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Abstract
For multi-sample structural variant analyses like merging, benchmarking, and annotation, the

fundamental operation is to identify when two SVs are the same. Commonly applied
approaches for comparing SVs were developed alongside technologies which produce
ill-defined boundaries. As SV detection becomes more exact, algorithms to preserve this refined
signal are needed. Here we present Truvari - a SV comparison, annotation and analysis toolkit -
and demonstrate the effect of SV comparison choices by building population-level VCFs from 36
haplotype-resolved long-read assemblies. We observe over-merging from other SV merging
approaches which causes up to a 2.2x inflation of allele frequency relative to Truvari.

Keywords
Structural Variation, SV Comparison, SV Merging, SV Benchmarking, SV Annotation

Background
The march of progress in genomic sequencing is constant, with increasing speed from

improving technologies being applied to growing populations/cohorts and leading to discoveries
from increasingly harder to assess genomic regions. One particular example of this progress
over the last two decades has been the analysis of Structural Variants (SVs) which includes
50bp or larger genomic alterations of the genome. While single-nucleotide variants vastly
outnumber SVs by count, the cumulative number of bases altered by SVs is higher due to their
size, resulting in a documented impact on disease development and progression[1–3].

The detection of SVs has been enhanced most notably through the advent of long-read
sequencing. No longer hindered by alignment through the repetitive elements which frequently
mediate SVs[4], long-read sequencing has enabled refined characterization of SVs[5].
Simultaneously, SV benchmarking standards such as that created by the Genome in a Bottle
consortium (GIAB) have provided objective measurements on the quality of SV tools which has
assisted both genome researchers and software developers[6]. However, these improvements
have largely focused on SV discovery and genotyping within the context of a single sample[7].
When comparing SVs across multiple samples, the question of how best to identify matching
SVs remains inadequately addressed.
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SV comparison is a fundamental operation of benchmarking, annotation, and merging that’s
required to address both technical artifacts and biological differentiation. First, when SVs are
called by different sequencing experiments or heterogeneous pipelines, any combination of
base-calling errors[7], differences in pipeline sensitivity[5], and alignment ambiguities around
repeats[8] may cause the same SV to be placed in different positions or contain different
sequences. Furthermore, SV comparison choices impact evaluations of results. If SV matching
is too lenient, benchmarking performance is inflated, incorrect annotations are applied, or
over-merging occurs and causes unique SVs to be falsely identified as shared between
samples. Over-merging is particularly problematic for merging due to losing allelic diversity and
over-estimating allele frequency. Similarly, if SV comparison is too strict and matching SVs
aren’t identified, benchmarking performance is deflated, annotations are missed, and
experiments such as association analyses may become under-powered[9].

Multiple strategies for SV comparison have been proposed. For example, SVs are
considered to be equal using reciprocal-overlap if a proportion of their individual sizes are
overlapping. This traditionally has been applied to CNV calling (e.g. array-CGH) as the
breakpoints are imprecise[10]. However, reciprocal-overlap is not applicable to
sequence-resolved insertions, which have no physical span over the reference. With more
precise breakpoints, other heuristics have been postulated such as breakpoint agreement
where SVs are considered matching when their breakpoints are within a certain interval (e.g.
500-1000bp). While this method may generally be sufficient for larger SVs, it is insensitive to
subtle differences of smaller SVs or those at complex loci with multiple events. The logical
progression is to also take into consideration the length of the SV to improve the
threshold/wobble distance allowance for the breakpoints[11–13]. However, insertions of the
same length and at the same position may vary in sequence composition. Any of these
approaches, in isolation, can incorrectly identify alleles as matching.

These concerns expose the need for a systematic approach to SV comparison that starts
with a high-quality set of SV calls and builds from that an understanding of the impact of SV
comparison choices. To accomplish this, we built Truvari, which assists SV comparison by
leveraging multiple metrics to make informed comparisons choices. We use the experiences
gained from Truvari being a widely used and recommended benchmark tool for SVs[6]. Truvari’s
comparison approach is especially relevant given the improvements on SV calling accuracy in
terms of breakpoint-exact, sequence resolved calls that are becoming commonplace, not only
from long-read sequencing but also more exact short-read SV discovery algorithms[14,15].

We take previously published data of haplotype-resolved assemblies from 36 diverse
individuals and measure the intra-sample haplotype similarity of SVs using Truvari[16,17]. We
demonstrate how even high quality pipelines can produce similar, but not identical SV
representations. These results are important to understand the impact of different
methodologies on population merging. We again leverage Truvari to build pVCFs and gain
insights into how SV merging choices affect biologically relevant metrics such as SV count and
allele-frequency. We give these insights context by using Truvari with varying matching
thresholds of these metrics as well as comparison to other SV merging methodologies.
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Results

Truvari description

Figure 1: Overview of Truvari method and comparison metrics. a) Schematic illustrating the
Truvari bench matching approach of a base and comparison (comp) VCF. b-e) Comparison
metrics used by Truvari to measure similarity.

