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Abstract 28 
Detailed knowledge of cellular networks that are modulated by Severe acute respiratory syndrome 29 

coronavirus 2 (SARS-CoV-2) is needed to understand viral replication and host response. So far, 30 
transcriptomic analyses of interactions between SARS-CoV-2 and cells were performed on mixed 31 
populations of infected and uninfected cells or using single-cell RNA sequencing, both leading to 32 
inaccurate or low-resolution gene expression interpretations. Moreover, they generally focused on 33 
annotated messenger RNAs (mRNAs), ignoring other transcripts, such as long non-coding RNAs 34 
(lncRNAs) and unannotated RNAs. Here, we performed deep polyA+ transcriptome analyses of lung 35 
epithelial A549 cells infected with SARS-CoV-2, which were sorted based on the expression of the viral 36 
protein spike (S). To increase the sequencing depth and improve the robustness of the analysis, the 37 
samples were depleted of viral transcripts. Infection caused a massive reduction in mRNAs and 38 
lncRNAs, including transcripts coding for antiviral innate immune proteins, such as interferons (IFNs). 39 
This absence of IFN response probably explains the poor transcriptomic response of bystander cells co-40 
cultured with spike positive (S+) ones. NF-κB and inflammatory response were among the pathways 41 
that escaped the global shutoff in S+ cells. In agreement with the RNA-seq analysis, inflammatory 42 
cytokines, but not IFNs, were produced and secreted by infected cells. Functional investigations 43 
revealed the proviral function of the NF-kB subunit p105/p50 and some of its known target genes, 44 
including IL32 and IL8, as well as the lncRNA ADIRF-AS1, which we identified as a novel NF-kB 45 
target gene. Thus, analyzing the polyA+ transcriptome of sorted populations of infected lung cells 46 
allowed unprecedented identification of cellular functions that are directly affected by infection and the 47 
recovery of coding and non-coding genes that contribute to SARS-CoV-2 replication.  48 
 49 

Introduction  50 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of 51 

Coronavirus Disease-2019 (COVID-19). The virus emerged in Wuhan, China, at the end of 2019 and 52 
has since spread around the globe. SARS-CoV-2 infection may be asymptomatic or it may cause a wide 53 
spectrum of symptoms, from mild upper respiratory tract infection to life-threatening pneumonia [1]. 54 
Viral replication is not limited to the respiratory tract, but rather occurs in numerous organs, including 55 
the blood, heart, vessels, intestines, brain and kidneys [2]. The mortality rate of SARS-CoV-2 infection 56 
is estimated at 3%–4%, compared with a mortality rate of less than 1% from influenza [3]. Severity of 57 
the disease correlates with an excessive pro-inflammatory immune response [4–6], which may be 58 
responsible for the symptoms observed in patients. Inflammation is a vital defense mechanism that is 59 
required to initiate an adaptive immune response via the recruitment and activation of immune cells. 60 
However, the non-resolution of acute inflammation leads to tissue damage [7].  61 

SARS-CoV-2 infection is also characterized by a suppression of interferon (IFN) response in 62 
infected cells [8]. IFNs are potent antiviral cytokines secreted by various cell types. In virus-infected 63 
cells, the IFN response is initiated by the recognition of viral nucleic acids by cellular receptors. Once 64 
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activated, these receptors recruit adaptor proteins and kinases that trigger the nuclear translocation of 65 
the transcription factors IRF3 and NF-κB, which, in turn, induce the rapid expression of IFNs and 66 
proinflammatory cytokines [9]. In particular, type I (IFNα and β) and type III (IFN-λ1 and IFN-λ2/3) 67 
IFNs play crucial roles in protecting infected and neighboring cells from virus replication and spread. 68 
Once secreted, they will signal in a paracrine and autocrine manner through their receptors, resulting in 69 
the activation of the transcription factor complex ISGF3, which subsequently induces the expression of 70 
up to approximately 2000 IFN-stimulated genes (ISGs). Many of these ISGs block the viral life cycle 71 
by targeting specific stages of replication, including entry into host cells, protein translation, replication 72 
or assembly of new virus particles. Some ISGs are specific to a virus or a viral family, while others are 73 
broad-spectrum. Their concerted actions establish the antiviral state [10,11]. Like all viruses [12], 74 
SARS-CoV-2 overcomes IFN responses via a wide array of mechanisms involving viral proteins [13–75 
15] and a virus-derived microRNA [16,17]. These viral strategies likely contribute to an impaired IFN 76 
response in COVID-19 patients [18] and, consequently, high levels of viral replication.  77 

A large effort has been undertaken to understand the molecular mechanism underlying the lack of 78 
IFN response and the overproduction of inflammatory cytokines in SARS-CoV-2 infected cells. 79 
Numerous transcriptomic analyses of human cells infected with SARS-CoV-2 have been performed to 80 
describe the perturbation of cellular pathways induced by infection, using several cellular models, such 81 
as human cells derived from lung, bronchial or colorectal tissue [19–21], as well as post-mortem lung 82 
samples of COVID-19 patients [19] and bronchoalveolar lavage fluids (BALF) from patients [22]. These 83 
genome-wide investigations of host cellular responses to SARS-CoV-2 infection were performed 84 
exclusively using bulk RNA-sequencing (RNA-seq) technologies, i.e. by analyzing gene perturbations 85 
in mixed populations of infected and uninfected cells. Previous studies on Zika virus infected cells have 86 
estimated that only 10% of the repressed and about 30% of the induced genes can be identified in a 87 
mixed population containing around one third of infected cells [23]. Bulk transcriptome signals are thus 88 
partly drawn into noise background, rendering impossible to efficiently and exhaustively portray the full 89 
variation of the host transcripts. 90 

The perturbation of cellular responses in SARS-CoV-2 infected and bystander cells have also been 91 
analyzed using single-cell (sc) RNA-seq methods. Such studies were performed in a variety of cellular 92 
models, including COVID-relevant ones, such as human intestinal organoids [24], human tracheal-93 
bronchial epithelial cells [25,26], human lung cell lines [21] and BALF from patients [27]. However, 94 
the technical variability, high noise and massive sample size of scRNA-seq data raise challenges in 95 
analyzing the total number of differentially expressed genes (DEGs) [28] out of a limited list of only 96 
1000 to 3000 most expressed genes in individual cells. The balance between the number of cells to be 97 
sequenced and the sequencing depth to extract the maximum amount of information from the experiment 98 
also affects the results [29]. 99 

Moreover, most bulk and single-cell transcriptomic studies performed to investigate the cellular 100 
response to SARS-CoV-2 focused on the expression of the referenced coding genome, largely ignoring 101 
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non-coding and unannotated information, mainly represented by long non-coding RNAs (lncRNAs). 102 
These RNAs, which are at least 200 nucleotides (nt) in length, are of specific interest since they play 103 
fundamental roles in cellular identity, development and disease progression through epigenetic or post-104 
transcriptional regulation of mRNA expression [30]. Combined RNA-seq data from multiple sources 105 
reported over 58000 lncRNA loci in the human genome [31]. Future studies will plausibly increase this 106 
number, since lncRNAs are more cell-type specific [32] and expressed at lower levels than mRNAs 107 
[31]. Most of them are independently transcribed by RNA polymerase II and, like protein-coding RNAs, 108 
they can be 5’-capped, polyadenylated, and spliced by the cellular machinery [33]. Increasing evidence 109 
suggests the involvement of lncRNAs in virus-host interactions and antiviral immunity [34,35]. Current 110 
efforts are under progress to uncover, in different contexts, the unannotated RNAs that could encompass 111 
a variety of RNA biotypes, from rare mRNA isoforms to unannotated intergenic long noncoding RNAs, 112 
using reference-based approach with the human gencode annotation [36] or unreferenced-based 113 
methods for unmappable transcripts [37]. However, so far, none of these strategies have been engaged 114 
to dissect virus-cell interactions.  115 

Here, we investigated the coding and non-coding transcriptional landscape of lung cells infected 116 
with SARS-CoV-2 and sorted according to the expression of the viral protein spike (S). Our deep 117 
transcriptome analysis using annotated RNA genes and reference-based RNA profiler uncovered 118 
pathways that are directly affected by infection and identified coding and non-coding genes contributing 119 
to an optimal SARS-CoV-2 replication. 120 

 121 
 122 

Results 123 
Transcriptional landscapes of SARS-CoV-2 infected and bystander lung cells uncovers a global 124 
expression shutoff 125 

