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Abstract

High-parameter multiplex immunostaining techniques have revolutionized our ability to image healthy

and diseased tissues with unprecedented depth; however, accurate cell identification and segmentation

remain significant downstream challenges. Identifying individual cells with high precision is a requisite

to reliably and reproducibly interpret acquired data. Here we introduce CIRCLE, a cell identification

pipeline that combines classical and modern machine learning-based computer vision algorithms to ad-

dress the shortcomings of current cell segmentation tools for 2D images. CIRCLE is a fully automated

hybrid cell detection model, eliminating subjective investigator bias and enabling high-throughput im-

age analysis. CIRCLE accurately distinguishes cells across diverse tissues microenvironments, resolves

low-resolution structures, and can be applied to any 2D image that contains nuclei. Importantly,

we quantitatively demonstrate that CIRCLE outperforms current state-of-the-art image segmentation

tools using multiple accuracy measures. As high-throughput multiplex imaging grows closer toward

standard practice for histology, integration of CIRCLE into analysis protocols will deliver unparalleled

segmentation quality.

Recent advances in multiplex imaging have revolutionized our ability to identify functionally meaningful cell popula-

tions among spatially and phenotypically heterogeneous tissues. Single-cell profiling using imaging mass cytometry

(IMC), co-detection by indexing (CODEX), DNA-barcoding, serial immunostaining, or similar high-parameter imag-

ing approaches have revealed that clonal evolution and spatially distinct tissue microenvironments drive cellular

heterogeneity and control pathophysiology [1, 2, 3, 4, 5, 6, 7]. For example, the recent systematic, multi-dimensional

interrogation of breast cancer using IMC revealed a detailed spatial map of single-cell phenotypes and cellular com-

munities and resolved novel subtypes of breast cancer with distinct clinical outcomes [2]. Such multicellular spatial

information provides a basis to study how geographical and phenotypic tissue features influence disease outcomes.

The most important requirement of image-based cellular profiling is the ability to identify individual cells through

segmentation with extremely high precision, as this directly dictates the correctness and clinical relevance of all

downstream discovery-based analyses. To do this, nuclei must be accurately distinguished, therefore the value of the

technology hinges on accurate nuclear segmentation methodologies. This is a fundamental challenge in biomedical

imaging primarily due to: (i) the inherently low contrast of edges and geometric boundaries, (ii) the lack of color in

the image (most imaging technologies output in grayscale and use pseudo color), (iii) the lack of a unique defining

texture, (iv) the varying shapes and sizes of cells, (v) the presence of overlapping cells in the image due to partial

volume effects, (vi) the lack of ground truth examples, which limits the performance of machine learning methods (due
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to the inherent lack of training data), and (vii) the high density of cells, particularly in diseased tissue such as tumors.

Each of these properties affects the design of computer vision algorithms to segment cell instances. It is also largely

impossible to manually verify image quality in high-throughput experiments and there is a lack of automated methods

to objectively flag or remove images and cells that are affected by artifacts. As a result, the existing tools for image-

based cellular profiling regrettably require significant subjective manual intervention, which limits data reproducibility

and reliability.

Over the years several methods have been developed for image-based cell identification, but each approach has

limitations that are often overlooked. Image thresholding while adapting to local contrast [8] is very common. Here

regions are distinguished by intensity averages or other measures of separation that are chosen either heuristically

or intelligently. While most cell profiling techniques can benefit from this as an initial step, there is no guarantee

that a distinct separation of cells can be achieved. Another classical method for medical image segmentation is

the watershed algorithm, which equates pixel values to local topography [9, 10, 11]. Watershed based algorithms

are widely used and are very effective when the regions to be segmented have homogeneous intensities. However,

they often fail to differentiate between texture-based edges and true organelle boundaries. Active contour models

[12, 13] allow geometric curves or surfaces to evolve and capture the boundaries of specific visual elements. They do

so by minimizing a suitable energy functional, which incorporates both local (boundary) and global (region) image

information so that the curves or surfaces converge to object boundaries [14, 15]. However, the outputs obtained by

such models can be sensitive to the choice of initial seed contours, and separating overlapping cells can be a challenge.

