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Abstract25

We created resources to facilitate research on the role of human brain microstructure in the26

development of mental health disorders, based on openly-available diffusion MRI (dMRI) data27

from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N=2747) into28

the Brain Imaging Data Structure and preprocessed it according to best-practices, including29

denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents.30

Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the31

analysis of dMRI, and we provide automated quality control (QC) scores for every scan, as part of32

the data release. To scale QC to this large dataset, we trained a neural network through the33

combination of a small data subset scored by experts and a larger set scored by community34

scientists. The network performs QC highly concordant with that of experts on a held out set35

(ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image36

features with relevance to QC. Altogether, this work both delivers a resource for transdiagnostic37

research in brain connectivity and pediatric mental health and serves as a novel tool for38

automated QC of large datasets.39

40
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Introduction41

Childhood and adolescence are characterized by rapid dynamic change to human brain structure42

and function (Lebel and Deoni, 2018). This period of development is also a time during which the43

symptoms of many mental health disorders emerge (Paus et al., 2008). Understanding how indi-44

vidual differences in brain development relate to the onset and progression of psychopathology45

inevitably requires large datasets (Paus, 2010; Fair et al., 2021). The Healthy Brain Network (HBN)46

is a landmark pediatricmental health study that is designed to eventually includeMRI images along47

with detailed clinical and cognitive phentoyping from over 5000 New York City area children and48

adolescents (Alexander et al., 2017). The HBN dataset takes a trans-diagnostic approach and pro-49

vides a broad range of phenotypic and brain imaging data for each individual. One of the brain50

imaging measurements acquired is diffusion MRI (dMRI), which is the dominant technology for in-51

ferring the physical properties of white matter (Wandell, 2016). The dMRI data is openly available52

in its raw form through the Functional Connectomes Project and the International Neuroimag-53

ing Data-Sharing Initiative (FCP-INDI), spurring collaboration on open and reproducible science54

(Mennes et al., 2013). However, this raw, publicly available data requires extensive processing55

and quality assurance before it can be fruitfully analyzed.56

The analysis of a large, multi-site dMRI dataset must take into account the inevitable variability57

in scanning parameters across scanning sessions. Critical preprocessing steps, such as susceptibil-58

ity distortion correction (Jones and Cercignani, 2010) require additional MRI acquisitions besides59

dMRI and accuratemetadata accompanying each image. A sessionmissing an acquisition or impor-60

tantmetadata can either be processed to the extent its available data allows or excluded entirely. In61

addition, the quality of preprocessed data is heavily affected by differences in acquisition parame-62

ters (Yeh et al., 2019) and by differences in preprocessing steps. Here we address these problems63

by meticulously curating the HBN data according to the Brain Imaging Data Specification (BIDS)64

(Gorgolewski et al., 2016) and processing the data using the QSIPrep (Cieslak et al., 2021) BIDS App65

(Gorgolewski et al., 2017). QSIPrep automatically builds and executes benchmarkedworkflows that66

adhere to best practices in the field given the available BIDS data. The results include automated67

data quality metrics, visual reports and a description of the processing steps automatically chosen68

to process each session.69

This preprocessing requires a costly compute infrastructure and is both time-consuming and70

error-prone. Requiring researchers to process dMRI data on their own introduces both a practical71

barrier to access and an extra source of heterogeneity into the data, devaluing its scientific utility.72

We provide the preprocessed data as a transparent and open resource, thereby reducing barriers73

to data access and allowing researchers to spend more of their time answering questions in brain74

development and psychopathology rather than recapitulating preprocessing.75

In addition to requiring extensive preprocessing, dMRI data must be thoroughly checked for76

quality. dMRI measurements are susceptible to a variety of artifacts that affect the quality of the77

signals and the ability to make accurate inferences from them. In small studies, with few partic-78

ipants, it is common to thoroughly examine the data from every participant as part of a quality79

control (QC) process. However, expert examination is time consuming and is prohibitive in large80

datasets such as HBN. This difficulty could be ameliorated through the automation of QC. Given81

their success in other visual recognition tasks, machine learning and computer vision methods,82

such as convolutional deep artificial neural networks or “deep learning” (LeCun et al., 2015), are83

promising avenues for automation of QC. However, one of the challenges of these new methods84

is that they require a large training dataset to attain accurate performance. In previous work, we85

demonstrated that deep learning can accurately emulate expert QC of T1-weighted (T1w) anatom-86

ical brain images (Keshavan et al., 2019). To obtain a large enough training dataset of T1w images87

in our prior study, we deployed a community science tool 1 that collected quality control scores of88

1While the term “citizen science” evokes a sense of civic duty in scientific engagement, it can also imply a barrier for com-
munity members who want to contribute to science but may not be citizens of a particular country. In this manuscript we use
the more modern term “community science.”
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parts of the dataset from volunteers through a web application. The scores were then calibrated89

using a gold standard expert-scored subset of these images. A deep learning neural network was90

trained on the calibrated and aggregated score, resulting in very high concordance with expert91

ratings on a separate test dataset. We termed this approach “hybrid QC”, because it combined in-92

formation from experts with information from community scientists to create a scalable machine93

learning algorithm that can be applied to future data collection.94

However, the hybrid QC proof-of-concept left lingering questions about its applicability to other95

datasets because it was trained on a single-site, single-modality dataset. Here, we expand the96

hybrid-QC approach to a large multi-site dMRI dataset. Moreover, one of the common critiques of97

deep learning is that it can learn irrelevant features of the data and does not provide information98

that is transparent enough to interpret (Lipton, 2017; Salahuddin et al., 2022; Zech et al., 2018).99

To confirm that the hybrid-QC deep learning algorithm uses meaningful features of the diffusion-100

weighted images (DWI) to perform accurate QC, we usedmachine learning interpretationmethods101

that pry open the “black box” of the neural network, thereby highlighting the features that lead to102

a specific QC score (Sundararajan et al., 2017;Murdoch et al., 2019).103

Taken together, the combination of curated BIDS data, preprocessed images, and quality con-104

trol scores generated by the deep learning algorithm provides researchers with a rich and acces-105

sible data resource. We anticipate that these HBN Preprocessed Open Diffusion Derivatives (HBN-106

POD2) will accelerate translational research on both normal and abnormal brain development.107

Results108

The aims of this study were fourfold: (i) curate the HBN MRI data into a fully BIDS-compliant MRI109

dataset, (ii) perform state-of-the-art diffusion MRI (dMRI) preprocessing using QSIPrep, (iii) assign110

QC scores to each participant, and (iv) provide unrestricted public release to the outputs from111

each of these steps. We started with MRI data from 2747 HBN participants available through FCP-112

INDI, curating these data for compliance with the Brain Imaging Data Structure (BIDS) specification113

(Gorgolewski et al., 2016). We preprocessed the structural MRI (sMRI) and diffusion MRI (dMRI)114

data using QSIPrep. Participants that could not be curated to comply with the BIDS standard or115

that did not have dMRI data were excluded, resulting in 2134 participants with preprocessed, BIDS-116

compliant dMRI data (Figure 1). HBN neuroimaging data was collected at four sites: Staten Island117

(SI, N = 300), Rutgers University Brain Imaging Center (RU, N = 873), the CitiGroup Cornell Brain118

Imaging Center (CBIC, N = 887), and the City University of New York Advanced Science Research119

Center (CUNY,N = 74), where numbers in parentheses represent participant counts in HBN-POD2.120

Figure 2 depicts the age distribution of study participants by sex for each of these scan site as well121

as pairwise distributions for the automated quality metrics that are described in the next section.122

Healthy Brain Network Preprocessed Open Diffusion Derivatives123

Curated BIDS data and their corresponding QSIPrep outputs are provided in the FCP-INDI Amazon124

Web Services (AWS) S3 bucket 2. This public resource can be accessed by anyone using standard125

S3 access tools.126

The curation process accounts for the acquisition variability inherent in largemulti-site datasets127

by identifying unique variants in theHBNdMRI andfieldmapacquisitions. Each sessionwas grouped128

according tometadata parameters that affect the dMRI signal (PhaseEncodingDirection, EchoTime,129

VoxelSize, FlipAngle, PhasePartialFourier, NumberOfVolumes, Fieldmap availability). Using the “Cu-130

ration of BIDS” (CuBIDS) package (Covitz et al., 2022), we identified a total of 20 unique DWI acqui-131

sitions across HBN-POD2, where about 5% of acquisitions were different from the most common132

DWI acquisition at their site. The specific variant of each session is provided as a column in the133

participant.tsv file and a summary of variants with participant counts is provided in Appendix 1.134

2Curated BIDS data is available at s3://fcp-indi/data/Projects/HBN/BIDS_curated/ and QSIPrep outputs are available at
s3://fcp-indi/data/Projects/HBN/BIDS_curated/derivatives/qsiprep/.
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Figure 1. HBN-POD2 data provenance: Imaging data for 2747 participants, aged 5-21 years and collected atfour sites in the New York City area, was made available through the Functional Connectomes Project and theInternational Neuroimaging Data-Sharing Initiative (FCP-INDI). These data were curated for compliance to theBIDS specification (Gorgolewski et al., 2016) and availability of imaging metadata in json format. 2615participants met this specification. Imaging data was preprocessed using QSIPrep (Cieslak et al., 2021) togroup, distortion correct, motion correct, denoise, coregister and resample MRI scans. Of the BIDS curatedparticipants, 2134 passed this step, with the majority of failures coming from participants with missing dMRIscans. Expert raters assigned QC scores to 200 of these participants, creating a “gold standard” QC subset.Community raters then assigned binary QC ratings to a superset of the gold standard containing 1653participants. An image classification algorithm was trained on a combination of automated quality metricsfrom QSIPrep and community scientist reviews to “extend” the expert ratings to the community sciencesubset. Finally, a deep learning QC model was trained on the community science subset to assign QC scoresto the entire dataset and to future releases from HBN. The HBN-POD2 dataset, including QC ratings, is openlyavailable through FCP-INDI.