To analyze transcriptomic changes in infected and bystander cells, human alveolar basal epithelial 126 
carcinoma cells (A549) stably expressing the viral receptor ACE2 (A549-ACE2) were infected with a 127 
MOI of 1 for 24 hours, fixed, stained intracellularly using antibodies against S proteins and sorted into 128 
S-positive (infected cells, S+) and S-negative (bystander, S- ) populations (Fig. 1A and 1B). Around 15% 129 
of A549-ACE2 cells were positive for S protein (Fig. 1B). Cells negative for S protein represent either 130 
uninfected cells or cells at an early stage of infection, prior to viral protein production. Mock-infected 131 
cells served as negative controls. The experiment was performed twice independently in triplicates. 132 
PolyA+ RNAs were isolated from mock-infected, S+ and S- cells. Around 85% of the total reads mapped 133 
to the viral genome in S+ cells, while less than 5% of the total reads aligned with the viral genome in S- 134 
cells (Fig. 1C), validating our sorting approach. The large dominance of viral reads over cellular reads 135 
illustrates the ability of the virus to hijack the cellular machinery for its replication. A similar proportion 136 
of SARS-CoV-2 reads in the RNA pool was previously reported in lung epithelial carcinoma Calu-3 137 
cells infected for 8 hours [20]. These differences in the representation of viral RNA between S+ and S- 138 
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cells altered the robustness of the statistical analysis used to identify DEGs. To overcome this limitation, 139 
the samples were depleted of viral RNAs (vRNAs) using a set of oligonucleotide probes covering the 140 
entire viral genome (Fig. 1A). Following depletion, viral reads represented between 0,01 and 2,8% of 141 
the total reads both in S+ and S- cells (Fig. 1C).  142 

Coding and long non-coding genes were identified using gencode annotation (v32), while 143 
unannotated RNAs were recovered with Scallop assembler [36] (Fig. 1D-F, Fig. S1 and tables S1-S3). 144 
Principal component analysis (PCA) of polyA+ transcriptomes segregated S+ cells from S- and mock-145 
infected ones (Fig. 1D). This segregation based on S expression represented around 92% of the 146 
transcriptomic differences between the samples (Fig. 1D). Only subtle differences (2,5%) distinguished 147 
bystander and mock-infected cells (Fig. 1D), suggesting that the transcriptional landscapes of these 2 148 
cell populations were very similar. An absence of response of S- cells was unexpected since cytokines, 149 
which are commonly secreted by virally infected cells, activate an antiviral state in bystander cells 150 
through surface receptors.  151 

Analysis of gene expression allowed identification of thousands of annotated coding and non-152 
coding genes that were differentially expressed (absolute fold change ≥2, p-value < 0.05) in S+ cells as 153 
compared to S- or mock-infected ones (Fig. 1E-F and tables S1-S3). We identified around 13 times more 154 
downregulated coding genes than upregulated ones in S+ cells (Fig. 1E-F), suggesting that infection 155 
triggers a massive, but incomplete, shutoff of gene expression. Among the top upregulated coding genes 156 
in S+ cells, we confirmed candidates revealed by previous analyses performed in non-sorted non-vRNA-157 
depleted A549-ACE2 cells, such as CXCL8, CCL20, IL6 and NFKB1 [19,38,39], but also novel highly 158 
significant candidates, including IL32 and ITGAM (table S1). The genes encoding IFN type I and type 159 
III were not significantly upregulated in S+ cells, as compared to mock-infected cells. Accordingly, ISGs 160 
were not upregulated either in S+ cells. This absence of innate immune response in infected cells agrees 161 
with previous analyses performed in mixed population of A549-ACE2 cells infected with SARS-CoV-162 
2 [19,38,39]. Such absence of innate response reflects the ability of the virus to potently inhibit the IFN 163 
response via numerous mechanisms in human cells [14]. Around 1260 annotated lncRNAs were 164 
downregulated in S+ cells as compared to mock-infected cells, and 184 were upregulated (Fig. 1E-F and 165 
table S2). RFPL3S, ADIRF-AS1 and WAKMAR2 were among the top 15 upregulated lncRNAs in S+ 166 
cells. RFPL3S and ADIRF-AS1 have no known functions, whereas WAKMAR2 restricts NF-kB-167 
induced production of inflammatory chemokines in human keratinocytes [40]. Among the top 168 
downregulated lncRNAs, we identified HOXA-AS2 and NKILA, which are negative regulators of NF-169 
kB signaling, in endothelial cells and breast cancer cell lines, respectively [41,42]. Altered expression 170 
of WAKMAR2, HOXA-AS2 and NKILA in infected cells could thus play a role in viral-associated 171 
inflammation. From the 1400 unannotated transcripts we detected using Scallop assembler [36], around 172 
800 unannotated polyA+ transcripts were also differentially expressed in S+ cells as compared to S- 173 
ones (Fig. 1E-F and table S3). 174 
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In agreement with the PCA (Fig. 1D), volcano plots and heat maps revealed that S- bystander cells 175 
and mock-infected control cells exhibited very similar transcriptomic profiles (Fig. 1E-1F and Fig. S1A-176 
S1B). Only around 170 polyA+ transcripts were differentially expressed in S- cells as compared to 177 
mock-infected ones (Fig. 1E and tables S1-S3). As a comparison, over 13000 DEGs were identified in 178 
S+ as compared to mock-infected cells (Fig. 1E and tables S1-S3). These analyses further suggest that 179 
S+ cells present none or very little paracrine signaling response. Among the 69 coding genes that were 180 
upregulated in S- cells as compared to mock-infected, 29 were also upregulated in S+ cells (Fig. S1B 181 
and table S3). Some of these common genes were inflammatory genes, such as IL32, IL6 and CCL20. 182 
Among the 39 upregulated coding genes that were unique to S- cells, 16 were ISGs (examples include 183 
MX1, APOL1 and IFI6). The expression of these inflammatory genes and ISGs in bystander cells could 184 
be induced early in infection, prior to the production of S proteins.  185 

Our approach reveals that SARS-CoV-2 infection triggers a major shutoff of gene expression in 186 
A549-ACE2 cells. It also shows that S- cells do not exhibit a strong transcriptional signature despite 187 
being cultured with S+ cells, suggesting the absence of an efficient paracrine communication.  188 

 189 
Separating lung cells based on the expression of the viral S protein improved discovery of DEGs 190 

To compare our differential deep analyses with known datasets, we analyze publicly available 191 
polyA+ RNA-seq raw data of unsorted A549-ACE2 infected with SARS-CoV-2 at a MOI of 0.2 [19]. 192 
Viral reads represented around 50% of the total number of reads in these unsorted bulk population of 193 
cells [19], which was expectedly less than in A549-ACE2 cells positive for S (Fig. 1C). The 2 analyses 194 
shared 150 upregulated protein-coding genes and 238 downregulated ones (Fig. 2A, table S4). The vast 195 
majority (about 80%) of the downregulated mRNAs that we identified were classified as ‘unchanged’ 196 
in the analysis of unsorted cells (Fig. 2A, table S4). Thus, sorting cells based on S expression and 197 
depleting viral RNA allowed the identification of over 30 times more downregulated coding genes than 198 
in unsorted cells (Fig. 2A, table S4). The poor sensibility of analysis of mixed cell population in 199 
detecting downregulated genes is likely due to the large proportion of non-infected cells, in which the 200 
majority of genes remained normally expressed, thus masking any decrease of gene expression in the 201 
pool of infected cells. Indeed, an artificial reconstruction of a mixed cell population (80% S- and 20% 202 
S+) supports this hypothesis (Fig. S1C). About 41% of the upregulated protein-coding genes and 16% 203 
of downregulated ones that we identified did not appear in conventional RNA-seq analysis of mixed 204 
populations [19]. This comparison highlights the accuracy and the depth of our analysis. 205 

