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 16 

Abstract: Climate emergency is a significant threat to biodiversity in the 21st century, but 17 

species will not be equally affected. In summing up different species’ responses at the local 18 

scale, we can assess changes in the species quantity and composition of biotic assemblages. 19 

Here we investigated climate change driven variation in species richness and spatial beta-20 

diversity using modelled distributions of 2,841 plant species in Caatinga, the largest dry 21 

forest region of South America. More than 99% of plant assemblages were projected to 22 

lose species by 2060, with biotic homogenisation ─ the decrease in spatial beta-diversity ─ 23 
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forecasted in 40% of the Caatinga. Replacement of narrow-range woody species by wide-24 

range non-woody ones should impact at least 85% of Caatinga plant assemblages. The 25 

future increase in aridity will change patterns of woodiness and ecological generalism of 26 

tropical dry forest plant assemblages, and ultimately erode ecosystem services linked to 27 

biomass productivity and carbon storage. 28 

 29 

Climate change has been altered the environmental conditions experienced by many 30 

species on Earth 1. If species tolerances do not encompass the novel climatic conditions, they 31 

may be forced to change their phenology or geographic range to track suitable climates 2,3. 32 

Spatial changes in the geographic range of species can alter the composition of species 33 

assemblages 4. While certain species can colonise new sites in the future, most may not disperse 34 

quickly enough to avoid local extinctions, with the extinction risk being greatest for species with 35 

low vagility and narrow distribution 5. High local extinctions of narrow-range species and the 36 

potential colonisation of new sites by wide-range species can lead to the biotic homogenisation 37 

of species assemblages 6, and the eventual loss of ecosystem functions provided by such species 38 

7. Because the climate emergency is a higher threat for tropical species 2,5, long-term 39 

conservation planning will benefit from understanding how different tropical ecosystems are 40 

subject to biotic changes 8,9. 41 

Climate change has induced the biotic homogenisation of plant assemblages in several 42 

ecosystems around the world 10, including drylands 8,11,12. It has been suggested that dryland 43 

plants already experience a high water deficit and are close to their climatic tolerances 9. One of 44 

the world’s largest and floristically richest tropical dry forest is found in northeastern Brazil ─ 45 

the Caatinga ─ with 912,529 km² 13,14. Future climate projections indicate increases in aridity, 46 
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with subsequent desertification of some areas within the Caatinga 15. Previous research has 47 

shown that climate change should drive range contraction of endemic Caatinga plant species, 48 

especially those with more specialised life history attributes 16. Indeed, the colonisation and 49 

extinction rates of species assemblages may be affected by species geography and life-history 50 

attributes 17. Narrow-range species tend to be more sensitive to climate change, whereas wide-51 

range species often exhibit broader climatic niches and thus high ecological generalism 18. 52 

Among flowering plants, the growth form is known to reflect species ecophysiology 19, with 53 

woody plant species likely exhibiting  limited adaptability to climate change due to their longer 54 

generation time and slower rates of climatic niche evolution relative to non-woody plants 20. 55 

We applied ecological niche models (ENMs) under an ensemble modelling framework to 56 

estimate the current and future geographic distribution patterns of 2,841 Caatinga plant species, 57 

and then assessed potential biotic changes in local plant assemblage richness (∆S = Sfuture – 58 

Scurrent) and spatial beta-diversity (∆βSOR = βSOR.future – βSOR.current) in response to climate change 59 

(see Methods). Our investigation considered the latest projections on future climate scenarios 21 60 

for 2060 and 2100, under the business-as-usual (SSP245) and non-mitigation (SSP585) 61 

scenarios. Ensemble models showed good predictive performance, with an average Sørensen 62 

similarity index of 0.934 (SD = 0.043, range = 0.703–1.00; Fig. S2). Because our results were 63 

qualitatively similar for 2060 and 2100, we focused on 2060 projections for brevity (see 64 

Extended Data for results concerning the year 2100). 65 

 66 

RESULTS 67 

Climate change will drastically alter plant biodiversity in one of the world’s largest 68 

seasonal tropical dry forests, the Caatinga. Our projections show that almost 90% of Caatinga 69 
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plant species will lose suitable areas by 2060, particularly narrow-range species (Fig 1). The 70 

current distribution of Caatinga plant species will decrease on average by 37.4% and 43.9% in 71 

the SSP245 and SSP585 scenarios, respectively. No Caatinga plant species is projected to lose its 72 

entire suitable area within the Neotropics, but in the Caatinga, from 62 (SSP245) to 89 (SSP585) 73 

species could be regionally extinct ─100% of range loss─ by 2060, and between 141 (SSP245) 74 

and 349 (SSP585) species could be regionally extinct by 2100. 75 

At the assemblage-level, more than 99% of plant assemblages in the Caatinga will lose 76 

species by 2060 (Fig. 2b and c). Biotic homogenisation (∆βSOR < 0) is expected in about 40% of 77 