The processed diffusion derivatives are standard QSIPrep outputs, which contain preprocessed135

imaging data along with the corresponding QC metrics:136

• Anatomical Data Preprocessed images, segmentations and transforms for spatial normaliza-137

tion are located in the anat/ directory of each session. The gray matter, white matter and138

cerebrospinal fluid (GM, WM, CSF) probabilistic segmentations are provided in nifti format with139

the _probtissue suffix. The deterministic segmentation is in _dseg.nii.gz. All images are140

in alignment with AC-PC-aligned sub-X_desc-preproc_T1w.nii.gz image unless they have141

space-MNI152NLin2009cAsym in their file name, in which case they are aligned to the MNI142

Nonlinear T1-weighted asymmetric brain template (version 2009c; (Fonov et al., 2009a)). The143

spatial transform between the AC-PC T1w image and the MNI space brain is in the ITK/ANTs144

format file named sub-X_from-MNI152NLin2009cAsym_to-T1w_mode-image_xfm.h5. The brain145

mask from ANTsBrainExtraction.sh is included in the file with the _desc-brain_mask.nii.gz146

suffix.147

• Diffusion Data The preprocessed dMRI scan and accompanying metadata are located in the148

dwi/ directory of each session. The fully-preprocessed dMRI data is named according to the149

file pattern sub-X_space-T1w_desc-preproc_dwi.nii.gz. These images all have an isotropic150

voxel size of 1.7mm and are aligned in world coordinates with the anatomical image located151

at anat/sub-X_desc-preproc_T1w.nii.gz. Gradient information is provided in bval/bvec for-152

mat compatiblewithDIPY andDSI Studio and the .b format compatiblewithMRtrix3. Volume-153

wise QC metrics including head motion parameters are included in the confounds.tsv file.154

Automatically computed quality measures for the entire image series are provided in the155

ImageQC.csv file, which includes the neighboring DWI Correlation, number of bad slices and156

headmotion summary statistics. Figure 2 depicts pairwise distributions for the three of these157

automated data qualitymetrics that weremost informative in QCmodels described later (see158

Appendix 3 for further details). The desc-brain_mask file is a dMRI-based brain mask that159

should only be used when the T1w-based brain mask is inappropriate (i.e. when no suscep-160

tibility distortion correction has been applied).161
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Figure 2. Demographic and QSIPrep quality metric distributions: (a) HBN age distributions by sex for eachscanning site. Dashed lines indicate age quartiles. The remaining plots show associations between (b)neighboring diffusion-weighted imaging (DWI) correlation (Yeh et al., 2019) and the number of outlier slices,
(c) neighboring DWI correlation and maximum relative translation, and (d) the number of outlier slices andmaximum relative translation. The number of outlier slices is positively associated with the maximum relativetranslation, while neighboring DWI correlation is negatively associated with the other two metrics. Theseplots are colored by age, and reveal that older participants generally have higher quality data.

Quality Control162

To QC all available HBN dMRI data, we adopted a hybrid QC approach that combines expert rating,163

community science, and deep learning, drawing on the success of a previous application in assess-164

ing the quality of HBN’s structural T1wMRI data (Keshavan et al., 2019). This method (i) starts with165

dMRI expert raters labelling a small subset of participants, the “gold standard” dataset; (ii) ampli-166

fies these labels using a community science web application to extend expert ratings to a much167

larger subset of the data, the community science subset and (iii) trains a deep learning model on168

the community science subset to predict expert decisions on the entire dataset.169

Expert quality control170

To create a gold standard QC dataset, we first developed dmriprep-viewer, a dMRI data viewer and171

QC rating web application to display QSIPrep outputs and collect expert ratings (Richie-Halford172

et al., 2022). Six of the co-authors, who are all dMRI experts, rated a 200-participant subset of the173

HBN-POD2 data using extensive visual examination of each participant’s dMRI data, including the174

preprocessed diffusion weighting imaging (DWI) time series, a plot of motion parameters through-175

out the DWI scan, and full 3D volumes depicting (i) the brainmask and b = 0 to T1w registration and176

(ii) a directionally encoded color fractional anisotropy (DEC-FA) image laid over the b = 0 volume.177

See Appendix 2 for an example of the dmriprep-viewer interface. The experts rated participants178

using a five-point scale with ratings of “definitely fail,” “probably fail,” “not sure,” “probably pass,”179

and “definitely pass.” The distribution of scores given by the experts demonstrates that the gold180
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Figure 3. Expert QC results: Six dMRI experts rated a subset of 200 participants. Experts agreed with QSIPrep’s automated QC metrics. Here weshow the distribution of mean expert QC ratings (a) and associations between the mean expert QC rating and the QSIPrepmetrics (b)neighboring diffusion-weighted imaging (DWI) correlation (Yeh et al., 2019), (c)maximum relative translation, and (d) number of outlier slices.As expected, neighboring DWI correlation is directly correlated with expert rating while the other two metrics are inversely correlated withexpert rating. (e) Experts agreed with each other. Here we show the pairwise Cohen’s � measure of inter-rater reliability (see text for ICCcalculations). The XGB model has an inter-rater reliability (quantified here as Cohen’s �) that is indistinguishable from the other raters

standard dataset included a range of data quality (Figure 3a). Mean expert ratings correlated with181

the three QSIPrep automated QCmetrics that were most informative for the XGB model described182

in the next section: neighboring DWI correlation (Yeh et al., 2019) (Figure 3b), maximum relative183

translation (Figure 3c), and number of outlier slices (Figure 3d). The neighboring DWI correlation184

characterizes the pairwise spatial correlation between pairs of DWI volumes that sample neigh-185

boring points in q-space. Since lower values indicate reduced data quality, it is reassuring that the186

neighboring DWI correlation correlated directly with expert ratings (Pearson CC: 0.797). Conversely,187

high relative translation and a high number of motion outlier slices reflect poor data quality and188

these metrics were inversely related to mean expert rating (Pearson CC: −0.692 and Pearson CC:189

−0.695, respectively).190

In addition to agreeing qualitativelywithQSIPrep’s automatedQCmetrics on average, the expert191

raters also tended to agree with each other (Figure 3e). We assessed inter-rater reliability (IRR)192

using the pairwise Cohen’s � (Di Eugenio and Glass, 2004), which exceeded 0.52 in all cases, and193

with a mean value of 0.648. In addition to the pairwise Cohen’s �, we also computed the intra-class194

correlation (ICC) (Hallgren, 2012) as a measure of IRR. ICC3k is the appropriate variant of the ICC to195

use when a fixed set of k raters each code an identical set of participants, as is the case here. ICC3k196

for inter-rater reliability among the experts was 0.930 (95% CI: [0.91, 0.94]), which is qualitatively197

considered an “excellent” level of IRR (Cicchetti, 1994). The high IRR provides confidence that the198

average of the expert ratings for each image in the gold standard is an appropriate target to use199

for training a machine learning model that predicts the expert scores.200

Community science quality control201

Although the expert raters achieved high IRR and yielded intuitive associations with QSIPrep’s au-202

tomated QC metrics, generating expert QC labels for the entire HBN-POD2 dataset would be pro-203

hibitively time consuming. To assess the image quality of the remaining participants, we deployed204

Fibr (https://fibr.dev), a community science web application in which users assigned binary pass/fail205

labels assessing the quality of horizontal slice DEC-FA images overlaid on the b = 0 image (see Ap-206

pendix 2 for an example). Specifically, Fibr users saw individual slices or an animated sequence of207
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ten slices taken from the entire DEC-FA volume that the expert raters saw. The Fibr users, there-208

fore, saw only a subset of the imaging data that the dMRI experts had access to for a given partici-209

pant, but they saw data frommany more participants. In total, 374 community scientists provided210

587,778 ratings for a mean of > 50 ratings per slice (or > 200 ratings per participant) from 1653 par-211

ticipants. Of the community scientists, 145 raters provided > 3, 000 ratings each and are included212

in the Fibr Community Science Consortium as co-authors on this paper (Ward-Fear et al., 2020)213

(see Appendix 4for a list of consortium co-authors).214

There are three issues to account for when comparing Fibr and expert QC ratings. First, the215

unadjusted Fibr ratings were overly optimistic; i.e., on average, community scientists were not as216

conservative as the expert raters (Figure 4a). Second, different community scientists provide data217

of differing accuracy. That is, they were less consistent across different views of the same image,218

and/orwere less consistentwith expert ratings for the samedata). Thismeans that data from some219

Fibr raters wasmore informative than others. Third, important information about data quality was220

provided in the QSIPrep data quality metrics, which were not available to Fibr raters. To account for221

rater variability and take advantage of the information provided by QSIPrep, we trained gradient222

boosted decision trees (Chen and Guestrin, 2016a) to predict expert scores, scaled to the range223

[0, 1] and binarized with a 0.5 threshold, based on a combination of community science ratings and224

automated QSIPrep QC metrics. One can think of the gradient boosting model as assigning more225

weight to Fibr raters who reliably agree with the expert raters, thereby resolving the aforesaid226

issues with community rater accuracy. We refer to this gradient boosting model as XGB.227

To clarify the contributions of the automated QCmetrics and the community science raters, we228

trained two additional gradient boosting models: (i) one trained only on the automated QSIPrep229

data quality metrics, which we call XGB-q and (ii) one trained on only the Fibr ratings, which we230

call XGB-f. XGB-f may be viewed as a data-driven weighting of community scientists’ ratings, while231

XGB-q may be viewed as a generalization of data quality metric exclusion criteria. XGB, combining232

information from both Fibr ratings andQSIPrep data quality metrics attained a cross-validated area233

under the receiver operating curve (ROC-AUC) of 0.96 ± 0.01 on the “gold standard,” where the ±234

indicates the standard deviation of scores from repeated k-fold cross-validation (Figure 4b). In235

contrast, XGB-q attained an ROC-AUC of 0.91 ± 0.03 and XGB-f achieved an ROC-AUC of 0.84 ± 0.04.236

The enhanced performance of XGB-q over XGB-f shows that community scientists alone are not as237

accurate as automated data quality metrics are at predicting expert ratings. And yet, the increased238

performance of XGB over XGB-q demonstrates that there is additional image quality information239

to be gained by incorporating community scientist input.240

As a way of evaluating the quality of the XGB predictions, consider the fact that the average241

Cohen’s � between XGB and the expert raters was 0.74, which is higher than the average Cohen’s242

7 of 37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2022.02.24.481303doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.24.481303
http://creativecommons.org/licenses/by/4.0/


� between any of the other raters and their human peers (Figure 3). This is not surprising, given243

that the XGBmodel was fit to optimize this match, but further demonstrates the goodness of fit of244

this model.245

Nevertheless, this provides confidence in using the XGB scores in the next step of analysis,246

where we treat the XGB model as an additional coder and extend XGB ratings to participants with-247

out Fibr ratings. In this case, when a subset of participants is coded by multiple raters and the248

reliability of their ratings is meant to generalize to other participants rated by only one coder, the249

single-measure ICC3, as opposed to ICC3k, should be used. When adding XGB to the existing expert250

raters as a seventh expert, we achieved ICC3 = 0.709(95%CI ∶ [0.66, 0.75]). The high ICC3 value after251

inclusion of the XGBmodel justifies using the XGB scores as the target for training an image-based252

deep learning network.253

Automated quality control labelling through deep learning254

While the XGB “rater” does a good job of extending QC ratings to the entire community science255

subset, this approach requires Fibr scores; without community science Fibr scores, only the less256

accurate XGB-q prediction can be employed. Consequently, a new, fully automated QC approach257

is needed that can be readily applied to new data releases from HBN.258

We therefore trained a deep convolutional neural network to predict the XGB ratings directly259

from QSIPrep outputs. We modified an existing 3D convolutional neural network (CNN) architec-260

ture (Zunair et al., 2020)—previously applied to the ImageCLEF Tuberculosis Severity Assessment261