To validate the sorting approach combined with vRNA-depletion, we compared mRNA 206 
abundances of a few DEGs in a bulk population of cells infected with SARS-CoV-2 for 24 hours, as 207 
well as in sorted S+ and bystander S- cells infected in the same condition. As expected, S+ cells produced 208 
approximately 200-fold more intracellular viral RNAs than did S- cells (Fig. 2B). These qPCR analyses 209 
confirm that some S- cells are at an early stage of viral replication, prior to viral protein expression (Fig. 210 
1B). We included in the analysis three coding transcripts (IL32, ITGAM and TRAF1), two lncRNAs 211 
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(WAKMAR2 and AL132990.1) and one unannotated transcript (XLOC_007519) that were identified 212 
amongst the most upregulated RNAs in S+ A549-ACE2 cells (Fig. 2C, S2A and tables S1-S3). The 213 
abundance of IL32 mRNA did not increase significantly in the infected bulk population, as compared 214 
to mock-infected cells (Fig. 2C). By contrast, IL32 mRNA levels increased around 30-fold in S+ cells, 215 
compared to those in mock-infected cells (Fig. 2C). This difference explains why IL32 was not identified 216 
as an up-regulated gene in previous RNA-seq analysis performed in mixed population of infected A549-217 
ACE2 cells [19,38]. Similarly, the expression of ITGAM, TRAF1, WAKMAR2, AL132990.1 and 218 
XLOC_007519 showed a modest increase of mRNA abundances in the bulk population and a significant 219 
increase in S+ cells, as compared to mock-infected cells (Fig. 2C and S2B). The decreased expression 220 
of transcripts identified as top downregulated hits in the RNA-seq analysis of S+ cells, such as the coding 221 
transcripts FEN1 and SNRPF, the lncRNAs AC016747.1, DANCR and TP53TG1, as well as the 222 
unannotated RNA XLOC_049236 (Fig. S2A), was significantly more pronounced in S+ cells than in the 223 
mixed population of cells, when compared to mock-infected cells (Fig. 2D and S2C). Analysis of RNA 224 
abundances in sorted cells thus highlighted the increased accuracy of our approach, compared to 225 
classical methods, in detecting up- and down- regulated genes.  226 

To identify pathways affected by infection in A549-ACE2 cells, we performed Gene Ontology 227 
(GO) terms and KEGG pathway enrichment analysis on the upregulated coding genes in S+ cells, as 228 
compared to mock-infected cells (Fig. 2E). We observed a significant enrichment in several 229 
inflammatory signaling pathways, including TNF and NF-κB signatures, which were previously 230 
identified in bulk transcriptomic analysis of infected A549 and Calu-3 cells [38,39] and in scRNA-seq 231 
analysis of infected colon and ileum organoids [24]. Members of the superfamily of TNF proteins are 232 
multifunctional proinflammatory cytokines. NF-κB plays an important role in promoting inflammation, 233 
as well as regulating cell proliferation and survival [43]. Activation of NF-κB is one of the signals 234 
transduced by the TNF-superfamily members [44]. These inflammatory signatures are also consistent 235 
with those observed in peripheral blood immune cells of severe or critical COVID-19 patients [18]. 236 
 237 

Inflammatory cytokines, but not IFNs, are produced and secreted by infected cells 238 
We wondered whether the underwhelming response of the bystander S- cell population could be 239 

explained by a defect in paracrine communication between S+ and S- cells. Despite being present in high 240 
abundance in S+ cells as compared to mock-infected cells (table S1 and Fig. 2E), inflammatory cytokine 241 
transcripts may not be translated. Indeed, initiation of translation seems to be impaired in SARS-CoV-242 
2 infected cells via two potential mechanisms: acceleration of cytosolic cellular mRNA degradation [20] 243 
and blockade of the mRNA entry channel of ribosomes by the viral protein Nsp1 [45–47]. Moreover, 244 
viral proteins Nsp8 and Nsp9 disrupt protein secretion in HEK293T cells [45], raising the possibility 245 
that cytokines are produced but not secreted by S+ cells. 246 

To investigate these possibilities, we selected 5 inflammatory chemokines (IL-6, CXCL1, CCL2, 247 
CXCL8/IL-8 and CCL20) whose expression was upregulated in S+ cells upon infection (table S1) and 248 
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quantified their intracellular and secreted levels in lysates and supernatants of A549-ACE2 cells infected 249 
for 24 hours (Fig. 3). As a comparison, A549-ACE2 cells transfected with the immuno-stimulant 250 
poly(I:C) were included in the analysis. In a mixed population of S+ and S- cells, mRNAs of these 5 251 
cytokines were significantly more abundant than in mock-infected cells (Fig. S3A), in agreement with 252 
the increased levels of mRNAs detected in S+ cells by RNA-seq (table S1). Their expression was also 253 
induced by poly(I:C) (Fig. S3A). All five cytokines were expressed at detectable levels in cells 254 
stimulated by viral infection or poly(I:C) (Fig. 3A), indicating that infection does not hamper the 255 
translation of the corresponding mRNAs. As expected, based on their mRNA abundance (Fig. S3A), 256 
intracellular levels of IL-6, CCL2 and CXCL8 significantly increased upon poly(I:C) stimulation as 257 
compared to unstimulated control cells (Fig. 3A). By contrast, despite being induced by poly(I:C) 258 
downstream signaling (Fig. S3A), CXCL1 and CCL20 levels were comparable in stimulated and 259 
unstimulated cells (Fig. 3A). This could be due to a short protein half-life, protein degradation and/or 260 
rapid secretion. Intracellular levels of CXCL1 increased significantly upon infection compared to mock-261 
infected cells (Fig. 3A) while intracellular levels of IL-6, CCL2, CXCL8 and CCL20 were similar in 262 
both conditions. However, all 5 cytokines were significantly more secreted by infected cells than mock-263 
infected ones (Fig. 3B). Infected cells secreted even more IL-6 and CXCL1 than cells stimulated by 264 
poly(I:C) (Fig. 3B). Thus, inflammatory cytokines are expressed and secreted by A549-ACE2 cells 265 
infected with SARS-CoV-2, which is in line with the excessive inflammatory response reported in other 266 
cellular models [19,21,24,26,39] and characteristic of severe cases of COVID-19 [4–6]. The absence of 267 
paracrine communication that was revealed by the RNA-seq analysis of S- cells (Fig. 1) is thus unlikely 268 
to be linked to a defect in cytokine expression and secretion in S+ cells.  269 

Consistent with prior RNA-seq studies conducted in bulk A549-ACE2 cells [19,38,39], we failed 270 
to observe a significant IFN-I and III signature in S+ cells (table S1 and Fig. 2E), despite a robust 271 
induction of NF-κB activity (Fig. 2E). To validate this further, we compared the level of IFNβ, IFN-λ1 272 
and IFN-λ2/3 transcripts in A549-ACE2 cells infected for 24 hours. Cells treated with poly(I:C) were 273 
used as positive controls for IFN production. Cells infected with Measles virus (MeV), a respiratory 274 
RNA virus known to trigger an IFN response in A549 cells [48], were also included in the analysis for 275 
comparison. Flow cytometry analysis identified on average 20 to 30% of cells positive for viral proteins 276 
upon SARS-CoV-2 or MeV infection (Fig. 3C). As expected, the level of IFNβ, IFN-λ1 and IFN-λ2/3 277 
transcripts increased in poly(I:C)-treated cells compared to cells exposed to the transfecting reagent 278 
lipofectamine only (Fig. S3B). Amounts of IFNβ, IFN-λ1 and IFN-λ2/3 transcripts were several orders 279 
of magnitude higher in MeV-infected cells than in SARS-CoV-2 infected cells (Fig. S3B). Consistently 280 
with mRNA level analysis (Fig. S3B), around 200 and 850 pg/ml of IFNβ were secreted by MeV-281 
infected cells and poly(I:C)-treated cells, respectively (Fig. 3D). SARS-CoV-2 infected cells secreted 282 
as little as 50 pg/ml of IFNβ, which was similar to the quantity secreted by mock-infected cells and 283 
lipofectamine-exposed cells, likely representing baseline levels (Fig. 3D). MeV infected cells secreted 284 
around 1000 pg/ml of IFN-λ1 and 5000 pg/ml of IFN-λ2/3 while no IFN-λ was detected in the 285 
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supernatant of SARS-CoV-2 infected cells (Fig. 3D). This baseline level of IFN type-I secretion and 286 
absence of IFN type-III release by SARS-CoV-2-infected cells is likely to be responsible for the lack of 287 
paracrine signaling revealed by the RNA-seq analysis (Fig. 1).  288 
 289 