Truvari is an open source toolkit for the comparison, annotation, and analysis of Structural
Variation. This research focuses on the SV comparison tools for benchmarking (bench) and
merging (collapse) but leverages the annotation and analysis features to enrich the information
presented. Truvari’s comparison approach is detailed in Methods (Figure 1). Briefly, Truvari
compares SVs inside variant call format files (VCF) by measuring five similarity metrics between
all pairs of calls within a region. These metrics are SVTYPE matching, reference distance,
reciprocal-overlap, size similarity, sequence similarity and genotype matching. If any of the
metrics violate user-defined thresholds, the pair of calls fails to be a candidate match.

For Truvari bench, default matching thresholds are set to 70% sequence and size similarity,
500bp reference distance, svtype matching, and 0% reciprocal overlap. These thresholds are
generally applicable to most single sample comparisons of a replicate to a ground-truth set of
SVs. However, the thresholds can be raised or lowered based on the resolution of the SVs and
desired stringency. For example, sequence similarity can be set to zero in order to capture
matches between non-sequence-resolved calls. Truvari collapse default thresholds are 95%
sequence and size similarity, 500bp reference distance, identical svtype, and 0% reciprocal
overlap. These default thresholds work for highly-similar sequence resolved calls (e.g. calls from
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a harmonized pipeline) across multiple samples, but again can be tweaked to a user's
specifications.

Matching SVs between haplotypes
To approach the central question of when to match a pair of SVs, we start with a set of 36

previously established, haplotype-resolved, long-read assemblies and call SVs[16,17]. We
called SVs against three references - hg19, GRCh38 and the newly published chm13 - to
observe how references impact the calling and analysis of the SVs[18–20]. First, to ensure a
high accuracy of SV calling, we compared the NA24385 sample on hg19 against Genome in a
Bottle (GIAB) v0.6 Tier1 SVs using Truvari bench (see methods). This measured a high
precision (0.93) across each of the two haplotypes. Over 90.2% of true-positive SVs have at
least 95% sequence similarity and size similarity between the generated calls and the GIAB
truth set. This indicates highly consistent SV representations and that the SV calling
methodology generated an accurate initial call set.

Figure 2: Intra-sample merging. a) Distributions of similarity metrics of SVs between NA24385
haplotypes. Colors are thresholds for sequence and size similarity. b) Effect of stringency on
intra-sample merging SV counts for GRCh38, Trend line is the average number of SVs
per-merge. Separation of samples is attributable to ancestry.

The simplest case of SV merging would be to combine SVs across haplotypes within a
sample to create a diploid call-set. At most we expect a single match between haplotypes at
homozygous alleles. For NA24385 on hg19, 5,478 SVs from each haplotype have identical
sequence and position and therefore comprise homozygous alleles. The remaining 20,719 SVs
were compared using Truvari bench to identify the similarity of SVs between haplotypes (Figure
2a). This showed 1,576 SV pairs having at least 95% sequence and size similarity and 1,195
between 70% to 95% similarity, all of which are candidates for merging. Interestingly, 402 SV
pairs have ≤5% reciprocal-overlap but ≥70% sequence and size similarity. These pairs may
indicate alignment ambiguities across repetitive regions (e.g. left-shift vs. right-shift).
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We investigated the effects of matching stringency on SV merging by creating three different
merges: i) Exact method: the most stringent approach, combines SV if their breakpoint, size and
sequence are identical. ii) Strict method: variants within 500bp and over 95% sequence and size
similarity are merged; iii) Loose method: variants within 1,000bp and over 70% similarity are
merged. We used Truvari bench to compare the three NA24385 intra-sample merges to GIAB
Tier1 SVs (Supplementary Table 1). We observed 93.7% recall for the Exact and Strict merges,
and 93.6% recall for Loose. The ratio of how many true-positive (TP) GIAB SVs are lost and
how many potentially redundant calls are removed compared to the Exact merge is 1:790 for
Strict and 8:1127 for Loose. Only 4.1% of false-negatives (FN) and 2.8% of false-positives (FP)
from Strict have no complementary calls within 1,000bp. Therefore, with extremely permissive
thresholds, Strict could have up to ~96% recall and ~97% precision. The remaining 391 FNs
(238 INS; 153 DEL) are partially explained by 37% lacking aligned coverage from the
assemblies as well as being enriched for SVs >=5,000bp (chi-square P<1E-5).