2019 benchmark (Dicente Cid et al., 2019)—to accept multichannel input generated from the pre-262

processed dMRI: the b = 0 reference diffusion image, each of the three cardinal axis components263

of the DEC-FA image, and, optionally, automated QC metrics from QSIPrep. We trained this net-264

work on XGB scores and validated it against the gold standard expert-scored dataset. We refer265

to the convolutional neural network model trained only on imaging data as CNN-i and the model266

that incorporates automated QCmetrics as CNN-i+q. The twomodels performed nearly identically267

and achieved an ROC-AUC of 0.947 ± 0.004 (Figure 5a). The near-identical performance suggests268

that QSIPrep’s automated data quality metrics provided information that was redundant with in-269

formation available in the imaging data. Both CNN-i and CNN-i+q outperformed XGB-q, which was270

trained only on automated QCmetrics, but both modestly underperformed relative to the full XGB271

model, that uses Fibr scores in addition to the QSIPrep data quality metrics.272

The openly available HBN-POD2 data released with this paper provides four QC ratings: the273

mean expert QC ratings, XGB-q and XGB predicted scores, as well as the CNN-i predicted score.274

However, we treat the CNN-i score as the definitive QC score because it is available for all partici-275

pants, can be easily calculated for new participants in future HBN releases, and is more accurate276

than XGB-q in predicting expert ratings in the “gold standard” report set. When we refer to a par-277

ticipant’s QC score without specifying a generating model, the CNN-i score is assumed. Figure 5278

depicts the distribution of these QC scores by age (Figure 5b), sex (Figure 5c), and scanning site279

(Figure 5d). QC distributions are similar for each scan site and for male and female participants 3.280

Attribution masks for the deep learning classifier281

We generated post-hoc attribution maps that highlight regions of the input volume that are rele-282

vant for the QC score. The integrated gradient method (Sundararajan et al., 2017) is a gradient-283

based attribution method (Ancona et al., 2019) that aggregates gradients for synthetic images in-284

terpolating between a baseline image and the input image. It has been used to interpret deep285

learning models applied to retinal imaging in diabetic retinopathy (Sayres et al., 2019) and glau-286

coma (Mehta et al., 2021) prediction, as well as in multiple sclerosis prediction from brain MRI287

(Wargnier-Dauchelle et al., 2021). Our goal is to confirm that the CNN-i model was driven by the288

same features that would drive the expert rating, thereby bolstering the decision to apply it to new289

data.290

3Responses for the sex variable in HBN phenotypic data are limited to “male” and “female.”
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Figure 5. Deep learning QC scores: (a) ROC curves for two deep learning models trained on imaging data:one trained with additional automated data quality metrics from QSIPrep (blue) and one trained without(orange). The models performed roughly identically, reflecting that the data quality metrics are derived fromthe imaging data and are therefore redundant. Both outperformed the XGB-q predictions, indicating theadded value of the diffusion weighted images. However, both models underperformed the XGB predictions,which also incorporate information from Fibr ratings for each scan. The error bands represent one standarddeviation from the mean of the cross-validation splits. (b) Joint distributions showing a strong directassociation between age and QC score (Pearson CC: 0.31). This likely reflects the well-known negativeassociation between age and head motion in pediatric neuroimaging. The dots encode the mean QC score foreach year of age with error bands representing a bootstrapped 95% confidence interval. The line depicts alinear regression relating age and QC score with translucent bands encoding a bootstrapped 95% confidenceinterval. Histograms showing the relationship between participants QC scores and their sex (c) and scan site
(d). QC distributions are independent of sex and scanning site.

Figure 6 shows attribution maps for example participants from each confusion class: true pos-291

itive, true negative, false positive, and false negative. The columns correspond to the different292

channels of the deep learning input volume: the b = 0 reference image and the DEC-FA in the x,293

y, and z directions. The blue voxels indicate positive attribution, that is, data that supports a pass-294

ing QC classification. Conversely, the red voxels indicate negative attribution, data that supports295

a failing QC classification. The true positive map indicates that the network was looking at the296

entire brain rather than focusing on any one anatomical region (Figure 6a). Moreover, the model297

identified white matter fascicles that travel along the direction of the input channel: lateral for x,298

anterior-posterior for y, and superior-inferior for z. The true negative attribution map (Figure 6b)299

reveals that when the reference b = 0 volume contains motion artifacts, such as banding, the net-300

work ignored the otherwise positive attributions for the clearly identifiable white matter tracts in301

the DEC-FA channels. The false positive map (Figure 6c) and the false negative map (Figure 6d)302

should be interpreted differently since they come from low confidence predictions; the probabil-303

ity of passing hovered on either side of the pass/fail threshold. For example, in the false positive304

case, the network was confused enough that it treated voxels that are outside of the brain to be305

as informative as voxels in the major white matter bundles.306
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Figure 6. Integrated gradients attribution maps for the deep learning classifier: Each column depicts a different channel of the inputtensor: the b = 0 DWI volume and the DEC-FA images in the x, y, and z directions. The first three columns show an axial slice while the lastcolumn shows a coronal slice. Blue voxels indicate positive attribution (i.e. evidence for passing the participant), while red voxels indicatenegative attribution (i.e. evidence for QC failure). The underlying grayscale depicts the input channel. Each row depicts a representativeparticipant from each confusion class: (a) Attribution maps for a true positive prediction. The model looked at the entire brain and focused onknown white matter bundles in the DEC-FA channels. In particular, it focused on lateral bundles in the x direction, anterior-posterior bundles inthe y direction, and superior-inferior bundles in the z direction. (b) Attribution maps for a true negative prediction. The model focused primarilyon the b = 0 channel, suggesting that it ignores DEC-FA when motion artifacts like banding are present. (c) Attribution maps for a false positiveprediction. Both the false positive and negative predictions were low confidence predictions. This is reinforced by the fact that the model viewedsome voxels that are outside of the brain as just as informative as those in major white matter tracts. (d) Attribution maps for a false negativeprediction. The model failed to find long-range white matter tracts in the anterior-posterior and lateral directions. We also speculate that themodel expected left-right symmetry in the DEC-FA channels and assigned negative attribution to asymmetrical features.
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QC prediction models can generalize to unseen sites307

Site harmonization is a major issue for any multisite neuroimaging study and developing auto-308

mated QC tools that generalize between sites has been a perennial issue (Esteban et al., 2017).309

Furthermore, the ability to generalize between sites in a single multisite study would signal the310

promise of generalizing to other datasets altogether. To better understand the ability of our QC311

models to generalize across scanning sites, we trained several variants of the XGB-q and CNN-i312

models on partitions of the data with different sites held out (Figure 7). ROC-AUC for generalization313

is uniformly high for both the XGB-q and the CNN-i models (Table 1). However, more importantly,314

accuracy and balanced accuracy vary substantially: depending on the site that was used for train-315

ing, balanced accuracy could be as low as guess rate, particularly for the CNN-i model. Notably,316

it seems that including the RU site in the training data led to relatively high balanced accuracy in317

both models. The XGB-q model balanced accuracy was less dependent on the specific sites used318

for training, but also displayed some variability across permutations of this experiment. In partic-319

ular, the benefit from including the “right site” in the training data, namely RU, eclipsed the slight320

benefit conferred by including more than one site in the training data.321

Quality control improves inference322

To demonstrate the effect that quality control has on inference, we analyzed tract profile data323

derived from HBN-POD2 data. Tract profiling (Yeatman et al., 2012; Jones et al., 2005; Colby et al.,324

2012; O’Donnell et al., 2009; Kruper et al., 2021) is a subset of tractometry (Jones et al., 2005; Bells325

et al., 2011), which uses the results of dMRI tractography to quantify properties of the whitematter326

alongmajor pathways. Tract-profiling retains the values of diffusionmetrics along the trajectory of327

each bundle of tractography streamlines, rather than computing summary statistics summarized328

at the level of each bundle. In Figure 8, we plot mean diffusivity tract profiles grouped into four QC329

bins along the length of twenty-four bundles: While some bundles, such as the cingulum cingulate330

(CGC) and the inferior longitudinal fasciculus (ILF), appear insensitive to QC score, others, such331

as the uncinate (UNC) and the orbital portion of the corpus callosum, exhibit strong differences332

between QC bins. In most bundles, low QC scores tend to flatten the profile, indicating that mean333

diffusivity appears artifactually homogeneous across the bundle.334
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Figure 9. Imposing a QC cutoff improves age
prediction: Cross validated R2 scores (left axis, bluedots) from an age prediction model increase afterscreening participants by QC score. We see the mostdramatic increase in R2 after imposing even the lowestcutoff of 0.05. Thereafter, the R2 scores trend upwarduntil a cutoff of ∼ 0.95, where the training set size (rightaxis, orange line) becomes too small to sustain modelperformance. The error bands represent abootstrapped 95% confidence interval.

The effect of QC score on white matter335

bundle profiles indicates that researchers336

using HBN-POD2 should incorporate QC in337

their analyses, either by applying a QC cut-338

off when selecting participants or by explic-339

itly adding QC score to their inferential mod-340

els. Failure to do so may cause spurious341

associations or degrade predictive perfor-342

mance. To demonstrate this, we selected343

participant age as a representative pheno-344

typic benchmark because (i) it operates on345

a natural scale with meaningful units and346

(ii) despite the unique methodological chal-347

lenges it presents for biomarker identifica-348

tion (Nelson et al., 2020), brain age pre-349

diction may be diagnostic of overall brain350

health (Franke et al., 2010; Cole et al., 2019;351

Richie-Halford et al., 2021). We observed352

the effect of varying QC cutoff on the predic-353

tive performance of an age predictionmodel.354

Cross-validated R2 scores for an age predic-355

tion model varied depending on the QC cut-356
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Figure 7. Generalization of QC scores to unseen sites: In each experiment, CNN-i (a) and XGB-q (b) modelswere trained with some sites held out and evaluated only on data from these held out sites. Modelperformance is quantified as ROC-AUC (blue), accuracy (orange) and balanced accuracy (green). For XGB-q,the targets are the expert ratings on data from the held out site. For CNN-i, performance is scored againstXGB scores (as used before; test set in filled circles), or expert ratings on the data from the held out site(report set in crosses). Summary statistics for this plot are listed in Table 1.
Table 1. Site generalization summary statistics: Below we list the mean ± standard deviation of the sitegeneralization evaluation metrics displayed in Figure 7. For each of the CNN-i and XGB-q model families andeach of the site generalization splits, we report the accuracy, balanced accuracy, and ROC-AUC.