Upregulated NF-κB target genes contribute to an optimal SARS-CoV-2 replication  290 
Numerous genes associated with the NF-κB signaling pathway fall into the category of genes that 291 

escaped the virus-induced cellular shutoff (Fig. 2E). To determine which of these genes were directly 292 
controlled by NF-κB, we cross-compared the upregulated genes with known NF-κB target genes. 293 
Among the 68 upregulated NF-κB-targets in S+ cells, we identified cytokines such as CXCL8/IL8 and 294 
IL32 (Fig. 4A, S4A and table S5). NFKB1, which codes for the p105/p50 subunit of the transcription 295 
factor, and is itself a NF-κB-target gene [49,50], also showed a significant transcriptional induction in 296 
S+ cells (Fig. 4A, S4A and S4B). Such mechanism generates an auto-regulatory feedback loop in the 297 
NF-κB response [49]. To identify NF-κB-driven lncRNAs, we analyzed NF-κB chromatin 298 
immunoprecipitation (ChIP)-sequencing data generated in A549 cells stimulated with TNF-α [51] and 299 
searched for known NF-κB binding motifs [103]. The analysis recovered 15 NF-κB-targets among the 300 
184 upregulated lncRNAs in S+ cells (Fig 4A and table S5), including PACERR and ADIRF-AS1. In 301 
U937 macrophages, PACERR modulates the expression of NF-κB-target genes via a direct interaction 302 
with the NF-κB subunit p50 [52]. ADIRF-AS1 is an antisense lncRNA with no known function. Novel 303 
NF-κB target genes were also identified among unannotated genes (Fig 4A and table S5). 304 

Among the top upregulated NF-κB target genes identified in S+ cells (Fig. 4A), we selected NFKB1, 305 
CXCL8/IL8, IL32 and ADIRF-AS1 for functional analysis. NFKB1 served as a positive control in these 306 
experiments since reducing its expression was previously shown to decrease SARS-CoV-2 protein 307 
expression in A549-ACE2 cells [38]. These results were unexpected since NF-κB commonly acts as 308 
antiviral factor [43]. Analysis of mRNA abundances showed a significant transcriptional induction of 309 
NFKB1, CXCL8/IL8 and ADIRF-AS1 in a bulk population of A549-ACE2 cells infected by SARS-310 
CoV-2 for 24 hours, as compared to mock-infected cells (Fig. S4B), validating the RNA-seq analysis 311 
performed on S+ cells (Fig. 1). We had previously confirmed that IL32 transcripts were significantly 312 
more abundant in S+ cells than in mock-infected cells (Fig. 2C). We explored the potential ability of 313 
NFKB1, CXCL8, IL32 and ADIRF-AS1 to modulate the replication of SARS-CoV-2 using siRNA-314 
mediated knock-down approaches. Twenty-four hours post-infection, intracellular viral RNA 315 
production was quantified by RT-qPCR and the number of cells positive for the viral protein S was 316 
assessed by flow cytometry analysis. RT-qPCR analyses revealed that the siRNA pools efficiently 317 
reduced the expression of their respective targets in A549-ACE2 cells (Fig. 4B). Reduced expression of 318 
NFKB1, CXCL8, IL32 and ADIRF-AS1 significantly decreased both the viral RNA yield and the 319 
number of infected cells, as compared to cells transfected with control siRNA pools (Fig. 4C and 4D). 320 
These results confirmed the pro-SARS-CoV-2 activity of NFKB1 in A459-ACE2 cells [38] and revealed 321 
that CXCL8, IL32 and ADIRF-AS1 also exhibited significant proviral functions. 322 
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Thus, our sorting approaches identified coding and non-coding genes that contribute to an optimal 323 
SARS-CoV-2 replication. 324 
 325 

Discussion  326 
Transcriptomic analysis of lung A549-ACE2 cells sorted based on Spike expression permitted deep 327 

sequencing of many cells synchronized for viral protein expression. Depletion of viral RNA from the 328 
samples prior to RNA-seq allowed for a robust identification of host cell DEGs. Our approach thus 329 
unveiled an accurate and comprehensive picture of genome-wide signaling networks that are directly 330 
affected by SARS-CoV-2 replication in human lung cells. It reveals a massive, but somehow selective, 331 
gene expression shutoff in S+ cells. Such reduction of cellular transcripts was underestimated in analysis 332 
performed on bulk population of infected A549-ACE2 cells [19,38,39] but was detected by RNA-seq 333 
analysis performed on bulk population of Calu-3 cells infected at an high MOI [20]. This is probably 334 
due to the fact that Calu-3 cells express high levels of ACE2 [53] and are thus naturally permissive to 335 
SARS-CoV-2, ensuring a high proportion of infected cells in the mixed culture. SARS-CoV-2 employs 336 
several strategies to decrease the level of cellular mRNAs in infected cells, including inhibition of 337 
nuclear mRNA export [20,45] and accelerated mRNA degradation as compared to control cells [20]. 338 
SARS and SARS-CoV-2 Nsp1 largely contribute to these processes by interacting with the mRNA 339 
export machinery [54] and by inducing endonucleolytic cleavage of the 5′ UTR of capped mRNAs 340 
bound to 40S ribosomes [20,55–57]. SARS-CoV-2 RNAs are protected from Nsp1-mediated 341 
degradation by their 5’ end leader sequence [20,58], which explains why we observed, in agreement 342 
with previous studies performed in A549-ACE2 cells [19] and Calu-3 cells [20], a large dominance of 343 
viral RNA over the cellular RNA pool at 24 hpi.  344 

One consequence of this drastic shutoff is the suppression of expression of innate immune genes, 345 
such as IFN type I and type III. In agreement with previous RNA-seq studies performed in bulk 346 
population of infected A549-ACE2 cells [19,38] and kidney HEK293T-ACE2 cells [59], our 347 
transcriptomic profiling combined with analysis of mRNA levels and IFN secretion showed that infected 348 
cells failed to mount an antiviral response. Besides global gene expression reduction in host cells, SARS-349 
CoV-2 has evolved numerous mechanisms to specifically counteract the IFN induction and signaling 350 
pathways [14]. For instance, the viral proteins Nsp6 and Nsp13 bind and block the ability of TANK 351 
binding kinase 1 (TBK1) to phosphorylate IRF3 [13] and several viral proteins, including the N and 352 
Orf6 proteins, dampen STAT1/2 phosphorylation or nuclear translocation [13,60,61]. Consistent with 353 
an absence of IFN secretion by S+ cells and, consequently, a poor paracrine response, the transcriptome 354 
of bystander S- cells largely overlapped with the one of mock-infected cells. However, a small subset 355 
of ISGs underwent modest transcriptional induction in bystander cells. They may be induced during an 356 
early stage of viral replication, prior to the production of viral proteins that antagonize IFN signaling, 357 
or by the minute amount of type I IFNs that was secreted by S+ cells. Absence of IFN response is not, 358 
however, a universal feature of SARS-CoV-2 infection. Viral replication induces a type I and III IFN 359 
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response in Calu-3 cells [62–65], primary airway epithelia cultured at the air-liquid interface [62,64], 360 
human intestinal epithelial cells [66], organoid-derived bronchioalveolar models [67] and intestinal 361 
organoids [68]. When infected at a high MOI, A549-ACE2 cells also induced expression of IFN and 362 
ISGs [19]. Thus, in vitro, the magnitude of the IFN response elicited by SARS-CoV-2 is cell-type 363 
specific and dependent on the viral load. Interestingly, RNA-seq analysis of postmortem lung tissues 364 
from lethal cases of COVID-19 failed to detect IFN-I or IFN-III [19]. Type I IFN responses were highly 365 
impaired in peripheral white blood cells of patients with severe or critical COVID-19, as indicated by 366 
transcriptional analysis [18]. Moreover, infected patients had no detectable circulating IFN-β, 367 
independently of the severity of the disease [18]. Thus, our results corroborate these clinical studies 368 
highlighting the efficient shutdown of IFN production by the virus. 369 

Although our RNA-seq analysis identified over 12000 host transcripts that were significantly 370 
reduced during SARS-CoV-2 infection as compared to control cells, it also recovered around 1500 371 
transcripts whose levels were significantly elevated and 2800 transcripts whose levels were unchanged 372 
upon infection. Among top upregulated genes in S+ cells, we identified numerous proinflammatory 373 
cytokines, such as IL6, CXCL1, CCL2, IL8/CXCL8 and CCL20. ELISA analysis confirmed that 374 
infected cells were producing these inflammatory cytokines. They were previously identified in bulk or 375 
sc-RNA analysis of A549-ACE2 cells as upregulated [19,38,39], while others, such as IL32, were 376 
underreported. High levels of proinflammatory cytokine transcripts have been also reported in infected 377 
primary bronchial cells [19], in lung macrophages [27] and post-mortem lung samples of COVID-19-378 
positive patients [19]. Thus, SARS-CoV-2 appears to selectively inhibit IFN signaling while allowing 379 
chemokine production in lung cells.  380 

