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Abstract 

Influential theories on error processing assume that when we conduct errors adaptive processes are 

triggered to improve our behaviour and prevent errors in the future. These processes appear to be 

more effective after participants have detected an error. Therefore, the assessment of error awareness 

allowing a differential analysis of detected and undetected errors in the context of cognitive control 

and behavioural adjustments has gained more and more attention in the past decades. A common 

methodological challenge posed on all studies investigating error detection is that the number of 

undetected errors is usually relatively low.  

Here, we introduce a gamified experimental task that uses an adaptive algorithm to generate a robust 

and stable amount of errors with a high rate of undetected errors. Further, we were able to identify 

error types, which interestingly differed in terms of their detection rate. Moreover, the game-like 

appearance of the novel experimental task led to highly motivated participants. The results of the first 

study were replicated and extended by a second behavioural study. Notably, in study 2, a change in 

task design specifically modulated error detection, while these changes did not affect the total error 

rate.  

Potential applications of the open-source code will be discussed. With this newly developed paradigm, 

we wish to lay the ground for future research to understand better (neural) processes associated with 

error awareness.  

Keywords: Error Processing; Performance Monitoring; Experimental Design; Cognitive Control  
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Introduction 

The assessment of error awareness in the context of cognitive control and behavioural 

adjustments is essential and has gained more and more attention in the past decades. Influential 

theories on error processing assume that when we conduct errors, adaptive processes are triggered 

to improve our behaviour and prevent errors in the future (Botvinick et al., 2001; Holroyd & Coles, 

2002). These processes occur even when we are not aware of the incorrect action (Hester et al., 2005; 

Nieuwenhuis et al., 2001), but they appear to be more effective after aware compared to unaware 

errors (Klein et al., 2007). Commonly used measures of behavioural adaptations after errors are 

slowing of response times (post-error slowing, PES) or increases in accuracy (post-error increase in 

accuracy, PIA) compared to correct responses (Danielmeier & Ullsperger, 2011). While PIA represents 

an immediate performance improvement, the functional significance of PES is still under debate. PES 

might indicate a meaningful adjustment (e.g., a more cautious, hence slower, response in the trial 

following an error to increase the chance to stop or change the action successfully; (Endrass et al., 

2007; Nieuwenhuis et al., 2001). Alternatively, PES could merely represent a meaningless by-product 

of the occurred error (e.g., processing the infrequent error results in a delay or disruption of the 

forthcoming processes resulting in slower responses in the trial following an error; Notebaert et al., 

2009; Wessel, 2018).  

One methodological challenge posed on all studies investigating error processing is to employ 

an experimental task that results in many errors in all participants (i.e., a high error rate) without 

causing a performance breakdown. Too many errors might result in high levels of frustration and 

participants’ disengagement from the task, or in the disability to detect errors at all. In the past, several 

methods that increase task difficulty and consequently the error rate have been used (e.g., reduce 

stimulus contrast to induce perceptual conflict or increase number of distracting stimuli; Schreiber et 

al., 2012; Somon et al., 2019). To investigate the influence of error awareness on adaptive processes, 
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it is mandatory to distinguish between detected and undetected errors1. To this aim, the error rate has 

to be even larger because detected and undetected errors will be analysed separately. Another 

problem is that the number of undetected errors is usually very low (Kirschner et al., 2020; Niessen et 

al., 2017; O'Connell et al., 2007; Rabbitt, 2002), preventing a robust characterisation of the processes 

leading to undetected errors. Further, a fair and meaningful comparison between processes regarding 

detected and undetected errors is difficult to achieve if rarely occurring undetected errors are 

contrasted with more common detected errors. Past attempts to provoke more undetected errors for 

instance reduced the visibility and processing time of the stimulus (Cohen et al., 2009; Steinhauser & 

Yeung, 2010), leading to perceptual uncertainty and reduced error detection rates (Endrass et al., 

2012). Another approach was to increase task duration, resulting in fatigue and more undetected 

errors, especially at the end of the experimental session (Harty et al., 2014).  

While these procedures indeed resulted in a larger number of undetected errors, it is 

questionable whether the observed errors could have been adequately detected by the participants 

in the first place because the experimental manipulations most likely prevented an adequate evidence 

accumulation (Steinhauser & Yeung, 2012). This would mean that it was generally not possible for 

participants to become aware of their errors. In addition, the applied methods may have triggered 

mere guessing of correct responses, at least in some trials. If so, differences between the processing 

of detected and undetected errors would happen at chance rather than under differential mechanisms 

under scrutiny. 

Usually, electroencephalographic (EEG) analysis require a large number of trials and 

participants need to be motivated across a longer period to prevent their committed errors (Larson et 

al., 2014). If errors are not important and significant for them, the motivation to adapt one’s behaviour 

is usually small (Hajcak et al., 2005). Meaningful errors are coupled with emotional appraisal, and the 

                                                           
1 We want to clarify that when we use the term error awareness, we refer to the conceptual process of being 
conscious of the incorrect action. In contrast, when we use the term error detection, we refer to the 
operationalisation of awareness in the sense that participants volitionally reported their awareness. 
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affective response triggered by errors is assumed to result in more robust adaptive processes (e.g., 

larger PES; Dignath et al., 2020)). However, undetected errors due to long task durations are likely 

driven by fatigue and indifference towards errors. Therefore, any difference to errors occurring early 

in the experiment (which are usually detected), could be confounded by secondary processes (e.g., 

motivation and alertness/ vigilance) and again would not be based on differences in the cognitive 

processes per se.   