Accuracy Balanced accuracy ROC-AUC
Model Site
CNN-i train: CBIC + CUNY, test: RU 0.748 ± 0.086 0.652 ± 0.112 0.930 ± 0.015

train: CBIC, test: RU + CUNY 0.696 ± 0.095 0.574 ± 0.123 0.791 ± 0.169
train: RU + CUNY, test: CBIC 0.859 ± 0.033 0.847 ± 0.030 0.912 ± 0.013
train: RU, test: CBIC + CUNY 0.851 ± 0.018 0.753 ± 0.029 0.910 ± 0.014

XGB-q train: CBIC+CUNY, test: RU 0.763 ± 0.071 0.805 ± 0.052 0.895 ± 0.006
train: CBIC, test: RU+CUNY 0.725 ± 0.079 0.779 ± 0.058 0.886 ± 0.019
train: RU+CUNY, test: CBIC 0.894 ± 0.024 0.838 ± 0.036 0.931 ± 0.018
train: RU, test: CBIC+CUNY 0.886 ± 0.030 0.816 ± 0.048 0.940 ± 0.017
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Figure 8–Figure supplement 1. FA bundle profiles
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off (Figure 9). An initial large improvement was achieved by excluding the 200 participants with the357

lowest QC scores, followed by a gradual increase in performance. Finally, when a large number of358

participants is excluded, performance deteriorated again.359

Discussion360

We present HBN-POD2, one of the largest child and adolescent diffusion imaging datasets with361

preprocessed derivatives that is currently openly available. The dataset was designed to comply362

with the best practices of the field. For example, it complies with the current draft of the BIDS363

diffusion derivative specification (Pestilli et al., 2021). It will grow continuously as the HBN study364

acquires more data, eventually reaching its 10,000 participant goal.365

Preprocessing and quality control increase the impact of openly-available data366

Themost immediate contribution of this work is a large analysis-ready dMRI data resource, openly367

accessible to the public. In the past decade, projects such as the Human Connectome Project (HCP)368

(Van Essen et al., 2013), UK Biobank (Miller et al., 2016), ABCD (Jernigan and Brown, 2018), and Cam-369

CAN (Taylor et al., 2017; Shafto et al., 2014) and of course FCP-INDI (which includes HBN) (Mennes370

et al., 2013) have ushered a culture of data sharing in open big-data neuroscience. The adoption371

and reuse of these datasets reduces or eliminates the data collection burden on downstream re-372

searchers. Some projects, such as the HCP (Glasser et al., 2013), also provide preprocessed deriva-373

tives, further reducing researchers’ burden and extending the benefits of data-sharing from data374

collection to preprocessing and secondary analysis. Following the example of the HCP, HBN-POD2375

provides analysis-ready dMRI derivatives. This avoids duplication of and heterogeneity across the376

preprocessing effort while also ensuring a minimum standard of data quality for HBN researchers.377

We also provide the CuBIDS variant annotation in the participants.tsv file, allowing researchers to378

account for the imaging heterogeneity inherent in a dataset of this size. Making MRI derivatives379

accessible not only reduces the burden of processing large datasets for research groups with lim-380

ited resources (Laird, 2021), but also aids research performed by clinicians who are interested in381

brain-behavior relationships but may be lacking the technical training to process large-scale dMRI382

data.383

The data is amenable to many different analyses, including tractometry (Yeatman et al., 2012,384

2018; Kruper et al., 2021), graph theoretical analysis (Yeh et al., 2020), and combinations with func-385

tional MRI data and other data types for the same participants. The availability of standardized386

preprocessed diffusion data will allow researchers to create and test hypotheses on the white mat-387

ter properties underlying behavior and disease, from reading and math acquisition to childhood388

adversity and mental health. As such, this dataset will accelerate discovery at the nexus of white389

matter microstructure and neurodevelopmental and learning disorders.390

In large developmental datasets, it is critically important to perform accurate and reliable QC391

of the data. QC is associated not just with age, but with many phenotypic variables of interest in392

cognition and psychopathology (Siegel et al., 2017). HBN-POD2 provides four separate QC scores393

alongside its large dataset of pediatric neuroimaging diffusion derivatives, paving theway for users394

of the data to incorporate considerations of data quality into their analysis of the processed data.395

Unsurprisingly, QC scores are strongly correlatedwith age (Figure 5). This accordswith the negative396

association between headmotion and age in developmental studies, which is well established both397

in general (Power et al., 2012; Satterthwaite et al., 2012; Fair et al., 2012; Yendiki et al., 2014)398

and specifically for resting-state fMRI in the HBN dataset (Alexander et al., 2017). Moreover, it399

is important that QC has bundle-specific and spatially localized effects (Figure 8). Analysis of this400

data that does not incorporate QC is likely to find replicable but invalid effects. For example, in401

patient-control studies, patients are likely to have lower quality data. And analysis of such patient402

data that does not control for QC will find spatially-localized and replicable group differences that403

are due to data quality, not necessarily underlying neuroanatomical differences.404
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We further demonstrated the impact of QC in a benchmark age prediction task (Figure 9). In405

this case, the increase in model performance from imposing a QC cutoff is intuitive: we know406

from Figure 8 that participants with low QC scores have reduced MD, but MD also decreases as407

participantsmature (Yeatmanet al., 2014;Richie-Halford et al., 2021). Eliminating participantswith408

low QC therefore removes the ones who may look artificially older from the analysis, improving409

overall performance. The most noticeable improvement in performance comes after imposing410

the most modest cutoff of 0.05, suggesting that inferences may benefit from any QC screening. On411

the other hand, QC screening inherently introduces a tradeoff between the desire for high quality412

data and the desire for a large sample size. In this case, after a QC cutoff of around 0.9, the training413

set size is reduced such that it degrades predictive performance. Importantly, we do not expect414

the sensitivity analysis of an age prediction model to generalize to other analyses and therefore415

recommend that researchers using HBN-POD2 choose the most appropriate QC cutoff for their416

research question and consider including QC score as a model covariate in their analyses.417

Automated quality control: scalability, interpretability, and generalization418

The predictive performance of the CNN-i model (Figure 5a) gives us confidence that it could ac-419

curately classify unseen data from the same sites, justifying its extension to the entire HBN-POD2420

dataset and to future releases of HBN. However, one limitation of thismodel is that it does not satis-421

factorily explain its decisions. As deep learning models have been increasingly applied to medical422

image analysis, there is an evolving interest in the interpretability of these models (Salahuddin423

et al., 2022; Lipton, 2017; Zech et al., 2018; Ghassemi et al., 2021). While an exhaustive interpre-424

tation of deep learning QC models is beyond the scope of this work, we provided a preliminary425

qualitative interpretation of the CNN-i model (Figure 6) that demonstrates the intuitive nature of426

its decisions.427

The accuracy in generalizing to unseen data fromHBN also suggested the tantalizing possibility428

that the QCmodels would be able to generalize to similar data from other datasets. To assess this,429

we trained the models with unseen sites held out (Figure 7). Both the CNN-i model and the XGB-q430

model do sometimes generalize to data from unseen sites, suggesting that they would be able to431

generalize to some other datasets as well. However, they do not reliably generalize, implying that432

they should not currently be used in this way. Future work could build upon the work that we have433

done here to establish a procedurewhereby themodels that we fit in HBNwould be applied to data434

from other studies, but comprehensive calibration and validation would have to be undertaken as435

part of this procedure.436

We recognize that decisions about QC inclusion must balance accuracy, interpretability, gener-437

alization to new data, and scalability to ever larger datasets. We therefore provide three additional438

scores: (i) the mean expert QC score for the 200 participants in the gold standard dataset, (ii) the439

scores predicted by the XGBmodel, which outperformed all other models when evaluated against440

the gold standard ratings, but which are only available for participants that have community sci-441

ence scores, and (iii) the scores predicted by the XGB-q model, which underperformed the deep442

learning generated scores, but which rely only on the automated QC metrics output by QSIPrep.443

We view the XGB-q scores, which are available for all participants, as a more interpretable and scal-444

able fallback because the XGB-q model ingests QSIPrep output without any further postprocess-445

ing. XGB-q also provides slightly more uniform performance in generalization to unseen HBN sites446

(Figure 7). Because the XGB-q model most readily generalizes to other QSIPrep outputs, we pack-447

age it as an independent QC service in the QSIQC software package (Richie-Halford and Rokem,448

2022b), available both as a docker image at ghcr.io/richford/qsiqc and as a Streamlit app at449

https://share.streamlit.io/richford/qsiqc/main/app.py. The decision to use a more interpretable but450

slightly less performant method of generating QC scores was also advocated by (Tobe et al., 2021),451

who noted that the Euler number of T1-weighed images (Rosen et al., 2018) in the NKI-Rockland452

dataset can reliably predict scores generated with Braindr, the community science application de-453

veloped in our previous work (Keshavan et al., 2019).454
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We also note that the issue of algorithmic impact in choosing a QC method is not exclusive to455

the deep learning model. We have chosen models that most reliably reproduce the gold standard456

ratings, but a reliable algorithmmight still negatively influence researcher’s decisions. For example,457

excluding participants by QC score could spur them to exclude populations deserving of study,458

as when QC score is highly correlated with age or socio-economic status. We therefore caution459

researchers to examine interactions between the QC scores we provide and their phenotype of460

interest.461

More generally, QC in the dataset that we have produced is fundamentally anchored to the462

decisions made by the expert observers. While Cohen’s � between some pairs of experts can be463

as low as 0.52, IRR quantified across all of the experts with ICC3k is excellent. Nevertheless, it is464

possible that improvements to the final QC scores could be obtained through improvements to465

IRR, or by designing a more extensive expert QC protocol. The tradeoff between more extensive466

QC for each participant and more superficial QC on more participants was not explored in this467

study, but could also be the target for future research.468

Transparent pipelines provide an extensible baseline for future methods469

While the primary audience of HBN-POD2 is researchers in neurodevelopment who will use the470

dMRI derivatives in their studies, other researchers may use HBN-POD2 to develop new prepro-471

cessing algorithms or quality control methods. In this respect, HBN-POD2 follows Avesani et al.472

(2019), who recognized the diverse interests that different scientific communities have in reusing473

neuroimaging data and coined the term data upcycling to promote multiple-use data sharing for474

purposes secondary to those of the original project. Complementing the approach taken in Avesani475

et al.’s work, which provided dMRI from a small number of participants preprocessed with many476

pipelines, HBN-POD2 containsmanyparticipants, all processedwith a single state of the art pipeline,477

QSIPrep. For researchers developing new preprocessing algorithms, HBN-POD2 provides a large,478

openly available baseline to which they can compare their results.479

Similarly, neuroimaging QC methods developers will benefit from a large benchmark dataset480

of expert, community science, and automated QC ratings, with which to test new methods. Im-481

portantly, the architecture and parameters of the deep learning network used for QC are also482

provided as part of this work, allowing application of this network to future releases of HBN data,483

and allowing other researchers to build upon our efforts. Indeed, in this work, we have extended484

our previous work on what we now call “hybrid QC”. This approach, which we originally applied485

to the first two releases of the HBN T1-weighted data (Keshavan et al., 2019) (using the Braindr486

web app: https://braindr.us) was extended here in several respects. First, the Braindr study used a487

smaller dataset of approximately 700 participants, while we extended this approach to well over488