A further obstacle in using active contour models is the challenge of finding initial seed mask contours.

With advances in machine learning-based models, several promising approaches to image-based cell identification

have been developed in both semi-supervised and supervised settings [16]. Many of these models use existing popular

deep learning frameworks such as UNet [17] and MaskRCNN [18]. A general requirement of deep neural network

(DNN)-based models is the availability of large annotated training datasets. Further, DNN models represent somewhat

of a ‘black box’ for the user since they presently offer little insight for troubleshooting when a desired cell population

is not accurately identified. Despite these limitations, DNN models can benefit from a concept referred to as “transfer

learning” [19, 20, 21, 22]. When deep models are initially trained on huge datasets of generic objects they learn to

extract certain high-level visual features that aid a recognition or categorization task. Their pre-trained weights can

then be later fine-tuned on specific tasks, with smaller amounts of task-specific training data.

In recent years, additional supervised learning-based cell identification methods from data points that represent

cell locations have been established. There are advantages to approaching cell identification by combining both

region and boundary information. Advances in UNet-based models enable advanced cell identification mechanisms

in which all pixels that are surrounded by a cell instance are marked and labeled separately. Among these methods,
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StarDist[23] is an effective UNet-based model that learns a shape representation for cells when it detects them in

images. The UNet backbone contributes to excellent foreground detection[24] and as a result, StarDist has a high

recall, successfully finding locations where candidate cells exist. On the other hand, the cell boundaries provided

by StarDist are not always accurately placed. In particular, its precision suffers when the underlying images have a

low signal-to-noise ratio. Another recent method which also uses deep neural networks, Cellpose [25], promotes the

benefits of crowdsourcing to acquire labeled training datasets to gradually improve the performance of such methods.

Motivated by the strengths and weaknesses of the aforementioned strategies for image-based cell-profiling, we

developed CIRCLE (Cell segmentatIon acRoss sCaLEs), a state-of-the-art framework that is capable of automated

a. b.

MaskRCNN

5

2.4 Scale Space

Scale Space Creation As the cells found in our MCI images have sometimes
di↵erent scales of structures, our approach was designed to accommodate this
variability of sizes. As cells are unknown in the input image, there is no way to
know a particular proper scale for each found cell, therefore, our method con-
siders and computes potentially cells at multiple scales to capture the unknown
scale variations that could occur. In this pipeline, our scale-space representation
considers three di↵erent scales of representations as shown in Figure 4.

scale = 3 scale = 2 scale = 1

Fig. 4. Di↵erent scale for nuclei detection

Scale Space Selection For scale space selection, we first consider all cells at
di↵erent scales. Let us assume we extract ns cells for each scale s and the cells are
listed as Cs = {cs,1, . . . , cs,ns

}. We then compute a heterogeneity score for each
cell based using the eigenvalues �1 and �2 of the structure tensor (ST) or second
moment matrix. In our case, the eigenvalues are proportional to the strengths
of the gradients in the directions of the eigenvectors e1 and e2 in each cell cs,i

with e1 pointing in the direction of the principal gradient and e2 ? e1. The ST
computed at scale s and for the ith cell at each point p within the boundary of
the cell cs,i on the original input image as:

STs(p) =


G� ⇤ Ix(p)2 G� ⇤ Ix(p)Iy(p)

G� ⇤ Ix(p)Iy(p) G� ⇤ Iy(p)2

�
(1)

where Ix(p) and Iy(p) are the first-order central derivatives of the input image
I. G� is a Gaussian filter of length 2�+1 with a standard deviation of �

k , where k
is an arbitrary positive constant. We then compute a local homogeneity measure
(for a particular cell and a particular scale):