As merging becomes more permissive, SVs are more likely to find a match between
haplotypes, thus lowering the overall SV count (Figure 2b). When looking across all 36 samples
and all references, Exact produces an average of 27,187 SVs per-sample. Whereas the Strict
and Loose merging lowers the average SV count by 1,520 and 2,851, respectively. Additionally,
merging impacts the het/hom ratio due to heterozygous calls collapsing into a single
homozygous variant (Supplementary Figure 1). The average and standard-deviation of het/hom
ratios across samples and references are 4.9±0.9 for Exact merges, 3.2±0.7 for Strict, and
2.3±0.5 for Loose.

These patterns of merging’s effects on QC metrics appear on each reference and by SV
types, though to differing degrees. For GRCh38 we see more SVs per-sample (26.6K) than
chm13 (24.4K). However, GRCh38 has an imbalance of SV type frequency, with more insertions
(16.5K) than deletions (10.1K), whereas chm13 is almost balanced (11.9K DEL, 12.4K INS).
The most drastic change in SV counts due to merging comes from GRCh38 insertions where
Loose merging results in a 15.9% decrease in SV count compared to Exact (Supplementary
Figure 2). As previously reported[21], we observe a greater number of SVs from individuals of
African ancestry with an average of ~30.8K SVs compared to ~25.6k SVs from all other
individuals (Supplementary Figure 3).

This analysis of haplotype merging indicates the need for SV merging which attempts to
remove redundant variant representations. The 95% sequence and size similarity thresholds
from Strict merge has a well-balanced preservation of unique SVs and reduction of redundant
SVs across individual samples for this call-set. Thus we chose these thresholds for Truvari
collapse to produce the final per-sample VCFs.

Inter-sample SV merging
Merging within a sample is relatively simple due to the pairing of haplotypes. However,

merging between samples requires evaluating clusters of SVs. Next, we investigated how
merging approaches perform across multiple samples. From the individual VCFs produced in
the previous step, we created a project-level VCF (pVCF) across all samples for each reference
and compared the impacts of five SV merging tools: BCFtools; Truvari; Jasmine; Naive 50%
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reciprocal-overlap; SURVIVOR. These tools use a variety of methods for SV comparison
(Supplementary Table 2).

We’ve established the relationship between decreasing matching stringency and decreasing
SV count. Here, BCFtools is the exact matching method and serves as an upper-limit to which
we compare the other tools since it retains all redundant variants and therefore holds the
maximum possible number of SVs. BCFtools produces 347,158 SVs for GRCh38 (80,322 DEL;
266,836 INS) and 329,937 SVs for chm13 (121,038 DEL; 208,899 INS). The lower-limit average
allele frequency (AF) from BCFtools is 0.05. Using Truvari anno repmask and anno numneigh,
we observe the highest number of SVs per-locus - and thus most likely in need of merging - are
annotated as low complexity (average 8.5 SVs/locus) and simple repeats (6.7) (Supplementary
Figure 4).

Relative to BCFtools, the merges have an average reduction in SV count of: Truvari 41%;
Jasmine 59.8%; Naive 65.2%; SURVIVOR 77%. The largest difference in SV count reduction is
between Truvari, which produces an average of 199,751 SVs, and SURVIVOR with 77,761.
Broken down by SV type, this is a difference of ~38.5K DEL and ~83.5K INS. Additionally, the
average AF observed in pVCFs is: Truvari 0.08; Jasmine 0.12; Naive 0.13; SURVIVOR 0.17.
Therefore, choices in merging tools can cause an approximately 1.7x to 3.6x fold increase in AF.
For details on SV count, average AF, and size distributions, see Supplementary Table 3,
Supplementary Figure 5 & Supplementary Figure 6.

These patterns of SV count reduction and increased AF are not only present genome-wide,
but also within genes. To highlight this, we used Truvari anno bpovl to identify SVs which
intersect genes from Ensembl release-105[22] on GRCh38 (Figure 3). This shows that Truvari
produces more variants at a lower average AF compared to the other tools which attempt to
remove redundant alleles.