2000 participants. Second, Braindr relied on approximately 80,000 ratings from 261 users. Here,489

we received more than 500,000 ratings from 374 community scientists. As our understanding of490

the role of community scientist contributions has evolved, we decided that wewould include as col-491

lective co-authors community scientists who contributedmore than 3000 ratings (Ward-Fear et al.,492

2020). Third, Braindr used data from only a single site. Here, multi-site data was used. This opens493

upmultiple possibilities for deeper exploration of between-site quality differences, and also for har-494

monization of QC across sites, as we have attempted here. Last, the most challenging extension of495

hybrid QC from Braindr to this study entailed developing an approach that would encompassmulti-496

volume dMRI data. On the one hand, this meant that the task performed by the expert observers497

was more challenging, because it required examination of the full dMRI time-series for every scan.498

To wit, expert inter-rater reliability was considerably higher for the T1-weighted only data in Ke-499

shavan et al. (2019) than for the dMRI data used (Figure 3e). On the other hand, it also meant that500

the 4D data had to be summarized into 2D data to be displayed in the Fibr web application. This501

was achieved by summarizing the entire time-series as a DEC-FA + b = 0 image and presenting502

community scientists with animated sections of these images that showed how the data extended503

over several horizontal slices. In addition, the extension to 4D data required developing new deep504

16 of 37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2022.02.24.481303doi: bioRxiv preprint 

https://braindr.us
https://doi.org/10.1101/2022.02.24.481303
http://creativecommons.org/licenses/by/4.0/


learning architectures for analysis of 4D images, including upstream contributions to Nobrainer, a505

community-developed software library for deep learning in neuroimaging data (Kaczmarzyk et al.,506

2021). These extensions demonstrate that the hybrid QC approach generalizes very well to a vari-507

ety of different circumstances. Future applications of this approach could generalize to functional508

MRI data, as well as other large datasets from other kinds of measurements and other research509

domains.510

Future work and open problems511

The HBN study plans to acquire imaging data for over 5000 participants, necessitating future data512

releases. Since future releases of HBN will also require future releases of HBN-POD2, a plan for513

these is essential. This is a general issue affecting multi-year neuroimaging projects for which514

derivative data is being released before study completion. The use of QSIPrep, cloudknot and the515

containerization of theQC score assignment process facilitate running the exact pipeline described516

in this paper on newly released participants. However, this approach is somewhat unsatisfactory517

because it fails to anticipate improvements in preprocessingmethodology. That is, what should we518

dowhenQSIPrep is inevitably updated betweenHBN releases? Enforce standardization by using an519

outdated pipeline or use state-of-the-art preprocessing at the expense of standardized processing520

between releases? Because the use of cloudknot and AWS Spot Instances renders preprocessing521

fast and relatively inexpensive, we propose a third way: if improvements to the preprocessing522

pipeline are available with a new HBN release, we plan to execute the improved pipeline on the523

entire HBN dataset, while preserving the previous baseline release in an archived BIDS derivative524

dataset.525

Undertaking the processing and QC effort to generate HBN-POD2 required construction and526

deployment of substantial informatics infrastructure, including tools for cloud computing, web527

applications for expert annotation and for community science rating and analysis software. All of528

these tools are provided openly, so that this approach can be generalized even more widely in529

other projects and in other scientific fields.530

Methods and Materials531

To facilitate replicability, Jupyter notebooks (Kluyver et al., 2016) andDockerfiles (Merkel, 2014) nec-532

essary to reproduce the methods described herein are provided in the HBN-POD2 GitHub reposi-533

tory at https://github.com/richford/hbn-pod2-qc. The specific version of the repository used in this534

study is documented in Richie-Halford and Rokem (2022a). The make or make help commands will535

list the available commands and make buildwill build the requisite Docker images to analyze HBN-536

POD2 QC data. In order to separate data from analysis code (Wilson et al., 2017), we provide inter-537

mediate data necessary to analyze the QC results in an OSF (Foster and Deardorff, 2017) project538

(Richie-Halford and Rokem, 2021), which can be downloaded using the make data command in the539

root of the HBN-POD2 GitHub repository. Most of the code in this repository uses Pandas (McKin-540

ney, 2010; pandas development team, 2020), Numpy (Harris et al., 2020), Matplotlib (Hunter, 2007),541

and Seaborn (Waskom, 2021).542

Inputs543

Inputs for this study consisted of MRI data from the Healthy Brain Network pediatric mental health544

study (Alexander et al., 2017), containing dMRI data from 2747 participants aged 5-21 years. These545

data were measured using a 1.5 T Siemens mobile scanner on Staten Island (SI) and three fixed 3T546

Siemens MRI scanners at sites in the New York area: Rutgers University Brain Imaging Center (RU),547

the CitiGroup Cornell Brain Imaging Center (CBIC), and the City University of New York Advanced548

Science Research Center (CUNY). Informed consent was obtained from each participant aged 18 or549

older. For participants younger than 18, written consent was obtained from their legal guardians550

and written assent was obtained from the participant. Voxel resolution was 1.8mm × 1.8mm ×551

1.8mm with 64 non-colinear directions measured for each of b = 1000 s/mm2 and b = 2000 s/mm2.552
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BIDS curation553

We curated the imaging metadata for 2615 of the 2747 currently available HBN participants. Using554

dcm2bids and custom scripts, we conformed the data to the Brain Imaging Data Structure (BIDS;555

(Gorgolewski et al., 2016)) specification. The BIDS-curated dataset is available on FCP-INDI and can556

be accessed via AWS S3 at s3://fcp-indi/data/Projects/HBN/BIDS_curated/.557

After conforming the data to BIDS, we used the “Curation of BIDS” (CuBIDS) package (Covitz558

et al., 2022) to identify unique combinations, or “variants” of imaging parameters in the curated559

dataset. CuBIDS is a Python-based software package that provides a sanity-preserving workflow560

to help users reproducibly parse, validate, curate, and understand heterogeneous BIDS imaging561

datasets. CuBIDS includes a robust implementation of the BIDS Validator that scales to large sam-562

ples and incorporates DataLad (Halchenko et al., 2021), a distributed data management system,563

to ensure reproducibility and provenance tracking throughout the curation process. CuBIDS tools564

also employ agglomerative clustering to identify the aforementioned variants of imaging param-565

eters. Users may then test BIDS-Apps on a subset of participants that represent the full range of566

acquisition parameters that are present. These variants are listed in the participants.tsv file in the567

BIDS-curated dataset.568

Preprocessing569

We performed dMRI preprocessing on 2615 participants, using QSIPrep (Cieslak et al., 2021) 0.12.1,570

which is based on Nipype 1.5.1 (Gorgolewski et al., 2011, 2018), RRID:SCR_002502. QSIPrep a robust571

and scalable pipeline to group, distortion correct, motion correct, denoise, coregister and resample572

MRI scans. In total, 417 participants failed this preprocessing step, largely due tomissing dMRI files.573

In keeping with the BIDS specification, the preprocessed dataset is available as a derivative dataset574

within the BIDS-curated dataset and can be access on AWS S3 at s3://fcp-indi/data/Projects/HBN/575

BIDS_curated/derivatives/qsiprep/. QSIPrep fosters reproducibility by automatically generating thor-576

ough methods boilerplate for later use in scientific publications, which we use for the remainder577

of this subsection to document each preprocessing step.578

• Anatomical data preprocessing The T1-weighted (T1w) image was corrected for intensity non-579

uniformity (INU) using N4BiasFieldCorrection (Tustison et al., 2010) (ANTs 2.3.1), and used580

as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped us-581

ing antsBrainExtraction.sh (ANTs 2.3.1), using OASIS as target template. Spatial normaliza-582

tion to the ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al. (2009b),583

RRID:SCR_008796) was performed through nonlinear registration with antsRegistration584

(Avants et al. (2008), ANTs 2.3.1, RRID:SCR_004757), using brain-extracted versions of both585

T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-586

matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using FAST587

(Zhang et al., 2001), FSL 6.0.3:b862cdd5, RRID:SCR_002823.588

• Diffusion data preprocessing589

Any images with a b-value less than 100 s/mm2 were treated as a b = 0 image. MP-PCA denois-590

ing as implemented in MRtrix3’s dwidenoise (Veraart et al., 2016) was applied with a 5-voxel591

window. After MP-PCA, B1 field inhomogeneity was corrected using dwibiascorrect from592

MRtrix3 with the N4 algorithm (Tustison et al., 2010). After B1 bias correction, the mean in-593

tensity of the DWI series was adjusted so all the mean intensity of the b = 0 images matched594

across each separate DWI scanning sequence.595

FSL (version 6.0.3:b862cdd5)’s eddy was used for head motion correction and Eddy current596

correction (Andersson and Sotiropoulos, 2016). Eddy was configured with a q-space smooth-597

ing factor of 10, a total of 5 iterations, and 1000 voxels used to estimate hyperparameters.598

A linear first level model and a linear second level model were used to characterize Eddy599

current-related spatial distortion. q-space coordinateswere forcefully assigned to shells. Field600

offset was attempted to be separated from participant movement. Shells were aligned post-601
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eddy. Eddy’s outlier replacement was run (Andersson et al., 2016). Data were grouped by602

slice, only including values from slices determined to contain at least 250 intracerebral vox-603

els. Groups deviating by more than four standard deviations from the prediction had their604

data replaced with imputed values. Data was collected with reversed phase-encode blips, re-605

sulting in pairs of images with distortions going in opposite directions. Here, b = 0 reference606

images with reversed phase encoding directions were used along with an equal number of607

b = 0 images extracted from the DWI scans. From these pairs the susceptibility-induced off-608

resonance field was estimated using a method similar to that described in (Andersson et al.,609

2003). The fieldmaps were ultimately incorporated into the Eddy current and head motion610

correction interpolation. Final interpolation was performed using the jac method.611

Several confounding time-series were calculated based on the preprocessed DWI: framewise612

displacement (FD) using the implementation in Nipype following the definitions by (Power613

et al., 2014). The DWI time-series were resampled to ACPC, and their corresponding gradient614

directions were rotated accordingly to generate a preprocessed DWI run in ACPC space.615

Many internal operations of QSIPrep use Nilearn 0.6.2 (Abraham et al., 2014), RRID:SCR_001362616

and DIPY (Garyfallidis et al., 2014). For more details of the pipeline, see the section corresponding617

to workflows in QSIPrep’s documentation.618

Cloud-based distributed preprocessing619

The containerization of QSIPrep provided a consistent preprocessing pipeline for each participant620

but the number of participants made serial processing of each participant prohibitive on a single621

machine. We used cloudknot, a previously developed cloud-computing library (Richie-Halford and622