⇤(p) = �2
1 + �2

2. (2)
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Figure 1: Schematic overview of the CIRCLE pipeline a. Representative input image (stained nuclei). b.
Image is tiled, and shifted copies of the tiles are created so that cells lying at the borders are not missed. c. Each tile
is processed at several magnification scales (represented in k.) allowing cells of varying sizes to be detected. d-e. For
the deep model, MaskRCNN is used for instance cell segmentation. f. Concomitantly, tiles also serve as inputs for
Mixture of Generalized Gaussian (MoGG) foreground mask generation. g. Active contour based refinement is applied
to the MoGG foreground mask to yield a cell segmentation result for each tile that is independent of MaskRCNN
h. The MaskRCNN and active contour output cells are pooled together. i. For each cell a structure tensor based
feature is computed within a narrow band of each cell boundary. j. A scale graph is built to consider the structure
tensor based feature across different magnification scales. l. Using dynamic programming, we select cells amongst the
different magnifications. For overlapping detections, the best magnification is chosen and the other detections in the
pooled results are removed. m. Representative image of the final output.
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processing of high dimensional images with exceptional accuracy (Fig. 1). CIRCLE is a 2D cell identification pipeline

that combines classical and modern machine learning-based computer vision algorithms to address shortcomings of

commonly used image segmentation tools ([25, 18, 23, 10, 26, 9]). CIRCLE integrates a CNN for nuclear segmentation,

with a novel combined active contour model and scale selection process. The CIRCLE pipeline can accommodate low-

resolution images and is implemented efficiently.

We first divide the input image into smaller tiles that can each be analyzed separately. We detect cells in each

of these smaller tiles at multiple magnifications, using both a deep neural network model and an active contour

segmentation method. For the former process, we use the state-of-the-art Mask Region Convolutional Neural Network

(MaskRCNN) architecture [18] to generate segmentation masks for each cell.

MaskRCNN provides high precision and requires minimal complex post-processing. The same image patch is also

provided as input to a novel active contour segmentation method (ACSM). In the ACSM, the foreground regions are

first found using a Mixture of Generalised Gaussians algorithm to include nuclei that could be potentially missed by

the DNN model. We then apply a series of image processing operations to find all possible cells within these foreground

regions. At the end of this process, we create a set of structure tensor (ST) maps to describe the intensity distribution

in the vicinity of the estimated cell boundaries at each magnification scale. We then construct a connectivity graph

across the detected cells at each scale. Using features derived from the ST, we apply a dynamic programming method to

select the best scale for each cell, like the one that maximizes the ST feature response at the boundary. Scale selection

enables our algorithm to avoid under-segmentation and over-segmentation of cells, even in very noisy conditions, and

to handle cells of a variety of sizes.

To quantitatively compare the accuracy of CIRCLE against current state-of-the-art segmentation methods, first,

we trained and fine-tuned the deep models CIRCLE, MaskRCNN, and StarDist on the 2018 Data Science Bowl (DSB

2018) competition dataset (https://www.kaggle.com/c/data-science-bowl-2018). Cellpose was pre-trained and fine

tuned on multiple large datasets including the DSB 2018. Next, we created an entirely new test dataset, GCIMC, by

meticulously manually segmenting four 1000× 1000 pixel images generated through IMC of brain metastases from 4

patients. GCIMC contains 12692 segmented nuclei. When applied to the GCIMC dataset, CIRCLE was the most

accurate segmentation method as determined by several measures, including 1) average precision across a range of

intersection-over-union (IoU) thresholds (Fig. 2, a.), 2) precision versus recall (Fig. 2, b.) and 3) the Dice Coefficient

(Fig. 2, d.). To qualitatively visualize the accuracy, dynamic range, and broad applicability of CIRCLE, we have

included representative segmented IMC images from normal and cancerous tissues that exhibit various challenging

features including poor contrast, varying cell size, and overlapping cells. (Fig. 3). These data highlight that although

current methods may perform reasonably well on select tissues, CIRCLE uniformly is the most accurate, especially

when confronted with heterogeneous and complex tissue microenvironments.