GO and KEGG pathway analyses confirmed the upregulation of an inflammatory response in S+ 381 
cells, including TNF- and NF-κB- transcriptional signatures. An NF-κB transcriptional footprint was 382 
previously identified in RNA-seq analysis of bulk population of SARS-CoV-2-infected tracheal-383 
bronchial epithelial cells [26] and in scRNA-seq analysis of infected A549-ACE2 cells [38]. Microarray 384 
analysis of Calu-3 cells infected with SARS-CoV-2 also showed a specific bias towards an NF-κB 385 
mediated inflammatory response [39]. Finally, inflammatory genes specifically up-regulated in 386 
peripheral blood immune cells of severe patients or critical COVID-19 patients mainly belonged to the 387 
NF-κB pathway [18]. Consistently, among the 741 upregulated protein-coding genes that we identified 388 
in S+ cells, 68 possess an NF-κB binding site in their promoter regions. Examples include IL6, 389 
CXCL8/IL8 and IL32. We also identified NF-κB binding site in the promoter regions of lncRNAs that 390 
were upregulated in S+ cells, such as ADIRF-AS1 and PACERR. NF-κB contribution to the antiviral 391 
response is well described and is supported by numerous in vivo experiments showing that mice 392 
deficient in different NF-κB subunits are more susceptible to viral infection than wild-type mice [43]. 393 
Consistently, many viruses have evolved strategies to counteract the NF-κB-mediated antiviral response 394 
[69]. However, certain human viruses, such as HIV-1, Epstein-Barr virus and influenza A virus, activate 395 
NF-κB to block apoptosis and prolong survival of the host cell to gain time for replication [70]. Our data 396 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 26, 2022. ; https://doi.org/10.1101/2022.02.25.481978doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481978
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

show that disruption of NF-κB function through silencing of its subunit p105/p50 diminished the 397 
production of viral RNAs and proteins at 24 hpi in A549-ACE2 cells, confirming its proviral role 398 
[38,39]. Several SARS-CoV-2 proteins could contribute to the activation of NF-κB signaling in infected 399 
cells. When individually expressed, Orf7a and Nsp14 activate NF-κB signaling pathway and induce 400 
cytokine expression, in Hela and HEK293T cells, respectively [71,72]. Nsp5 also induces the expression 401 
of several inflammatory cytokines, such as IL-6 and TNF-α, through activation of NF-κB in Calu-3 and 402 
THP1 cells [73]. Further studies are required to understand how SARS-CoV-2 benefits from hijacking 403 
NF-κB-driven functions.  404 

Consistent with a proviral role of NF-κB in the context of SARS-CoV-2 infection, we found that 405 
diminished expression of three NF-κB target genes (IL32, CXCL8/IL8, and ADIRF-AS1) significantly 406 
decreased viral RNA and protein production. IL32 is a proinflammatory interleukin secreted by immune 407 
and non-immune cells that induces the expression of other inflammatory cytokines, including TNF-α, 408 
IL6, and IL1β [74]. IL32 was previously described as an antiviral factor in the context of infection with 409 
several RNA and DNA viruses. For instance, its secretory isoform reduces the replication of Hepatitis 410 
B virus by stimulating the expression of IFN-λ1 [75]. Its antiviral activity was also demonstrated in U1 411 
macrophages infected with HIV-1 [76] and canine kidney cells infected with influenza A [77], using 412 
silencing and over-expression approaches, respectively. Further studies are required to understand the 413 
pro-SARS-CoV-2 function of endogenous IL32. It may support SARS-CoV-2 replication via its ability 414 
to activate NF-κB [78]. CXCL8/IL8 is a potent neutrophil chemotactic factor. It was previously shown 415 
to possess proviral functions in the context of infection by several unrelated RNA and DNA viruses, 416 
probably via inhibition of the antiviral action of IFN-α [79,80]. It could act in a similar manner in SARS-417 
CoV-2 infected A549-ACE2 cells. 418 

As for coding genes, there was a higher proportion of down- versus up-regulated lncRNAs in S+ 419 
cells. GO cannot be extrapolated from lncRNAs since most of them have no known function, indicating 420 
the need for future studies in this area. Several RNA-seq and microarray studies have identified hundreds 421 
of lncRNAs induced by IFN stimulation or viral infection in diverse human and mice cell types [35,81–422 
83]. Analysis of a handful of them has provided a glimpse of the potential regulatory impact of this class 423 
of RNAs on the IFN response itself [84] and on ISG expression [35,81,83]. However, the investigation 424 
of the precise role of individual lncRNAs in IFN-mediated antiviral response is still in its infancy stage.  425 
By analyzing publicly available SARS-CoV-2-infected transcriptome data, several studies recovered 426 
lncRNAs that were misregulated upon infection of human lung epithelial cell lines, primary normal 427 
human bronchial epithelial cells and BALF [85–88]. However, no lncRNA with a direct action on the 428 
life cycle of SARS-CoV-2 has been identified prior to this study. We show that the lncRNA ADIRF-429 
AS1, which was among the top upregulated lncRNAs both in S+ cells and in a dataset that we re-analyzed 430 
[19], has a proviral function. We identified a NF-κB binding site near its promoter region. It would be 431 
interesting to understand the mechanisms by which ADIRF-AS1 enhances SARS-CoV-2 replication and 432 
whether its proviral function depends on NF-κB.  433 
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Finally, our analysis profiled about 600 differentially expressed unannotated polyA+ transcripts in 434 
S+ and bystander cells. The identification of these unannotated genes confirms that the genome is far 435 
from being well characterized. Having specific RNAs expressed in particular conditions could open the 436 
way for the identification of pro- or anti-viral genes that could be used for better prognosis of at-risk 437 
patients or for the follow up of the disease severity.  438 

Our data suggests that the genes that are refractory to the viral-induced shutoff are proviral genes. 439 
Understanding the molecular mechanisms underlying the selectivity of the shut-off would be interesting. 440 
Since coronavirus Nsp1 induces the cleavage of the 5’UTR of capped transcripts bound to 40S 441 
ribosomes, the 5’UTR length and/or structure may affect Nsp1 binding and subsequent degradation. 442 
Alternatively, the extent of transcript reduction may be linked to their GC content and/or their lengths, 443 
which could affect the specificity of the host RNase that is presumably recruited by Nsp1. Discovering 444 
the host RNase responsible for transcript degradation in SARS-CoV-2-infected cells will shed light on 445 
the mechanism of selectivity of the viral-induced shutoff.  446 
 447 

Material and Methods 448 
Cell lines. Human lung epithelial A549-ACE2 cells, which have been modified to stably express 449 

ACE2 via lentiviral transduction, were generated in the laboratory of Pr. Olivier Schwartz (Institut 450 
Pasteur, Paris, France). A549-ACE2 and African green monkey Vero E6 cells (ATCC CRL-1586) were 451 
cultured in high-glucose DMEM media (Gibco), supplemented with 10% fetal bovine serum (FBS; 452 
Sigma) and 1% penicillin-streptomycin (P/S; Gibco). Cells were maintained at 37°C in a humidified 453 
atmosphere with 5% CO2. 454 

Virus and infections. Experiments with SARS-CoV-2 isolates were performed in a BSL-3 455 
laboratory, following safety and security protocols approved by the risk prevention service of Institut 456 
Pasteur. The strain BetaCoV/France/IDF0372/2020 was supplied by the National Reference Centre for 457 
Respiratory Viruses hosted by Institut Pasteur (Paris, France) and headed by Pr. S. van Der Werf. The 458 
human sample from which the strain was isolated has been provided by Dr. X. Lescure and Pr. Y. 459 
Yazdanpanah from the Bichat Hospital, Paris, France. Viral stocks were produced by amplification on 460 
Vero E6 cells, for 72 h in DMEM 2% FBS. The cleared supernatant was stored at 80°C and titrated on 461 
Vero E6 cells by using standard plaque assays to measure plaque-forming units per ml (PFU/ml). A549-462 
ACE2 were infected at MOI of 1 in DMEM without FBS. After 2 h, DMEM with 5% FBS was added 463 
to the cells. The Measles Schwarz strain expressing GFP (MeV-GFP) was described previously [89] 464 
and was used at an MOI of 1.  465 

