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ABSTRACT 
 
Organ- and body-scale cell atlases have the potential to transform our understanding of human biology. To 
capture the variability present in the population, these atlases must include diverse demographics such as age 
and ethnicity from both healthy and diseased individuals. The growth in both size and number of single-cell 
datasets, combined with recent advances in computational techniques, for the first time makes it possible to 
generate such comprehensive large-scale atlases through integration of multiple datasets. Here, we present the 
integrated Human Lung Cell Atlas (HLCA) combining 46 datasets of the human respiratory system into a single 
atlas spanning over 2.2 million cells from 444 individuals across health and disease. The HLCA contains a 
consensus re-annotation of published and newly generated datasets, resolving under- or misannotation of 59% 
of cells in the original datasets. The HLCA enables recovery of rare cell types, provides consensus marker genes 
for each cell type, and uncovers gene modules associated with demographic covariates and anatomical location 
within the respiratory system. To facilitate the use of the HLCA as a reference for single-cell lung research and 
allow rapid analysis of new data, we provide an interactive web portal to project datasets onto the HLCA. Finally, 
we demonstrate the value of the HLCA reference for interpreting disease-associated changes. Thus, the HLCA 
outlines a roadmap for the development and use of organ-scale cell atlases within the Human Cell Atlas.  
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INTRODUCTION 
 
Single-cell genomics has been enabling scientists to study tissues at unprecedented scale and resolution1–3. 
Rapid technological improvements over the past decade have allowed datasets to grow both in size and 
number4. This has led consortia, such as the Human Cell Atlas, to pursue the generation of large-scale reference 
atlases of human organs and the entire human body5,6. Such atlases, capturing the diversity of the cellular 
landscape of human tissues in health, development, normal aging, lifestyles, environmental exposures, and in 
disease, will advance insights into the molecular underpinnings of natural variation in healthy tissues, as well as 
mechanisms of disease inception, progression, remission, and treatment response7. To capture diversity on the 
population scale, these atlases must include data from thousands of individuals. The generation of atlases of 
this scale by a single group is currently not feasible. However, the cumulative datasets generated by the research 
community at large now contain hundreds of individual tissue donors, sampled at various anatomical locations 
within an organ. Integration of these disconnected studies into a single harmonized model may offer superior 
and much-needed8 coverage of relevant donor demographic variables, which are expected to impact the 
molecular phenotypes of the cells in a tissue.  
 
The power of large-scale single-cell cross-dataset analysis has been demonstrated in several recent studies9–
15. We previously performed the first single-cell meta-analysis of the respiratory system, aggregating expression 
data of three genes important for SARS-CoV-2 cell entry from 31 datasets, spanning over 200 individuals11. This 
study showed cell-type specific effects of sex, age and smoking status on gene expression, which could not have 
been recovered in any individual dataset. Especially when large numbers of individuals, rather than cells, are 
aggregated, it becomes possible to answer population-level questions using single-cell data. However, currently 
available integrated atlases are limited in the number of genes11, human samples12,14, datasets14, or cell types9,12, 
and include only non-harmonized or limited cell type annotations9–13 and subject metadata9–13 (e.g. age, BMI, 
smoking status). These limitations constrain the potential of atlases to serve as a “reference”, as they fail to 
represent and catalog the diversity of cellular phenotypes within the organ and among individuals. Moreover, 
choice of integration approach can impact the resulting reference16, and only a retinal atlas systematically 
assessed the quality of data integration10. 
 
Overcoming batch effects through data integration is an essential step in building a high-quality atlas and remains 
one of the key challenges in the field. As each dataset represents a unique view of an organ, containing specific 
information and biases due to its experimental design, it is paramount to separate technical biases from 
biologically relevant information when integrating datasets. Successful integration of the available datasets into 
a single tissue atlas will therefore be a critical step to achieve the goals of the Human Cell Atlas5. 
 
Here, we present the first integrated single-cell transcriptomic atlas of the human respiratory system, including 
the upper and lower airways, from published and newly generated datasets (fig. 1). The Human Lung Cell Atlas 
Core Reference (HLCA core) combines data from 14 datasets, 107 individuals, 168 healthy samples, and 
584,000 cells to represent the cellular diversity of the human lung. The HLCA core contains detailed, consensus-
based hierarchical cell type annotations with associated marker genes, recovers rare cell types from constituent 
datasets, and associates cell type-specific gene modules with covariates such as age, BMI, and anatomical 
location. Through transfer learning, the HLCA core can be used to annotate and interpret new datasets from 
healthy and diseased individuals, enabling discovery of novel cell types and states associated with normal 
variability and disease. We demonstrate the power of this approach by extending the HLCA to a total of 2.2 
million cells and 444 donors, mapping 32 new human lung datasets from healthy and diseased lungs to the 
HLCA core. The HLCA thus forms the first consensus single-cell transcriptomic reference for healthy lung tissue.  
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Figure 1. Human Lung Cell Atlas study overview. Harmonized cell annotations, raw count data, harmonized patient and 
sample metadata, and sample anatomical locations encoded into a common coordinate framework were collected and 
generated as input for the Human Lung Cell Atlas (HLCA) core (left). After integration of the core datasets, the atlas was 
extended by mapping 34 additional datasets, including disease samples, to the HLCA core, bringing the total number of 
cells in the extended HLCA to 2.2 million. The HLCA core provides detailed consensus cell annotations with matched 
consensus cell type markers (right, top), gene modules associated with technical, demographic, and anatomical covariates 
in various cellular identities (right, middle), GWAS-based association of lung conditions with cell types (right, middle), a 
reference projection model to annotate new data (right, middle) and discover new cell types, transitional cell states, and 
disease-associated cell states (right, bottom). 
 
Together, we provide a roadmap for building and using comprehensive, interpretable, and up-to-date organ- and 
population-scale cell atlases. 
 
 
RESULTS 
 
Successful data integration into the Human Lung Cell Atlas establishes a core reference  
To build a foundation for the HLCA, we collected scRNA-seq data and detailed, harmonized technical, biological 
and demographic metadata from 14 different datasets (9 published, 5 unpublished)1,2,17–22. These datasets 
include samples from 107 individuals, with diversity in age (ranging from age 10 to 76), sex (60% male, 40% 
female), ethnicity (65% white, 14% black, 2% latino, 2% mixed, 2% Asian, 14% unannotated), BMI (ranging from 
20 to 49), and smoking status (52% never, 16% former, 15% active smoker, 17% unannotated) (fig. 2a). Cells 
from the donors were obtained from 166 tissue samples, using a variety of sampling methods, experimental 
protocols, and sequencing platforms, and coming from different tissue donors (e.g. organ donor, healthy 
volunteer, Supplementary Data Table 1, Supplementary Data Table 2). To obtain a broad reference of the 
lung and both upper and lower airways, we included samples from nose, lower airways (multiple locations) and 
lung parenchyma (Supplementary Data Table 2). Sample locations were projected onto a 1-dimensional 
common coordinate framework (CCF) to standardize the anatomical location of origin. The CCF quantifies 
location along the respiratory tract between the outside world and the alveolar sac in the lung parenchyma by 
assigning a score between 0 and 1, with 0 representing the most proximal location in the upper airways (inferior  
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Figure 2. Composition and construction of the HLCA core. a, Subject and sample composition in the HLCA core for 
demographic and anatomical variables, respectively. Subjects/samples without annotation for a specific variable are shown 
under “NA” (gray bars). Anatomical region common coordinate framework (CCF) score ranges from 0 to 1, with 0 
representing the most proximal part of the lung and airways (nose), and 1 the most distal (distal parenchyma). b, Overview 
of the HLCA core cell type composition, based on the 5-level hierarchical reference to which cell type labels of all datasets 
were mapped. Cell types were labeled up to the finest level of labeling available, and set to “None” if no cell type label was 
available at the level under consideration. Cell type composition is shown for level 1 (left), 2 (middle) and 3 (right). Level 4 
and 5 annotations can be found in Supplementary Data Table 4. Each level is broken down into more detailed labels in 
the following level. Cell labels making up less than 0.02% of all cells are not shown. AT1, 2: alveolar type 1, 2. EC: endothelial 
cell. NK: natural killer cell. c, Cell type composition per sample, based on level 2 labels. Samples are ordered by anatomical 
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region CCF score, and split into nose, airway and parenchyma groups. d, Summary of dataset integration benchmarking 
results. Benchmarking was performed on a subset of 12 datasets from the HLCA. Methods are ordered by overall score. 
Overall score is a weighted mean of batch-correction and biology-conservation performance. For each method, the results 
are shown only for the best-performing preprocessing of the data for that method. Preprocessing of data is specified under 
HVG and scaling. HVG: whether or not genes were subsetted to the 2000 most highly variable genes (“HVG”) or to 6000 
genes (“FULL”) before integration. Scaling: whether or not genes were scaled to mean 0 and standard deviation 1 before 
integration. Output: format of the method’s integrated output. 
 
turbinate) and 1 representing the most distal location (alveolar sac) (fig. 2a, Supplementary Data Table 2, 
Supplementary Data Table 3). 
Single-cell studies in lung tissue have described several novel lung cell types and states1,17,23. However, 
consensus definitions of cell types based on single-cell transcriptomic data, particularly of transitional cell states, 
are lacking. To enable supervised data integration and downstream integrated analysis, we harmonized cell-
type nomenclature between the different datasets using a 5-level hierarchical cell identity reference framework 
(Supplementary Data Table 4, fig. 2b). We collected cell identity labels for every dataset as provided by the 
data generator, and mapped these to the hierarchical reference framework. At the coarsest level (level 1) cells 
were labeled as epithelial (48%), immune (38%), endothelial (9%), and stromal (4%). Most datasets did not 
provide the finest level of annotation for all cells, likely due to limitations in cell numbers, such that overall 94%, 
66% and 7% of cells were annotated at level 3, 4, and 5, respectively (fig. 2b). As expected, cell type composition 
varied between samples, and especially between locations along the CCF (fig. 2c).  
To perform integration and remove dataset-specific batch effects, we evaluated 12 different batch integration 
methods on 12 datasets (fig. 2d, Extended Data Fig. 1), using our previously established benchmarking 
pipeline24–33. This benchmarking pipeline includes 12 metrics that evaluate the quality of an integration, 
quantifying both the removal of batch effects and the conservation of biological variation after integration. Based 
on these criteria, scANVI24 was the top-performing integration method (fig. 2d). We therefore integrated the 
collected datasets using scANVI, creating the HLCA core, a reference atlas of the healthy human respiratory 
system containing 584,844 cells from 107 individuals (fig. 3a).  
 