Rokem, 2018) to parallelize the preprocessing over individual participants on spot instances in the623

Amazon Web Services Batch service. Cloudknot takes as input a user-defined Python function and624

creates the necessary AWS infrastructure to map that function onto a range of inputs, in this case,625

the participant IDs. The Python preprocessing function was a thin wrapper around QSIPrep’s com-626

mand line interface and is provided in a Jupyter notebook in the HBN-POD2 GitHub repository in627

the “notebooks” directory. Using cloudknot and AWS Batch Spot Instances, the preprocessing cost628

less than $1.00 per participant.629

Expert quality control630

The expert QC “gold standard” subset was created by randomly selecting 200 participants from the631

preprocessed dataset, sampled such that the proportional site distribution in the gold standard632

subset matched that of the preprocessed dataset.633

We created a web application for expert quality control of preprocessed dMRI, called dmriprep-634

viewer (Richie-Halford et al., 2022). The viewer ingests QSIPrep outputs and generates a browser-635

based interface for expert QC. It provides a study overview displaying the distributions of QSIPrep’s636

automated data quality metrics (described at https://qsiprep.readthedocs.io/en/latest/preprocessing.637

html#quality-control-data). Each datum on the study overview page is interactively linked to a638

participant-level QC page that provides an interactive version ofQSIPrep’s visual reports (described639

at https://qsiprep.readthedocs.io/en/latest/preprocessing.html#visual-reports). The viewer allows users640

to assign a rating of −2 (definitely fail), −1 (probably fail), 0 (not sure), 1 (probably pass), or 2 (defi-641

nitely pass) to a participant. To standardize rater expectations before rating, expert raters watched642

a tutorial video (available on YouTube at https://youtu.be/SQ0v-O-e5b8 and in theOSF project). They643

then rated each participant and saved their scores and sent them to the lead author for compila-644

tion.645

To compute the pairwise Cohen’s � scores in Figure 3e, we used the scikit-learn (Pedregosa et al.,646

2011) cohen_kappa_score function with quadratic weights. To compute intra-class correlation, we647

used the pingouin statistical package (Vallat, 2018) intraclass_corr function. The expert rating648

analysis can be replicated using the make expert-qc command in theHBN-POD2GitHub repository.649
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The mean expert ratings were scaled to the range 0 to 1, so that a mean rating from 0 to 0.2650

corresponds to an expert rating of “definitely fail”, a mean rating from 0.2 to 0.4 corresponds to651

“probably fail”, from 0.4 to 0.6 corresponds to “not sure”, from 0.6 to 0.8 corresponds to “probably652

pass”, and 0.8 to 1.0 corresponds to “definitely pass.” These expert scores are available in the653

“expert_qc_score” column of the participants.tsv file on FCP-INDI.654

Community scientist quality control655

The community science web application is based on the SwipesForScience framework https://656

swipesforscience.org/, which generates aweb application for community science given anopen repos-657

itory of images to be labelled and a configuration file. The source code for the Fibr web applica-658

tion is available at https://github.com/richford/fibr. After a brief tutorial, community scientists pro-659

vided binary pass/fail ratings based on the DEC-FA from a fit of a DTI model to each participant’s660

preprocessed dMRI data. These images were generated using a DIPY (Garyfallidis et al., 2014)661

TensorModel in a cloudknot-enabled Jupyter notebook that is available in the “notebooks” directory662

of the Fibr GitHub repository. Fibr saves each community rating to its Google Firebase backend,663

the contents of which have been archived to the HBN-POD2 OSF project.664

The Fibr ratings were then combined with 31 automated QSIPrep data quality metrics to train665

the gradient boosted trees models XGB, XGB-f, and XGB-q. See Appendix 3 for a list of these auto-666

mated QCmetrics and ameasure of their global feature importance in the XGB and XGB-q models.667

Thesemodelswere implemented as binary classifiers using the XGBoost library (ChenandGuestrin,668

2016b). The targets for these classifiers were the mean expert ratings in the gold standard dataset,669

rescaled to the range [0, 1] and binarized with a threshold of 0.5. Using repeated stratified K-fold670

cross-validation, with three splits and two repeats, we evaluated the models’ performance in pre-671

dicting the gold standard ratings. In each fold, the bestmodel hyperparameters were chosen using672

the scikit-optimize (Head et al., 2021) BayesSearchCV class. Savedmodel checkpoints for each cross-673

validation split are available in the HBN-POD2 OSF project. Since each split resulted in a different674

XGB model and we required a single QC score to train the deep learning model, we combined the675

models from each cross-validation split using a voting classifier, computing a weighted averaged676

of the predicted probability of passing from each model, weighted by its out-of-sample ROC-AUC.677

This was implemented using scikit-learn’s VotingClassifier class. Treating the voting classifier678

as another “expert” rater, we reassessed the pairwise Cohen’s � and ICC scores as in the expert679

QC subsection. The community ratings analysis can be replicated using the make community-qc680

command in the HBN-POD2 GitHub repository. The XGB model’s positive class probabilities are681

available in the “xgb_qc_score” column of the participants.tsv file on FCP-INDI, while the XGB-q682

model’s positive class probabilities are available in the “xgb_qsiprep_qc_score” column.683

Deep learning to predict quality control684

The binarized voting classifier’s predictions were then used as targets to train a deep learning685

binary classifier to predict QC scores based on each participant’s preprocessed dMRI data. We686

trained two different model architectures: (i) CNN-i, which took only preprocessed dMRI images as687

input and (ii) CNN-i+q, whose input also included QSIPrep’s automated data quality metrics. Both688

models were implemented in Tensorflow 2 (Abadi et al., 2015) using the Keras module (Chollet689

et al., 2015). The image processing part of the model architecture was identical for both models: a690

modification of an existing 3D CNN (Zunair et al., 2020) previously applied to assess tuberculosis691

severity (Dicente Cid et al., 2019). It accepts a 3D volume as input with four channels: (i) the b = 0692

reference volume, (ii) DEC-FA in the x-direction, (iii) DEC-FA in the y-direction and (iv) DEC-FA in693

the z-direction. The QSIPrep’s automated QC metrics were included as an additional fifth channel.694

The CNN-i+q model architecture is summarized in Figure 10. Upon input, the CNN-i+q model ex-695

tracts the imaging channels and passes them through the CNN architecture. The remaining data696

quality metrics channel is flattened and passed “around” the CNN architecture and concatenated697

with the output of the convolutional layers. This concatenated output is then passed through a698
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input_1: InputLayer
input:

output:

[(None, 128, 128, 128, 5)]

[(None, 128, 128, 128, 5)]

image_input: Lambda
input:

output:

(None, 128, 128, 128, 5)

(None, 128, 128, 128, 4)
qc_metric_input: Lambda

input:

output:

(None, 128, 128, 128, 5)

(None, 31)

cnn: Functional
input:

output:

(None, 128, 128, 128, 4)

(None, 256)
flatten: Flatten

input:

output:

(None, 31)

(None, 31)

concatenate: Concatenate
input:

output:

[(None, 256), (None, 31)]

(None, 287)

batch_normalization_4: BatchNormalization
input:

output:

(None, 287)

(None, 287)

dense: Dense
input:

output:

(None, 287)

(None, 512)

dropout: Dropout
input:

output:

(None, 512)

(None, 512)

dense_1: Dense
input:

output:

(None, 512)

(None, 128)

dropout_1: Dropout
input:

output:

(None, 128)

(None, 128)

dense_2: Dense
input:

output:

(None, 128)

(None, 1)

(a) Slicing and combining the input channels

input_2: InputLayer
input:

output:

[(None, 128, 128, 128, 4)]

[(None, 128, 128, 128, 4)]

conv3d: Conv3D
input:

output:

(None, 128, 128, 128, 4)

(None, 128, 128, 128, 64)

max_pooling3d: MaxPooling3D
input:

output:

(None, 128, 128, 128, 64)

(None, 64, 64, 64, 64)

batch_normalization: BatchNormalization
input:

output:

(None, 64, 64, 64, 64)

(None, 64, 64, 64, 64)

conv3d_1: Conv3D
input:

output:

(None, 64, 64, 64, 64)

(None, 64, 64, 64, 64)

max_pooling3d_1: MaxPooling3D
input:

output:

(None, 64, 64, 64, 64)

(None, 32, 32, 32, 64)

batch_normalization_1: BatchNormalization
input:

output:

(None, 32, 32, 32, 64)

(None, 32, 32, 32, 64)

conv3d_2: Conv3D
input:

output:

(None, 32, 32, 32, 64)

(None, 32, 32, 32, 128)

max_pooling3d_2: MaxPooling3D
input:

output:

(None, 32, 32, 32, 128)

(None, 16, 16, 16, 128)

batch_normalization_2: BatchNormalization
input:

output:

(None, 16, 16, 16, 128)

(None, 16, 16, 16, 128)

conv3d_3: Conv3D
input:

output:

(None, 16, 16, 16, 128)

(None, 16, 16, 16, 256)

max_pooling3d_3: MaxPooling3D
input:

output:

(None, 16, 16, 16, 256)

(None, 8, 8, 8, 256)

batch_normalization_3: BatchNormalization
input:

output:

(None, 8, 8, 8, 256)

(None, 8, 8, 8, 256)

global_average_pooling3d: GlobalAveragePooling3D
input:

output:

(None, 8, 8, 8, 256)

(None, 256)

(b) CNN architecture
Figure 10. Deep learning model architecture: (a) The CNN-i+q model accepts multichannel input that combined four imaging channels with afifth channel containing 31 QSIPrep automated data quality metrics. The imaging channels are separated from the data quality channel using
Lambda layers. The imaging channels are passed through a CNN (b), the output of which is concatenated with the data quality metrics, batchnormalized and passed through two fully-connected (FC) layers, with rectified linear unit (ReLu) activation functions and with 512 and 128 unitsrespectively. Each FC layer is followed by a dropout layer which drops 40% of the input units. The final layer contains a single unit with a sigmoidactivation function and outputs the probability of passing QC. (b) The CNN portion of the model passes the imaging input through fourconvolutional blocks. Each block consists of a 3D convolutional layer with a kernel size of 3 and a ReLu activation, a 3D max pooling layer with apool size of 2, and a batch normalization layer with Tensorflow’s default parameters. The number of filters in the convolutional layers in eachblock are 64, 64, 128, and 256 respectively. The output of the final block is passed through a 3D global average pooling layer with Tensorflow’sdefault parameters.
Figure 10–Figure supplement 1. Deep learning model loss curves
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fully-connected layer to produce a single output, the probability of passing QC. This architecture699

has 1,438,783 trainable parameters.700

We used DIPY (Garyfallidis et al., 2014) and cloudknot (Richie-Halford and Rokem, 2018) to gen-701

erate these multichannel volumes for each participant and save them as NIfTI-1 files (Cox et al.,702