Poly I:C stimulation. Cells were stimulated with 10 ng/µL Poly(I:C) (HMW, #vac-pic Invivogen) 466 
using Lipofectamine 3000 Reagent (Thermo Fisher Scientific) according to manufacturer’s protocol. 467 
Treatment was maintained for 24 hours, concomitantly with infection. 468 

Flow cytometry. Cells were detached with trypsin, washed with PBS and fixed in 4% PFA for 30 469 
min at 4°C. Intracellular staining was performed in PBS, 2% BSA, 2mM EDTA and 0.1% Saponin 470 
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(FACS buffer). Cells were incubated with antibodies recognizing the spike protein of SARS-CoV-2 471 
(anti-S2 H2 162, a kind gift from Dr. Hugo Mouquet, Institut Pasteur, Paris, France) and subsequently 472 
with secondary anti-human AlexaFluor-647 antibody (1:1000, A21455 Thermo) for 30 min at 4°C. Data 473 
were acquired using Attune NxT Acoustic Focusing Cytometer (Thermo Fisher) and analyzed using 474 
FlowJo software. 475 

SARS-CoV-2 infected and bystander cell-sorting and RNA extraction on fixed samples for 476 
RNA-seq. A549-ACE2 cells were seeded the day prior to infection. Cells were infected with SARS-477 
CoV-2 at MOI 1 or mock infected. Infections were done in two independent repeats with three technical 478 
replicates each. At 24 h post infection, cells were detached with trypsin, fixed in 4% PFA for 30 min on 479 
ice and stained for spike protein as described above for flow cytometry, with RNasin added to FACS 480 
buffer (1:100 dilution) just before use to prevent RNA degradation. Infected cell samples were 481 
resuspended in PBS 2%, 25 mM Hepes, 5 mM EDTA (sorting buffer) and sorted at 4°C on a FACSAria 482 
Fusion4L Sorter into infected (presence of S protein expression) and bystander (absence of viral protein 483 
expression) cell populations. Cells were collected in FBS-coated tubes containing buffer with RNasin 484 
to minimize RNA degradation. After sorting, cells were pelleted at 500g for 5 min at 4°C and RNA was 485 
extracted with the RecoverAll Total Nucleic Acid Isolation Kit starting at the protease digestion step. 486 
Digestion was performed for 15 min at 50°C and 15 min at 80°C in the presence of RNasin. Extraction 487 
was performed according to manufacturer’s instructions and the addition of RNAsin to all buffers just 488 
before use until final elution of RNA in DNAse-free water. Residual DNA was further digested using 489 
DNAse I (Invitrogen AM1906). RNAs were sorted at -80°C until further analysis. 490 

Library preparation, viral RNA depletion and RNA-sequencing. 500-1000 ng of total RNA 491 
were depleted of SARS-CoV-2 RNA using custom designed probes. The probes were synthesized using 492 
the NC_045512.2 Wuhan-Hu-1 complete genome reference. The design was made by Illumina and is 493 
composed of 459 probes, separated into two pools synthetized by IDT. For the SARS-CoV-2 depletion, 494 
we mixed both pools and used 1µl of this mix per sample, replacing the Ribozero+ probes at the 495 
ribodepletion reaction step of the Illumina Stranded Total RNA prep ligation protocol. The SARS-CoV-496 
2 depleted RNA samples were normalized to 300ng and ERCC Spike was added as recommended by 497 
the protocol ERCC RNA Spike-In Control mixes User Guide. The libraries were prepared using the 498 
Illumina Stranded mRNA Prep Ligation Reference Guide.  499 

PolyA+ RNA-sequencing analysis of sorted cells. Dataset consists of 9 paired-end libraries (150 500 
nt), 3 replicates per condition: mock, bystander and infected cells. Adaptors were trimmed with Trim 501 
Galore v0.6.4 [90] (wrapper for cutadapt v2.10 [91] and FastQC v0.11.9 [92]), with options --stringency 502 
5 --trim-n -q 20 --length 20 --paired --retain_unpaired. Reads were mapped to a reference containing 503 
human genome (hg38), SARS-CoV-2 (NC045512.2) and ERCC sequences. STAR v2.7.3a [93] was 504 
used to map the reads, with default parameters. Bam files were then filtered using SAMtools v1.10 [94] 505 
to retained reads flagged as primary alignment, and with mapping quality > 30 (option -q 30 -F 0x100 -506 
F 0x800). Read coverage was computed for each strand with bamCoverage (deepTools v3.5.0 [95]) with 507 
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options --binSize 1 --skipNAs --filterRNAstrand forward/reverse. For the detection of unannotated 508 
transcripts, Scallop v0.10.5 [36] was used to reconstruct transcripts, with options --library_type first --509 
min_transcript_coverage 2 --min_splice_bundary_hits 5 --min_flank_length 5. Scallop was run on each 510 
library, and the resulting annotations were merged using cuffmerge v1.0.0 [96], with gencode annotation 511 
(v32) as reference (-g option). Then BEDtools v2.29.2 [97] was used to retain only intergenic and 512 
antisens transcripts regarding gencode annotation. Gene expression quantification was performed using 513 
featureCounts v2.0.0 [98], with options -O -M --fraction -s 2 -p, using a merged annotation of gencode 514 
v32, SARS-CoV-2 (NC045512.2), newly annotated transcripts and ERCC transcripts. Subsequent 515 
analyses were performed in R v3.6.2 [99]. Differential expression analysis was performed using DESeq2 516 
package [100], after filtering out genes with less than 10 raw counts for all replicates in at least one 517 
condition. Gene counts were normalized on ERCC counts, using estimateSizeFactorsForMatrix 518 
function from DESeq2. All pairwise comparisons were performed (mock vs infected, mock vs bystander 519 
and bystander vs infected), and genes were retained as differential if adjusted p-value was < 0.05 and 520 
log fold-change > 1 or < -1. All plots were made using custom script, except for heatmaps that were 521 
done using pheatmap package (RRID:SCR_016418).  522 

PolyA+ RNA-sequencing analysis of bulk population of infected cells (from a public dataset). 523 
Fastq files produced in the study of Blanco-Melo et al (2020)[19] were retrieved from GEO repository 524 
(GSE147507). Dataset consist of single-end libraries (150 nt). We compared A549-ACE2 “mock” cells 525 
(SRR11517680, SRR11517681 & SRR11517682) versus A549-ACE2 cells infected with SARS-CoV-526 
2 at MOI 0.2 (SRR11517741, SRR11517742 & SRR11517743). Adaptors were trimmed with Trim 527 
Galore v0.6.4 [90], with options --stringency 5 --trim-n -q 20 --length 20. Reads were mapped on a 528 
reference containing human genome (hg38) and SARS-CoV-2 (NC045512.2) sequence. Bam files were 529 
then filtered using SAMtools v1.10 [94] to retained reads flagged as primary alignment, and with 530 
mapping quality > 30 (option -q 30 -F 0x100 -F 0x800). Gene expression quantification was performed 531 
using featureCounts v2.0.0 [98], with options -O -M --fraction -s 2, using a merged annotation of 532 
gencode v32, SARS-CoV-2 (NC045512.2) and newly annotated transcripts. Gene counts were 533 
normalized on the full count matrix, using estimateSizeFactorsForMatrix function from DESeq2 [100]. 534 
Differential analysis was performed as described above.  535 

GO enrichment analysis. The GO enrichment and KEGG pathway analysis were performed using 536 
DAVID online tool (updated version 2021) [101,102]. Upregulated protein-coding genes from each 537 
comparison were taken for the analysis with default background for Homo sapiens. 538 
GOTERM_BP_DIRECT and KEGG pathway were retained and top 10 results based on adjusted p-539 
value (Benjamini) were plotted using ggplot2 R package (v 3.3.0).  540 