Caatinga plant assemblages, particularly in species-poor regions currently dominated by non-78 

woody and wide-range species (Fig. 2e and f). Relative to regions subject to biotic 79 

heterogenisation, the future homogenised plant assemblages currently harbour lower species 80 

richness (χ² = 3834.9, df = 7, p < 0.001, Fig. 3a), lower proportion of woody species (χ ² = 81 

1008.6, df = 7, p < 0.001, Fig. 3b), and higher proportion of wide-range species (χ ² = 1953.1, df 82 

= 7, p < 0.001, Fig. 3c). Although we projected a pervasive decrease in woodiness and an 83 

increase in the ecological generalism of plant assemblages, the magnitude of such changes 84 

differs between future homogenised or heterogenised regions. Plant assemblages facing 85 

homogenisation risk by 2060 showed lower species loss (χ² = 4478.8, df = 7, p < 0.001, Fig. 3d), 86 

higher decrease in relative contribution of woody species (χ ² = 1419.3, df = 7, p < 0.001, Fig. 87 

3e), and lower increase in relative contribution of wide-range species (χ ² = 1662.6, df = 7, p < 88 

0.001, Fig. 3f) than assemblages subject to heterogenisation. 89 

We observed a predominance of assemblages with a higher proportion of non-woody and 90 

wide-range species in the northern and middle-west regions of the Caatinga, whereas 91 

assemblages with relatively more woody and narrow-range species occurred in the southern and 92 
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northeastern Caatinga (Fig. 4). Under the business-as-usual scenario, 98.4% of plant assemblages 93 

will experience a reduction in the proportion of woody species (WoodyRatio < 1), slightly less 94 

than in the non-mitigation scenario (98.9% of assemblages). The relative contribution of wide-95 

range species will increase (WideRatio > 1) in most assemblages in both SSP scenarios (86.1% 96 

in the SSP245 and 85.3% in the SSP585, Fig. 4b and c). In all SSP scenarios investigated, the 97 

increase in spatial beta-diversity of plant assemblages was directly related to species loss (Fig. 5a 98 

and b), with changes in relative contribution of wide-range species linked to the decrease in 99 

proportion of woody species (Fig. 5c and d). 100 

 101 

DISCUSSION 102 

The exacerbated decrease in plant richness can erode ecosystem services in Caatinga by 103 

2060. In drylands worldwide, the role of plant richness in productivity stability is as important as 104 

that of climate and edaphic conditions 22. Under high aridity, species-rich assemblages are more 105 

critical for ecosystem stability, whereas functionally distinct species minimise variation in the 106 

temporal delivery of ecosystem services at low aridity 22. Climate change is expected to increase 107 

aridity in Caatinga, particularly in the central-southern region 15, where our projections indicate a 108 

higher species loss of plant assemblages. To worsen the situation, 98.4–98.9% of Caatinga plant 109 

assemblages will lose relatively more woody than non-woody species, which should enhance the 110 

impacts on biomass productivity and carbon storage in drylands 23,24. 111 

Aridity may favour the establishment of wide-range plant species 25. Since most wide-112 

range plant species in Caatinga have non-woody growth-forms 26, the projected increase in 113 

aridity in this region will lead to structural changes in vegetation complexity. With higher aridity, 114 

dryland ecosystems face a vegetation decline phase due to the reduction of leaf area and canopy 115 
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cover 27. Aridification can also promote compositional change 28 and reduce the beta-diversity of 116 

dryland plant assemblages 29. As environmental filtering can better explain the beta-diversity of 117 

herbs and shrubs than that of trees 30,31, woody species’ distributions are likely at a lower 118 

equilibrium with climate than those of non-woody species, implying that woody species may not 119 

keep pace with climate change. Projected changes in the species richness and beta-diversity of 120 