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.27.482183doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.27.482183


0 0.25 0.5 0.75 1
Recall

0

0.25

0.5

0.75

1

Pr
ec
is
io
n

CIRCLE
MaskRCNN
StarDist
Cellpose
Voting
ARGraphs
H-minima

High

Low

11

image picked from GCRC dataset. Here, red means either over-segmentation or undersegmentation. We did
NOT plot the undetected cells in a di↵erent color as the reader can easily identify and compare them between
images. Table 1 shows the Dice coe�cient scores, known as Fmeasure for a set of various thresholds on IoU .
SEKMENTR results show consistent outperformance over all the other methods compared. The interesting
point to note here is that the StarDist outperforms MaskRCNN for smaller thresholds as it has higher Recall
rate when the threshold is small but when the ⌧ chosen gets larger values, the overall Precision of MaskRCNN
outperforms the StarDist’s precision and results in higher Fmeasure overall (shown in boxed numbers). This
suggest that our choice of using MaskRCNN as a backbone was a smart choice as it o↵ers accurate location
of nuclei found even if it does not detect all of them. As it can be seen, the overall performance stays fairly
high as we have a high recall rate over all ranges of ⌧ values.

7. Conclusion

Threshold ⌧ 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

H-minima 58.63 58.28 57.46 56.64 55.35 54.08 52.83 51.59 50.37 35.37 18.82

ARGraphs 53.80 51.73 49.73 47.74 45.82 44.24 41.16 38.09 33.51 15.24 11.75

Voting 62.87 60.44 58.74 57.03 56.05 54.83 51.33 47.83 42.05 13.86 11.47

Cellpose 85.21 84.04 80.59 75.03 67.65 58.79 48.89 38.42 27.85 17.66 08.25

StarDist 90.20 88.78 86.81 84.44 81.07 76.44 69.66 59.02 43.64 32.98 15.37

MaskRCNN 87.87 87.07 86.06 84.67 82.86 80.67 76.97 71.01 60.51 42.38 18.00

CIRCLE 93.72 92.72 92.14 91.04 90.56 88.87 87.64 85.25 83.24 79.22 69.15

Table 1: Nuclei detection results for GCRC dataset and six di↵erent methods (including SEKMENTR), show-
ing Dice Coe�cient which is defined on recall and precision as Fmeasure = 2PR

R+P for several intersection over
union (IoU) thresholds ⌧ . Squared numbers show the “second-best” performance among all methods. When
the threshold is low (higher recalls) StarDist outperforms MaskRCNN but for higher thresholds MaskRCNN
results in better F-measures as it has higher precision overall.
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Figure 2: Quantitative comparison of CIRCLE with current state-of-the-art methods. We have applied
CIRCLE to low-resolution multiplexed IMC data (GCIMC dataset) and have compared its accuracy to common
segmentation algorithms. a. Average precision (AP = TP

TP+FP+FN ). b. Precision versus Recall. c. Representative
output of CIRCLE segmentation (boundaries are colored from blue to yellow according to their several intersection over
union (IoU) values ranging from 0.5 to 1.0). d. Quantitative assessment of segmentation accuracy (Dice Coefficient,
defined using precision (P) and recall (R) as Fmeasure = 2×P×R

P+R for IoU thresholds τ).

We are currently in an imaging revolution where images have become an unbiased source of quantitative information

for biological phenotypes. As more studies exploit new technologies capable of generating highly multiplexed landscapes

of tissue with spatial resolution, the need for accurate segmentation will only grow. In this setting, CIRCLE provides

precise and automated cell identification while overcoming several limitations of other tools, offering a fully automated

hybrid cell detection model to segment nuclei in 2D images.
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Figure 3: Qualitative comparison of CIRCLE with current state-of-the-art methods. Representative IMC
images from normal and cancer tissues, reflecting a range of challenging cases including poor contrast, varying cell
size, and overlapping cells, segmented with the indicated methods.
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Methods

We describe a number of components of our workflow in the subsections below. These methods are combined in the

manner illustrated in Figure 1. The general idea is to consider both the output of a powerful CNN-based segmentation

method (Section 2) and one that uses a foreground detection approach first (Section 3), followed by an active contour

refinement stage to separate potentially overlapping cells (Section 4). The two independent sets of candidate cell

segmentations are then pooled and among these a selection criterion is applied across different magnification scales to

select the best scale for those detections that have a spatial overlap (Section 5). This scale selection process allows for

variation in cell size.

