/b-
6

4a
/b-

W
M

4c
-4c

4c
-4c4c

-5
4c

-6

4c
-W

M

4c
-4c4c

-5
4c

-6

4c
-W

M 5-5 5-6
5-W

M 6-6
6-W

M

W
M-W

M

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

po
rti

on
 o

f c
lu

st
er

b

Figure S6. Distribution of putative CCG classes across layer pairings. Plotted is the number 
(a) and proportion (b) of significant CCGs in each class composed of two neurons in the 
indicated layer pairing. For example, CCGs in the 2/3-4a/b pairing are composed of one neuron 
in layer 2/3 and one in 4a/b and are computed with the 2/3 neuron first in the crosscorrelation 
function. 
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Stdev. 
Above/Below 

Noise 

Number of 
Pairs with 

Peaks Above 
Noise 

Number of 
Pairs with 

Troughs Below 
Noise 

1 33,502 15,582 
2 33,502 11,347 
3 31,660 4,537 
4 25,180 1,555 
5 18,739 603 
6 13,757 265 
7 10,246 136 

  

  

Table S1. Number of CCGs with peaks or troughs significantly above or below noise. The 
number of recorded pairs with a peak or trough at least 1-7 standard deviations above or below 
noise is shown. Only CCGs with peaks or troughs within 10 ms of zero time lag were considered. 
136 CCGs had troughs that were more than 7 SD below noise whereas 10,246 CCGs had peaks 
that were more than 7 SD above noise. 
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Dependent Variable 
(in/out of cluster) 

Predictor Coefficient Standard 
Error 

P-Value 

Ssync Distance -0.0041/μm 0.0007 2.78*10-8 

Layer 0.060/layer 0.090 0.50 
Bsync Distance -0.0017/μm 0.0005 3.53*10-4 

Layer 0.280/layer 0.060 3.18*10-6 
Fasync Distance 0.0016/μm 0.0005 9.35*10-4 

Layer -0.172/layer 0.0615 5.24*10-3 
Rasync Distance 0.0021/μm 0.0005 2.53*10-5 

Layer -0.160/layer 0.0631 0.011 

 

 

Table S2. Dependence of putative classes on laminar pairing and vertical distance for pairs 
of neurons separated by 86-310 μm. Coefficients, standard errors, and p-values from logistic 
regressions predicting class membership using the distance between pairs of neurons and 
whether pairs were located in the same or different cortical layer(s). Only pairs of neurons with 
pair distances greater than the 5% of pairs located in different cortical layers (>86 μm) and less 
than 5% of pairs located in the same cortical layer (<310 μm) were included.  Significant 
predictors (p<10-5) are highlighted. 
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