Objectives 

Here, we open a new chapter in the assessment of error awareness by presenting a new paradigm that 

aims to overcome the described methodological limitations. The benefits and characteristics of the 

paradigm will be described in detail, making it easy for interested readers to use and adjust the open-

source code of the paradigm. It consists of a combination of commonly used and novel features (e.g., 

adaptive algorithm for response deadline, hierarchical rules), and the appearance and choice of stimuli 

make the paradigm appear game-like. The game-like character should lead to high levels of motivation 

without compromising the strict control of the experimental task. Furthermore, the ecological validity 

was expected to be higher compared to classical conflict tasks such as the Go/Nogo or flanker task. 

The main goal was to establish the new paradigm and inspect the resulting behavioural pattern, 

primarily focussing on the amount of detected and undetected errors provoked by the paradigm. In 

Study 1, we showed that already after a short time, a robust and stable error rate with a high number 

of undetected errors could be found. The behavioural results of study 1 were replicated and extended 

by study 2. Further, study 2 exemplifies how easy it can be to manipulate one feature of the task (i.e., 

rule frequency) to specifically modulate one outcome variable of interest (i.e., error detection rate). 

The second aim of study 1 was to investigate whether the increased statistical power due to the high 

rates of detected and undetected errors help to inform a recently proposed theory on error processing 

and behavioural adjustments after errors (Wessel, 2018).  
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Method 

The paradigm and the experimental parameters of the two studies were identical with one exception 

(i.e., rule frequency, see below). Thus, the following descriptions apply to both studies. 

Participants 

We recruited young, healthy, right-handed (Edinburgh Handedness Inventory, EHI; Oldfield, 1971) 

participants without any history of neurological or psychiatric diseases. Task instructions and 

questionnaires were provided in German or English (i.e., participants had to be fluent in German or 

English). In addition, all participants stated to have intact colour vision. 

For study 1, 21 participants were recruited (twelve female, nine male; mean age and standard 

deviation was 26.8 ± 3.8 years, ranging from 20 to 34 years). For study 2, we recruited a fresh sample 

of 20 participants (ten female, ten male participants; mean and SD age 25.1 ± 5.4 years, ranging from 

18 to 35 years). All participants gave written informed consent. 

Procedure 

In a quiet room with dimmed illumination, participants were seated in front of a black screen (LCD 

monitor, 60 Hz) with a distance of approximately 70 cm. Responses were measured with temporally 

precise response pads (LumiTouch, Burnaby, Canada). The experimental paradigm started with two 

training sessions, followed by the main task. On average, one experimental session lasted between 50 

and 60 minutes.   

Experimental Paradigm 

Task. The experimental paradigm is a speeded hierarchical decision-making task with two 

stimulus dimensions and four response options – and will be called in the following the Speeded 
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Inference Game – Evaluation Edition (SIG-E2). The game was scripted in PsychoPy (Peirce, 2007, 2008) 

and the open-source code can be found on GitHub (https://github.com/EvaNiessen/Speeded-

Inference-Game). The goal for participants was to identify on each trial the correct target out of a set 

of four targets (ball, bird, ice cream, chair) based on specific rules (see below). The four targets were 

mapped to four spatially congruent response buttons, which should be pressed with the left and right 

middle and index fingers (Figure 1A). Thus, the most left target was assigned to the left middle finger, 

while the most right target was assigned to the right middle finger. The four targets were defined by a 

colour-category match that remained constant throughout the experiment. A possible target 

constellation is shown in Figure 1 (blue ball, green ice cream, red chair, and yellow bird).  

Rule Types3. A stimulus appeared above the targets on each trial and showed two items that 

represent a mixture of the target features (see Figure 1B, examples for the two rules). Participants 

were instructed to apply two rules in a hierarchical order to identify the correct target based on a given 

stimulus. The first rule implies that if one of the two items represents the same category AND the same 

colour of one of the targets, this target should be chosen (see Figure 1B top, example rule 1: green ice 

cream). If the first rule is not applicable, then the participants should apply the second rule. In that 

case, participants should search for the target whose category and colour are both NOT represented 

in the two items of the stimuli, i.e., the target that differed in both colour and category when compared 

to the two stimulus items (see Figure 1B bottom, example rule 2: blue ball). In each trial, participants 

had to identify the appropriate rule.  

Performance evaluation. After a target was chosen, a 1000 ms black screen was presented; 

then, the participants were asked to evaluate the correctness of their decision. A rating screen 

appeared, asking “Was the chosen target correct?”, and participants could answer by using the same 

four response fingers. They could choose to answer “yes” (left middle finger) or “no” (right middle 

                                                           
2 The SIG can also be used independent of the response evaluation, representing a complex speeded decision-
making task. 
3 The creation of the stimuli and rules was inspired by the boardgame Ghost Blitz 
(https://de.wikipedia.org/wiki/Geistesblitz_(Spiel)). 
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finger), and in addition, we allowed the expression of uncertainty in their evaluation and hence 

provided also the potential answers “maybe yes” (left index finger) or “maybe not” (right index finger, 

see Figure 1D). 