1. Tiling

To make our approach memory efficient, we divide each input image into a smaller set of tiles. The tiles are chosen

to be larger than the maximum possible size of a cell to be detected. Tiling facilitates the use of standard CNN

implementations, which typically assume that the input images are small, and mitigates the effect of non-uniform

luminance across larger windows. Assuming that the source image is of size W × H and that the tile width is ws,

we partition the image into a grid with m × n tiles, where: m =
⌈
W
ws

⌉
and n =

⌈
H
ws

⌉
. The tile width parameter is

chosen empirically, e.g., for the images that are 1000 × 1000 in size, we chose ws to be 200 to yield 200 tiles. Each

tile is provided as a separate input to our method. All the detected cells that intersect a tile boundary are discarded.

To ensure that no cells are missed we create two copies of the original tiling, shifting it by ≤ ws

2 to the South and

to the East, and use these shifted tiles as inputs as well. The choice of ws should be no smaller than the maximum

possible size of a cell. To avoid duplicate detections of the same cell due to the additional shifted tiles, we maintain

an occupancy image, which is the size of the original image, and fill it with the area that each detected cell covers.

2. MaskRCNN Cell Detection

To obtain one set of candidate cells, we apply the Mask Region Convolutional Neural Network (MaskRCNN) archi-

tecture to segment cell nuclei [18] (Fig. 1d-e). This network provides advantages over the popular UNet approach

[17], having evolved through four different earlier versions. The latest version uses an RoIAlign layer to correct for

misalignments and generates both the bounding boxes and segmentation masks for each cell in the image. MaskRCNN

is already used [27, 28, 29, 30, 31, 32] to segment nuclei/cells or lesions in medical imaging. We used the existing

model, pre-trained on the COCO dataset [33], as a starting point and then fine-tuned it on the data science bowl

public dataset available at https://www.kaggle.com/c/data-science-bowl-2018. We applied the various standard

data augmentation techniques including both proportional and non-proportional image resizing, random rotations in
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increments of 10 degrees (36 rotations in all), and vertical and horizontal flips. The fine-tuning consists of training

the network in 3 batches of 25 epochs each, where each batch’s trained weights were used as initial weights for the

next batch, and the learning rates were reduced for the subsequent batch.

3. Foreground Detection

(a) Original Image (b) Entropy[34] (c) Adaptive Thr.[35] (d) Turbopixels [36] (e) SLIC[37] (f) MoGG Mask

Extended data Figure 1. A comparison of foreground detection approaches on a typical tissue sample. In general
we found the MoGG method to be robust to non-uniformities in luminance and degradation in image quality, and to
have a high ratio of true positives to false negatives (missed foreground detections).

Foreground detection refers to the marking of any region in the image that could potentially contain a cell. Whereas

a naive approach would involve intensity-based thresholding, more sophisticated methods use histograms [38, 39, 40,

41, 42], clustering [43, 44, 39, 45], or the entropy of foreground and background regions [46, 47, 48, 49, 34]. Since our

main purpose is to mark regions whose boundaries will be later refined, a multiclass histogram thresholding approach

to efficiently model multi-modal class-conditional distributions using mixtures of generalized Gaussian distributions

(MoGG) [50] works well, in comparison to alternative approaches including an entropy-based method [34], the use of

an adaptive threshold [35], and the use of superpixels for oversegmentation [36, 37] (Extended data Figure 1). MoGG

provides a flexible and suitable tool for various problems in image segmentation including ones that arise in medical

image analysis [51, 52, 53, 54, 55]. The foreground detection is an essential step since it improves recall by adding

additional regions that may have been missed by the neural network. These foreground regions are refined using an

active contour model to provide candidate cell segmentations, as described next.