The HLCA includes consensus-based detailed cell identity annotations  
A large-scale integrated atlas provides the unique opportunity to systematically investigate the extent of 
consensus in cell type labels that are found across subjects. To identify areas of consensus and disagreement, 
we iteratively clustered the HLCA core and investigated subject diversity and cell-type label agreement in these 
clusters using entropy scores (see Methods). Most clusters contained cells from many subjects (median 47 
subjects per cluster, range 2-102), as illustrated by high subject entropy (>0.43, fig. 3b, Extended Data Fig. 2) 
for 79 out of 93 final clusters. Low subject entropy clusters (n=14) were largely immune cell clusters (n=13, of 
which 7 macrophage clusters, 4 T cell clusters and 2 mast cell clusters), representing subject- or group-specific 
phenotypes. High cell type label entropy can identify both annotation disagreements between studies, and 
clusters of doublets. Indeed, six small clusters with high label entropy even at the coarsest level of annotation 
highlighted doublet populations (identified via marker gene expression), not labeled as such in the original 
datasets. These clusters were removed from the HLCA core, bringing the total number of clusters to 93. Of these 
93, 61 clusters showed low label entropy (<0.56), suggesting overall agreement of cell-type labels assigned in 
the original datasets (fig. 3a,b). The remaining 32 clusters exhibited high label entropy, highlighting cellular 
phenotypes that were differently labeled across datasets (fig. 3a,b). For example, one cluster of myeloid cells 
(cluster 1.2.1) contained cells originally labeled as monocytes, macrophages, and dendritic cells at annotation 
level 3 (fig. 3c). Sub-clustering and marker gene expression suggested that this cluster included a homogeneous 
subcluster of type 2 dendritic cells (DC2s), and the cells in this subcluster were partly mis-labeled as monocytes 
and macrophages in the foundational datasets (fig. 3c, Extended Data Fig. 3). Similarly, we find several such 
cases among stromal and epithelial cell populations, as well as in continuous cell phenotypes (e.g., goblet and  
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Figure 3. The HLCA core conserves detailed biology and enables consensus-driven annotation. a, A Uniform 
Manifold Approximation and Projection (UMAP) of the integrated HLCA, colored by level-1 annotation. b, Cluster label 
entropy of leiden 3 clusters of the HLCA. HLCA was split into three compartments (immune, epithelial, and endothelial and 
stromal) for ease of visualization. Cells from every cluster are colored by the shannon-entropy of level 3 labels in the cluster, 
with higher entropy indicating more contradictory labels in the cluster. Entropy was not calculated for clusters with fewer 
than 20% of cells annotated at level 3 (clusters colored gray). c, Cell type label composition of the immune cluster with the 
highest cluster entropy (left), with original labels (left), and matching manual re-annotations (right). d, UMAPs of the immune, 
epithelial, and endothelial and stromal compartments of the HLCA core with cell identity annotations from the consensus-
based manual re-annotation. e, Percentage of cells originally mis-labeled or under-labeled (i.e. only labeled at a coarser 
level), as compared to final manual re-annotations. Percentages were calculated per manual annotation, as well as across 
all cells (right bar). f, UMAP of HLCA clusters annotated as rare epithelial cell types (i.e. ionocytes, neuroendocrine cells 
and tuft cells). Final annotations, original labels and study of original are shown (top), as well as expression of ionocyte 
marker FOXI1, tuft cell marker LRMP, and neuroendocrine marker CALCA. g, Log-normalized expression of migratory DC 
marker CCR7 in cells identified as migratory DCs versus other DCs. DC: dendritic cell. AT1, 2: alveolar type 1, 2 cells. EC: 
endothelial cells. FB: fibroblasts. Mφ: macrophages. MT: metallothionein. NK cells: natural killer cells. SM: smooth muscle. 
SMG: submucosal gland. 
 
club cells), for which individual studies set different boundaries between cell type labels. The presence of these 
high label entropy populations, identifying mislabeled cell types, indicates the need for consensus re-annotation 
of the integrated atlas. As a first step to achieve such a consensus on the diversity of cell types present in the 
HLCA core, we performed a full re-annotation on the basis of iterative graph-based clustering of the integrated 
data. Clusters were annotated taking into account the original cell type labels from each study, and a consensus 
of opinions from 6 lung experts who evaluated the cluster marker genes, to generate tentative consensus cell 
identity annotations (fig. 3d). While our consensus cell type annotations partly correspond to original labels (fig. 
3e, e.g. AT1, AT2, mast cells), there were also substantial re-annotations (fig. 3e, e.g. submucosal gland (SMG) 
duct cells, migratory dendritic cells (DCs)) or refinements of the original labels (fig 3e, e.g. endothelial cell 
subtypes). In total, we found that 41% of cells were originally given precise and accurate cell type labels that 
conform to current consensus knowledge, 28% of cells were correctly labeled but at lower granularity (“under-
labeled”), and 31% of cells were originally mis-labeled (fig. 3e). Mis-labeled cells often differed from the final 
annotation at the finest level, but matched at a lower level of granularity (e.g. adventitial instead of alveolar 
fibroblast, Extended Data Fig. 4). Out of 58 final cell types, 15 included mostly mis-labeled cells. A potential 
reason for this mis-labeling is that marker genes used for the original labeling were based on individual 
publications, and might not generalize well. Therefore, we established a ‘universal’ set of marker genes that 
generalizes across lung studies, by calculating cell type marker genes over our 14 datasets for every annotation 
(Extended Data Fig. 5, Supplementary Data Table 5). The fully re-annotated HLCA core thus combines data 
from a diverse set of studies to provide a carefully curated reference for cell type annotations and marker genes 
in healthy lung tissue. 
 
The HLCA recovers rare cell types across datasets 
Rare cell types such as ionocytes, tuft cells, neuroendocrine cells, or specific immune cell subsets are often hard 
to identify in individual datasets. To determine whether the higher number of cells in the HLCA core provides 
better power for identifying rare cell types, we explored the quality of rare cell clustering and their labels. 
Ionocytes, tuft and neuroendocrine cells make up only 0.08%, 0.01% and 0.02% of the cells in the HLCA core 
according to the original labels, and were originally identified in only 7, 2 and 4 datasets out of 14, respectively. 
Despite their low abundance, these cells formed three separate clusters of the HLCA core, with 78%, 76% and 
96% of the cells carrying the original label in each cluster (fig. 3f). Marker expression shows that the HLCA core 
correctly excludes cells mis-labeled as rare epithelial cells from these clusters, but also successfully recovers 
rare cells that were not recognized as such in the original studies (fig. 3f, Extended Data Fig. 6 a). Thus, our 
re-analysis increases the number of datasets in which these rare cells are detected up to three-fold (to 10, 7 and 
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9 datasets, for ionocytes, tuft and neuroendocrine cells). The correct clustering of rare cell types has been shown 
to depend on the conservation of subtle biological variation when integrating studies16. Importantly, other 
integration methods tested during our benchmarking, such as Harmony32 and Seurat’s RPCA28, indeed failed to 
separate rare cells into distinct clusters, showing the importance of integration method selection when building 
an atlas (Extended Data Fig. 6 b).  
Due to the increased power in the HLCA core, we were also able to detect rare cell identities that were not 
labeled in any of the constituent datasets. Through iterative clustering we identified two small clusters (312 cells, 
0.05% of all cells) in the immune cell population that contained cells from 12 datasets and thus represent cellular 
heterogeneity common to multiple studies. Cells from these clusters were a subset of DCs and had distinct and 
high expression of CCR7, a marker for migratory DCs (fig. 3g, Extended Data Fig. 6 c)34,35. The HLCA core 
thus enables improved detection and identification of rare cell types. 
 
The HLCA reveals cell-type specific effects of technical and demographic variables  
Demographic and other biological covariates are known to affect cellular transcriptional phenotypes11,22. Better 
insight into the impact of these covariates (e.g. sex, BMI, smoking) on cell-type gene expression could shed light 
on the contribution of the covariates to progression from healthy to diseased states. In addition to these biological 
covariates, technical covariates such as sample type, or number of transcripts detected per cell can affect 
transcriptomic variation16. The diversity in demographics (e.g. smoking status, age, ethnicity and BMI) and 
experimental protocols represented in the HLCA core, combined with its single-cell resolution, makes it possible 
to explore these effects simultaneously and at the level of cell-type specific transcriptomes. To determine the 
contribution of each covariate to cell-type specific gene expression variation, we calculated the fraction of inter-
sample variance that could be explained by the covariate for every cell type (fig. 4a, right). To focus on robust 
correlations detected across studies, we excluded all cell types detected in fewer than 40 samples from this 
analysis (Methods, Extended Data Fig. 7 a-c). For many cell types, including epithelial, immune, endothelial 
and stromal cells, anatomical location is the biological variable explaining most of the variance (fig. 4a). In 
transitional club-AT2 cells interindividual variance is more strongly associated with sex than in any other cell 
type. Similarly, BMI is most associated with transcriptomic variation in B and T cells, whereas ethnicity is most 
associated with variation in adventitial fibroblasts. Smoking status is associated with most transcriptomic 
variation in lymphatic endothelial cells and innate lymphoid/NK cells. Furthermore, for several cell types (e.g. 
mast cells, basal cells, B cells, and DC2s) the tissue sampling method (brush, biopsy, surgical resection, etc.) 
explains most variance of all technical as well as biological covariates recorded. Different sampling methods are 
associated with specific anatomical locations as well as with specific sample processing workflows, and may 
sample different states of cell activation or differentiation, all of which will contribute to the high degree of variation 
observed between samples. Nevertheless, despite being sampled with diverse methods, other cell types (e.g. T 
cells, innate lymphoid/NK cells) are largely unaffected by sampling method (fig. 4a, Extended Data Fig. 7 d). 
Therefore, depending on the cell type of interest, sampling methods might need to be harmonized in experimental 
design. Thus, through this analysis, the HLCA core can help guide important choices in study design. 
 
To better understand how biological variables affect cellular phenotypes, we modeled their cell-type specific 
effect at the gene level using generalized linear mixed models36,37. We found 936 significant associations of 
genes with demographic covariates in 29 cell types, and 25,468 significant associations with sample anatomical 
location (Supplementary Data Table 6). Leveraging the diversity in anatomical locations of HLCA core samples, 
which we encoded into a continuous CCF score (Supplementary Data Table 3), we found cell type-specific 
programs that change with proximal (low CCF score) to distal (high CCF score) location along the respiratory 
tract. While previous findings highlighted gene expression differences between epithelial cells from the lower 
airways and the nose18, we find that several of these genes also exhibit gradual changes in expression with more 
distal locations in the tracheobronchial tree. For example, LMO3, previously found to be consistently higher  
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Figure 4. Demographic and technical variables driving inter-individual variation. a, Fraction of total inter-sample 
variance in the HLCA core integrated embedding that can be explained by specific covariates. Covariates are split into 
technical covariates (left), and biological covariates (right). Cell types are ordered by the number of samples in which they 
were detected, and only cell types present in at least 40 samples are shown. Fraction of total variance explained is calculated 
per cell type. Sampling method represents the way a sample was obtained, e.g. surgical resection or nasal brush. Subject 
status: state of the subject at the moment of sample collection, e.g. organ donor, diseased alive or healthy alive. UMI count 
per cell: mean of log10(total UMIs detected) among cells of a cell type in a sample. Fraction of mitochondrial UMIs: mean 
of the fraction of mitochondrial RNA counts across cells from a cell type in a sample. Heatmap is masked gray where fewer 
than 40 samples were annotated for a specific covariate, or where only one value was observed for all samples for a specific 
cell type. AT1, 2: Alveolar type 1, 2 cells. EC: endothelial cells. NK: natural killer cells. b, Selection of gene sets that are 
significantly associated with anatomical location, in different epithelial cell types. All gene sets are gene ontology biological 
process terms. Sets up-regulated towards distal lungs are shown in green, sets down-regulated are shown in blue. *full 
name: Antigen processing and presentation of peptide antigen via MHC class I. c, Selection of gene sets significantly up- (green) 
or down-regulated (blue) with increasing BMI, in four different cell types. P-values are FDR-corrected using the Benjamini-
Hochberg procedure. 
 
expressed in epithelial cells from the nose compared to the lower airways, also displays a gradient along the 
proximo-distal axis within the tracheobronchial tree. Gene set enrichment analysis shows that gene expression 
programs that were down-regulated towards distal locations in the tracheobronchial tree in secretory, 
multiciliated and basal cells were associated with metabolic activity (e.g. cellular respiration, peptide 
biosynthesis, glycolipid catabolism, fig. 4b). Moreover, antigen presentation by MHC-I programs are down-
regulated in basal, secretory and multiciliated cells, and keratinization and cornification programs are down-
regulated in multiciliated cells towards distal locations along the tracheobronchial tree (fig. 4b, Supplementary 
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Data Table 7). In contrast, secretory and multiciliated cells show increased expression of developmental 
pathway genes along this axis (fig. 4b, Supplementary Data Table 7), while basal cells decrease in number 
(Extended Data Fig. 8 a) in accordance with previous findings38. These data show presence of gradients in both 
cell type abundance and transcriptional phenotypes of individual cell types along the tracheobronchial tree, 
indicating functional adaptations of the cells of the airway wall to their location in the lung. 
 