Figure 3: Merging strategies’ impact on pVCF number of SVs and their allele frequency over
Ensembl genes a) Count of deletions and insertions produced by each merging strategy. b)
Average allele frequency of SVs as merging leniency increases.
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Benchmarking pVCFs
GIAB recently published an expanded benchmark of challenging, medically relevant gene

regions (CMRG)[23]. This includes 273 genes on GRCh38 which were resolved for structural
variants in NA24385. In total, there are 216 SVs from NA24385 intersecting CMRG. Our SV
calling pipeline identifies 2,363 SVs in CMRG regions across all individuals. Using Truvari
bench, we assess how well merging tools are preserving variants by comparing
non-reference-homozygous NA24385 sites in the pVCFs against CMRG. Because BCFtools
only merges identical alleles and makes no attempt to remove redundancy, it has the highest
possible recall with 201 TPs. However, of the tools that remove redundant variant
representations, we again see that Truvari’s pVCF is best at preserving variants with one TP
missing whereas the remaining tools over-merge and lose between 5 and 41 TPs (Table 1).
Manual analysis found that Truvari’s single lost TP was inside the RNF213 gene at
chr17:80274587 where two heterozygous insertions of length 538bp and 580bp with 96.2%
sequence similarity were merged.

Two metrics for evaluating the genotyping quality of variants are Hardy-Weinberg equilibrium
(HWE) and excess heterozygosity (ExcHet) scores. Excluding variants with lower values of
these scores is a common QC step in association studies[24]. Using NA24385 true-positives
from each merge, we calculated the HWE and ExcHet across all 36 samples’ genotypes with
the idea that fewer calls with lower scores (<0.05) indicates a higher quality merge (Table 1).
The smallest proportions of TPs with low HWE are from Truvari and Jasmine results at 8.5%
and 8.7%, respectively. The largest proportion is from the under-merged BCFtools results at
19.4% of all TPs. For ExcHet, we find up to 2% of BCFTools, Truvari, and Jasmine variants
having low scores compared to 10.5% of Naive and 12.5% of SURVIVOR TPs.

Merge TP FP FN precision recall f1 call cnt gt_concordance
HWE
< 0.05

ExcHet
< 0.05

BCFtools 201 5 15 0.976 0.931 0.953 206 0.950 39 1

Truvari 200 5 16 0.976 0.926 0.950 205 0.950 17 4

Jasmine 196 10 20 0.951 0.907 0.929 206 0.949 17 4

Naive 171 22 45 0.886 0.792 0.836 193 0.947 26 18

SURVIVOR 160 28 56 0.851 0.741 0.792 188 0.956 24 20

Table 1: Merges’ pVCF performance on GIAB CMRG SV benchmark of NA24385 for GRCh38.
Hardy-Weinberg equilibrium (HWE) and excess heterozygosity (ExcHet) scores less than 0.05
were counted for true-positives across all 36 samples’ genotypes.

Assessing performance of merging tools
Beyond quantifying the differences of each merge, we need to assess how well they

preserve measurably distinct alleles. The goal of SV merging is to identify redundant
representations of alleles and consolidate their genotypes. Over-merging occurs when unique
SV representations are falsely identified as being redundant. Ideally, a correct merge would
retain all unique alleles while consolidating only truly redundant alleles.
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One case where we expect an enrichment of redundant SV representations is in tandem
repeat regions due to alignment ambiguities. Furthermore, we can classify all variants in a
tandem repeat locus as representing unique or redundant expansions/contractions of the
reference by running TandemRepeatFinder (Figure 4a, see methods). Since BCFtools performs
exact matching and only identical alleles are consolidated, it preserves every input allele but
fails to consolidate genotypes between redundant representations. Consequently, we can use
BCFtools’ result as a baseline to which we compare in order to assess how many unique alleles
are missing (over-merging) and how many redundant alleles remain (under-merging) in the SV
merging tools’ results.

Figure 4: Investigation of tandem repeats to assess merging strategies’ performance a)
illustration of a locus where eight insertion alleles (Input) have between +2 and +5 copies of a
29bp repeat across 10 samples. Four of the alleles are annotated as redundant representations
(red) since they have a counterpart with an equal number of copies (green). A correct merge
would preserve each of the unique alleles and remove all redundant alleles, leaving 0 missing
and 0 redundant SVs in the locus. An incorrect merge removes two unique insertions (+3, +4)
and leaves 1 redundant insertion. b) Boxplot of number of missing variants per-locus for each
merging strategy. c) Barplot of the number of loci with None or Any redundant alleles
post-merging.

We identified 20,207 tandem repeat loci with SVs. Of these tandem repeat loci, 9,056 (44%)
have a different number of SVs reported from at least one merging tool. Thus, this subset of
highly problematic regions were analyzed to assess the amount of missing alleles (Figure 4b)
and redundant alleles (Figure 4c) in the merge tools’ pVCFs. Truvari had over-merging in
47.4% of loci (average 1.8 missing alleles per-locus). Jasmine and Naive had over-merging in
76.5% (4.4 alleles per-locus) and 79.6% (5.4) of loci, respectively. SURVIVOR, the most
permissive SV merging tool, exhibited over-merging in 99.3% of loci, which averaged to 7.1
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missing alleles per-locus. For loci with redundant alleles remaining Truvari produces 3,398 loci
(37.5%) having at least 1 redundant allele compared to BCFtools, Jasmine 2,118 (23.3%), Naive
2,058 (22.7%), and SURVIVOR produces 13 loci (0.1%) with redundant alleles.