Caatinga plant assemblages can therefore underestimate the impacts of climate change on plant 121 

assemblages with higher levels of woodiness. 122 

The impacts of climate change are often expected to be less severe in mountainous 123 

regions 32. Although elevational gradients can allow species to track more suitable climates over 124 

time, the spatial configuration of mountainous areas can limit elevational range shifts 33, 125 

particularly for woody species 34. In the Caatinga, the four most relevant highlands ─ where 126 

many narrow-range woody species concentrates ─ are disconnected from each other and located 127 

in transitional zones in the south (Chapada Diamantina), east (Planalto da Borborema) and 128 

central-northwest (Chapada do Araripe and Serra da Ibiapaba), which impose additional 129 

dispersal constraints on woody species there. Threats to woody species and their ecosystem 130 

functions could be considerably greater than those we project. Vertebrates and invertebrates 131 

interacting with woody plants ─ herbivores, seed dispersers, and pollinators ─ will have to 132 

couple with the sudden changes in availability and composition of plant resources 35,36, 133 

ultimately scaling up the potential for disruption of biotic interactions 37. 134 

We have shown how climate change can jeopardise Caatinga plant biodiversity, but much 135 

of this region is also affected by chronic disturbances 38 that can operate synergistically with 136 

climate change, and intensify the impacts of biodiversity loss on ecosystem functions 39. 137 

Caatinga already lost half its original cover, and more than 90% of the remaining fragments have 138 
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less than 500 ha. 38. For some non-woody, self-pollinated, and wind-dispersed species, this 139 

scenario may not prevent range expansion, but our projections show an extensive reduction in 140 

suitable areas for most woody and non-woody species. Interestingly, the western half of the 141 

Caatinga, where biotic changes are most pronounced, also concentrates the most conserved dry 142 

forest remnants 38. This coincident spatial configuration imposes both a challenge and an 143 

opportunity to expand the protected area network to assure the connectivity and long-term 144 

persistence of Caatinga plant assemblages. Caatinga still figures with around 1% of the original 145 

extension covered by strictly protected areas 40, far beyond the more recent thresholds 146 

established under the post-2020 Global Biodiversity Frame of conserving 30% of Earth’s land by 147 

2030 41. As a member of the Convention on Biological Diversity and the sole holder of the 148 

Caatinga, Brazil will have a crucial role in conserving the most extensive tropical dry forest in 149 

South America. 150 

 151 

METHODS 152 

Species data 153 

We compiled occurrence records of Caatinga flowering plants from the scientific literature and 154 

herbarium records, available at the Global Biodiversity Information Facility 42 and speciesLink 155 

(splink.cria.org.br). We restricted the spatial coverage of the species occurrence dataset to the 156 

Neotropical region and recorded a total of 4,890,681 occurrences for 8,629 species. Records that 157 

were duplicated, with georeferencing errors or uncertain identification were excluded. To reduce 158 

the potential effect of sampling bias and spatial autocorrelation in the occurrence dataset, we 159 

randomly filtered one occurrence record for each species within a radius of ~10 km 43 leading to 160 

1,024,363 occurrences of 7,936 species. Preliminary inspections indicated that many species 161 
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occurred marginally in the Caatinga. Because our focus was on typical Caatinga plants, we kept 162 

only those species with at least 10% of their occurrences within the Caatinga, resulting in 163 

345,848 occurrences of 4,534 species. We excluded species with fewer than 15 occurrence 164 

records 44 and kept for subsequent modelling procedures 335,091 records of 2,841 species 165 

belonging to 776 genera and 141 botanical families (Fig. S1). 166 

We gathered data on the growth-form of Caatinga flowering species using the Botanical 167 

Information and Ecology Network 45, the Plant Trait Database 46, and the Brazilian Flora 2020 47, 168 

complemented by pertinent literature 26,48,49. For each species, we assigned one out of seven 169 

growth form types: tree, shrub, palm tree, woody vine, herb, herbaceous vine, or succulent. For 170 

species with multiple growth-form categories we assigned the growth form agreed upon by most 171 

sources 50. We then grouped the species into two categories: (i) woody (trees, shrubs, palms, and 172 

woody vines) and (ii) non-woody species (herbs, herbaceous vines, and succulents). Growth-173 

form was assigned to 2,476 angiosperm species (1,341 woody and 1,135 non-woody species, 174 

Table S1), covering 87.2% of species in our database. 175 

 176 

Current and future climate projections 177 

We used the 19 bioclimatic variables from the WorldClim database, version 2.1 51 to represent 178 

the current climate. Bioclimatic layers were downloaded at 5 arc-min (~10 km) and cropped to 179 

the extent of the Neotropical realm (our background). To avoid problems with multicollinearity 180 

and reduce the dimensionality of predictor layers, we performed a principal component analysis 181 

(PCA) and retained the first six axes representing the principal components as climate predictors. 182 

PCA axes explained 96.8% of the variation in the original data. We used PCA loading 183 
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coefficients to project the linear relationship between raw predictors and principal components 184 

onto new layers representing future climate scenarios. 185 

We considered future climate projections for the periods 2041–2060 (hereafter 2060) and 186 