Similarly, several cell types display transcriptomic changes in subjects with increasing BMI. AT2 cells, secretory 
cells, plasma cells and alveolar macrophages show the highest numbers of gene sets associated with BMI 
(Supplementary Data Table 7). Of these, AT2 cells, secretory cells and alveolar macrophages exhibit down-
regulation of a range of biological processes, including cellular respiration, differentiation, proliferation, and 
synthesis of peptides and other molecules (fig. 4c, Extended Data Fig. 8). In secretory cells, a down-regulation 
of the insulin-response pathway is also associated with higher BMI, in line with the insulin resistance observed 
in subjects with obesity39,40 (fig. 4c). In alveolar macrophages, inflammatory responses involving JAK/STAT 
signaling are associated with higher BMI (fig. 4c, Supplementary Data Table 7). This signaling pathway has 
been widely described as a mediator of obesity-induced chronic systemic inflammation40, which we can now link 
to cell type-specific effects in the lung. In contrast to the up-regulation of immune response pathways in alveolar 
macrophages, in plasma cells high BMI is associated with down-regulation of gene sets associated with immune 
response, and up-regulation of gene sets associated with cellular respiration, cell cycle and DNA repair (fig. 4c). 
This is consistent with obesity being a known risk factor for multiple myeloma, a plasma cell malignancy41. This 
analysis constitutes a first systematic assessment of the effects of BMI on the lung at single-cell resolution. Thus, 
the HLCA enables a detailed understanding of the effects of anatomical and demographic covariates on the 
cellular landscape of the lung, and their relation to disease.  
 
The HLCA transfers detailed cell-type annotations to new data and identifies unknown cell types 
The HLCA core contains an unprecedented diversity of subjects, sampling protocols, and cell identities, and has 
the potential to serve as a transcriptomic reference for future lung research. Mapping new datasets to this 
reference can substantially speed up data analysis by generating an informative representation of the data and 
transferring cell identity annotations. To determine how well annotations can be transferred from the HLCA core 
to new datasets, we mapped a recently released dataset to the HLCA core using scArches, our recently 
published transfer learning tool42 (Extended Data Fig. 9, a-c). This dataset includes several novel cellular 
identities that were detected by jointly analyzing single-cell, single-nucleus, and spatial data from 10X Visium43 
to the HLCA core. We transferred cell-type annotations from the HLCA core to the new dataset on the basis of 
transcriptomic similarity in the batch-corrected joint embedding (Methods, Extended Data Fig. 9, a-c). 
Importantly, the uncertainty of each transferred label (indicating how confidently the label is assigned) is 
quantified, and cells with high uncertainty scores are labeled as “unknown”. Most cells in the new dataset were 
annotated with high confidence, indicating a high similarity with the cell types already present in the HLCA core 
(fig. 5a, Extended Data Fig. 9 d). High levels of uncertainty were observed specifically in regions representing 
continuous transitions from one cell type to another, and among cellular identities not currently present in the 
HLCA core. For example, cells in the continuum between monocytes and dendritic cells displayed high label 
transfer uncertainty (fig. 5a). Several cell identities that were not present in the HLCA core were correctly labeled 
as “unknown”, even when only few cells of that identity were present in the projected dataset (erythrocytes 
(n=328), chondrocytes (n=42), Schwann myelinating (n=7), Schwann non-myelinating (n=29); fig. 5b, Extended 
Data Fig. 9 e). Incorrect annotations (i.e. transferred annotations with high certainty, but not matching the original 
label) highlighted two different cases: cell types that are part of a continuum, with cutoffs between cell types 
chosen differently in the reference than in the projected data (e.g. secretory, club and goblet cells); and cell types 
lacking from the HLCA core that have high transcriptional similarity to other cell types that are present in the 
HLCA, which was observed for several finely annotated immune cell identities. For example, gamma-delta T 
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Figure 5. The HLCA core as a reference for label transfer and data contextualization. a, UMAP of the jointly embedded 
HLCA core and the projected healthy lung dataset. UMAP is colored by label transfer uncertainty of cells from the new 
dataset, with cells from the HLCA colored in gray. HLCA cell types surrounding regions of high uncertainty are labeled. b, 
Percentage of cells from newly mapped healthy lung dataset that are either annotated correctly or incorrectly by label 
transfer annotation, or annotated as unknown, subdivided by original cell type label. The number of cells in the mapped 
dataset labeled with each label are shown between brackets after cell type names. Cell type labels not present in the HLCA 
are boxed. c, Top: percentage of cells derived from tumor tissue, per EC cluster from the joint HLCA core and lung cancer 
data embedding. Only clusters with at least 10 tumor cells are shown. Clusters are named based on the dominant HLCA 
core cell type annotation in the cluster. Middle: Boxplot of expression of EDNRB in EC clusters, subdivided by tissue source. 
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Boxes show median and interquartile range, data points outside more than 1.5 times the interquartile range outside the low 
and high quartile are considered outliers and not shown. Whiskers extend to the furthest non-outlier point. Bottom: as middle 
panel, but showing expression of ACKR1. d, Association of cell types with four different lung phenotypes. Association is 
based on phenotype-related genomic variants from GWA studies, and cell-type specific differentially expressed genes 
calculated from the HLCA core. Horizontal dashed lines indicate significance threshold alpha=0.05. p-values are multiple-
testing-corrected with the Benjamini-Hochberg procedure. fvc: forced vital capacity. COPD: chronic obstructive pulmonary 
disease. e, UMAP of fibroblast-dominated clusters from the jointly embedded HLCA core and the mapped healthy lung 
dataset. UMAP is colored by spatial clusters, with cells outside of the indicated clusters colored in gray. AT1, 2: alveolar 
type 1, 2 cells. DC: dendritic cells. EC: endothelial cells. ILCs: innate lymphoid cells. Mφ: macrophages. NK cells: natural 
killer cells. NKT cells: natural killer T cells. SMG: submucosal gland. 
 
cells, innate lymphoid cells (ILCs), megakaryocytes, NKT cells, and regulatory T cells were not annotated in the 
HLCA core, as these cell types could not be distinguished with confidence in the integrated object, and were 
often lacking in the constituent datasets. Indeed, cell types from the T cell/ILC/NK lineages are known to be 
particularly difficult to annotate in detail using transcriptomic data only14. Therefore, cells annotated with these 
labels in the projected dataset were largely incorrectly annotated as CD4+ T cells, CD8+ T cells, and NK cells 
through label transfer (fig. 5b, Extended Data Fig. 9 e). Overall, the transferred labels were correct in the 
majority of cases, with 69% of the cells correctly labeled, 12% of labels incorrect, and 18% set to “unknown”, 
highlighting the presence of cell types in the projected dataset absent from the HLCA core (fig. 5b). Label transfer 
from the HLCA core thus performs competitively with manual cell type labeling as performed in the original 
studies (fig. 3e, 5b), is highly time-efficient, and provides a higher level of annotation detail. Taken together, the 
HLCA core can be used as a reference for label transfer to achieve highly detailed annotation of new datasets, 
and allows identification of new and unknown cell types in those datasets based on label transfer uncertainty. 
This greatly speeds up the analysis of new lung datasets.  
 
The HLCA provides crucial context for understanding disease 
Single-cell studies of disease rely on adequate, matching control samples to allow correct identification of 
disease-specific changes. Even when such matching controls are available, it can be challenging to distinguish 
where disease effects differ from natural variation using a single dataset. The HLCA core can provide this context 
needed for the study of disease. To demonstrate the ability of the HLCA core to contextualize disease data and 
facilitate their interpretation, we mapped scRNA-seq data from lung cancer samples44 to the HLCA core with 
scArches (Extended Data Fig. 10 a-c). Using HLCA core-based label transfer, we correctly identified cell states 
missing from the HLCA core as “unknown” (cancer cells and erythroblasts). The remaining cells were annotated 
correctly in 77%, incorrectly in 1%, and as unknown in 22% of cases (Extended Data Fig. 10 d-g). A result of 
the original study was the separation of endothelial cells into “tumor-associated" and “normal”44. Clustering the 
projected dataset with our reference showed that cells expressing the suggested tumor-associated marker 
ACKR1 were also abundant in healthy tissue from the HLCA core, specifically in venous ECs (fig. 5c, Extended 
Data Fig. 11 a, b). Indeed, “tumor marker” expression in tumor cells is not higher than that of healthy cells in 
these clusters (fig. 5c). This suggests that ACKR1 is a general marker of venous ECs rather than a tumor-
specific EC marker, (fig. 5c, Extended Data Fig. 11 c). Similarly, the reported ‘normal EC’ marker EDNRB 
characterizes aerocyte capillary ECs, both in tumor and in healthy tissue (fig. 5c, Extended Data Fig. 11 d). As 
EC numbers in the original study were low, correctly identifying and distinguishing these cell types without a 
larger healthy reference is challenging. Thus, without the HLCA core context, limitations in sampling and 
experimental design can be misinterpreted as meaningful differences between healthy and disease tissue. By 
mapping disease data to the HLCA core, we can ensure a representative comparison with healthy cells. This 
projection provides context that is crucial to correctly interpret disease-related phenotypes, especially when 
healthy controls are limited. 
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In addition, the HLCA can provide context to the results of large-scale genetic studies of disease. Genome-wide 
association studies (GWAS) link disease with specific genomic variants that may confer an increased risk of 
disease. Previous studies have linked such variants to cell-type specific mechanistic hypotheses, which are often 
lacking in the initial association study45,46. As the HLCA core has a strongly increased resolution in cell type 
annotations compared to existing atlases1,2,18, it can serve as a resource for linking disease variants to specific 
lung cell types at a much higher granularity. To demonstrate the value of the HLCA core in contextualizing 
genetic data, we mapped association results from four GWA studies of lung function or disease47–50 to the HLCA 
core cell types51 (fig. 5d, Extended Data Fig. 13; Methods). We show that genomic variants associated with 
lung function (forced vital capacity) are associated with peribronchial fibroblasts (p=0.052), subpleural fibroblasts 
(p=0.052), and myofibroblasts (p=0.052), suggesting these fibroblast subtypes play a causative role in inherited 
differences in lung function (fig. 5d). Interestingly, epithelial and immune cell types show no association with 
lung function. We further find a significant association of lung T cells with asthma-associated single nucleotide 
polymorphisms (SNPs) (p=0.02). Lung adenocarcinoma-associated variants show a significant association with 
AT2 cells (p=0.007), and myofibroblasts and smooth muscle cells are significantly associated with COPD GWAS 
SNPs (p=0.03, p=0.02 resp.) (fig. 5d). Thus, by linking genetic predispositions to lung cell types, the HLCA core 
serves as a valuable resource to improve our understanding of lung function and disease. 
 
Projecting new data onto the HLCA refines HLCA annotations 
As knowledge of cell types in the lung expands, and the size of newly generated datasets increases, annotations 
in the HLCA core will need to be further refined. The HLCA and its annotations can be updated by learning from 
new data projected onto the reference. We simulated such an HLCA update using the previously projected 
healthy lung dataset, specifically focussing on the novel cell identities that were distinguished based on their 
tissue location in matched spatial transcriptomic data (“spatially annotated cell types”). These cell identities (i.e. 
immune-recruiting fibroblasts, perichondrial fibroblasts, non-myelinating and myelinating Schwann cells, 
epineurial and endoneurial nerve-associated fibroblasts, and chondrocytes) were predominantly from the 
mesenchymal lineage, and were present at very low frequencies (median: 0.004% of all cells, Extended Data 
Fig. 12 a). In the updated atlas, that combines the HLCA core and the projected data, 3 out of 7 spatially 
annotated cell types (perichondrial fibroblasts, non-myelinating Schwann cells, and endoneurial nerve-
associated fibroblasts, 16, 29 and 35 cells, respectively) could not be recovered in distinct clusters, possibly due 
to low cell numbers in the projected dataset and clustering parameterization (Methods). In contrast, all spatially 
annotated mesenchymal cell types with more than 40 cells (immune-recruiting fibroblasts and chondrocytes), 
and two rare cell types (myelinating Schwann cells and epineurial nerve-associated fibroblasts), were recovered 
in distinct clusters (“spatially annotated clusters”) (fig. 5e, Extended Data Fig. 12 a, b). Thus, the combined 
embedding of the HLCA core and the projected dataset retains subtle biological variation present in the newly 
projected data, which can be used to update the atlas. Moreover, three out of four spatially annotated clusters 
also contained cells from the HLCA core, thereby enabling a refinement of existing HLCA core annotations using 
the spatial context from the projected dataset. For example, HLCA core annotations could be extended for a 
small subset of fibroblasts to immune-recruiting fibroblasts, which we confirmed using marker gene expression 
(Extended Data Fig. 12 c). The fourth spatial cluster (chondrocytes) exclusively contained cells from the 
projected data, suggesting this cell type was absent in the HLCA but could nonetheless be detected as a 
separate cluster in the combined embedding. Thus, the HLCA core and its annotations can be refined by 
mapping new datasets to the atlas and incorporating annotations from these new datasets into the reference.  
 