This analysis shows that using orthogonal information, we can objectively demonstrate that
of the tools which attempt to identify and consolidate redundant allele representations, Truvari is
performing best while other tools are over-merging more frequently, which in turn inflates AF
and loses unique alleles.

Discussion
In this paper we presented Truvari, a toolkit that enables merging, benchmarking, and

annotations of SVs. We showed Truvari’s versatile applications to SV analysis and how it
significantly improves the ability for researchers to accurately compare structural variants. We
demonstrated this across an SV call-set for 36 haplotype-resolved long-read assemblies[16,17]
by starting with the simplest case of SV merging and identifying identical alleles between
haplotypes before progressively allowing more lenient matching with more permissive SV
comparison thresholds. Naturally we observed the pattern of more lenient thresholds finding
more matching SVs between haplotypes. As the problem of SV merging becomes more
complex when merging between samples, we showed how Truvari’s approach outperforms
other tools at preserving distinct alleles genome-wide, within genes, and in especially
problematic tandem repeats. Throughout the project we measured performance of the SV calls
with comparisons to GIAB SV benchmarks using Truvari[6,23].

While this research focused on SVs generated by long-read assemblies, Truvari is not
restricted to input SVs produced from phased assemblies. Truvari’s flexibility allows it to be used
on any VCF with SVs, even those generated by short reads. It’s important to note, however, that
Truvari is currently most useful for ‘resolved’ SVs (i.e. DEL, INS, INV, and DUP).

Sequence resolved SVs are the desired future for the field with clear advantages to improve
our understanding of the mechanisms and impacts of SVs. In this paper, we assessed the utility
of sequence based comparisons and identified multiple locations where sequence similarity
gave the final conclusion for if alleles should be considered equal. Nevertheless, Truvari
currently uses parameterized thresholding to create decision boundaries for when SVs match.

Given the limited set of SVs that are fully resolved, it is unknown when alleles with high
sequence similarity should remain unmatched. We assumed in this work that small sequence
differences in alleles were due to sequencing errors, but some of these changes may represent
biologically relevant differentiation. For example, in the tandem repeat performance assessment
we identified Truvari as having the highest count of loci with redundant alleles remaining after
merge. However, these ‘redundant’ alleles may be explained by point mutations in a copy of the
tandem repeat such that TRF can still identify the repeat but the sequence is different enough to
have biological consequences such as inhibiting the tandem repeat’s slipped-strand mispairing
mechanisms[25]. If this is the case, these ‘redundant’ alleles shouldn’t be considered the same
because the allele without accumulated point mutations may be more susceptible to further
contraction/expansion of the tandem repeat than an allele with mutations. We are looking into
these possibilities and investigating how dynamic thresholding can further improve Truvari’s SV
comparison accuracy.
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The overall importance of correct SV comparison is clear and we could showcase multiple
improvements using Truvari. One of the most remarkable results is the shift in allele frequencies
across the spectrum of merging tools. Figure 3 showed that other methods’ over-merging has a
large impact on allele frequency, particularly for insertions. These differences have drastic
implications on the interpretation of SVs across a population. This over-merging means that
sequence differences between individuals are getting lost. Previous publications are indeed
hinting towards a potential over-merge, but further investigations are needed as the number of
studies investigating insertions, particularly those using long-reads, are small but rising[26–30].
Related to this is the overall number of SVs that one might assume in healthy human genomes
(Figure 3a, Supplementary Figure 5). Using these phased assembly based SV call sets we
could conclude that the number of SVs per human might be higher than expected which again
highlights the importance of SVs and implies that the diversity of the human population may be
underestimated.

Conclusions
The choices made when performing SV comparison have important impacts on results. When
SV comparison is too lenient, over-merging occurs, distinct alleles are lost, and metrics such as
allele frequency are inflated. This research shows how Truvari’s method of leveraging multiple
SV similarity metrics enables refined handling of SV comparison and a better approach to
multi-sample SV analysis.