 

Figure 1. Display during the task and example trials. Only one of the displays included in B and C (inside 

grey background) are shown in each trial, but otherwise, the course was identical for all trials. A) Four 

targets are shown constantly throughout the experiment (here: a blue ball, a green ice cream, a red 

chair, and a yellow bird). Targets should be chosen by pressing the corresponding response button (RB; 

left middle finger for the blue ball, left index finger for green ice cream, etc.). B) On each trial, a stimulus 

appears above the targets representing two mixtures of the target dimensions. Depending on the 

stimuli, either rule 1 or rule 2 had to be applied. Top: Example of a trial applying rule 1, where the 

correct target would be the green ice cream because green ice cream is part of the stimulus. Bottom: 

Example of a trial applying rule 2, where the correct target would be the blue ball. One or more features 

of the other targets are present in the stimuli, but neither the colour blue nor a ball are present in the 

two stimulus items. C) Top: After a response is given by selecting one of the targets, this target is 

highlighted. Bottom: When no response is given until the response deadline, the word ‘Timeout’ 

replaces the stimulus and the software chooses a random target. The highlighting of the chosen target 

is identical to the top scenario and is followed by a black screen. E) An evaluation screen appears asking 

participants to rate the previous decision on a four-point scale using the same four RB as in the main 

task.  
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Timeout. To provoke the participants’ continuous intrinsic motivation to perform well on the 

task, we used computer game-like characteristics. One build-in feature leading to the impression that 

participants were playing a game was a sudden abortion of a running trial. In these cases, before the 

participant responded, the stimulus was replaced by the word ‘TIMEOUT’ (written in red ink; see Figure 

1C bottom). Participants were instructed to respond as fast as possible, and whenever timeouts 

occurred, this was a signal for too slow responses. In the case of timeouts, one of the targets was 

randomly chosen by the software. This randomly chosen target could be correct or incorrect, and in 

the next step should be evaluated by participants in an identical way as the self-chosen targets. 

Unbeknownst to the participants, the temporal threshold for timeouts was constantly adjusted based 

on the past accuracy of the participants. We implemented an adaptive algorithm to keep the level of 

difficulty comparable between all participants and avoid ceiling or bottom performances.   

Adaptive algorithm. The threshold for timeouts started with 2000 ms. The threshold was 

adjusted after 16 trials (thus twice per block). When the average accuracy of the last 16 trials was 

below 60%, the threshold was increased by 10%. When the average accuracy of the last 16 trials was 

higher than 90%, the threshold was reduced by 10%. When accuracy lay between 60 and 90 %, the 

timeout threshold remained unchanged.  

Scoring System. We used a scoring system that provided participants with an indication of 

their performance during the breaks between the blocks. However, we wanted to avoid trial-based 

feedback as behavioural adaptation should rely on internal error processing, not external feedback.  

Participants could gain 10 points for each correct response on the main task and further 3 points for 

correct evaluations. Thereby, a good performance on the main task was most important, but the 

evaluations also required the participants’ attention. The points for the correct evaluations were given 

independent of the certainty of the evaluation (e.g., the answers ‘yes’ and ‘maybe yes’ as well as ‘no’ 

and ’maybe no’ were treated identically). Importantly, participants were instructed to also rate the 

automatically chosen target in timeout trials (at which participants could earn 3 points for that trial 

through correctly evaluating the randomly chosen target), which allowed us to assess the participants’ 
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awareness for these automate decisions. During breaks, participants were presented with the 

maximum score that could have been reached up to that moment and the score participants had 

actually reached. In addition, the participants were informed about a guaranteed reward for the best 

participant of the current sample. Therefore, the final score of the best participant was shown in all 

breaks to increase the motivation of the participants to beat this high-score. The intention behind this 

was to prevent fatigue and boredom at the end of the experimental session and obtain optimal 

performance throughout the entire session.  

Stimulus material. The two presented stimuli were drawn of a set of seven different exemplars 

of each target category. Thus, the participants had to respond to the concept, e.g., “ball”, and not to 

the specific target exemplar. This increased the task difficulty and intensified the game character of 

the task. The four target exemplars were constant for all participants. They were deliberately chosen 

because they were most representative of that category. The 28 exemplars used for the stimuli were 

shown to the participants before the experiment to inform the participants about the stimulus 

diversity (see Supplementary Material 1). The objects in the stimuli were variable in size (reduction up 

to 60 % possible compared to the picture’ original size) and orientation (tilted for ± 40 degrees).  

Trial course. Figure 1 illustrates the sequence and time course of a trial. Each trial started with 

the presentation of the four targets and a small square representing a fixation point in the centre above 

the targets. After a random interval of 600-1000 ms, the stimuli appeared above the targets. The 

stimuli disappeared when a response was given, and for 700 ms the chosen target was highlighted 

(Figure 1C top) by a turquoise frame surrounding the chosen target, whereas the transparency of the 

three not-chosen targets was increased. This layout was identical for self-chosen targets and the 

automatically chosen targets after the timeout (which were additionally marked by the word 

‘TIMEOUT’; Figure 1C bottom). A black screen appeared for another 1000 ms before the rating screen 

to evaluate the response was presented. After participants had chosen an evaluation response or no 

response was given after 4000 ms, the inter-trial interval (see above 600-1000 ms) started, including 

the presentation of the targets and the fixation square.  
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Controlling procedures. We balanced the target colour-category matching across participants, 

precluding an unwanted colour-based bias (e.g., the red colour could increase alertness); thus, each 

colour could be assigned to a different finger. The categories were always allocated to the same spatial 

positions.  

Further, the correct target-response assignment frequency was equally distributed within each block; 

thus, within one block (32 trials), each of the four targets was the correct response eight times. To 

perfectly balance the timeout displays was not possible as the number of timeouts varied between 

participants. We defined a set of eight targets (each target twice), and in case of a timeout, the 

displayed target was drawn randomly (without replacement) from this set – thus controlling for a 

similar number of chosen targets independent of the correctness of that target in the given trial.  

Practice blocks. As the target-finger mappings had to be practised to avoid errors due to 

difficulties in mapping targets and response fingers, we included two training sessions, which could be 

repeated until participants felt comfortable and the experimenter was satisfied with the performance. 

More specifically, participants were only allowed to continue when they showed automation in using 

the four response buttons (i.e., learned the target-response mapping) and when they were not 

frequently interrupted by timeouts (i.e., they responded as quickly as desired). The first training 

session was mainly intended to introduce participants to the layout of the task and familiarise them 

with the stimuli and targets. There was no speed limit, and trial-wise feedback should help become 

acquainted with the task and the two rules. The second training session resembled the main task (i.e. 

no feedback was given, and the timeout was used); only the threshold of the timeout was not adjusted.  