Identification of NF-κB target genes. A list of coding genes that are known targets of NF-kB is 541 
available on Gilmore’s laboratory website (https://www.bu.edu/nf-kb/gene-resources/target-genes). We 542 
selected genes from this list that were shown to be direct targets of NF-κB, and for which the gene 543 
symbol could be retrieved in gencode annotation (354 genes). For identifying lncRNAs and 544 
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unreferenced RNAs that possess NF-κB binding site in their promoter, we used p65 ChIP-seq data from 545 
GEO dataset GSE34329 [51] - one input file and 2 ChIP replicates, 38nt long reads, single-end. Reads 546 
were mapped using bowtie2 v2.4.1 using hg38 as reference, and SAMtools was used to retained the one 547 
flagged as primary alignment, with mapping quality > 30, and to remove PCR duplicates (markdup, 548 
with -r option). NF-κB binding sites were then detected using macs2 v2.2.7.1 [103], with command 549 
callpeak -t ChIP_BamFile1 ChIP_BamFile2 -c input_BamFile -f BAM -g hs -s 38 --keep-dup all. Peaks 550 
in the first decile of the -log10(qvalue) value were discarded. NF-kB motif genomic coordinates in the 551 
human genome were retrieved using EMBOSS fuzznuc v6.6 [104], using motif 5’- 552 
G(3)[AG]N[CT](3)C(2) - 3’ [105], on forward and reverse strand (option -complement Y). Peaks and 553 
NF-κB motif coordinates were compared using BEDtools [97]; if a motif was contained in a peak, the 554 
motif strand was assigned to the peak. LncRNA and un-references transcripts were identified as NF-κB 555 
potential targets if their promoter region (1kb before transcript TSS) had a peak containing a motif or a 556 
peak for which the -log10(qvalue) was in the top 5%.  557 

RNA extraction and RT-qPCR assays. Total RNA was extracted from cells with the NucleoSpin 558 
RNA II kit (Macherey-Nagel) according to the manufacturer’s instructions. First-strand complementary 559 
DNA (cDNA) synthesis was performed with the RevertAid H Minus M-MuLV Reverse Transcriptase 560 
(Thermo Fisher Scientific) using random primers. Quantitative real-time PCR was performed on a real-561 
time PCR system (QuantStudio 6 Flex, Applied Biosystems) with Power SYBR Green RNA-to-CT 1-562 
Step Kit (Thermo Fisher Scientific). Data were analyzed using the 2-ΔΔCT method, with all samples 563 
normalized to endogenous BPTF, whose gene expression was confirmed as homogenous across samples 564 
by RNA-seq. Genome equivalent concentrations were determined by extrapolation from a standard 565 
curve generated from serial dilutions of plasmid encoding a fragment of the RNA-dependent RNA 566 
polymerase (RdRp)-IP4 of SARS-CoV-2. Primers used for RT-qPCR analysis are given in table S6.  567 

siRNA-mediated knockdown. A549-ACE2 cells were transfected using Lipofectamine RNAiMax 568 
(Life Technologies) with 10nM of control (#4390843, Ambion) or CXCL8 (L-004756-00, Dharmacon), 569 
NFKB1 (L-003520-00, Dharmacon), IL32 (L-015988-00, Dharmacon), ADIRF-AS1 (siTOOLs 570 
Biotech) siRNAs following the manufacturer’s instructions. 48h after transfection, cells were infected 571 
with SARS-CoV-2 for 24 h. 572 

Chemokine and Interferon expression and secretion. Cell lysates for intracellular chemokine 573 
quantification were obtained via repeated freeze-thaw cycles at -80°C of cells suspended in media 574 
containing protease inhibitor cocktail (Roche Applied Science) and final centrifugation at 8000g to 575 
pellet debris. IL6, CXCL1, CCL2, CXCL8 and CCL20 concentrations in supernatants of from control, 576 
infected or stimulated cells, were measured using a custom-designed LEGENDplex Human Panel. Data 577 
were acquired on an Attune NxT Flow Cytometer (Thermo Fisher) analyzed with LEGENDplex 578 
software (BioLegend). Similarly, IFN-β, IFN-λ1 and IFN- λ2/3 concentrations were measured in 579 
undiluted supernatants from control, infected or stimulated cells using a LEGENDplex Human Type 580 
1/2/3 Interferon Panel assay (BioLegend) according to the manufacturer’s protocol.  581 
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Statistical analysis. Statistical parameters including the exact value of n, precision measures (as 582 
means ± SEM), statistical tests and statistical significance are reported in the figure legends. In figures, 583 
asterisks denote statistical significance: *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001, and “ns” 584 
indicates not significant. Statistical analysis was performed in GraphPad Prism 9 (GraphPad Software 585 
Inc.). 586 
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Figure 1. Differential transcriptomic analysis of SARS-CoV-2 infected and bystander lung cells. (A) Scheme summa-
rizing the experimental workflow. A549-ACE2 cells were infected with SARS-CoV-2 at a MOI of 1 for 24h, stained 
for viral S protein followed by flow cytometry sorting of productively infected (S+) and bystander (S-) cells. Total 
RNA from mock, S- and S+ cells was depleted of ribosomal and viral RNAs and sequenced. (B) Representative FACS 
plot of S protein staining used for sorting productively infected cells. (C) Percentage of reads in libraries originating 
from human genome or SARS-CoV-2 sequence, before and after depletion of viral reads. (D) PCA plot based on the 
top 500 most variable genes between mock, bystander (S-) and infected (S+) cells. (E) Volcano plots presenting distri-
bution of classes of transcripts (mRNA-blue, lncRNA-red, unannotated-green) based on their log2 fold-change for 3 
comparisons: infected cells vs mock, infected cells vs bystander and bystander vs mock. (F) Heatmaps presenting 
z-score of log2 normalized counts for all differentially expressed genes between mock, bystander and infected cells, 
separated for mRNAs, lncRNAs and unannotated RNA.
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Figure 2. Separating lung cells based on the expression of the viral S protein improved discovery of DEGs. (A) Venn diagram repre-
senting gene overlap between DE-seq from sorted vs mock samples and mixed vs mock data re-analyzed from Blanco-Melo et al. 
2020 (MOI of 0.2). The genes were defined as upregulated if log2 fold change was equal or above 1 (right panel) and equal or below 
-1 for downregulated genes (left panel). Genes were defined as expressed when they were represented by at least 10 normalized reads 
in each replicate. The solid lines and central overlap show the genes that appear in both datasets while dashed gray zones outline 
genes detected in only one of the two datasets. (B) RT-qPCR quantification of viral genome copy number per µg of total RNA extrac-
ted from A549-ACE2 cells infected by SARS-CoV-2 at a MOI of 1, analyzed either in bulk (left side of graph, n=2 independent expe-
riments, line at mean) or post-sorting based on Spike protein expression, allowing distinction between productively infected and 
bystander subpopulations (right side of graph, n=3 experiments, line at mean). (C-D) RT-qPCR quantification of mRNA, lncRNA, 
and unannotated-RNA, that were identified as upregulated (C) or downregulated (D) upon infection by SARS-CoV-2 in the 
RNA-seq analysis, in total RNA extracted from A549-ACE2 cells infected with SARS-CoV-2 at a MOI of 1, analyzed either in bulk 
(left side of graph) or post-sorting based on Spike protein expression (right side of graph, normalized fold change over mock-infec-
ted, n=3 independent experiments, ratio-paired t test, line at mean ± SEM). (E) Top 10 enriched GO terms for Biological Process 
(BP) and KEGG pathways from DAVID database ranked by the adjusted p-value (Benjamini), for upregulated mRNAs identified in 
RNA-Seq comparison between infected vs mock cells.
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Figure 3. Inflammatory cytokines, but not IFNs, are produced and secreted by infected cells. (A) Quantification of the 
indicated chemokines by cytometry bead array in A549-ACE2 cell lysates obtained 24 hours post mock-infection or 
infected with SARS-CoV-2 at a MOI of 1, or post-treatment with transfectant alone or in combination with 10 ng/µL of 
Poly(I:C) (n=3 independent experiments, paired One-Way ANOVA with Turkey’s post-test, line at mean ± SEM). (B) 
Quantification of the indicated chemokines by cytometry bead array in supernatant (SN) of cells shown in (A) (n=3 inde-
pendent experiments, paired One-Way ANOVA with Turkey’s post-test, line at mean ± SEM). (C) Percentages of infected 
A549-ACE2 cells 24 hours post infection (MOI of 1) with SARS-CoV-2 or Measles virus expressing GFP (MeV), quanti-
fied by flow cytometry using Spike protein staining and GFP expression, respectively (n=3 independent experiments, line 
at mean ± SEM). (D) Quantification of secretion of IFNβ, IFNλ1 and IFNλ2/3 by cytometry bead arrays in supernatant 
of A549-ACE2 cells 24 hours post-infection with SARS-CoV-2 or MeV (MOI of 1), or post-treatment with transfectant 
alone or in combination with 10 ng/µL of Poly(I:C) (n=3 independent experiments, One-Way ANOVA with Šídák’s 
post-test, line at mean ± SEM).
ULOD: Upper Limit of Detection; LLOD: Lower Limit of Detection