Methods

Truvari SV Comparison
Truvari’s core functionality (Figure 1) involves building a matrix of pairs of SVs and ordering

the pairs to determine how each should be handled. To start, VCFs are consolidated using a
‘zipper’. This procedure opens sorted VCFs using pysam (a wrapper around htslib). The set of
VCFs is then treated as a single stack where the ascending alphanumeric sorting of each
chromosome and integer position is yielded by a generator. This zipped stack of variants is
‘chunked’ and all variants within a chunksize are grouped. The chunker is also responsible for
variant filtering on properties such as size restrictions, reference location, or VCF FILTER as
specified. Chunks are created between sets of variants where the maximum end position plus
chunk size is greater than the start position of the next variant yielded from the zipper. The
zipping and chunking infrastructure is reused for bench and collapse. Additional filtering
parameters such as only comparing passing variants or those genotyped as being present
(non-reference-homozygous) in a sample being analyzed are available and prevent calls from
being used downstream.

The next step for the bench procedure is to build an NxM matrix of the base and comparison
calls within a chunk of variants. If dimensions N or M are 0, all variants within the chunk are
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annotated as false-negatives (FN) or false-positives (FP). respectively. Each pair is then
measured for similarity across multiple metrics to build a putative match.

Variants have the properties of start position (S), end position (E), length (L) and allele
sequence (A). Deletion’s L(A) = E - S whereas Insertions have no span over the reference and
length is simply L(A). Formal definitions of each metric follows:

Reference Distance: Variant’s positions are within the specified refdist

Reciprocal Overlap: Percent of overlapping bases over the maximum variant span.

Size Similarity: Minimum variant length over the maximum variant length

Sequence Similarity: Haplotype sequence similarity calculated with edlib[31].

The reciprocal-overlap of sequence-resolved insertions, which have no physical span over
the reference, is measured after the event's boundaries are expanded by half the SV's length
upstream and downstream. To compute sequence similarity, the span of reference sequence
between the two SV's upstream-most start and downstream-most end is fetched and the
sequence change of the SV is incorporated to create the shared sequence context of the calls.
The two sequences are then aligned and similarity reported. The reciprocal-overlap, size
similarity, and sequence similarity metrics are averaged to create a TruScore for ranking of
putative matches. Each putative match is assumed to be valid until a comparison fails the
thresholds/flags provided by the user. Additionally, the distance between the start and end
breakpoints of the pair of calls is recorded for annotation purposes.
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Once the matrix of putative matches is filled, it can be used to identify the best matches
between the base and comparison calls. By default, only the single best match is searched for
by raveling the 2D matrix into a 1D array and sorting the putative matches by their TruScore.
Each match’s calls are checked to ensure they haven't been used in a previous match. If neither
have, the putative match with its state as determined by the thresholds is passed along to the
output. If either call has been used previously, the match’s state is set to False and the unused
base/comparison call in the pair is output as FP / FN respectively.

In some cases, a user may wish to allow variants to participate in more than one match. For
example, one may expect multiple representations of an SV from a caller where there is only
one inside the base variants. In this case, parsing the match matrix involves sorting each row
and column independently by the TruScore such that the highest scoring match for each base
and comparison call is reported.

For Truvari collapse, the same procedure to build matches is employed, however instead of a
matrix of base/comparison, we have an NxN matrix of all calls within the chunk. Additionally, two
more parameters are checked when building the match. If the user specified --hap, incompatible
intra-sample genotypes are unable to be a valid match e.g. homozygous alternate calls in the
same individual are not matched. The second parameter unique to Truvari collapse is --chain,
which allows more flexibility around the --refdist. Chaining allows transitive matching such that
two variants that don't directly match but have a shared intermediate match are considered
matching. After the matches have been built, each set of matching variants is sorted to
determine which variant is kept in the output as the representative variant while the remaining
are written to an extra VCF of collapsed variants. The options of which variant to keep from a
set are: first - the most upstream variant; maxqual - the variant with the highest QUAL score;
common - the variant with the highest minor allele count.

Reference genomes
Human genome 19 (hg19), GRCh38, and telomere-to-telomere consortium chm13 v1.0
references were downloaded[18–20]. Alternate contigs were removed and variant calling was
performed against only autosomes and the sex chromosomes X/Y.

SV Calling
Previously published long-read, haplotype-resolved assemblies[16,17] were mapped with
minimap2[32] version 2.17 and variants called with paftools, which is part of the minimap
package. Minimap2 parameters used were “-cx asm5 -t8 -k20 --secondary=no --cs ${ref}
${fasta}” and paftools parameters “-L10000”. Three Individuals (HG00733, NA12878, NA24385)
had assemblies created by both projects. In those cases, we chose to keep the assemblies
generated by Garg et. al. as an attempt to increase heterogeneity of variants which would
further test merging.
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Intra-sample haplotype merging
VCFs produced per-haplotype for each individual were merged using BCFtools v1.13[33]. A
custom script consolidated genotypes to create a single SAMPLE column per-VCF. Truvari
collapse v3.1 was run with --hap to prevent incompatible genotyped calls from being merged to
produce the ‘strict’ intra-sample merge. Truvari collapse v3.1 parameters to produce the ‘loose’
merge “--hap --pctsim 0.70 --pctsize 0.70 --refdist 1000”. VCFs were converted to pandas
DataFrames using Truvari vcf2df for analyses which can be recreated using the project’s github.