Specifics of Study 1. Study 1 consisted of 14 experimental blocks with 32 trials (i.e.,  448 trials 

in total). Between each block, there was a break with a self-chosen duration (minimum break was 3 

seconds). Both rules had to be applied similarly often within each block, hence 50% of the time.  

Specifics of Study 2. To investigate the impact of the frequency of the rules on error detection 

performance, we systematically varied the frequency of the rules. Fifteen experimental blocks with 32 
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trials were presented (i.e., 480 trials in total). In the first five blocks, both rules were again equally 

distributed (50% each rule). For the following five blocks, 75% of the trials demanded applying rule 2 

and 25% of the trials the application of rule 1. Finally, this distribution was reversed for the final five 

blocks (75% rule 1, 25% rule 1). A constant order for every participant was used as piloting work 

revealed lower error rates when most trials demanded rule 1. Hence, in these blocks, the temporal 

threshold for the timeout was enormously shortened. With such a heavy time pressure in the (more 

challenging) manipulation condition, in which most trials demanded rule 2, it would have been 

challenging to respond before the temporal threshold was reached (i.e., the timeout occurred).   

Data and statistical analysis 

Study 1. The response rates are first described on a descriptive level. To investigate the 

changes of the different response rates across the task, repeated-measures analysis of variance (RM 

ANOVA) were employed with the within-subject factor block (block 1 - 14) and as dependent variable 

either correct rate, error rate, timeout rate and error detection rate. The correct rate, error rate and 

timeout rate correspond to the proportion amongst all trials responded to either correctly, incorrectly 

or where a timeout had occurred. Detected errors were defined as those errors which were rated as 

being incorrect [i.e., rating question ‘Was the chosen target correct?’ answered with ‘No’ and ‘Maybe 

not’; (number of detected errors/ all errors)]. Undetected errors, consequently, were those errors 

rated as being correct (i.e., rating question ‘Was the chosen target correct?’ answered with ‘Yes’ and 

‘Maybe yes’). For the influence of rule type, we conducted paired-sample t-tests for the error rate and 

error detection rates comparing rule 1 versus rule 2 trials [i.e., number of errors / 224 (224 is the sum 

of trials applying one rule type)]. Then, to assess a potential differential performance improvement 

due to the two rules, we conducted two 2 x 14 RM ANOVAs with the factors rule and block for the 

dependent variables error rate and error detection rate.  

Response times (RT) were examined with a paired-sample t-test comparing RT of errors and correct 

responses. Changes throughout the experiment were tested with a 2 x 14 RM ANOVA with the factors 
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accuracy and block. Finally, RT differences for rule 1 and rule 2 trials were tested with a 2 x 2 RM 

ANOVA with the factors rule and accuracy. 

Behavioural adaptations were assessed regarding post-error slowing (PES) and post-error increase in 

accuracy (PIA). Paired-sample t-tests were conducted to compare PES with post-correct slowing (PCS). 

PES and PCS were calculated as the difference in RT of trial n+1 and trial n-1, where trial n represents 

the error and the correct response, respectively (Dutilh et al., 2012). Due to this approach, only trials 

were included if no timeout occurred before or after the error (otherwise, there would be no RT on 

that trial). In addition, we investigated the influence of error detection on PES by splitting errors into 

detected and undetected errors and compared the corresponding PES using a paired-sample t-test. 

The same analysis was conducted for PIA compared to the post-correct increase in accuracy (PCA).  

Study 2. As a first step, we compared the response rates of the second study with response 

rates from the first study to test whether the pattern of response rates was replicable. For that, we 

averaged the correct rate, error rate, timeout rate, or error detection rate for the first five blocks of 

each experiment. In these blocks, the rule frequency was 50:50 in both studies and thus the 

comparison was based on the same number of trials collected under similar circumstances (e.g., time 

on task, habituation, fatigue). The four response rates were statistically compared with two-sample 

independent t-tests.  

The next step was to examine whether manipulating the rule frequency led to changes in performance 

compared to the 50:50 rule distribution. Therefore, we used the first five blocks of the second study 

as a baseline condition (containing the original 50 % rule frequency) and contrasted the response rates 

of the baseline to the two manipulation conditions. To evaluate the influence of rule frequency, the 

response rates were averaged for the three parts [i.e., block 1-5 (= baseline, part 1), block 6-10 (part 

2) and block 11-15 (part 3)]. Paired-sample t-tests were carried out between the baseline and part 2 

and the baseline and part 3 for either correct rate, error rate, timeout rate or detection rate.  
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Results and Discussion Study 1 

Unless stated otherwise, all results are expressed as the mean ± standard deviation (SD). If applicable, 

statistical tests were Bonferroni-corrected, and the Greenhouse-Geisser correction was used when 

sphericity was violated. Missing values were replaced by the group average. 

The mean task duration was 37.4 ± 2.8 min and varied individually because the trial durations varied 

with the performance (e.g. timeouts, breaks). 

 

Table 1 

Descriptives of task performance for studies 1 and 2. 