4. Active Contour Based Cell Segmentation

The output of the MoGG foreground detection method is now refined to better separate potentially overlapping cells.

We exploit the property that when two or more convex objects overlap in the 2D plane, there are two local peaks in

the distance function from their combined boundary.
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4.1. Morphological Opening

Morphological opening consists of an erosion step followed by a dilation step [56] to remove structures smaller than

the diameter of the structuring element: Io = I ◦ s = (I 	 s) ⊕ s. Here I is the input image patch, and s is the

structuring element. We use a circular structuring element with a diameter d chosen to be linearly proportional to the

considered scale. The result of this opening operation on the sample tile is shown in Figure 1g, panel 1. The opened

image results in interior cell regions with a more homogeneous appearance.

4.2. Gradient Rings

We now devise a way to separate overlapping cells in the opened image. We use the magnitude of the gradient within

the opened image as a measure of cell boundary strength (Fig. 1g, panel 2): ‖∇Io‖ =
√

(∂Io∂x )2 + (∂Io∂y )2 where ∂Io
∂x

and ∂Io
∂y are the partial derivatives of the image in the x and y directions, respectively. We then consider level sets of

the gradient magnitude, normalized to lie between 0 and 1, to provide a series of nested gradient rings, as illustrated

in Figure 1g, panel 3.

4.3. Generating Seed Contours

We now process the nested gradient rings in order to provide seed contours to segment individual cells. Each gradient

ring, corresponding to a simple closed contour, is treated separately (as illustrated using different colors in Fig. 1g,

panel 3). We denote the ith ring by ri and prune rings in a recursive manner. Here, ring ri is removed if there is

another ring rj such that ri ⊆ rj and no other ring rk exists such that rk ⊆ rj . The pruning stops when no further

rings can be removed. We verify the ri ⊆ rj condition by checking whether the area bounded by ri is contained within

the area bounded ring rj . The surviving rings are shown in red in Figure 1g, panel 4.

4.4. Active Contour Cell Segmentation

In a final step, we refine the surviving rings to segment likely cell boundaries within an image tile, using the Chan-Vese

region-based active contour [57]. This formulation best separates each MoGG foreground region into two classes, under

the assumption that each class is homogeneous in intensity and thus well represented by its mean. Here, we assume

a system of multiple active contours that evolve simultaneously at each time step. Let r represent a ring, and u0

represent the set of pixels within the same MoGG foreground region, excluding r. The algorithm evolves the contour
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to minimize the following energy function, ultimately placing the evolved contour at the boundary of two classes:

F (c1, c2, rc) = µ× Length(r) + ν ×Area(interior(r))

+ λ1

∫

inside(rc)

|u0(x, y)− c1|2∂x∂y

+ λ2

∫

exterior(
⋃
ri)

|u0(x, y)− c2|2∂x∂y.

(1)

Here interior(r) refers to the pixels contained within r, and exterior(
⋃
ri) is the set of all pixels in the foreground

region excluding those associated with all present rings. c1 is the mean intensity of u0 inside r and c2 is the mean

intensity of u0 in the region outside r, within the foreground region. µ ≥ 0, ν ≥ 0, and λ1, λ2 > 0 are empirically

chosen fixed weight parameters. Using a level set formulation [58, 59, 60], we evolve the ring r so as to minimize the

above energy. Each ring is updated using the following level set equation at each time step:

∂Φ

∂t
= δ(Φ)

[
µ∇. ∇Φ

|∇Φ| − ν − λ1(u0 − c1)2 + λ2(u0 − c2)2
]
, (2)

where δ is the Dirac-delta function. Here, Φ(x, y, r) is the embedding function whose level sets represent the evolving

rings [58, 60, 59]. With multiple level sets evolving simultaneously, the pixels that are inside and outside of rings

within u0 are updated in time. For the level set update we use the numerical method in [61]. The resulting detected

cells are shown in Figure 1h.