RepeatMasker Classifications
Truvari anno repmask is a wrapper around RepeatMasker[34] that adds the annotation
information into a VCF. For deletions, the REF sequence is run through RepeatMasker whereas
for INS, the ALT sequence is used. For this study, a minimum RepeatMasker score of 250 was
required to accept a reported annotation.

Number of Neighbors
Truvari anno numneigh annotates entries in a VCF with how many other entries are within a
specified distance as well as assigning an identifier for all variants within the same genomic
region (i.e. neighborhood) as defined by the specified distance.

GIAB Benchmarking
Comparisons to Genome in a Bottle consortium’s SVs v0.6 were performed against hg19[6]
over the Tier1 regions. Comparisons to GIAB’s challenging, medically relevant genes (CMRG)
SVs v1.0 were performed against GRCh38 over the resolved regions bed[35]. Truvari bench
defaults were used. Hardy-Weinberg Equilibrium (HWE) and Excess Heterozygosity scores
(ExcHet) were calculated using BCFtools +fill-tags.

Inter-sample merging
Project-level VCFs were created using the per-sample VCFs generated by Truvari collapse with
default parameters. BCFtools[33] version 1.13 had parameters “-m none -0”. Truvari collapse
was run with --chain and default parameters. Jasmine[13] v1.14 was run with parameters
“--output_genotypes --default_zero_genotype”. SURVIVOR[11] v1.07 was run with parameters
“1000 1 1 0 1 50”. Naive merging is performed by a custom script (available on the github) that
merges variants with 500bp and with >= 50% reciprocal-overlap. Since insertion calls have no
physical span over the reference (i.e. they exist between two reference bases), the Naive
merging expands their boundaries to ±(SVLEN // 2). Allele frequencies within pVCFs were
calculated using BCFtools +fill-tags. For most analyses, Truvari vcf2df was run to turn pVCFs
into pandas DataFrame. Jupyter notebooks detailing steps of the analysis on github.
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Gene Intersection
Truvari anno bpovl was run to intersect pVCF entries to Ensembl release-v105[22] on GRCh38.
This tool creates an Interval Tree for each range in the annotation file and checks variants’
intersection at the breakpoints as well as reporting if a variant is contained within or completely
overlaps annotation file entries.

Tandem Repeat Experiment
Truvari anno trf incorporates a wrapper around tandem-repeat finder (TRF)[36]. We ran Truvari
anno trf to annotate all SVs on GRCh38 that intersected the SimpleRepeats track procured from
UCSC Table Browser[29]. Each intersecting variant is used to alter the SimpleRepeat reference
region to reconstruct the sample’s haplotype. TRF then detects the repeat sequence and copy
number difference in an alternate allele relative to the reference (e.g. +5 copies of a 50bp repeat
comprise a 250bp insertion). The longest tandem repeat found inside the altered sequence
that’s shared with the reference annotations is reported as well as the copy-number difference
of the variant compared to the reference track. Loci are identified using Truvari anno numneigh
where variants within 1000bp are clustered. The BCFtools merge result serves as the baseline
since it holds the maximum number of variants possible. Loci with at least one merging tool
reporting a differing number of variants are analyzed. Each merging tools’ result is assessed
per-locus and variant representations with unique copy-numbers missing or redundant
representations remaining in the post-merge result are tallied.
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SV: Structural Variant; QC: Quality Control; GIAB: Genome in a Bottle; VCF: Variant Call
Format; pVCF: Project-level Variant Call Format; CMRG: Challenging Medically Relevant
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Supplementary Figures/Tables

Supplementary Figure 1
Het/Hom Ratios of Per-Sample VCFs by SVTYPE. Each point is a sample. Point colors are the
intra-sample merge strategy. Shapes are references. As matching thresholds become more
lenient, more heterozygous alleles find a counterpart and become homozygous, thus lowering
the het/hom ratio. We see the ratios of INS (y-axis) dropping more quickly than DEL (x-axis).
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Supplementary Figure 2
SV counts across inter-sample merges by SVTypes for GRCh38 and chm13. As matching
thresholds become more lenient, more heterozygous alleles find a counterpart and become
homozygous, thus lowering the SV count. We see a steeper decrease in INS counts than DELs,
particularly for GRCh38.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.21.481353doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481353
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Figure 3
SV counts per-sample across merge strategies and references. Colors are sample’s population
code. Samples from individuals of African ancestry have more SVs.
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Supplementary Figure 4
SVs per-locus by RepeatMasker class.
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Supplementary Figure 5
SVCount (a) and Allele-Frequency (b) for 5 SV merging tools (columns) across references
(x-axis). We note very minor differences between hg19 and GRCh38.
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Supplementary Figure 6
SVCount by size-bins (x-axis) for 5 SV merging tools (columns) across references (rows).
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Supplementary Table 1
GIAB v0.6 Tier1 SVs performance of the three intra-sample merges on hg19