 
CORRECT (IN %) ERROR (IN %) TIMEOUT (IN %) DETECTION (IN %) 

OVERALL EXP. 1 
73.0 ± 3.9 

[71.2 - 74.8] 

18.3 ± 5.6 

[15.8 - 20.9] 

8.7 ± 4.0 

[6.9 - 10.5] 

69.1 ± 15.2 

[62.1 - 76.0] 

EXP.1 PART 1  

(50% RULE 1) 

67.7 ± 4.1 

[65.7 - 69.9] 

18.7 ± 7.6 

[16.7 - 23.2] 

13.6 ± 6.8 

[9.6 - 14.9] 

65.5 ± 16.5 

[57.5 - 73.4] 

EXP. 2 PART 1 

(50% RULE 1, 

BASELINE) 

71.0 ± 7.0 

[67.7 - 74.3] 

16.3 ± 8.1 

[12.5 - 20.1] 

12.7 ± 7.0 

[9.4 - 15.9] 

63.8 ± 22.2 

[53.5 - 74.2] 

EXP. 2 PART 2 

(25% RULE 1) 

73.8 ± 3.9 

[71.9 - 75.6] 

17.6 ± 6.2 

[14.7 - 20.5] 

8.7 ± 6.2 

[5.8 - 11.5] 

76.3 ± 19.1 

[67.4 - 85.2] 

EXP. 2 PART 3 

(75% RULE 1) 

83.4 ± 3.7 

[81.7 - 85.1] 

12.5 ± 5.7 

[9.9 - 15.2] 

4.0 ± 4.2 

[2.1 - 6.0] 

63.5 ± 21.8 

[53.3 - 73.7] 

Note. Group mean ± SD are shown. Square brackets include the 95% confidence interval. 

Response rates 

Descriptive statistics. As shown in Table 1, the mean error rate was 18.3 % (which in absolute 

terms means on average 82 error trials per person), and few trials were disrupted by a timeout (8.7 
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%). In 73 % of all trials, the responses were correct. In only 4 % of all ratings one of the maybe options 

were used. Therefore, for the definition of detected and undetected errors, we collapsed the ‘Yes’ and 

‘Maybe yes’ ratings to represent undetected errors and the ‘Maybe not’ and ‘No’ ratings for detected 

errors (Stahl et al., 2020). As a result, the mean error detection rate was 69.1 %. Most automatically 

chosen targets after timeouts were incorrect (i.e., 73.7 ± 8.0 %). Considering the ratings of timeouts, 

65.7 ± 9.8 % had been correctly evaluated (i.e., correct responses were rated as being correct and 

errors were rated as being incorrect) and 34.2 ± 9.8 % of the evaluations were incorrect (i.e., correct 

responses were rated as being incorrect and incorrect responses as being correct). Finally, most 

timeouts occurred on trials where rule 2 was applied (85.4 ± 6.2 %). 

Response rate variations across blocks. First, we tested the effectiveness of the applied 

adaptive algorithm, which was based on the aggregated previous accuracy of the participants. As 

shown in Figure 2 and tested by the RM ANOVA with the factor block, we succeeded in creating a 

robust and stable error rate that was not changing throughout the task [Figure 2, red line; F(13,260) = 

1.002, p = .426]. Intriguingly, the detection of errors was also stable across the experiment [Figure 2, 

orange line; F(13,260) = 1.039, p = .407]. On the other hand, it was obvious that participants’ 

performance got better with time, illustrated by a significant increase in correct responses [Figure 2, 

green line; F(13,260) = 8.906, p < .001], which could be explained by a reduction in the occurrence of 

timeouts throughout the course [Figure 2, black line; F(13,260) = 17.370, p < .001].  
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Figure 2. Mean ± standard error of the four response rates for each of the 14 blocks of study 1. Green 

line = correct rate; red line = error rate; black line = timeout rate; orange line = error detection rate. 

 

Influence of rule type. We assumed that the first rule would be experienced as easier 

compared to the second rule. Therefore, we compared the number of errors that occurred when rule 

1 should have been applied with errors occurring in trials when rule 2 had to be applied. Interestingly, 

the error rates did not differ significantly for the two rules [errors on rule 1 = 16.3 ± 8.6 %, errors on 

rule 2 = 20.4 ± 9.1 %; t(20) = -1.38, p = .184]. We observed great individual difference though (see 

Supplementary Material 2), but these eventually balanced out on the group level. In terms of error 

detection, the two rules differed substantially [t(20) = -7.220, p < .001]: While most errors on rule 2 

were detected (87.1 ± 16.8 %), the rating was at chance level for errors on rule 1 (48.7 ± 16.1 %). We 

further explored this by assessing changes in error rate and error detection rate for the two rules 

separately across the course of the experiment. For errors in general, the 2 x 14 RM ANOVA with the 
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factors rule and block did not show a differential development of the two rules [non-significant 

interaction: F(13,260) = 1.070, p = .385]. Regarding error detection, the RM ANOVA revealed only a 

significant main effect of rule [due to higher error detection rates for errors on rule 2 than rule 1; 

F(1,20) = 61.627, p < .001)]. There was no significant main effect of block [F(13,260) = 1.561, p = .097], 

indicating no general increase in error detection. Finally, there was also no significant interaction 

[F(13,260) = 1.454, p = .135], meaning that even though the detection of errors on the second rule was 

generally better, this did not result in a differential change over the task (see Figure 3).  

 

Figure 3. In study 1, detection rates of errors (mean ± standard error) conducted at trials demanding 

rule 1 (solid line) and rule 2 (dashed line) did not change across the course of the experiment. Mean 

detection of errors at rule 2 was better than for errors on rule 1. 

 

Response time 

The RT of errors was significantly slower than RT of correct responses [correct = 1414.6 ± 136.1 ms; 

error = 1675.5 ± 164.9 ms; t(20) = -11.972, p < .001]. When inspecting the development of RTs across 
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the experiment, the RM ANOVA revealed a main effect of accuracy [F(1,20) = 169.767, p < .001] and a 

significant main effect of block [F(13,260) = 10.061, p < .001]. This is in line with our interpretation 

above, arguing that participants became better on the task by avoiding timeouts accompanied with 

decreasing overall RTs. However, there was no significant interaction between block and accuracy 

[F(13,260) = 1.634, p = .143], indicating that the RTs became faster for both errors and correct 

responses. 