2004). TheseNIfTI fileswere then converted to the TensorflowTFRecord format using theNobrainer703

deep learning framework (Kaczmarzyk et al., 2021). The Jupyter notebooks used to create these704

NIfTI and TFRecord files are available in the “notebooks” directory of the Fibr GitHub repository.705

We trained each model using the Google Cloud AI Platform Training service; the HBN-POD2706

GitHub repository contains Docker services to launch training (with make dl-train) and prediction707

(with make dl-predict) jobs on Google Cloud, if the user has provided the appropriate credentials708

in an environment file and placed the TFRecord files on Google Cloud Storage. To estimate the709

variability in model training, we trained ten separate models using different training and valida-710

tion splits of the data. The gold standard dataset was not included in any of these splits and was711

reserved for reporting final model performance. Models were optimized for binary crossentropy712

loss using the Adam optimizer (Kingma and Ba, 2017) with an initial learning rate of 0.0001. We713

reduced the learning rate by a factor of 0.5 when the validation loss plateaued for more than two714

epochs. We also stopped training when the validation loss failed to improve by more than 0.001715

for twenty consecutive epochs. These two adjustments were made using the ReduceLROnPlateau716

and EarlyStopping callbacks in Tensorflow 2 (Abadi et al., 2015) respectively. The training and717

validation loss curves for both the CNN-i and CNN-i+q models are depicted in Figure 10–Figure718

Supplement 1. While the CNN-i+q model achieved better validation loss, it did not outperform the719

CNN-i model on the held out gold standard dataset. The CNN-i+q model’s positive class probabili-720

ties are available in the “dl_qc_score” column of the participants.tsv file on FCP-INDI.721

To generate the attribution maps, we followed Tensorflow’s integrated gradients tutorial (Ten-722

sorFlow Authors, 2021) with a black baseline image and 128 steps in the Riemann sum approxima-723

tion of the integral (i.e. m_steps = 128). In the HBN-POD2 GitHub repository, we provide a Docker724

service to compute integrated gradient attribution maps on Google Cloud, which can be invoked725

using the make dl-integrated-gradients command.726

Site generalization experiments727

To simulate the generalization of the XGB-q and CNN-i models to new scanning sites, we trained728

multiple versions of XGB-q and CNN-i with different scanning sites held out and then evaluated729

those models on the held out sites. These models were therefore evaluated on data from “un-730

seen” sites. We constructed these train/evaluate splits from combinations of the HBN sites with731

3T scanners (RU, CBIC, and CUNY), and excluded CUNY as a standalone training or test site be-732

cause of its low number of participants (N = 74). This left four combinations of site-generated733

training splits: CBIC + CUNY (eval: RU), CBIC (eval: RU + CUNY), RU + CUNY (eval: CBIC), and RU734

(eval: CBIC + CUNY).735

We trained eight models (with distinct random seeds) from the CNN-i family of models using736

the global XGB scores as targets, just as with the full CNN-i model. Similarly, we trained twenty737

models (with distinct random seeds) from the XGB-q family of models using the expert scores as738

targets, just as with the full XGB-q model. For each model, we reported three evaluation metrics:739

ROC-AUC, accuracy, and balanced accuracy. Because the distribution of QC scores was imbalanced740

(Figures 3a and 5d), we included balanced accuracy as an evaluation metric. Balanced accuracy741

avoids inflated accuracy estimates on imbalanced data (Velez et al., 2007), and in the binary clas-742

sification case, it is the mean of the sensitivity and specificity. For the CNN-i family, we further743

decomposed the evaluation split into a report set, for which expert scores were available, and a744

test set, with participants who were not in the “gold standard” dataset. For the report set, we eval-745

uated the model using the expert scores as the ground truth. For the test set, we evaluated each746

model using the XGB scores as ground truth.747

Aside from the specification of train and evaluation splits, model training followed exactly the748
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sameprocedure as for the full dataset. For example, we use the same cross validation and hyperpa-749

rameter optimization procedure for the XGB-q family as for the original XGB-qmodel and the same750

architecture, input format, and early stopping criteria for the CNN-i family as for the CNN-i model.751

In the HBN-POD2GitHub repository, we provide a Docker service to conduct the CNN-i site general-752

ization experiments Google Cloud, which can be invoked using the make dl-site-generalization753

command. The XGB-q site generalization experiments can be replicated locally using the make754

site-generalization command, which will also plot the results of the CNN-i experiments.755

QC bundle profiles756

To generate bundle profiles, reconstructionwas performed using theQSIprep 0.12.1 preconfigured757

reconstruction workflow mrtrix_multishell_msmt, modified to generate two million streamlines758

rather than the default ten million. Multi-tissue fiber response functions were estimated using the759

dhollander algorithm. Fiber orientation distributions (FODs) were estimated via constrained spher-760

ical deconvolution (CSD, (Tournier et al., 2004, 2008)) using an unsupervised multi-tissue method761

(Dhollander et al., 2019, 2016). Reconstructionwas doneusingMRtrix3 (J-Donald et al., 2019). FODs762

were intensity-normalized using mtnormalize (Raffelt et al., 2017).763

These tractograms were then used as input to the Python Automated Fiber Quantification tool-764

box (pyAFQ) (Kruper et al., 2021). Twenty-four major tracts, which are enumerated in Figure 8,765

were identified using multiple criteria: streamlines are selected as candidates for inclusion in a766

bundle of streamlines that represents a tract if they pass through known inclusion ROIs and do767

not pass through exclusion ROIs (Wakana et al., 2007). In addition, a probabilistic atlas is used768

to exclude streamlines which are unlikely to be part of a tract and to adjudicate in cases where a769

streamline could belong to more than one tract (Hua et al., 2008). Each streamline is resampled770

to 100 nodes and the robust mean at each location is calculated by estimating the 3D covariance771

of the location of each node and excluding streamlines that are more than 5 standard deviations772

from the mean location in any node. Finally, a bundle profile of tissue properties in each bundle773

was created by interpolating the value of MRI maps of these tissue properties to the location of774

the nodes of the resampled streamlines designated to each bundle. In each of 100 nodes, the val-775

ues are summed across streamlines, weighting the contribution of each streamline by the inverse776

of the mahalanobis distance of the node from the average of that node across streamlines. This777

means that streamlines that are more representative of the tract contribute more to the bundle778

profile, relative to streamlines that are on the edge of the tract.779

These processes create bundle profiles, in which diffusion measures are quantified and av-780

eraged along twenty-four major fiber tracts. We retain only the mean diffusivity (MD) and the781

fractional anisotropy (FA) from a diffusion kurtosis imaging (DKI) model (Jensen et al., 2005), im-782

plemented in DIPY (Henriques et al., 2021), and impute missing bundles using median imputation783

as implemented by scikit-learn’s SimpleImputer class. Because the HBN-POD2 bundle profiles ex-784

hibit strong site effects (Richie-Halford et al., 2021), we used the ComBat harmonization method785

to robustly adjust for site effects in the tract profiles. Initially designed to correct for site effects786

in gene expression studies (Johnson et al., 2007), ComBat employs a parametric empirical Bayes787

approach to adjust for batch effects and has since been applied to multi-site cortical thickness788

measurements (Fortin et al., 2018), multi-site DTI studies (Fortin et al., 2017), and functional MRI789

data in the Adolescent Brain Cognitive Development Study (ABCD) (Nielson et al., 2018). We rely790

on the neurocombat_sklearn library (Pinaya, 2020), to apply ComBat in before plotting bundle pro-791

files in Figure 8 using plotting functions from the AFQ-Insight package (Richie-Halford et al., 2019).792

The bundle profile analysis can be replicated using the make bundle-profiles command in the793

HBN-POD2 GitHub repository.794

Brain age prediction795

Weevaluated the effect of varying theQC cutoffonmodel performanceby observing cross-validated796

R2 values of gradient boosted trees models implemented using XGBoost. The input feature space797
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for each model consisted of 4800 features per participant, comprising 100 nodes for each of MD798

and FA in the twenty-four major tracts. We imputedmissing bundles and harmonized the different799

scanning sites as above. The XGBoost models’ hyperparameters were hand-tuned to values that800

have been performant in the authors’ previous experience. Within the limited age range of theHBN801

study, MD and FA follow logarithmic maturation trajectories (Yeatman et al., 2014). We therefore802

log-transformed each participant’s age before prediction using the TransformedTargetRegressor803

class from scikit-learn . For each value of the QC cutoff between 0 and 0.95, in steps of 0.05, we804

computed the cross-validatedR2 values using scikit-learn’s cross_val_score functionwith repeated805

K-fold cross-validation using five folds and five repeats.806
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Appendix 11191

CuBIDS variant annotation1192

We identified 20 unique dMRI acquisitions across HBN-POD2, which are summarized in Ta-
ble 1. Site CBIC has two acquisition types: “64dir,” which shares it’s pulse sequencewith sites
RU and CUNY, and “ABCD64dir,” with acquisition parameters that better match the ABCD
study (TE=0.089 s and TR=4.1 s). The “Most_Common” variant identifies the most common
combination of acquisition parameters for a given site and acquisition. The “Low_Volume”
variant identifies participants from all sites with less that 129 DWI volumes, which is the
number of volumes in the most common variants. All remaining variants names identify
the acquisition parameter(s) that differ from those of the most common variant. For exam-
ple, the “MultibandAccelerationFactor” variant has a different multiband acceleration factor
than that of the the most common variant but all participants within that variant share the
same multiband acceleration factor. Variants that differ by multiple acquisition parame-
ters have names that are composed of concatenated parameters. For example, the variant
“Dim3SizeVoxelSizeDim3” varies both in the number of voxels in dimension 3 (“Dim3Size”)
and in the voxel size in dimension 3 (“VoxelSizeDim3”).

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

Site Acquisition Variant Count
CBIC 64dir Most_Common 828
CBIC 64dir Obliquity 32
CBIC 64dir VoxelSizeDim1VoxelSizeDim2 1
CBIC ABCD64dir Most_Common 15
CBIC ABCD64dir HasFmap 2
CBIC ABCD64dir MultibandAccelerationFactor 1
CBIC ABCD64dir Obliquity 1
CUNY 64dir Most_Common 68
CUNY 64dir Dim3SizeVoxelSizeDim3 4
CUNY 64dir Obliquity 2
RU 64dir Most_Common 859
RU 64dir NoFmap 5
RU 64dir Obliquity 8
RU 64dir PhaseEncodingDirection 1
SI 64dir EchoTime 1
SI 64dir EchoTimePhaseEncodingDirection 9
SI 64dir Most_Common 269
SI 64dir NoFmap 2
SI 64dir Obliquity 12
All Sites All Acquisitions Low_Volume_Count 14

1207

Appendix 1 Table 1. Participant counts for HBN-POD2 variants.12081209
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Appendix 21210

HBN-POD2 quality control instruments1211

We created quality control web applications for both community raters and expert raters.
These apps are publicly accessible at https://fibr.dev, for the community science instrument
and at http://www.nipreps.org/dmriprep-viewer/ for the expert rating instrument. We encour-
age readers to try these web applications on their own but have included screenshots and
a summary of the interfaces in Figure 1.