The HLCA allows large-scale mapping of new data and identification of new cell types and states in 
healthy and diseased lungs 
To extend the atlas and include samples from lung disease, we mapped 1,647,652 cells from 338 healthy and 
diseased individuals from 34 datasets (6 unpublished43, 28 published3,15,17,21,44,52–66) to the HLCA core using 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2022.03.10.483747doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483747
http://creativecommons.org/licenses/by-nd/4.0/


 

 

scArches42, bringing the HLCA to a total of 2.2 million cells from 444 individuals (fig. 6a). To test the HLCA as a 
reference for lung tissue in both health and disease across single-cell technologies, we included healthy samples 
and samples from numerous lung diseases containing single-cell as well as single-nucleus RNA-seq data, and 
generated by technologies such as Drop-Seq and SeqWell (Supplementary Data Table 1). Label transfer from 
the HLCA core to the newly mapped datasets enabled detailed cell type annotation across datasets even for 
rare cells. In comparison, rare cell type identification with conventional annotation approaches67 is challenging, 
especially in smaller datasets, and is linked to several instances of mislabelling (fig. 3e, Extended Data Fig. 4). 
For example, 1,996 migratory DCs could be identified across 25 datasets via label transfer (which constitute 
0.1% of all cells in these datasets), whereas this cell type was originally labeled in only 2 of the datasets of the 
7 for which cell type labels were available (Extended Data Fig. 14).  
As label transfer uncertainty highlights cell identities not captured in the HLCA, we investigated whether the 
uncertainty metric can also be used to identify disease-associated states of healthy cell types captured in the 
HLCA core. High label transfer uncertainty can indicate (1) insufficient batch removal when mapping new 
datasets, (2) outlier samples in the mapped data, and (3) cell identities not captured in the HLCA core. Based 
on correspondence between transferred annotations and original labels of 7 datasets (Methods), we found that 
a mean label transfer uncertainty above 0.2 at the dataset level suggests that residual batch effects (biological 
or technical) are still present. Out of 34 new datasets, 24 had a mean uncertainty score below this threshold, 
indicating that mapping of new data to the HLCA core is of high quality in the majority of cases. These 24 datasets 
include disease samples, as well as single-nucleus and Drop-Seq single-cell data (fig. 6b), demonstrating the 
potential of the HLCA core as a universal reference. 
 Datasets with a mean uncertainty above 0.2 were often from COVID-19 studies and associated with specific 
technical covariates (bronchoalveolar lavage fluid (BALF), autopsy, and 10X 5’-sequencing) (fig. 6b). As control 
samples from BALF and 10X 5` datasets showed uncertainty levels below 0.2, high label transfer uncertainty for 
the remaining datasets was likely due to disease-related cell identities in the data (not present in the healthy 
reference), rather than residual technical batch effects. Indeed, high uncertainty values in these datasets were 
driven by macrophages and monocytes (Extended Data Fig. 15), which are activated and recruited in SARS-
CoV-2 pneumonia65,66 
Pulmonary diseases are characterized by the emergence of unique disease-associated transcriptional 
phenotypes2,17,19,21,68 We observed higher levels of label transfer uncertainty in datasets from diseased lungs (fig 
6b, condition), possibly flagging cell types changed in response to disease. For example, labels of various 
fibroblast and macrophage cell types known to be affected by idiopathic pulmonary fibrosis (IPF) are transferred 
with higher uncertainty in IPF samples than in samples from healthy controls from the same dataset62 (fig. 6c, 
Extended Data Fig. 16 a, b). Label uncertainty thus detects cell identities that are specifically altered in the 
context of disease, an essential step in the analysis of diseased tissue data.  
In addition to detecting transferred annotations altered in disease, we investigated whether uncertainty scores, 
which are quantified per cell, also directly highlight the cells from these annotations that are most affected by the 
disease condition, thereby immediately focusing on the relevant populations. To identify these cellular subsets, 
and learn matching disease-specific gene signatures, we compared gene expression between high-uncertainty 
and low-uncertainty cells in samples from patients with IPF (Supplementary Data Table 8, Supplementary 
Data Table 9). For both alveolar fibroblasts and macrophages, the genes more highly expressed in high-
uncertainty cells are indeed lowly expressed in healthy samples (fig. 6d), indicating that uncertainty scores can 
be used to discover new disease-associated cell states and extract disease-specific gene expression programs. 
Genes down-regulated in high-uncertainty IPF macrophages compared to their low-uncertainty counterparts are 
associated with homeostatic functions of tissue-resident alveolar macrophages and lipid metabolism (PPARG, 
FABP4, and others)19,21,57, while up-regulated genes are associated with extracellular matrix remodeling and scar 
formation (SPP1, PLA2G7, CCL2; Supplementary Data Table 8)19,21,57. A more detailed analysis demonstrated 
that these differentially expressed genes identify distinct subsets of homeostatic tissue-resident and profibrotic  
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Figure 6. The extended HLCA highlights disease-associated cell states. a, UMAP of the HLCA, including both the 
HLCA core, and the 34 datasets from the atlas extension. Cells from the HLCA core are colored by coarse annotation, 
whereas cells from the atlas extension (mapped to the HLCA core) are colored gray. b, Uncertainty of label transfer from 
the HLCA core to newly mapped datasets, categorized by several experimental features. Mean uncertainties per dataset 
are shown. Datasets with samples from multiple categories (e.g. including healthy and diseased samples) were split 
according to category. Categories with fewer than 2 instances are not shown. CF: cystic fibrosis. IPF: idiopathic pulmonary 
fibrosis. ILD: interstitial lung disease. c, Label transfer uncertainty distribution of cells from a mapped IPF dataset, subdivided 
by transferred label. Uncertainty is shown for cells from healthy samples (blue) and from IPF samples (orange) from the 
same dataset. Cell types are sorted by difference in uncertainty between healthy and IPF cells. d, Uncertainty-based disease 
signature scores among alveolar fibroblasts (left) and alveolar macrophages (right), as annotated through label transfer. 
Cells are split into cells from healthy samples (blue), low-uncertainty cells from IPF samples (light orange), and high-
uncertainty cells from IPF samples (bright orange). For both b and d, boxes show median and interquartile range, data 
points outside more than 1.5 times the interquartile range outside the low and high quartile are considered outliers and not 
shown. Whiskers extend to the furthest non-outlier point. AT1, 2: alveolar type 1, 2 cells. DC: dendritic cells. DC1, 2: DC 
type 1, 2. EC: endothelial cells. SMG: submucosal gland. 
 
monocyte-derived macrophages (Extended Data Fig. 16 c). Thus, the HLCA core can be used to annotate new 
data, identify previously unreported populations, and detect disease-affected cell states and corresponding gene 
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signatures. This vastly speeds up analysis and interpretation of new data, immediately prioritizing the most 
relevant populations. 
 
 
DISCUSSION 
We built the Human Lung Cell Atlas, an integrated reference atlas of the human respiratory system that contains 
over 2.2 million cells from 46 datasets, covering all major lung single-cell RNA-seq studies published to date. 
The core of this atlas consists of a fully integrated healthy reference of 14 datasets with a consensus reannotation 
of, and robust marker genes for 58 cell identities, representing a first data-derived consensus annotation of the 
cellular landscape of the human lung. We leveraged the unprecedented complexity of the HLCA in the number 
of cells and samples to optimize recovery of rare cell types which could not be annotated in individual datasets, 
and to identify cell-type specific gene modules associated with relevant covariates such as lung anatomical 
location, and age, sex, BMI and smoking status of the tissue donor. To provide the HLCA reference as a tool for 
the community, we built an scArches reference model of the HLCA that enables efficient projection of new data 
onto the atlas. By projecting data onto the HLCA, we showed that the HLCA enables a fast, detailed annotation 
of new datasets, including detection of rare cell identities. When applied to disease data, HLCA reference 
mapping facilitates direct identification of unique, disease-associated cell states and corresponding gene 
signatures. Taken together, the HLCA is a universal reference for single-cell lung research that promises to 
accelerate future studies into pulmonary health and disease. 
The constituent datasets of the HLCA widely vary in their experimental design (sampling method, subject 
selection, single cell platform etc.) and therefore exhibit dataset-specific batch effects. Reduction of such batch 
effects, while retaining biological information, is crucial for integrated analysis of the data. We showed that the 
high quality of the HLCA hinged on the choice of integration method, with methods like Seurat’s RPCA28 and 
Harmony32 being unable to correctly group rare cell identities into separate clusters. Importantly, integration of 
datasets inherently entails a trade-off between removal of batch-effect and conservation of biological variation16. 
While conserving biological variation in the HLCA enabled capturing subtle biological heterogeneity, such as rare 
cell types or altered cell states, it also resulted in some clusters being dominated by cells from single individuals. 
These clusters may represent residual batch effects or rare biological variation. As we showed that substantial 
transcriptomic variance is associated with demographic covariates, which vary between individuals, residual 
differences observed between individuals may be related to biological variation. Most subject- or group-specific 
clusters are observed in immune cells, which have been reported to show strong subject-specific transcriptome 
variation69. Notwithstanding, we observe gene expression programs that are consistently associated with 
covariates across the integrated HLCA, indicating that biological variation is well retained.  
The ultimate goal of a human lung cell atlas is to provide a comprehensive overview of all cells in the lung, and 
their variation from individual to individual. The HLCA contains healthy lung samples from 107 individuals in its 
core, and from 444 individuals in the extended atlas. These sample numbers make it possible to systematically 
assess the contribution of demographic covariates to inter-individual variation at single-cell resolution for the first 
time. While the HLCA is the most diverse lung study to date, it is still a reflection of the limited diversity in single-
cell studies of the respiratory system. Thus, the HLCA core consists of data from 65% white individuals, 
highlighting the urgent need for diversification of the population sampled in lung studies. Similarly, the current 
HLCA core does not include BALF, autopsy or sputum samples. Expanding the atlas with these sample types 
will further diversify captured cell identities, and could improve the quality of the HLCA core as a reference for 
new datasets acquired by these sampling methods. 
Future extensions of the HLCA could further increase the power to detect the effects of demographic variables, 
such as age, BMI, and smoking status. Indeed, in the current HLCA the effect of smoking on cell types was 
relatively modest, also compared to other demographic covariates. As metadata on pack years and smoking 
frequency was not available for most subjects, a coarser encoding of smoking status (current, ever, never) was 
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necessary, increasing the within-group variance and thus decreasing statistical power. A larger number of 
subjects in the HLCA would counteract this limitation and could provide the power needed to detect more 
nuanced effects. Similarly, in the current HLCA core certain subsets of T cells (regulatory T cells, gamma-delta 
T cells) could not be identified as separate clusters. Mapping of additional, well-annotated immune cell data 
could provide the power to confidently detect these cell identities. Indeed, we showed that mapping datasets to 
the HLCA enabled refinement of HLCA annotations.  
The HLCA core is publicly available as a data portal and a model repository to explore, download, and use as a 
reference for new datasets. As the atlassing community has multiple outlets for newly generated data, we made 
the atlas available in Sfaira70, Zenodo71, Azimuth14, CellTypist72, and FASTGenomics73. Mapping new datasets 
to the HLCA core using scArches can be done via interactive portals, such as FASTGenomics and Azimuth, as 
well as locally using our Zenodo model74, which lends itself to integration into bioinformatics pipelines. As more 
lung datasets become available and the respiratory community progresses in charting the cellular landscape of 
the lung, for example via novel sampling techniques or multi-modal analysis such as combined spatial and single-
cell analysis, knowledge of the lung and its cell types will also expand. This underlines the importance of viewing 
the HLCA as a ‘live’ resource that requires continuous updates. Indeed, recent studies1,17,22,43 have proposed 
more, novel cell types that have not yet been included in the hierarchical, harmonized HLCA annotations as 
these do not yet have support from multiple studies or consensus within the field. Using recent advances in 
transfer learning, we can robustly and iteratively extend the current HLCA. We illustrated, by mapping a newly 
annotated dataset to the HLCA core, that incorporating novel data in the atlas enables the refinement of HLCA 
annotations. To consolidate this incorporation of new knowledge, the HLCA core will be continuously updated 
by adding new datasets as these become available. New builds of the HLCA will be established by fully re-
integrating the original and new datasets into an updated HLCA core. In addition, versions of every build will 
include fast, transfer learning-based mappings of individual, newly published datasets to the latest available 
HLCA core build. With the integration of new datasets and the open access of all HLCA infrastructure, the HLCA 
can serve as a community- and data-driven platform for open discussion on lung cell heterogeneity, thus 
providing the basis for reaching consensus on updated lung cell type annotations. Through this iterative process, 
the HLCA will function as a central reference for lung data, reflecting the latest knowledge of the lung and its cell 
identities in health and disease. 
In the future, multimodal data of the human respiratory system - including epigenomic, spatial, and imaging data 
- will become increasingly available. While first ideas for integrating such data have been proposed75, a 
systematic study of multimodal atlas building is not yet feasible due to limited data. Similarly, integrating single-
cell atlases with large population cohort studies assaying human transcriptomic variation on the bulk level would 
greatly extend the represented diversity that is lacking in available single-cell studies. Integration across bulk 
and single-cell data would however require methodological advances in bulk deconvolution and imputation. 
Overall, we expect future versions of the HLCA to also contain a multimodal and a spatial “track”, which will 
enable deeper insights into cellular phenotypes within the organ. 
Taken together, the HLCA represents a major milestone for the respiratory community, providing a single-cell 
resource of unprecedented size and quality. It offers a model framework for building integrated, consensus-
based, population-scale atlases for further organs within the Human Cell Atlas. The HLCA is publicly available, 
and combined with an open-access platform to map new datasets to the atlas, this resource paves the way 
towards a better and more complete understanding of both health and disease in the human lung.  
 