We again were interested in the potential influence of rule type on RTs. The 2x2 RM ANOVA with the 

factors rule and accuracy showed a main effect of rule [F(1,20) = 237.087, p < .001] with slower RTs for 

rule 2 (1736.9 ± 38.3 ms) than for rule 1 (1349.2 ± 25.5 ms). As already seen, correct responses (1405.2 

± 28.3 ms) had faster RT compared to errors (1681.0 ± 33.4 ms) [F(1,20) = 321.543, p < .001]. However, 

the interaction between accuracy and rule was also significant [F(1,20) = 453.147, p < .001]. Post-hoc 

tests revealed that RTs were fastest for correct responses on rule 1 (1056.7 ± 25.4 ms), followed by 

errors on rule 1 (1641.8 ± 32.0 ms) and errors and correct responses on rule 2 (1753.7 ± 39.3 ms; 

1720.2 ± 38.3 ms, respectively; all p < .01). This indicates that the main effect of rule type on RT was 

mainly driven by the difference in RT for correct and incorrect responses in trials, in which rule 1 should 

have been applied.  

Behavioural adjustments 

A paired-sample t-test showed that PES was significantly larger (50.0 ± 78.2 ms) compared to post-

correct slowing (PCS; -6.5 ± 33.4 ms) [t(20) = 2.870, p < .01]. We then investigated whether PES differed 

between detected and undetected errors. Differentiating errors into detected and undetected errors 

did, however, not result in significant differences in PES [PES detected errors = 58.2 ± 111.0 ms, PES 

undetected errors = 14.1 ± 114.3 ms; t(20) = 1.435, p = .167]. 

The same procedure was applied on post-error increases in accuracy (PIA). While we did not observe 

a significant difference in PIA (79.0 ± 6.9 %) compared to post-correct accuracy [PCA, 80.7 ± 5.7 %; 

t(20) = -1.823, p = .08], PIA significantly differed between detected and undetected errors [t(20) = 
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2.527, p < .02]: PIA was higher when the error was detected (80.4 ± 7.5 %) than when the error was 

undetected (75.6 ± 7.8 %). Thus, in terms of PIA, the awareness of an error led to greater behavioural 

adjustments.  

Discussion Study 1 

First and foremost, we succeeded in creating an experimental task that produces a large number of 

undetected errors in an efficient way (i.e., in a short amount of time). The error rate was stable across 

the experiment, which was expected given that the adaptive algorithm was adjusted based on the past 

error rate. Participants were generally able to improve their performance, but this improvement was 

grounded in RT decreases and avoidance of timeouts – and thus not at the expense of a reduced error 

rate towards the end of a task. This suggests that using the past error rate for adjusting the adaptive 

algorithm was a successful approach. The finding of a likewise stable error detection rate was 

surprising. This feature of the current task, however, could be promising, because an equal distribution 

of detected and undetected errors throughout the experiment might reduce potential systematic 

biases (e.g., habituation effects at the beginning of the task or fatigue effects at the end of the task).   

Further, we implemented two hierarchical rules, which both had to be applied in 50 % of the trials. 

This reduced surprise effects through infrequent events that are used in many standard tasks such as 

Go/Nogo or Flanker tasks. Despite presupposed differences in difficulty for the two rules, errors 

occurred similarly often. Nevertheless, the errors due to rule 1 and 2 seemed to be fundamentally 

different in terms of RT pattern and error awareness. While most errors due to rule 2 were detected, 

errors due to rule 1 were only detected in approximately 50 %, i.e., at chance level. The reasons 

underlying the increased number of undetected errors due to rule 1 will be further explored in study 

2.  

Finally, it was interesting to observe that the behavioural adjustments based on RT and accuracy did 

not reflect similar processes (Endrass et al., 2012): While PES was generally related to the accuracy, 

adjustments in PIA were more substantial when errors were detected (note that there was a trend 
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towards significance also for the difference between PIA and PCA). While those results contradict some 

previous findings (Cohen et al., 2009; Kirschner et al., 2020; Klein et al., 2007), they are well in line with 

the adaptive orienting theory by Wessel (Wessel, 2018). According to this theory, errors first trigger a 

cascade of automatic processes related to the unexpected event (e.g. inhibition of ongoing cognitive 

processes or attentional orienting to identify the source of the error), followed by controlled processes 

(e.g., task-set reconfigurations) aiming to prevent errors in the future – or put differently, aiming to 

increase post-error accuracy. When interpreting the current findings in line with the theory, it is 

possible that the appearance of the rating screen in our study systematically distorted ongoing 

automatic processes. Consequently, larger PES was observed as a sign of a re-orienting response to 

the task (Notebaert et al., 2009). However, as the controlled processes probably had not been 

completed, an increase in cognitive control as a countermeasure to the errors’ source could not be 

implemented, and, therefore, we did not observe a PIA. On the other hand, error awareness, seemed 

to speed up the automatic and controlled processes that succeeded the incorrect response so that 

after detected errors, the time between the response and the rating screen was sufficiently long for 

the ongoing processes to be completed. Thus, the appearance of the rating screen did not disrupt or 

delay these processes, so that a PES was not triggered, but the adaptive measures were implemented, 

increasing post-error accuracy. Thus, in light of currently ongoing discussions about adaptive or 

maladaptive behavioural adjustments after errors, our results align with the view that PES and PIA are 

two distinct, but not independent measures representing maladaptive and adaptive processes, 

respectively. These results again highlight the critical role of error awareness, implying that the 

beneficial influence of error awareness should not be underestimated for processes concerning 

cognitive control (Endrass et al., 2012; Wessel, 2018). The here introduced SIG is a helpful tool to 

further investigate such processes by provoking many detected and undetected errors.  
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Results and Discussion Study 2 

Behavioural results  

For a replication test of the above-described findings, initial response rates of studies 1 and 2 (means 

of the first five blocks each) were examined to evaluate whether the second study replicated the 

behavioural patterns of study 1. Then, mean response rates of the baseline (i.e., mean of the first five 

blocks of study 2 = part 1) were compared to the mean response rates of parts 2 and 3. For brevity, we 

only report results of response rates here, but please see Supplementary Material 3 for results on RTs 

and behavioural adjustments. Please note that we refer to Table 1 for all descriptive values 

corresponding to the below analyses. 