1212

1213

1214

1215

1216

C

B

A

1217

Appendix 2 Figure 1. HBN-POD2 quality control instruments: (A) The user interface forcommunity science QC app Fibr. After a tutorial, users are asked to give binary pass/fail ratings toeach subject’s DEC-FA image. The intuitive swipe or click interface allows community scientists toreview more images than is practical for expert reviewers. Expert reviewers use the more advanced
dmriprep-viewer interface, where they can (B) view the distribution of data quality metrics for theentire study using interactive scatterplots and violin plots, and (C) inspect individual participants’preprocessing results, including corrected dMRI images, frame displacement, q-space samplingdistributions, registration information, and a DTI model.
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Appendix 31227

XGB feature importance1228

SHAP is a method to explain individual predictions based on game theoretically optimal
Shapley values (Lundberg and Lee, 2017). To estimate global feature importance for the
XGB and XGB-q models, we use the shap library’s TreeExplainer (Lundberg et al., 2020) and
average the absolute Shapley value per feature across each individual prediction. Tables 1
and 2 list the QSIPrep automated QC metric features in order of decreasing mean absolute
shap value for the XGB and XGB-q models, respectively. We chose the top three metrics
from Table 1 to plot metric distributions in Figure 2 and correlations with the expert QC
results in Figure 3.

1229

1230

1231

1232

1233

1234

1235

1236

mean abs shap
feature
raw_neighbor_corr 0.666429
max_rel_translation 0.348662
raw_num_bad_slices 0.288937
t1_neighbor_corr 0.282198
raw_incoherence_index 0.229733
raw_coherence_index 0.162103
max_rel_rotation 0.118963
mean_fd 0.116457
max_fd 0.099359
max_rotation 0.078774
t1_coherence_index 0.035553
t1_dice_distance 0.034510
max_translation 0.032323
t1_incoherence_index 0.030225
raw_voxel_size_x 0.000000
raw_voxel_size_y 0.000000
raw_voxel_size_z 0.000000
raw_num_directions 0.000000
raw_max_b 0.000000
raw_dimension_y 0.000000
raw_dimension_z 0.000000
t1_voxel_size_x 0.000000
t1_dimension_x 0.000000
t1_dimension_y 0.000000
t1_dimension_z 0.000000
t1_voxel_size_y 0.000000
t1_voxel_size_z 0.000000
t1_max_b 0.000000
t1_num_bad_slices 0.000000
t1_num_directions 0.000000
raw_dimension_x 0.000000

1237

Appendix 3 Table 1. XGB mean absolute shapvalues1238

12391240

mean abs shap
feature
raw_neighbor_corr 0.767536
raw_incoherence_index 0.453897
raw_num_bad_slices 0.430422
t1_coherence_index 0.382218
max_rel_translation 0.363052
raw_coherence_index 0.320438
t1_neighbor_corr 0.250948
t1_dice_distance 0.248104
t1_incoherence_index 0.242348
max_rel_rotation 0.135590
mean_fd 0.128642
max_translation 0.120815
max_fd 0.119739
max_rotation 0.101209
t1_num_bad_slices 0.007075
raw_dimension_y 0.000000
raw_dimension_z 0.000000
raw_voxel_size_x 0.000000
raw_voxel_size_y 0.000000
raw_voxel_size_z 0.000000
raw_max_b 0.000000
t1_voxel_size_x 0.000000
raw_num_directions 0.000000
t1_dimension_x 0.000000
t1_dimension_y 0.000000
t1_dimension_z 0.000000
t1_voxel_size_y 0.000000
t1_voxel_size_z 0.000000
t1_max_b 0.000000
t1_num_directions 0.000000
raw_dimension_x 0.000000

Appendix 3 Table 2. XGB-q mean absolute shapvalues
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Appendix 41241

The Fibr Community Science Consortium1242

The following community raters provided > 3, 000 ratings each and elected to be included
in the Fibr Community Science Consortium as co-authors on this paper.

1243

1244

Name ORCID iD
Nicholas J. Abbott 0000-0003-1466-0352
John A. E. Anderson 0000-0001-6511-1957
Gagana B.
MaryLena Bleile 0000-0002-0762-2596
Peter S. Bloomfield 0000-0002-8356-7701
Vince Bottom
Josiane Bourque
Rory Boyle 0000-0003-0787-6892
Julia K. Brynildsen 0000-0002-1627-6576
Navona Calarco 0000-0002-4391-0472
Jaime J. Castrellon 0000-0001-5834-7101
Natasha Chaku 0000-0003-0944-6159
Bosi Chen 0000-0002-0117-9757
Sidhant Chopra 0000-0003-0866-3477
Emily B. J. Coffey 0000-0001-8249-7396
Nigel Colenbier 0000-0003-0928-2668
Daniel J. Cox
James Elliott Crippen
Jacob J. Crouse 0000-0002-3805-2936
Szabolcs David 0000-0003-0316-3895
Benjamin De Leener 0000-0002-1378-2756
Gwyneth Delap
Zhi-De Deng 0000-0001-8925-0871
Jules Roger Dugre 0000-0003-4946-0350
Anders Eklund 0000-0001-7061-7995
Kirsten Ellis 0000-0002-7570-0939
Arielle Ered 0000-0002-8386-4423
Harry Farmer 0000-0002-3684-0605
Joshua Faskowitz 0000-0003-1814-7206
Jody E. Finch 0000-0003-2457-1345
Guillaume Flandin 0000-0003-0077-7859
Matthew W. Flounders 0000-0001-7014-4665
Leon Fonville 0000-0001-8874-7843
Dea Garic 0000-0003-3595-4210
Patricia Garrido-Vásquez 0000-0002-9561-8983
Gabriel Gonzalez-Escamilla 0000-0002-7209-1736
Shannon E. Grogans 0000-0003-0383-4601
Mareike Grotheer 0000-0002-8653-1157
David C. Gruskin 0000-0001-6504-191X
Guido I. Guberman
Edda Briana Haggerty 0000-0003-0597-7956
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Younghee Hahn
Elizabeth H. Hall
Jamie L. Hanson 0000-0002-0469-8886
Yann Harel 0000-0002-8970-1983
Bruno Hebling Vieira 0000-0002-8770-7396
Meike D. Hettwer 0000-0002-7973-6752
Corey Horien 0000-0001-6738-1029
Fan Huang
Zeeshan M. Huque
Anthony R. James 0000-0002-5297-2229
Isabella Kahhale 0000-0002-0963-9738
Sarah L. H. Kamhout
Arielle S. Keller 0000-0003-4708-1672
Harmandeep Singh Khera 0000-0001-6840-4616
Gregory Kiar 0000-0001-8915-496X
Peter Alexander Kirk 0000-0003-0786-3039
Simon H. Kohl 0000-0003-0949-6754
Stephanie A. Korenic
Cole Korponay 0000-0003-2562-9617
Alyssa K. Kozlowski
Nevena Kraljevic 0000-0003-0869-648X
Alberto Lazari 0000-0002-8688-581X
Mackenzie J. Leavitt 0000-0002-6100-3235
Zhaolong Li 0000-0003-2246-4116
Giulia Liberati 0000-0002-5684-4443
Elizabeth S. Lorenc 0000-0003-1311-726X
Annabelle Julina Lossin 0000-0001-5921-1353
Leon D. Lotter 0000-0002-2337-6073
David M. Lydon-Staley 0000-0001-8702-3923
Christopher R. Madan 0000-0003-3228-6501
Neville Magielse 0000-0002-6777-4225
Hilary A. Marusak 0000-0002-0771-6795
Julien Mayor 0000-0001-9827-542
Amanda L. McGowan 0000-0003-3422-0135
Kahini P. Mehta
Steven Lee Meisler 0000-0002-8888-1572
Cleanthis Michael 0000-0002-5300-473X
Mackenzie E. Mitchell 0000-0002-0225-6320
Simon Morand-Beaulieu 0000-0002-5880-3688
Benjamin T. Newman 0000-0002-0668-2853
Jared A. Nielsen 0000-0002-2717-193X
Shane M. O’Mara
Amar Ojha 0000-0002-1038-0225
Adam Omary
Evren Özarslan 0000-0003-0859-1311
Linden Parkes 0000-0002-9329-7207
Madeline Peterson
Adam Robert Pines
Claudia Pisanu 0000-0002-9151-4319
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Ryan R. Rich 0000-0001-9495-3184
Ashish K. Sahoo 0000-0003-1815-6655
Amjad Samara 0000-0002-6001-7395
Farah Sayed
Jonathan Thore Schneider 0000-0002-1925-6669
Lindsay S. Shaffer 0000-0002-0642-1717
Ekaterina Shatalina 0000-0001-8900-0792
Sara A. Sims 0000-0001-7107-1891
Skyler Sinclair 0000-0003-3010-6431
Jae W. Song 0000-0002-3127-6427
Griffin Stockton Hogrogian 0000-0003-2877-078X
Ursula A. Tooley 0000-0001-6377-3885
Vaibhav Tripathi
Hamid B. Turker 0000-0002-2670-4036
Sofie Louise Valk 0000-0003-2998-6849
Matthew B. Wall 0000-0002-0493-6274
Cheryl K. Walther
Yuchao Wang 0000-0001-9871-3006
Bertil Wegmann 0000-0003-2193-6003
Thomas Welton 0000-0002-9503-2093
Alex I. Wiesman 0000-0003-0917-1570
Andrew G. Wiesman
Mark Wiesman
Drew E. Winters 0000-0002-0701-9658
Ruiyi Yuan
Sadie J. Zacharek 0000-0001-8770-4614
Chris Zajner 0000-0002-0204-6497
Ilya Zakharov 0000-0001-7207-9641
Gianpaolo Zammarchi 0000-0002-9733-380X
Dale Zhou 0000-0001-9240-1327
Benjamin Zimmerman 0000-0003-2570-8198
Kurt Zoner
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Figure 8–Figure supplement 1. FA bundle profiles binned by QC score: FA profiles binned by
QC score in twenty-four major while matter bundles. The x-axis represents distance along the
length of the fiber bundle. Error bands represent bootstrapped 95% confidence intervals. Bundle
abbreviations are as in Figure 8
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Figure 10–Figure supplement 1. Deep learning model loss curves: The binary cross-entropy
loss (top), accuracy (middle), and ROC-AUC (bottom) for (a) the CNN-i+q model and (a) the CNN-i
model. Model performance typically plateaued after twenty epochs but was allowed continue until
meeting the early stopping criterion. The error bands represent a bootstrapped 95% confidence
interval.
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