2081–2100 (hereafter 2100) following the 6th Assessment Report of the Intergovernmental Panel 187 

on Climate Change 21. We used two Shared Socioeconomic Pathways (SSP) for each period: 188 

SSP245 and SSP585 as a business-as-usual and non-mitigation scenario, respectively. Because 189 

the selection of different generalised circulation models (GCM) is recognised as a source of 190 

uncertainty in projecting the future habitat suitability of species 52, we used five GCMs for each 191 

combination of the period and SSP, namely: BCC-CSM2-MR, CNRM-CM6-1, IPSL-CM6A-LR, 192 

MIROC6, and MRI-ESM2-0. 193 

 194 

Ecological niche models 195 

For each species, we computed pseudoabsences using the same number of observed presences to 196 

maintain the presence-absence ratio of 1:1 53. Pseudoabsences were allocated following the 197 

environmentally constrained method, based on the lowest suitable region predicted by a climate 198 

envelope 54. The choice of the statistical method or algorithm can affect the resulting predictions 199 

from an ecological niche model (ENM) depending on the initial modelling conditions 55. We 200 

computed an ensemble of projections for each species to minimise uncertainty around the ENM 201 

method 56. The ensemble included projections with six methods: Climate envelope (BIOCLIM), 202 

Gower Environmental Distance (DOMAIN), Generalised Linear Models, Generalised Additive 203 

Models, Maximum Entropy, and Random Forests. We used the species accessible area to mask 204 

its respective projections to avoid predicting habitat suitability for regions unreachable by a 205 

species within the time frame of projected climate change. The accessible area for each species 206 
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was defined by a buffer with a width size equal to the maximum nearest neighbour distance 207 

among pairs of occurrences 57. Models were calibrated for the baseline period using 4-fold cross-208 

validation, 75% of randomly selected samples used for model training and the remaining 25% 209 

used for testing in each iteration. 210 

To evaluate model performance, we measured the similarity between predictions and 211 

observations using the Sørensen similarity index, which is independent of species prevalence 58. 212 

It is necessary to binarise the species habitat suitability according to some threshold value to 213 

compute the Sørensen index. We used the species suitability value that maximised the Sørensen 214 

index for each algorithm at the baseline period. The ensemble model for each species was 215 

computed as the average weighted suitability, with weights given by the Sørensen index 216 

calculated for each algorithm. We used the average binarisation threshold weighted by the 217 

Sørensen index to binarise the ensemble habitat suitability into presence-absence maps for each 218 

species in current time and future scenarios. 219 

We applied an occurrence-based restriction to keep only the patches of suitable habitat 220 

considered reachable by a species 59 to minimise overprediction issues associated with presence-221 

absence maps derived from ENMs. Patches of suitable habitats are assumed to be reachable by 222 

the species if they overlap with a presence record or are within an edge-edge distance threshold 223 

of an occupied suitable patch 59. This distance threshold was defined as the maximum nearest 224 

neighbour distance among pairs of occurrences of the respective species. Computations were 225 

performed in R 4.1.0 60 using the package ENMTML 61. 226 

 227 

Spatial patterns of beta-diversity, woodiness, and ecological generalism 228 
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We mapped the Caatinga using an equal-area projection grid cell of 10×10 km of spatial 229 

resolution to assess changes in beta-diversity spatial pattern. Using the binary maps for the 230 

ensemble projection, we built species presence-absence matrices for projections based on the 231 

current time and for each combination of the future period (2060 and 2100) and the SSP scenario 232 

(SSP245 and SSP585). We only considered species presence in a grid cell if they occupied at 233 

least 50% of the cell area. The spatial beta-diversity for each grid cell was measured by the 234 

Sørensen-based multiple-site dissimilarity index, βSOR 62, computed for the cell set formed by the 235 

focal cell and its immediately adjacent neighbour cells. Because the size of the cell set can affect 236 

the βSOR value 63, we applied a subsampling procedure to randomly select four neighbour cells 237 

around each focal cell 100 times to compute the average βSOR across iterations. We used the βSOR 238 

difference between each future and current scenario (∆βSOR = βSOR.future – βSOR.current) to identify 239 

plant assemblages (cells) subject to biotic homogenisation (∆βSOR < 0) or heterogenisation 240 

(∆βSOR > 0). We also calculated the difference between future and current species richness (∆S = 241 

Sfuture – Scurrent). Computations were performed in R using the betapart package 64. 242 