Replication. Overall, the behaviour pattern obtained in study 2 was very similar to the results 

obtained in study 1 and no significant group differences could be found for the four response types 

[correct rate p > .071; error rate p > .345; timeout rate p > .655; error detection rate p > .792]. Thus, 

the performance and error detection at the beginning of the two studies were similar, replicating the 

results of the first study. 

Part 2 – Rule 1 applied in 25 % of trials. The paired-sample t-tests contrasting part 2 with the 

baseline revealed no significant differences in accuracy and the error rate (p > .175 and p > 231, 

respectively). The rate for timeouts was significant lower in part 2 than at baseline [t(19) = 3.214, p < 

.005]. However, as we saw in study 1, a reduction in the timeout rate might simply be due to 

habituation to the task requirements. More importantly, though, and in line with our expectations, we 

found a significant difference in the error detection rate between part 2 and the baseline [t(19) = -

3.330, p < .004]. Thus, while the accuracy and error rate were unchanged by the differences in rule 

frequency, decreasing the number of trials demanding rule 1 led to a specific increase in error 

detection (see Figure 4). 
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Figure 4. Mean ± standard error of response rates for the three parts of study 2. The correct rate, error 

rate, and timeout rate are represented as the percentage of all trials, whereas the error detection rate 

is shown as the percentage of all error trials. Asterisks indicate significant differences in comparison to 

part 1 (the baseline condition): * p < .05; ** p < .01; *** p < .001. 

 

Part 3 – Rule 1 applied in 75 % of trials. In contrast, when adjusting rule frequency in a way 

that rule 1 should be applied in the majority of trials, we observed the opposite pattern of effects. 

Compared to baseline, the correct rate significantly increased [t(19) = -7.562, p < .001], the error rate 

significantly decreased [t(19) = 2.840, p < .010], and the timeout rate was also significantly lower [t(19) 

= 6.507, p < .001]. Crucially, the error detection rate was not affected and thus not significantly 

different compared to the baseline [p > .951] (see Figure 4). 

Error sources 

Due to a more differentiated information stored in the updated version of the SIG used in study 2, a 

more detailed analysis of error sources was possible. During the practice sessions before the actual 
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experiment, participants were trained to apply the two rules hierarchically (i.e., rule 2 can only apply 

if rule 1 is not applicable). However, there was no explicit cue about which rule should be used within 

a trial. In the second study, the distribution of errors for the two rules was again similar, replicating 

results from study 1 despite differences in rule frequency (note that over the whole experiment, 

independent of the different distributions in parts 2 and 3, both rules again occurred 50 % of trials). 

Averaged across all blocks of the second study, errors in study 2 occurred in 46.0 ± 13.1 % due to rule 

1 and in 54.0 ± 13.1 % due to rule 2 [t(20) = -1.371, p = .186]. Importantly, we also replicated the 

behavioural pattern found in study 1 considering the error detection rate for both rules: While the 

majority of errors due to the second rule were detected (87.4 ± 16.2 %), the detection of errors due to 

rule 1 was at chance level (48.0 ± 21.2 %) [t(20) = -8.042, p < .001].  

At a closer look at potential stimuli for rule 1, it was noticeable that there is always one target which 

features are not represented at all in the stimuli - which is the decision criteria for correct targets on 

trials demanding rule 2 (see, for example, the blue ball in Figure 1B top). This, of course, only holds if 

the fact that the rules are hierarchical is ignored. Thus, we wanted to assess how often participants 

made errors not based on a general wrong decision but based on applying the wrong rule. It turned 

out that 76.0 ± 10.9 % of errors at rule 1 were due to the inappropriate but eventually “correct” 

application of rule 2. This also explains a large number of undetected errors because of those described 

rule errors, only a small fraction of 36.1 ± 23.6 % was detected by participants.  

Discussion Study 2 

The second study further explored the differences in error awareness for the two rules. Specifically, 

we wanted to test whether it is possible to manipulate the error detection rate by using different 

frequencies of the rule type.  

When inspecting the baseline block of study 2, we found that the results of the second study 

convincingly replicated the behavioural pattern of study 1. The main goal of study 2 was to explore if 

it was possible to modulate error detection by varying the rule frequency. In study 1, we had observed 
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that errors got less often detected in trials, where rule 1 should have been applied. Thus, we expected 

that by systematically increasing or decreasing the number of trials applying rule 1, we might also 

specifically modulate the error detection rate while keeping the error rate unchanged (because there 

was no difference in error rate between the two rules). Results of study 2 supported our hypotheses: 

We could show that error detection was significantly modulated, while at the same time, the error rate 

was unchanged, underlining the specificity of the manipulation. To demonstrate the effects of the 

manipulation, we compared behavioural changes induced by changing rule frequency in comparison 

to a baseline (i.e., part 1, which was identical to the design of study 1, namely a 50:50 rule distribution). 