 
METHODS 
  
Re-processing of published data 
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The raw sequencing data of 4 previously published studies was re-aligned to GRCh38, ensembl 84 for the HLCA 
(Krasnow_2020, Barbry_Leroy_2020, Seibold_2020, Meyer_2021). For the Krasnow_2020 and 
Barbry_Leroy_2020 studies, the CellRanger 3.1.0-based HLCA pipeline was used for re-alignment. 
Seibold_2020 and Meyer_2021 data were processed as previously described22,43, but with reference genome 
and genome annotation adapted to the HLCA (GRCh38, ensembl84). All other datasets in the HLCA core were 
originally already aligned to GRCh38, ensembl84, except data from the Lafyatis_Rojas_2019 study (GRCh38, 
ensembl93) (Supplementary Data Table 1).  
 
Single-cell sequencing and preprocessing of unpublished data 
Unpublished data was generated as follows: 
Barbry_unpubl: Barbry_unpubl: Nasal and tracheobronchial samples were collected from IPF patients after 
obtention of their informed consent, following a protocol approved by CHU Nice, registered at clinicaltrials under 
reference NCT04529993. The libraries were prepared as described in Deprez et al13, and yielded an average of 
61,000±11,000 cells per sample, with a viability above 95%. The single cell suspension was used to generate 
single cell libraries following the V3.1 protocol for 3’ chemistry from 10x Genomics (CG000204). Sequencing 
was performed on a NextSeq 500/550 sequencer (Illumina). Raw sequencing data were processed using the 
cellranger-6.0.0 pipeline, with reference genome and annotation GRCh38 and ensembl98. For each sample, 
cells with less than 200 transcripts or more than 40 000 transcripts were filtered out, as well as genes expressed 
in less than 3 cells. Normalization and log-transformation was done using the standard Scanpy76 pipeline. PCA 
was performed on 1000 HVG to compute 50 PCs and the Louvain algorithm was used for clustering. Those 
clusters were then annotated by hand for each sample. Raw counts and the thus obtained cell annotations were 
used as input for the HLCA. 
Schiller_2021: Tumor-free, uninvolved lung samples (peri-tumor tissues) were obtained during tumor resections 
at the lung specialist clinic “Asklepios Fachkliniken Munich-Gauting” and accessed through the bioArchive of the 
Comprehensive Pneumology Center Munich (CPC-M). The study was approved by the local ethics committee 
of the Ludwig-Maximilians University of Munich, Germany (EK 333-10 and 382-10) and written informed consent 
was obtained from all patients. 
Single-cell suspensions for single-cell RNAseq were generated as previously described15. In brief, lung tissue 
samples were cut into smaller pieces, washed with PBS and enzymatically digested using an enzyme mix 
composed of dispase, collagenase, elastase and DNAse for 45 min at 37°C while shaking. After inactivating the 
enzymatic activity with 10% FCS/PBS, dissociated cells were passed through a 70 µm cell strainer, pelleted by 
centrifugation (300 x g, 5 min), and subjected to red blood cell lysis. After stopping the lysis with 10% FCS/PBS, 
the cell suspension was passed through a 30 µm strainer and pelleted. Cells were resuspended in 10%FCS/PBS, 
assessed for viability and counted using a Neubauer hematocytometer. Cell concentration was adjusted to 1,000 
cells/µl and around 16,000 cells were loaded on a 10x Genomics Chip G with Chromium Single Cell 3′ v3.1 gel 
beads and reagents (3′ GEX v3.1, 10x Genomics). Libraries were prepared according to the manufacturer’s 
protocol (10x Genomics, CG000204_RevD). After quality check, single-cell RNA-seq libraries were pooled and 
sequenced on a NovaSeq 6000 instrument. 
The generation of count matrices was performed by using the Cellranger computational pipeline (v3.1.0, STAR 
v2.5.3a). The reads were aligned to the hg38 human reference genome (GRCh38, ensembl99). Downstream 
analysis was performed using the Scanpy76 package (v1.8.0). We assessed the quality of our libraries and 
excluded barcodes with less than 300 genes detected, while retaining those with a number of transcripts between 
500 and 30,000. Further, cells with a high proportion (> 15%) of transcript counts derived from mitochondrial-
encoded genes were removed. Genes were considered if they were expressed in at least 5 cells. Raw counts of 
cells that passed filtering were used as input for the HLCA. 
Duong_HuBMAP_unpubl: All post-mortem human donor lung samples were obtained from the Biorepository for 
Investigation of Neonatal Diseases of the Lung (BRINDL) supported by the NHLBI LungMAP Human Tissue 
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Core housed at the University of Rochester. Consent, tissue acquisition, and storage protocols can be found on 
the repository’s website (brindl.urmc.rochester.edu/). Data was collected as part of the Human Biomolecular 
Atlas Program (HuBMAP). For isolation of single nuclei, 10 cryosections (40 um thickness) from OCT embedded 
tissue blocks stored at -80℃ were shipped on dry ice and processed according to a published protocol77. Single 
nucleus RNA-sequencing was completed using 10X Chromium Single-Cell 3’ Reagent Kits v3 according to a 
published protocol77,78. Raw sequencing data was processed using the 10X Cell Ranger v3 pipeline and GRCh38 
(hg38) reference genome. For downstream analysis, mitochondrial transcripts and doublets identified by 
DoubletDetection79 v2.4.0 were removed. Samples were then combined and cell barcodes were filtered based 
on genes detected (>200, <7500) and gene UMI ratio (gene.vs.molecule.cell.filter) using Pagoda2 
(github.com/hms-dbmi/pagoda2). Also using Pagoda2 for clustering, counts were normalized to total counts per 
nucleus. For batch correction, gene expression was scaled to dataset average expression. After variance 
normalization, all significantly variant genes 4519 were used for PCA. Clustering was done at different k values 
(50, 100, 200) using the top 50 principal components and the infomap community detection algorithm. Then, 
principal component and cluster annotations were imported into Seurat28 v4.0.0. Differentially expressed genes 
for all clusters were generated for each k resolution using Seurat FindAllMarkers (only.pos = TRUE, 
max.cells.per.ident = 1000, logfc.threshold = 0.25, min.pct = 0.25). Clusters were manually annotated based on 
distinct differentially expressed marker genes. Raw counts and the thus obtained cell annotations were used as 
input for the HLCA. 
Banovich_Kropski_2020: Data was a combination of published data17 and unpublished data (Vanderbilt IRB nos. 
060165 and 171657 and Western IRB no. 20181836). Unpublished data was generated as previously 
described17, using reference genome GRCh38, ensembl84. Both published and unpublished data were 
combined and processed together using Seurat v4. Cells containing less than 500 identified genes or more than 
25% of reads arising from mitochondrial genes were filtered out. Sctransform80 with default parameters was 
performed to normalize and scale the data, PCA was used for dimensionality reduction using the top 3000 most 
variable genes. Cell type annotation was performed using Seurat28,80 FindTransferAnchors and TransferData 
functions, using the annotated object from the published data17 as reference. Raw counts and the thus obtained 
cell annotations were used as input for the HLCA. 
Nawijn_2021: Data was a combination of published2 and unpublished data. In both cases, healthy volunteers 
were recruited for bronchoscopy at the University Medical Center Groningen, after giving informed consent and 
according to the protocol approved by the Institutional Review Board. Inclusion criteria and tissue processing 
were performed as previously described2. In short, all subjects were 20-65 years old and had a history of smoking 
<10 pack-years. To exclude respiratory disease, the following criteria were used: absent history of asthma or 
COPD, no use of asthma or COPD-related medication, a negative provocation test (PC20 methacholine >8 
mg/ml), no airflow obstruction (FEV1/forced vital capacity (FVC) ≥ 70%) and absence of lung function impairment 
(that is FEV1 ≥ 80% predicted). All subjects underwent a bronchoscopy under sedation using a standardized 
protocol81. Nasal brushes were obtained from the lateral inferior turbinate in a subset of the volunteers right 
before bronchoscopy using Cyto-Pak CytoSoft nasal brush (Medical Packaging Corporation, Camarillo, CA, 
USA). Six macroscopically adequate endobronchial biopsies were collected for this study, located between the 
third and sixth generation of the right lower and middle lobe. Bronchial brushes were obtained from a different 
airway at similar anatomical locations using a CellCellebrity bronchial brush (Boston Scientific, Massachusetts, 
USA). Extracted biopsies and bronchial and nasal brushes were processed directly, with a maximum of 1 hour 
delay. Bronchial biopsies were chopped biopsies using a single edge razor blade. A single-cell solution was 
obtained by tissue digestion using 1mgml−1 collagenase D and 0.1mgml−1 DNase I (Roche) in HBSS (Lonza) 
at 37 °C for 1h with gentle agitation for both nasal brushes and bronchial biopsies. Single-cell suspensions were 
filtered forced using 70µm nylon cell strainer (Falcon), followed by centrifugation at 550g, 4 °C for 5min and one 
wash with a PBS containing 1% BSA (Sigma-Aldrich). The single-cell suspensions used for 10X Genomics 
scRNA-seq analysis were cleared of red blood cells by using a red blood cell lysis bufer (eBioscience) followed 
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by live cell counting and loading of 10,000 cells per lane. We used 10XGenomics Chromium Single-Cell 3’ 
Reagent Kits v2 and v3 according to the manufacturers’ instructions. Raw sequencing data were processed 
using the CellRanger 3.1.0-based HLCA pipeline, with reference genome and annotation GRCh38 and 
ensembl84. Ambient RNA correction was performed using FastCAR 
(https://github.com/LungCellAtlas/FastCAR), using an empty library cutoff of 100 UMI and a maximum allowed 
contamination chance of 0.05, ignoring the mitochondrial RNA. Data were merged and processed using Seurat28, 
filtering to libraries with >500 UMIs and >200 genes and to the libraries containing the lowest 95% of 
mitochondrial RNA per sample and <25% mitochondrial RNA, normalized using sctransform80 while regressing 
out % mitochondrial RNA. In general, 15 principal components were used for the clustering, at a resolution of 
0.5 to facilitate manual annotation of the dataset. Clusters in the final object that were driven by single donors 
were removed. Raw counts and cell annotations were used as input for the HLCA. 
Jain_Misharin_2021: Nasal epithelial samples were collected from healthy volunteers who provided informed 
consent at Northwestern Medicine, Chicago, USA. Protocol was approved by Northwestern University IRB 
(STU00214826). Briefly, subjects were seated and asked to extend their neck. A nasal curette (Rhino-pro, VWR) 
was inserted into either nare and gently slid from posterior-to-anterior about one centimeter along the lateral 
inferior turbinate. Five curettes were obtained per participant. The curette tip was then cut and placed in 2 ml of 
hypothermosol and stored at 4C until processing. Single cell suspension was generated using cold-active 
dispase protocol reported by Deprez, Zaragosi and colleagues18,82 with slight modification. Specifically, EDTA 
was omitted and cells were dispersed by pipetting 20 times every 5 min using a 1ml tip instead of trituration using 
a 21/23G needle, the final concentration of protease from Bacillus Licheniformis was 10 mg/ml. Total digestion 
time was 30 min. Following the wash in 4 ml of 0.5% BSA in PBS and centrifugation at 400 rcf for 10 min, cells 
were resuspended in 0.5% BSA in PBS and counted using Nexcelom K2 Cellometer with AO/PI reagent. This 
protocol typically yields ~300-500,000 cells with viability >95%. The resulting single cell suspension was then 
used to generate single cell libraries following protocol for 5’ V1 (10x Genomics, CG000086 Rev M) or V2 
chemistry (10x Genomics, CG000331 Rev A). Excess cells from 2 of the samples were pooled together to 
generate 1 additional single cell library. After quality check, the libraries were pooled and sequenced on a 
NovaSeq 6000 instrument. Raw sequencing data were processed using the CellRanger 3.1.0 pipeline, with 
reference genome and annotation GRCh38 and ensembl84. To assign sample information to cells in the single-
cell library prepared from 2 samples, we ran souporcell83 v.2.0 for that library and 2 libraries that were prepared 
from these samples separately. We used common genetic variants prepared by the souporcell authors to 
separate cells into 2 groups by genotype for each library, and Pearson correlation between the identified 
genotypes across libraries to establish correspondence between genotype and sample. Cell annotations were 
assigned to cell clusters based on expert interpretation of marker genes for each cluster. Cell clusters were 
derived with Seurat28 v3.2 workflow: samples were normalized with sctransform80, 3000 HVGs selected and 
integrated, and clusters derived from 30 principal components using Louvain algorithm with default parameters. 
Clusters with low number of UMIs and high expression of ribosomal or mitochondrial genes were excluded as 
low-quality. Raw counts and the thus obtained cell annotations were used as input for the HLCA. 
Misharin_2020: Protocol was approved by Northwestern University IRB (STU00212120). Two biopsies that 
included the main left bronchus and distal parenchyma from the upper lobe were obtained from another donor 
lung that was not placed for transplant (donor 1). A single biopsy from a distal lung parenchyma (donor 2) was 
obtained from wedge resection of the donor lung for size reduction during lung transplantation. Lung and airway 
tissues were infused with a solution of Collagenase D (2 mg/ml) and deoxyribonuclease I (0.1 mg/ml) in RPMI, 
cut into ~2-mm pieces, and incubated in 10 ml of digestion buffer with mild agitation for 30 min at 37°C. The 
resulting single-cell suspension was filtered through a 70-m nylon mesh filter, and digestion was stopped by 
addition of 10 ml of PBS supplemented with 0.5% BSA and 2 nM EDTA (staining buffer). Cells were pelleted by 
centrifugation at 300 rcf for 10 min, supernatant was removed, and erythrocytes were lysed using 5 ml of 1× 
Pharm Lyse solution (BD Pharmingen) for 3 min. The single-cell suspension was resuspended in Fc-Block 
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(Human TruStain FcX, BioLegend) and incubated with CD31 microbeads (Miltenyi Biosciences, 130-091-935), 
and the positive fraction, containing endothelial cells and macrophages, was collected. The negative fraction 
was then resuspended in staining buffer, the volume was adjusted so the concentration of cells was always less 
than 5E6 cells/ml, and the fluorophore-conjugated antibody cocktail was added in 1:1 ratio (EpCAM, Clone 9C4, 
PE-Cy7, BioLegend, catalog number 324222, RRID:AB_2561506, 1:40; CD206, Clone 19.2, PE, Thermo Fisher 
Scientific, catalog number 12-2069-42, RRID:AB_10804655, 1:40; CD31, Clone WM59, APC, BioLegend, 
catalog number 303116, RRID: AB_1877151, 1:40; CD45 Clone HI30, APCCy7, BioLegend, catalog number 
304014, RRID: AB_314402, 1:40; HLA-DR, Clone LN3, eFluor450, Thermo Fisher Scientific, catalog number 
48-9956-42, RRID:AB_10718248, 1:40). After incubation at 4°C for 30 min, cells were washed with 5 ml of MACS 
buffer, pelleted by centrifugation, and resuspended in 500 ul of MACS buffer + 2 ul of SYTOX Green viability dye 
(Thermo Fisher Scientific). Cells were sorted on a FACSAria III SORP instrument using a 100-m nozzle and 20 
psi pressure. Macrophages were sorted as live/CD45+HLA-DR+CD206+ cells, epithelial cells were sorted as 
live/CD45−CD31−EpCAM+, and stromal cells were sorted as live/ CD45−CD31−EpCAM− cells. Cells were 
sorted into 2% BSA in Dulbecco's PBS (DPBS, without calcium and magnesium), pelleted by centrifugation at 
300 rcf for 5 min at 4°C, and resuspended in 0.1% BSA in DPBS to ~1000 cells/l concentration. Concentration 
was confirmed using K2 Cellometer (Nexcelom) with AO/PI reagent, and ~5000 to 10,000 cells were loaded on 
a 10x Genomics Chip B with Chromium Single Cell 3′ gel beads and reagents (3′ GEX V3, 10x Genomics). 
Libraries were prepared according to the manufacturer’s protocol (10x Genomics, CG000183_RevB). After 
quality check, single-cell RNA-seq libraries were pooled and sequenced on a HiSeq 4000 or NovaSeq 6000 
instrument. Raw sequencing data were processed using the CellRanger 3.1.0 pipeline, with reference genome 
and annotation GRCh38 and ensembl84. Each sample was processed with Seurat28 v3.2 workflow to split cells 
into clusters: data was normalized with sctransform80, a number of principal components was selected based on 
gene weights within the component, and cells were clustered with Louvain algorithm. Clusters with low-quality 
cells were excluded, while clusters expressing markers of multiple cell types were further sub-clustered by 
repeating the workflow only on those cells. Cell annotations were assigned to clusters based on marker genes 
for each cluster. Raw counts and the thus obtained cell annotations were used as input for the HLCA. 
 