5. Scale Selection

We now have two independent sets of candidate cells at each magnification scale: those obtained by the CNN (Fig.

1e) and those obtained by the active contour detection process (Fig. 1h). We have devised a method to select

between these candidate detections over the considered scales. We first compute a salience score for each cell at each

magnification scale. To do so, for each magnification, we blur the image patch with Gaussians over a range of blurring

scales. We then compute the Structure Tensor (ST) for all standard deviations at each pixel. The ST is computed at

each pixel p as:

STs(p, σ) =




Gσ ∗ Ix(p)2 Gσ ∗ Ix(p)Iy(p)

Gσ ∗ Ix(p)Iy(p) Gσ ∗ Iy(p)2


 , (3)

where Ix(p) and Iy(p) are partial derivatives in space in the directions x and y of the image I, computed using central

differences. Gσ is a Gaussian filter of length 2σ + 1 with a standard deviation of σk , where k is an arbitrary positive

constant.

We then compute a local feature descriptor measure using the sum of the squared eigenvalues of the ST matrix:
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Λ(p, σ) = λ21 + λ22. In principle, we expect λ21 + λ22 to be relatively large at a location near the cell boundary or when

when two cell boundaries are touching each other (Fig. 1 (i)). For each scale s let ns be the number of pooled CNN

and active contour cell detections, stored in a list Cs = {c1,s, . . . , cns,s}. We define a salience score for each cell as the

highest average value of Λ(p) within the vicinity of a boundary of a cell, amongst all possible standard deviations as

ζ(ci,s) = argmax
σ

∑
p∈B(ci,s)

Λ(p)

#{B(ci,s)}
.

Here B(ci,s) is a one-pixel expansion of the cell boundary cs,i towards the inside and outside. We accommodate for size

variation in cell nuclei by considering 3 different magnification scales (Fig. 1k). To select between these magnification

scales and also the different cell generation methods, we construct a connectivity graph across cells and magnification

scales. Each cell at each magnification scale is a node of the connectivity graph, with a weight of ci,s. We connect two

cells ci,s1 and cj,s2 if the ratio of the common area between those two cells over the union of the areas of these cells is

at above a certain threshold:

τ ≤ A(ci,s1 ∩ cj,s2)

A(ci,s1)
or τ ≤ A(ci,s1 ∩ cj,s2)

A(ci,s2)
.

Here A(ck,m) represents the area of the kth cell at magnification m and τ is a particular threshold chosen between

0 to 1. In our experiments, we chose τ to be 0.85. After the entire connectivity graph is constructed (Fig. 1j), we

update each node’s ζ(cs,i) score by dividing it by the degree of that node: ζ(cs,i)← ζ(cs,i)
deg(cs,i)

.

Following the construction of the connectivity graph, we select cells using a dynamic programming algorithm that

maximizes the sum of ζ(cs,i) scores over all identified cells. Let Ci represent the cells at ith magnification level. Our

goal is to optimize an energy function U(C1, C2, C3) that selects cells between these magnification scales and the two

detection methods, while avoiding overlapping detections. For this we construct the following energy

U(C1, C2, C3) = max
i=1,2,3





U(C1 − {ci,1}) + ζ(ci,1)

U(C2 − {ci,2}) + ζ(ci,2)

U(C3 − {ci,3}) + ζ(ci,3)

, (4)

where Cj − {ci,j} refers to the removal of cell ci,j and its connections from all cell sets Ci. As the connections

between overlapping cells from the two different methods and the different magnifications scales are sparse, we used

the Cuthill-McKee algorithm [62] to permute the sparse matrix of connections, for increased computational efficiency.
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Data and Code Availability

All data and source code will be made available without restrictions. Ethics approval IRB00010120. Normal tissues

were de-identified excess diagnostic tissue controls that were slated for incineration.
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