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 26, 2022. ; https://doi.org/10.1101/2022.02.25.481978doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481978
http://creativecommons.org/licenses/by-nc-nd/4.0/


NF-țB targets
Infected S+ vs mock

log2 fold-change

-lo
g1

0 
ad

j. 
p-

va
lu

e

mRNA
lncRNA
unannotated-RNA

IL32

CXCL8NFKB1

ADIRF-AS1

0 
   

   
   

 5
0 

   
   

   
10

0 
   

   
 1

50
   

   
   

20
0

-10             -5               0               5              10

A B

C

siC
trl

siC
XCL8

siI
L3

2

siA
DIR

F-A
S1

0.0

0.5

1.0

1.5

Fo
ld

 c
ha

ng
e 

of
 ta

rg
et

D

siC
trl

siC
XCL8

siI
L3

2

siA
DIR

F-A
S1

0

10

20

30

40

S
+ 

ce
lls

 %

siC
trl

siC
XCL8

siI
L3

2

siA
DIR

F-A
S1

108

109

co
pi

es
/µ

g 
to

ta
l R

N
A

siN
FKB1

Figure 4��8SUHJXODWHG�1)�ț%�WDUJHW�JHQHV�FRQWULEXWH�WR�DQ�RSWLPDO�6$56�&R9���UHSOLFDWLRQ���A��9ROFDQR�SORW�SUHVHQ-
WLQJ�ORJ��IROG�FKDQJH�RI�51$�H[SUHVVLRQ�IURP�51$�VHT�DQDO\VLV�EHWZHHQ�6��DQG�PRFN�FHOOV�DQG�VKRZLQJ�NQRZQ�1)�
κ%�WDUJHW�P51$V��ODEHOHG�LQ�EOXH���DV�ZHOO�DV�1)�ț%�WDUJHW�OQF51$V��UHG��DQG�XQDQQRWDWHG�51$V��JUHHQ��SUHGLFWHG�
IURP� &K,3� DQG� PRWLI� DQDO\VLV�� �B�� 57�T3&5� TXDQWLILFDWLRQ� RI� NQRFN�GRZQ� HIILFLHQF\� RI� LQGLFDWHG� WUDQVFULSWV� LQ�
$����$&(��FHOOV�����KRXUV�SRVW�WUDQVIHFWLRQ�ZLWK�D�SRRO�RI�VL51$V�WDUJHWLQJ�LQGLFDWHG�JHQHV��QRUPDOL]HG�IROG�FKDQJH�
RYHU�FRQWURO�VL51$��Q ��LQGHSHQGHQW�H[SHULPHQWV��UDWLR�SDLUHG�W�WHVW��OLQH�DW�PHDQ�±�6(0����C��57�T3&5�TXDQWLILFDWLRQ�
RI�YLUDO�JHQRPH�FRS\�QXPEHU�SHU��J�RI� WRWDO�51$�H[WUDFWHG�IURP�$����$&(��FHOOV��ZLWK� LQGLFDWHG�JHQHV�NQRFNHG�
GRZQ�����KRXUV�DIWHU�LQIHFWLRQ�ZLWK�6$56�&R9����02,�RI�����Q ��LQGHSHQGHQW�H[SHULPHQWV��2QH�:D\�$129$�ZLWK�
'XQQHWW¶V� SRVW�WHVW�� OLQH� DW� PHDQ� ±� 6(0��� �D�� 3HUFHQWDJHV� RI� LQIHFWHG�$����$&(�� FHOOV�� ZLWK� VHOHFWHG� JHQHV�
NQRFNHG�GRZQ�����KRXUV�SRVW�LQIHFWLRQ�ZLWK�6$56�&R9����02,�RI�����TXDQWLILHG�E\�IORZ�F\WRPHWU\�XVLQJ�6SLNH�SURWHLQ�
VWDLQLQJ��Q ��LQGHSHQGHQW�H[SHULPHQWV��PL[HG�PRGHO�RQH�:D\�$129$�ZLWK�'XQQHWW¶V�SRVW�WHVW��OLQH�DW�PHDQ�±�6(0�� 

siN
FKB1

siN
FKB1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 26, 2022. ; https://doi.org/10.1101/2022.02.25.481978doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481978
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mock      Bystander     Infected                 Mock       Bystander     Infected                 Mock       Bystander     Infected

−1
−0.5
0
0.5
1

z-score

Mock      Bystander     Infected                 Mock       Bystander     Infected                 Mock       Bystander     Infected

−1
−0.5
0
0.5
1

z-score

A

B

              mRNA                                           lncRNA                                    unannotated-RNA
-1

0 
   

   
   

   
   

 -5
   

   
   

   
   

   
0 

   
   

   
   

   
  5

   
   

   
   

   
   

10

mean exprs, log2

lo
g2

 fo
ld

-c
ha

ng
e

lfc > 1 : 472
lfc < -1 : 418

Sorted infected S+
vs mock

lfc > 1 : 788
lfc < -1 : 10274

Sorted bystander S-
vs mock

lfc > 1 : 221
lfc < -1 : 246

0       5     10     15     20 0       5     10     15     20 0       5     10     15     20
mean exprs, log2 mean exprs, log2

-1
0 

   
   

   
   

   
 -5

   
   

   
   

   
   

0 
   

   
   

   
   

  5
   

   
   

   
   

   
10

-1
0 

   
   

   
   

   
 -5

   
   

   
   

   
   

0 
   

   
   

   
   

  5
   

   
   

   
   

   
10

Mixed vs mock
C

              mRNA                                           lncRNA                                    unannotated-RNA

Figure S1. (A-B) Heatmaps presenting z-score of log2 normalized counts for differentially expressed genes between 
(A) S+ vs S- cells or (B) S- vs mock-infected treated cells, separated for mRNAs, lncRNAs and unannotated RNAs. 
(C) MA plot showing the response to infection of an artificially reconstructed mixed cell population (80% bystander, 
20% infected, left) compared to cells sorted based on the expression of the viral protein Spike (infected, middle; 
bystander, right).
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Figure S2.  (A) Visualization of read coverage (tag/nucleotide) from polyA+ RNA-seq normalized on ERCC reads for 
IL32, WAKMAR2, FEN1 and AC016747.1. (B-C) RT-qPCR quantification of mRNAs and lncRNAs that are either upre-
gulated (B) or downregulated (C) upon infection with SARS-CoV-2, in total RNA extracted from A549-ACE2 cells 
infected at an MOI of 1, analyzed either in bulk (left side of graph) or post sorting based on Spike protein (right side of 
graph, normalized fold change over mock-infected, n=3 independent experiments, ratio-paired t test, line at mean ± 
SEM).
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Figure S3. (A) RT-qPCR quantification of transcript induction of indicated chemokines in A549-ACE2 cells, 24 hours 
post infection with SARS-CoV-2 (MOI of 1) or post-treatment with transfectant alone or in combination with 10 ng/µL 
of Poly(I:C) (normalized fold change over mock-infected, n=3 independent experiments, ratio-paired t test, line at mean 
± SEM). (B) RT-qPCR quantification of IFNβ, IFNλ1 and IFNλ2/3 transcripts induction in A549-ACE2 cells, 24 hours 
post infection at an MOI of 1 with SARS-CoV-2 or Measles virus expressing GFP (MeV) or post treatment with transfec-
tant alone or in combination with 10 ng/µL of Poly(I:C) (normalized fold change over mock-infected, n=3 independent 
experiments, line at mean ± SEM).
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Figure S4. (A) Visualization of read coverage (tag/nucleotide) from polyA+ RNA-seq and ChIP-seq (IP – Input) at 
NFKB1, CXCL8, IL32 and ADIRF-AS1 loci. RNA-seq and ChIP-seq data were normalized independently, on ERCC 
reads for RNA-seq and on library size for ChIP-seq. (B) RT-qPCR quantification of NFKB1, CXCL8 and ADIRF-AS1 
transcripts induction in A549-ACE2 cells, 24 hours post infection with SARS-CoV-2 (MOI of 1) (normalized fold 
change over mock-infected, n=3 independent experiments, ratio-paired t test, line at mean ± SEM).
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