Merge TP-base TP-call FP FN precision recall f1 base cnt call cnt

exact 9,036 10,185 933 605 0.916 0.937 0.927 9,641 11,118

strict 9,035 9,395 897 606 0.913 0.937 0.925 9,641 10,292

loose 9,028 9,058 834 613 0.916 0.936 0.926 9,641 9,892
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Supplementary Table 2
Inter-Sample Merging tools’ versions and descriptions

Merge Version
Estimated
Stringency Metrics

BCFtools 1.13 Extreme Identical position and sequence

Truvari 3.1.0 High
Type Matching, Reference Distance, Reciprocal Overlap,
SizeSimilarity, SequenceSimilarity

Jasmine 1.14 Moderate Type Matching, Position, Length

Naive N/A Moderate Type Matching, Reciprocal Overlap

SURVIVOR 1.07 Low Type Matching, Distance
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Supplementary Table 3

SV Count Allele Frequency Relative Count Reduction AF Fold Increase AF Relative
to Truvarireference merge TOT DEL INS TOT DEL INS TOT DEL INS TOT DEL INS

hg19 exact 339,870 78,036 261,834 0.05 0.08 0.04 . . . . . . 0.6

hg19 truvari 190,878 61,493 129,385 0.08 0.10 0.08 43.84% 21.20% 50.59% 1.8 1.3 2.0 .

hg19 jasmine 125,841 48,600 77,241 0.13 0.13 0.13 62.97% 37.72% 70.50% 2.7 1.6 3.4 1.5

hg19 naive 105,759 44,429 61,330 0.14 0.14 0.14 68.88% 43.07% 76.58% 2.9 1.7 3.7 1.7

hg19 survivor 71,845 30,372 41,473 0.19 0.18 0.19 78.86% 61.08% 84.16% 3.9 2.2 5.1 2.2

grch38 exact 347,158 80,322 266,836 0.05 0.08 0.04 . . . . . . 0.6

grch38 truvari 195,705 63,418 132,287 0.08 0.10 0.08 43.63% 21.05% 50.42% 1.7 1.3 2.0 .

grch38 jasmine 129,744 50,278 79,466 0.13 0.13 0.13 62.63% 37.40% 70.22% 2.7 1.6 3.4 1.5

grch38 naive 109,379 46,087 63,292 0.14 0.13 0.14 68.49% 42.62% 76.28% 2.9 1.7 3.7 1.6

grch38 survivor 74,288 31,560 42,728 0.19 0.18 0.19 78.60% 60.71% 83.99% 3.9 2.2 5.0 2.2

chm13 exact 329,937 121,038 208,899 0.04 0.06 0.04 . . . . . . 0.7

chm13 truvari 212,670 92,996 119,674 0.07 0.08 0.06 35.54% 23.17% 42.71% 1.5 1.3 1.7 .

chm13 jasmine 151,975 70,696 81,279 0.10 0.10 0.09 53.94% 41.59% 61.09% 2.2 1.7 2.6 1.4

chm13 naive 137,594 64,361 73,233 0.10 0.11 0.09 58.30% 46.83% 64.94% 2.2 1.8 2.6 1.5

chm13 survivor 87,150 40,554 46,596 0.14 0.15 0.13 73.59% 66.49% 77.69% 3.2 2.5 3.7 2.1

Average exact 338,988 93,132 245,856 0.05 0.07 0.04 . . . . . . 0.6

Average truvari 199,751 72,636 127,115 0.08 0.09 0.07 41.00% 21.80% 47.91% 1.7 1.3 1.9 .

Average jasmine 135,853 56,525 79,329 0.12 0.12 0.12 59.85% 38.91% 67.27% 2.5 1.6 3.1 1.5

Average naive 117,577 51,626 65,952 0.13 0.13 0.13 65.22% 44.17% 72.60% 2.7 1.7 3.3 1.6

Average survivor 77,761 34,162 43,599 0.17 0.17 0.17 77.02% 62.76% 81.95% 3.6 2.3 4.6 2.2
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