Data and metadata collection 
To accommodate data protection legislation, single cell RNA sequencing datasets of healthy lung tissue were 
shared by dataset generators (Supplementary Data Table 2) as raw count matrices, thereby obviating the need 
to share genetic information. Unpublished raw count matrices and cell annotations were generated as described 
above. For the Barbry_2020 study, count matrices provided had ambient RNA removed. Count matrices were 
generated using varying software (Supplementary Data Table 2). All count matrices of the HLCA core except 
one study (see above, "re-processing of published data") were based on alignment to reference genome 
GRCh38, annotation ensembl 84. For all datasets from the HLCA core, a pre-formatted sample metadata form 
was filled out by the dataset providers for every sample, containing metadata such as subject ID of the donor 
from which the sample came, the donor’s age, the type of sample, the sequencing platform, etc. (Supplementary 
Data Table 2). Cell type annotations from dataset providers were included in all datasets. 
  
Cell type reference creation and metadata harmonization for the HLCA core 
To harmonize cell type labels from different datasets, a common reference was created to which original cell 
type labels were mapped (Supplementary Data Table 4). To accommodate labels at different levels of detail, 
the cell type reference was made hierarchical, with level 1 containing the coarsest possible labels (immune, 
epithelial, etc.), and level 5 containing the finest possible labels (e.g. naive CD4 T cells). Levels were created in 
a data-driven fashion, recursively breaking up coarser level labels into finer ones where finer labels were 
available. Anatomical location of the sample was encoded into a continuous score, with 0 representing the most 
proximal samples (nose, inferior turbinate) and 1 representing the most distal possible sample (parenchyma, 
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alveolar sacs) (Supplementary Data Table 3). A distinction was made between upper and lower airways. First, 
an anatomical coordinate score was applied to the upper airways, starting at 0 and increasing linearly (with a 
value of 0.5) between each of the following anatomical locations: inferior turbinate, nasopharynx, oropharnyx, 
vesibula, and larynx. The trachea received the next anatomical coordinate score using the same linear increment 
as in the upper airways (score of 2.5). In the lower airways, the coordinate score within the bronchial tree was 
based on the generation airway, with trachea being the first generation and the total number of generations 
assumed to be 2384. The alveolar sac was assigned the coordinate score of the 23rd generation airway. The 
coordinate score of each generation airway was calculated by taking the log-2 value of the generation, and 
adding that to the score of the trachea. Using this methodology, the alveolus received the anatomical coordinate 
score of 7.02. To calculate the finat CCF coordinate, the coordinates scores (ranging from 0 to 7.02) were scaled 
to a value between 0 (inferior turbinate) and 1 (alveolus). Samples were then mapped to this coordinate system 
using the best approximation of the sampling location for each of the samples of the Core HLCA. 
  
General data preprocessing for the HLCA core 
Patients with lung conditions affecting larger parts of the lung, such as asthma or pulmonary fibrosis, were 
excluded from the HLCA core, and later added to the extended atlas. For the HLCA core, all matrices were gene-
filtered based on cellranger ensembl84 gene type filtering85 (resulting in 33694 gene IDs). Cells with fewer than 
200 genes detected were removed (removing 2335 cells, and 21 extra erythrocytes with close to 200 genes 
expressed, these hampered SCRAN normalization, see below), and genes expressed in fewer than 10 cells 
were removed (removing 5167 out of 33694 genes). 
 
Total counts normalization with SCRAN  
To normalize for differences in total unique molecular identifier (UMI) counts per cell, we performed SCRAN 
normalization86. Since SCRAN assumes that at least half of the genes in the data to normalize are not 
differentially expressed between subgroups of cells, we performed SCRAN normalization within clusters. To that 
end, we first performed a total counts normalization, by dividing each count by its cell’s total counts, and 
multiplying by 10,000. We then performed a log transformation using natural log and pseudocount 1. A principal 
component analysis was subsequently performed. Using the first 50 principal components, a neighborhood 
graph was calculated with the number of neighbors set to k=15. Data were subsequently clustered with louvain 
clustering, at resolution r=0.5. SCRAN normalization was then performed on the raw counts, using the louvain 
clusters as input clusters, and with the minimum mean (library size-adjusted) average count of genes to be used 
for normalization set to 0.1. The resulting size factors were used for normalization. For the final HLCA (and not 
the benchmarking subset), cells with abnormally low size factors (<0.01) or abnormally high total counts after 
normalization (>10e5) were removed from the data (267 cells in total).  
 
Preprocessing of data for integration benchmarking 
For computational efficiency, benchmarking was performed on a subset of the total atlas, including data from 10 
studies split into 13 datasets (Lafyatis_Rojas_2020 was split into 10Xv1 and 10Xv2 data, Seibold_2020 was split 
into 10Xv2 and 10Xv3 data, and Banovich_Kropski_2020 was split into two based on processing site). The data 
came from 72 subjects, 124 samples and 372,111 cells. Preprocessing of the benchmarking data included the 
filtering of cells (minimum number of total UMI counts: 500) and genes (minimum number of cells expressing the 
gene: 5).  
For integration benchmarking, the scIB benchmarking framework was used16. All benchmarked methods except 
scGen (i.e. BBKNN, ComBat, Conos, fastMNN, Harmony, Scanorama, scANVI, scVI and Seurat RPCA) were 
run at least twice: on the 2000 most highly variable genes, and on the 6000 most highly variable genes. Of those 
methods, all methods that did not require raw counts as input were run twice on each gene set: once with gene 
counts scaled to have mean 0 and standard deviation 1, one with unscaled gene counts. scVI and scANVI, which 
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require raw counts as input, were not run on scaled gene counts. scGen was only tested on 2000 unscaled highly 
variable genes. For highly variable gene selection, first, highly variable genes were calculated per dataset, using 
cellranger-based highly variable gene selection87 (default parameter settings: min_disp=0.5, min_mean=0.0125, 
max_mean=3, span=0.3, n_bins=20). Then, genes that were highly variable in all datasets were considered 
overall highly variable, followed by genes highly variable in all datasets but one, in all datasets but two etc. until 
a predetermined number of genes was selected (2000 or 6000 genes). 
For scANVI and scVI, genes were subset to the highly variable gene set and the resulting raw count matrix was 
used as input. For all other methods, SCRAN-normalized (as described above) data were used. Genes were 
then subset to the pre-calculated highly variable gene sets. For integration of gene-scaled data, all genes were 
scaled to have mean 0 and standard deviation 1. 
Two integration methods allowed for input of cell type labels to guide the integration: scGen and scANVI. As 
labels, level 3 harmonized cell type labels were used (Supplementary Data Table 4), except for blood vessel 
endothelial, fibroblast lineage, mesothelial and smooth muscle cells, for which we used level 2 labels. Since 
scGen does not accept unlabeled cells, cells that did not have annotations available at these levels (i.e. cells 
annotated as cycling, epithelial, stromal, or lymphoid cells with no further annotations; 4499 cells in total) were 
left out of the benchmarking data. 
  