We used the species growth form to compute the proportion of woody species in each 243 

plant assemblage (WoodyProp) to assess potential changes in the assemblage-level patterns of 244 

woodiness and ecological generalism. To measure the assemblage-level ecological generalism, 245 

we initially classified as narrow-range plant species whose range size distribution was below the 246 

first quartile (~100 mil km²) of current projected distribution within Caatinga, or otherwise wide-247 

range. Then, we extracted the proportion of wide-range species in each plant assemblage 248 

(WideProp). We calculated WoodyProp and WideProp for the current and future scenarios and 249 

used the ratio of future to current time to represent the relative change in woodiness 250 

(WoodyRatio = WoodyPropfuture / WoodyPropcurrent) and ecological generalism (WideRatio = 251 
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WidePropfuture / WidePropcurrent) of plant assemblages. WoodyRatio and WideRatio above 1 252 

indicate a future increase in the assemblage-level proportions of woody and wide-range species, 253 

respectively. We used Kruskal-Wallis tests to assess whether the medians of (i) Current species 254 

richness, (ii) ∆S, (iii) WoodyPropcurrent, (iv) WoodyRatio, (v) WidePropcurrent, and (vi) WideRatio 255 

differ between assemblages subject to biotic homogenisation (∆βSOR < 0) or heterogenisation 256 

(∆βSOR > 0). Linear relationships between changes in species richness (∆S) and spatial beta-257 

diversity (∆βSOR), and changes in the relative contribution of woody (WoodyRatio) and wide-258 

range (WideRatio) species were verified through a modified t-test 65 to spatially correct the 259 

degrees of freedom of correlation coefficients. Computations were performed in R using the 260 

packages SpatialPack 66. 261 

 262 
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FIGURE LEGENDS 438 

439 

Fig 1. Projected range shift for species holding different levels of woodiness and ecological 440 

generalism. Range shifts were computed separately within the (a) Neotropics and (b) Caatinga. 441 

The results are shown for 2060 under the business-as-usual (SSP245) and non-mitigation 442 

(SSP585) scenarios. See Fig. S3 for results concerning 2100. 443 
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445 

Fig 2. Geographical patterns of plant species richness and spatial beta-diversity in the 446 

Caatinga. (a) Projected species richness at the current time. Expected change in species richness 447 

(∆S) across plant assemblages under the (b) business-as-usual (SSP245) and (c) non-mitigation 448 

(SSP585) scenarios in 2060. (d) Spatial beta-diversity (βSOR) for the current time. Expected 449 

change in spatial beta-diversity (∆βSOR) across plant assemblages under (e) SSP245 and (f) 450 

SSP585 scenarios for 2060. The contour lines denote the assemblages (cells) in the upper and 451 

lower 10% of the mapped pattern. See Fig. S4 for results concerning 2100. 452 
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 454 

Fig 3. Assemblage-level metrics across regions subject to different levels of projected biotic 455 

change by 2060. Each box denotes the median (horizontal line) and the 25th and 75th 456 

percentiles. Vertical lines represent the 95% confidence intervals, and black dots are outliers. 457 

Small capital letters denote the results of the Kruskal–Wallis tests for the difference in medians 458 

across assemblages subject to different levels of biotic homogenisation (p = 0.05, using 459 

Bonferroni correction). Woody and wide ratios above 1 indicate an increase in the assemblage-460 

level proportion of woody and wide-range species in the future. See Fig. S5 for results 461 

concerning 2100. 462 
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464 

Fig 4. Patterns of woodiness and ecological generalism of plant assemblages in the Caatinga. (a) 465 

Proportion of woody and wide-ranged species in plant assemblages. Relative change in the 466 

proportion of woody and wide-range species between 2060 and the current time under the (b) 467 

business-as-usual, SSP245 and (c) non-mitigation, SSP585 scenarios. Woody and Wide-range 468 

ratios above 1 indicate an increase in the assemblage-level proportion of woody and wide-range 469 

species in the future. See Fig. S6 for results concerning 2100. 470 
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472 

Fig 5. Projected change in species richness, spatial beta-diversity, woodiness, and ecological 473 

generalism in Caatinga plant assemblages by 2060. Relationship between differences in 474 

species richness (∆S) and spatial beta-diversity (∆βSOR) in the scenarios (a) Business-as-usual, 475 

SSP245, and (b) Non-mitigation SSP585. Relationship between change in relative contribution 476 

of woody (WoodRatio) and wide-range (WideRatio) species. Symbol colours follow species 477 

assemblage representation in Fig. 4a. Pearson correlations on the top of each panel were based 478 

on spatially corrected degrees of freedom. See Fig. S7 for results concerning 2100. 479 
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