The above-described successful modulations occurred in part 2, where we increased the frequency of 

rule 2. In contrast, increasing the frequency of rule 1 (i.e., part 3 compared to the baseline) resulted in 

increased correct responses and decreased errors, but did not affect the error detection rate. The SIG 

was initially developed to provoke many undetected errors, but as we have shown in study 2, the SIG 

can easily be adjusted to produce variations of specific outcome variables and for instance provoke 

less undetected errors (if this outcome pattern is desired). Independent of that, we observed that 

avoidance of timeouts seemed to reflect general learning processes throughout the task. 

Finally, study 2 led to further differentiation of error types. While in study 1, it was apparent that errors 

due to rules 1 and 2 were fundamentally different, we further identified sources leading to (mostly 

undetected) errors within the category of rule 1 errors: Rule 1 errors can be differentiated based on 

whether rule 2 was “correctly” applied or not, i.e., whether the error was due to a misclassification 

about which rule should have been applied. Depending on whether or not rule 2 was applied to errors 

due to rule 1, the error types differed in terms of awareness and RTs (see Supplementary Material 3 

for RT results). Knowing about the different error types and possibilities of provoking or countervailing 

them is a useful benefit of the presented task. Knowledge about the sources of errors and the easy-to-

adjust open-source code of the task entails many possible applications of the game for future studies, 

which will be discussed in the general discussion.  
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General discussion 

We presented a new paradigm useful for testing error awareness. The Speeded Inference Game – 

Evaluation Edition (SIG-E) overcomes several weaknesses of past attempts to provoke undetected 

errors, such as expanding task duration or inducing perceptual uncertainty about the stimuli (cf. 

Kirschner et al., 2020). In addition, the paradigm has some innovative characteristics, which can easily 

be adjusted in future studies - as we did in study 2. One notable feature of the paradigm is the high 

ecological validity due to the gamification, which increases the participants’ motivation. Further, we 

achieved high error rates without using oddball stimuli or rare events (e.g., as in classical Go/Nogo or 

Flanker tasks). Only two rules needed to be memorised and autonomously applied on each trial, but 

when both rules occurred similarly often, errors could not be explained by surprise effects due to 

infrequent stimulus presentation. Another advantage, which might be especially crucial for future 

imaging and neurophysiological studies, is that early perceptual processes (e.g., N1 and P2 

components) and decision-related processes are not overlapping in time due to the relatively long 

response times. A separation of perceptual and response-locked event-related potentials might hence 

be possible with our task. Finally, because the stimuli were shown on the screen until a response was 

made, we could assure that errors did not occur due to perceptual difficulties but are more likely to be 

related to higher-order cognitive processes (e.g., as described above for the identified rule application 

errors).  

Limitations 

This fact, however, likewise leads to a significant limitation of the task. We created a paradigm that 

should be challenging and at the same time ecologically valid without relying on too many mnemonic 

aspects. Therefore, it was necessary to increase the complexity at several stages (e.g., four possible 

response buttons, implementation of category-colour matches, hierarchical rules). To counteract the 

complexity, we used comprehensive practise sessions before the start of the main task to ensure an 

internalised category-colour matching.  
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Another limitation was missing relevant information in the output file during study 1, which was 

improved in study 2 (and of course implemented in the code). Further, we had no full randomisation 

of the colour and category matches constituting the targets. We only randomised the colours, but kept 

the categories fixed on their spatial positions, as we didn’t expect those to have a significant influence 

on the behaviour. Still, such an influence seems possible and should be investigated in future studies.  

Lastly, considering the analysis, there are two points we want to stress. First, as we saw in studies 1 

and 2, errors for the two rules are different in terms of their error detection rate. Therefore, the 

differences between the two rules might be confounded by the underlying differences in error 

awareness. Second, the utility of the timeouts needs to be reassessed. While they are helpful for 

gamification and the implementation of the adaptive response deadline, timeout trials also introduce 

a new and separate response type. Participants did not respond in time, but it remains unknown at 

which stage in the decision-making process participants were when the timeout occurred. The 

subjective evaluation of timeouts is also challenging to interpret and different from evaluations after 

self-executed responses. Therefore, the underlying processes occurring during timeouts need further 

investigation. 

Future variations  

As mentioned above, the paradigm was designed flexibly allowing easy modifications depending on 

the research question. In study 2, we already proved that changes in rule frequency could modulate 

error detection. If useful for the research question at hand, cueing of the current rule could be 

implemented to prevent too many undetected errors. Using different forms of feedback would be 

possible (e.g., explicit on a trial-by-trial basis or implicitly via the scoring system) if the interest of future 

studies lies in feedback-based learning. Further, the validity of feedback and cueing could be 

manipulated if interested in studying believe updating. Changing the underlying features of the 

timeout might pose another valuable source for interesting task variations. By increasing the volatility 

of the timeout, one could provoke more timeouts and hence more observed (and not committed) 
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errors. Also, the individual difficulty level of the paradigm could be adjusted by changing the timeout 

threshold at the beginning of the task (which was fixed to 2000 ms in our experiments). This could 

potentially be individualised using RT measures obtained from the training sessions.  

To conclude, we here introduced a new behavioural paradigm particularly suitable to test error 

awareness. It provoked many undetected errors in young adults, which so far was a challenging 

endeavour (Kirschner et al., 2020; Niessen et al., 2017; Rabbitt, 2002). We identified different types of 

errors, which could be further explored with electrophysiological measures to understand better the 

neural processes underlying error processing and error awareness. Considering behavioural 

adjustments after errors, our results support the adaptive orienting theory (Wessel, 2018) and 

highlight the importance of systematically gathering and integrating the subjective performance 

evaluation of participants – which is now possible for everyone by employing the open-source Speeded 

Inference Game.  
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