Data integration benchmarking 
Integration methods were run using default integration parameter settings as previously described42. Maximum 
memory usage was set to 376Gb, and all methods requiring more memory were excluded from the analysis. The 
quality of each of the integrations was scored using 12 metrics, with 4 metrics measuring the batch correction 
quality, and 8 metrics quantifying conservation of biological signal after integration (Extended Data Fig. 1, 
metrics previously described16). Overall scores were computed by taking a 40:60 weighted mean of batch effect 
removal to biological variation conservation (bio-conservation), respectively. Methods were ranked based on 
overall score (Extended Data Fig. 1). The top performing method (scANVI, 2000 hvgs, unscaled) was used for 
integration of the HLCA core.  
 
Splitting of studies into datasets  
For integration of the data into the HLCA core, we first determined in which cases studies had to be split into 
separate datasets (which were treated as batches during integration). Reasons for possible splitting were 1) 
different 10X versions used within a study (e.g. 10Xv2 versus 10Xv3), or 2) processing of samples at different 
institutes within a study. To determine if these covariates caused batch effects within a study, we performed 
principal component regression88. To that end, we preprocessed single studies separately (total counts 
normalization to median total counts across cells, and subsequent principal component analysis (PCA) with 50 
principal components (PCs). For each study, we then calculated the fraction of the variance in the first 50 PCs 
that could be explained (“pcexpl”) by the covariate of interest (i.e. 10X version or processing institute): 

𝑝𝑐𝑒𝑥𝑝𝑙	 = ∑!"#$% "#$(&'#|')")
∑!"#$% "#$(&'#)

  

where var(pcI|cov) is the variance in scores for the ith PC across cells that can be explained by the covariate 
under consideration, based on a linear regression. 
Then, 10X version or processing institute assignments were randomly shuffled between samples, and pcexpl 
was calculated for the randomized covariate. This was repeated over 10 random shufflings, and the mean and 
standard deviation of the pcexpl was then calculated for the covariate. If the non-randomized pcexpl was more 
than 1.5 standard deviations above the randomized pcexpl, we considered the covariate a source of batch effect 
and split the study into separate datasets. Thus both Jain_Misharin_2021 and Lafyatis_Rojas_2019 were split 
into 10Xv1 and 10Xv2, Seibold_2020 was split into 10Xv2 and 10Xv3, while Banovich_Kropski_2020 was not 
split based on 10X version nor based on processing location. 
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Dataset integration 
For integration of the datasets into the HLCA core, coarse cell type labels were used as described for integration 
benchmarking, except cells with lacking annotations were set to “unlabeled” instead of being removed. scANVI 
was run on the raw counts of the 2000 most highly variable genes (calculated as described above), using 
datasets as the batch variable. The following parameter settings were used: number of layers: 2, number of 
latent dimensions: 30, encode covariates: True, deeply inject covariates: False, use layer norm: both, use batch 
norm: none, gene likelihood: nb, n epochs unsupervised: 500, n epochs semi-supervised: 200, frequency: 1. For 
the unsupervised training, the following early-stopping parameters were used: early stopping metric: elbo, save 
best state metric: elbo, patience: 10, threshold: 0, reduce lr on plateau: True, lr patience: 8, lr_factor: 0.1. For 
the semi-supervised training, the following early-stopping-parameter settings were used: early stopping metric: 
accuracy, save best state metric: accuracy, on: full dataset, patience: 10, threshold: 0.001, reduce lr on plateau: 
True, lr_patience: 8, lr_factor: 0.1. The latent embedding generated by scANVI was used for downstream 
analysis (clustering and visualization). For gene-level analyses (differential expression, covariate effect 
modeling) un-corrected counts were used. 
  
Data embedding and clustering 
To cluster the cells in the HLCA core, a nearest neighbor graph was calculated, based on the 30 latent 
dimensions that were obtained from the scANVI output, with the number of neighbors set to k=30. This choice 
of k, while improving clustering robustness, could impair the detection of very rare cell types. Coarse leiden 
clustering was done on the graph with resolution r=0.01. For each of the resulting level 1 clusters, a new neighbor 
graph was calculated using scANVIs 30 latent dimensions, with the number of neighbors again set to k=30. 
Based on the new neighbor graph, each cluster was clustered into smaller “level 2” clusters with leiden clustering 
at resolution r=0.2. The same was done for level 3, 4 and where needed 5, with k set to 15, 10, and 10 
respectively, and resolution set to 0.2. Clusters were named based on their parent clusters and sister clusters, 
e.g. cluster 1.2 is the third biggest subcluster (starting at 0) of cluster 1. For visualization, a two-dimensional 
Uniform Manifold Approximation and Projection89 (UMAP) of the atlas was generated based on the 30-nearest-
neighbor graph.  
  
Calculation of cluster entropy of cell type labels and subjects 
To calculate cluster cell type label entropy for a specific level of annotation, Shannon entropy was calculated as 
−∑+,-. 𝑝(𝑥,)𝑙𝑜𝑔(𝑝(𝑥,)), where 𝑥.. . . 	𝑥+are the set of labels at that annotation level, and 𝑝(𝑥,) is the fraction of 
cells in the cluster that was labeled as 𝑥,. Cells without a label at the level under consideration were not included 
in the entropy calculation. If fewer than 20% of cells were labeled at the level, entropy was set to NA. Entropy of 
subjects per cluster was calculated in the same way. To set a threshold for "high label entropy”, we calculated 
the label entropy of a hypothetical cluster with 75% of cells given one label, and 25% of cells given another label. 
Clusters with a label entropy above that level (0.56) were considered high label entropy clusters. To set a 
threshold for “low subject entropy”, we calculated the label entropy for a hypothetical cluster with 95% of cells 
from one subject, and the remaining 5% of cells distributed over all other subjects. Clusters with a subject entropy 
below that level (0.43) were considered clusters with low subject entropy. 
  
Rare cell type analysis 
To determine how well rare cell types (ionocytes, neuroendocrine cells and tuft cells) were clustered together 
and separate from other cell types after integration, we calculated recall (% of all cells annotated as a specific 
rare cell type that were grouped into the cluster) and precision (% of cells from the cluster that were annotated 
as a specific rare cell type) for all level 3 clusters. Nested clustering on Harmony32,89 and Seurat’s RPCA28 output 
was done based on PCA of the corrected gene counts, re-calculating the PCs for every parent cluster when 
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performing clustering into smaller children clusters, and proceeding clustering as described above. The level 3 
clusters with the highest sensitivity for each cell type are shown in figures.  
 
Manual cell type annotation and marker gene selection 
Re-annotation of cells in the HLCA core was done by six investigators with expertise in lung biology (EM, MCN, 
AVM, LEZ, NEB, JAK), based on original annotations and differentially expressed genes of the HLCA core 
clusters. Annotation was done per cluster, using finer clusters where these represented specific known cell types 
or states rather than subject-specific variation. Annotations were hierarchical (as the cell type reference), and 
each annotated cluster was annotated at all levels up to its highest known level. 
Marker genes were calculated by performing a t-test-based differential expression analysis on a given cell type 
(based on SCRAN-normalized, logarithmized counts), compared to the rest of the cells from the same level 1 
annotation (i.e. epithelial, endothelial, stromal or immune cells). Genes were then filtered further according to 
the following criteria: minimum fraction of cells within the cluster in which the gene was detected: 0.25; maximum 
fraction of cells from outside the cluster in which gene was detected; 0.5, minimum fold change; 1. The top 10 
most significant genes that passed filtering were selected as top marker genes. For highly similar cell types, a 
second differential expression analysis was done, this time comparing the cell type to its closest sister 
annotations (e.g. submucosal gland (SMG) serous (nasal) cells compared to the remaining SMG cell types). For 
those cell types, top 10 marker genes consisted of the top 5 genes from the first and second comparison, 
respectively. Where fewer than 10 genes passed filtering criteria, only those genes were included as markers. 
 
Variance between individuals explained by technical and biological covariates 
To quantify to what extent different technical and biological covariates correlated with inter-individual variation in 
the atlas, we calculated the “variance explained” by each covariate for each cell type. We first split the data in 
the HLCA core by cell type annotation, merging substates of a single cell type into one (Supplementary Data 
Table 10). For every cell type, we excluded samples that had fewer than 10 cells of the sample. We then 
summarized covariate values per sample for every cell type as follows: mean across cells from sample for 
scANVI latent components (integration results), UMI count per cell, and fraction of mitochondrial UMIs; for all 
other covariates (i.e. dataset, 3’ or 5’, BMI, cell ranger version (1, 2, 3 or 4), cell viability %, ethnicity, sampling 
method (e.g. biopsy, brush, donor lung), sequencing platform , sex, single cell chemistry (e.g. 10X 3’ v2), smoking 
status (active, former or never), subject status (alive disease, alive healthy or organ donor), age, and anatomical 
region (CCF score)), each sample had only one value, therefore these values were used. 
We then performed “PC regression” on every covariate, as described earlier, now using scANVI latent 
component scores instead of principal component scores for the regression. Samples that did not have a value 
for a given covariate (e.g. where BMI was not recorded for the subject) were excluded from the regression. 
Categorical covariates were converted to dummy variables. Celltype - covariate pairs for which only one value 
was observed for the covariate were excluded from the analysis. 
To check to what extent covariates correlated with each other, thereby possibly acting as confounders in the PC 
regression scores, we determined dependence between all covariate pairs for every cell type. If at least one 
covariate was continuous, we calculated the fraction of variance in the continuous covariate that could be 
explained by the other covariate (dummying categorical covariates), and took the square root (equal to Pearson 
r for two continuous covariates). For two categorical covariates, if both covariates had more than two unique 
values we calculated normalized mutual information (NMI) between the covariates using scikit-learn90, since a 
linear regression between these two covariates is not possible. 
To control for spurious correlations between inter-individual cell type variation and covariates due to low sample 
numbers, we assessed the relationship between sample number and mean variance explained across all 
covariates for every cell type. We found that for cell types sampled in fewer than 40 samples, mean variance 
explained across all covariates showed a high negative correlation with the number of samples (Extended Data 
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Fig. 7, a). We reasoned that for these cell types, correlations between interindividual variation and our covariates 
were inflated due to under-sampling. Moreover, we note that at lower sample numbers, technical and biological 
covariates often strongly correlate with each other across subjects (Extended Data Fig. 7, c). This might lead 
to the attribution of true biological variation to technical covariates, and vice versa, complicating interpretation of 
observed inter-individual cell type variation. Consequently, we consider 40 a recommended minimum number of 
samples to avoid spurious correlations between observed inter-individual variation and tested covariated, and 
excluded results from cell types with fewer samples.  
 
Modeling variation between individuals at the gene level and gene set enrichment analysis 
To model the effect of demographic and anatomical covariates (sex, age, BMI, ethnicity, smoking status, and 
anatomical location of sample) on gene expression, we employed a generalized linear mixed model (GLMM). 
We used sample-level pseudo-bulks (split by cell type), since the covariates modeled also varied at sample- or 
subject level, and not at cell level. Modeling these covariates at cell level, i.e. treating single cells as independent 
samples even when coming from the same sample, has been shown to inflate p-values36,37. We encoded 
smoking status as a continuous covariate, setting never to 0, former to 0.5, and current to 1. Anatomical region 
was encoded into anatomical region ccf-scores as described earlier. As we noted that changes from nose to the 
rest of the airways and lungs were often independent from continuous changes observed in the lungs only, we 
encoded “nasal” as a separate covariate, setting samples from the nose to 1, and all others to 0. BMI and age 
were re-scaled, such that the 10th percentile of observed values across the atlas was set to 0, and the 90th 
percentile set to 1 (25 and 64 for age, respectively, and 21.32 and 36,86 for BMI). First, we split the lung cell 
atlas by cell type annotation, pooling detailed annotations into one subtype (e.g. grouping all lymphatic EC 
subtypes into one) (Supplementary Data Table 10). We then proceeded the same way for every cell type: we 
filtered out all genes that were expressed in fewer than 50 cells, and all samples that had fewer than 10 cells of 
the cell type. We furthermore filtered out datasets with fewer than 2 subjects, and refrained from modeling 
categories in covariates that had fewer than three subjects in their category, for that cell type. To determine if 
covariance between covariates was low enough for modeling, we calculated the variance inflation factor (VIF) 
between covariates at subject level. The VIF quantifies multi-collinearity among covariates of an ordinary least 
squares regression, and a high VIF indicates strong linear dependence between variables. If the VIF was higher 
than 5 for any covariate for a specific cell type, we concluded covariance was too high and excluded that cell 
type from the modeling. As many cell types lacked sufficient representation of other ethnicities than ‘’white”, while 
including ethnicity in the analysis simultaneously reduced the samples that could be included in the analysis to 
only those with ethnicity annotations, we excluded ethnicity from the modeling. 
Gene counts were summed across cells for every sample, within cell type. Sample-wise sums (i.e. pseudo-bulks) 
were normalized using edgeR’s calcNormFactors function, using default parameter settings. We then used 
voom91, a method designed for bulk RNA-seq that estimates observation-specific gene variances and 
incorporates these into the modeling. Specifically, we used a voom extension (differential expression testing with 
linear mixed models or “Dream”) that allows for mixed effect modeling, and modeled gene expression as: 
 

𝑙𝑜𝑔(𝑛𝑜𝑟𝑚𝑐𝑜𝑢𝑛𝑡) 	∼ 	1 + 𝑎𝑔𝑒	 + 	𝑠𝑒𝑥	 + 	𝐵𝑀𝐼	 + 	𝑠𝑚𝑜𝑘𝑖𝑛𝑔	 + 𝑛𝑜𝑠𝑒	 + 	𝑐𝑐𝑓𝑠𝑐𝑜𝑟𝑒	 +	(1	|	𝑑𝑎𝑡𝑎𝑠𝑒𝑡) 
 
where dataset is treated as a random effect, and all other effects are modeled as fixed effects. Resulting p-
values were corrected for multiple testing within every covariate using the Benjamini-Hochberg procedure. 
Gene set enrichment analysis was performed in R92 using the cameraPR function93 in the limma package94 with 
the differential expression test statistic. Gene ontology (GO) biological process terms95,96 were tested separately 
for each comparison. These sets were obtained from MSigDB (v7.1)97 as provided by the Walter and Eliza Hall 
Institute (https://bioinf.wehi.edu.au/MSigDB/index.html).  
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Mapping of GWAS results to the lung cell atlas cell types 
To stratify GWAS results from several lung diseases by lung cell type, we applied stratified sc-LDSC, a method 
that can link GWAS results to cell types based on proximity of disease-associated variants to genes differentially 
expressed in the cell type51. GWAS summary statistics of COPD49 (GWAS catalog ID: GCST007692, dbGaP 
accession number: phs000179.v6.p2, n_cases=35,735, n_controls=222,076), and of lung cancer48 (GWAS 
catalog ID: GCST004748, dbGaP accession number: phs001273.v3.p2, n_cases=29,266, n_controls=56,450) 
were made available on dbGap upon request. Summary statistics of lung function50 (GWAS catalog ID: 
GCST007429, n=321,047 individuals), of asthma47 (GWAS catalog ID: GCST010043, n_cases=88,486 
n_controls=447,859), and of depression98 (used as negative control, GWAS catalog ID: GCST005902, 
n_cases=113,769, n_controls=208,811) were publicly available. A differential gene expression test was done for 
every grouped cell type (Supplementary Data Table 10) in the HLCA using a t-test, testing against the rest of 
the atlas. The top 1000 most significant genes with positive fold-changes were stored as genes characterizing 
that cell type (“cell type genes”), and used as input for sc-LDSC. Gene coordinates of cell type genes were 
obtained based on the GRCh37.13 genome annotation. For single nucleotide-polymorphism (SNP) data (names, 
locations, and linkage-related information), the 1000 genomes European reference (GRCh37) was used, as 
previously described51. Only SNPs from the HapMap3 project were included in the analysis. For identification of 
SNPs in the vicinity of cell type genes, we used a window size of 100,000 base pairs. Genes from X and Y 
chromosomes, as well as HLA genes, were excluded because of their unusual genetic architecture and linkage 
patterns. For ld-score calculation, a 1 centiMorgan window was used. P-values yielded by scLDSC were 
corrected for multiple testing for every disease tested, using the Benjamini-Hochberg correction procedure. As 
a negative control, the analysis was performed with a GWAS of depression, and no cell types were found to be 
significant (Extended Data Fig. 13). 
  
Extension of the HLCA core by mapping of scRNA-seq and snRNA-seq lung data 
To map unseen scRNA-seq and snRNA-seq data to the HLCA, we used scArches, our transfer-learning based 
method that enables mapping of new data to an existing reference atlas42. scArches trains an adaptor added to 
a reference embedding model, thereby enabling it to generate a common embedding of the new data and the 
reference, allowing re-analysis and de novo clustering of the joint data. The data to map was subsetted to the 
same 2000 highly variable genes (“hvgs”) that were used for HLCA integration and embedding, and hvgs that 
were absent in the new data were set to 0 counts for all cells. Raw counts were used as input for scArches. 
Healthy lung data (Meyer_2021) was split into two datasets: 3’ and 5’-based. Lung cancer data (Thienpont_2018) 
was also split into two datasets: 10Xv1 and 10Xv2.  
The model that was learned previously for HLCA integration using scANVI was used as the basis for the 
scArches mapping. scArches was then run to train adapter weights that allowed for mapping of new data into 
the existing HLCA embedding, using the following parameters: freeze-dropout: true, surgery_epochs: 500, train 
base model: false, metrics to monitor: accuracy and elbo, weight-decay: 0, frequency: 1. The following early-
stopping criteria were used: early stopping metric: elbo, save best state metric: elbo, on: full dataset, patience: 
10, threshold: 0.001, reduce lr on plateau: True, lr patience: 8, lr_factor: 0.1. 
 
Identification of clusters with spatially annotated cell types 
The Meyer_2021 study of healthy lung included cell type annotations based on matched spatial transcriptomic 
data. Many of these annotations were not present in the HLCA core. To determine if these new “spatial cell 
types” could still be recovered after mapping to the HLCA core, we looked for clusters specifically grouping these 
cells. We focused on seven spatial cell types: perichondrial fibroblasts, epineurial nerve-associated fibroblasts, 
endoneurial nerve-associated fibroblasts, CCL adventitial fibroblasts, chondrocytes, myelinating schwann cells, 
and non-myelinating schwann cells. As these cell types were often present at very small frequencies, we 
performed clustering at different resolutions to determine if these cells were clustered separately at any of these 
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resolutions. We clustered at resolutions 0.1, 0.2, 0.5, 1, 2, 3, 5, 10, 15, 20, 25, 30, 50, 80, and 100. Minimum 
recall (% of cells with the spatial cell type annotation captured in cluster) was set to 20%, and minimum precision 
(% of cells from Meyer_2021 study in the cluster that had the spatial cell type annotation) was set to 25%. The 
cluster with the highest recall was selected for every spatial cell type (unless this cluster decreased precision by 
more than 50% compared to the cluster with the second highest recall). If precision of the next best cluster was 
doubled compared to the cluster with highest recall, and recall did not decrease with more than 20%, this cluster 
was selected.  
 
Cell type label transfer from the HLCA core to new datasets 
To perform label transfer from the HLCA core to the mapped datasets from the extended HLCA, we used the 
scArches k-nearest neighbor based label transfer algorithm42. Briefly, a k-nearest neighbor graph was generated 
from the joint embedding of the HLCA core and the new, mapped dataset, setting the number of neighbors to 
k=50. Based on the abundance in a cell’s neighborhood of reference cells of different types, the most likely cell 
type label for that cell was selected, and a matching uncertainty score was calculated. For label transfer to lung 
cancer and healthy, spatially annotated projected data (fig. 5b, e), cells with an uncertainty score above 0.3 
were set to “Unknown”. For the extended atlas, we calibrated the uncertainty score cutoff by determining which 
uncertainty levels indicate possible failure of label transfer. To determine the uncertainty score at which technical 
variability from residual batch effects impairs correct label transfer, we evaluated how label transfer performed 
at the level of datasets, as these predominantly differ in experimental design. To determine an uncertainty 
threshold indicative of possible failure of label transfer, we harmonized original labels for 7 projected 
datasets17,21,53,57,62,64 (one unpublished: “Duong_lungMAP_unpubl”) and assessed the correspondence between 
original labels with the transferred annotations. To assess the optimal uncertainty cutoff for labeling a new cell 
as “unknown”, we used these results to generate an ROC curve. We chose a cutoff around the elbow point, 
keeping the false positive rate below 0.5 (uncertainty cutoff 0.2, true positive rate 0.88, false positive rate 0.49) 
to best distinguish correct from incorrect label transfers (Extended Data Fig. 17). False positives are either due 
to incorrect label transfer, or due to incorrect annotations in the original datasets. Cells with an uncertainty higher 
than 0.2 were set to “unknown”.  
 
Disease signature score calculation 
To learn disease-specific signatures based on label-transfer uncertainty scores, cells from the mapped data with 
the same transferred label were split into low-uncertainty cells (<0.2) and high-uncertainty cells (>0.4). We then 
performed a differential expression analysis on SCRAN-normalized counts using diffxpy99 with default 
parameters, comparing high- and low-uncertainty cells, including only genes that were expressed in at least 20 
cells. The 20 most up-regulated genes based on log-fold changes were selected, after filtering out genes with 
an FDR-corrected p-value above 0.05 and genes with a mean expression below 0.1 in the high-uncertainty 
group. To calculate the “score” of a cell for the given set of genes, the average expression of the set of genes 
was calculated, after which the average expression of a reference set of genes was subtracted from the original 
average, as previously described100. The reference set consists of a randomly sampled set of genes for each 
binned expression value. The resulting score was considered the cell’s “disease signature score”.  
 
Version information: 
diffxpy: 0.7.4+18.gb8c6ae0 
edgeR: 3.28.1, R 4.1.1 (covariate modeling) 
LDSC: 1.0.1 
Limma: 3.46.0, R 4.0.3 (GSEA) 
Scanpy: 1.7.2 
scArches: 0.3.5 
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scIB: 0.1.1 
scikit-learn: 0.24.1 
scvi-tools (scANVI): 0.8.1 
 
Code availability 
The HLCA pipeline for processing of sequencing data to count matrices, used for a subset of HLCA datasets 
(Methods): https://github.com/LungCellAtlas/scRNAseq_pipelines. 
Code used for HLCA project: https://github.com/LungCellAtlas/HLCA_reproducibility 
Code for users to map new data to the HLCA core (for automated mapping, see HLCA platforms below): 
https://github.com/LungCellAtlas/mapping_data_to_the_HLCA  
 
HLCA data portals and mapping to the HLCA: 
Automated mapping to the HLCA and label transfer can be done with scArches42 at FASTGenomics 
(https://beta.fastgenomics.org/p/hlca)  
Automated mapping to the HLCA, and label transfer with Azimuth14,42 (not shown in manuscript) can be done at: 
azimuth.hubmapconsortium.org. 
Label transfer with CellTypist72 (not shown in manuscript): https://www.celltypist.org/models 
 
Data availability 
The HLCA (raw and normalized counts, integrated embedding, cell type annotations and clinical and technical 
metadata) is publicly available and can be downloaded via FASTGenomics: 
https://beta.fastgenomics.org/p/hlca or via cellxgene 
https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293 
The HLCA core reference model and embedding for local mapping to the HLCA can moreover be found on 
Zenodo: https://zenodo.org/record/6337966#.Yid5Vi9Q28U. 
 
The original, published datasets that were included in the HLCA can be accessed under GEO accession numbers 
GSE135893, GSE143868, GSE128033, GSE121611, GSE134174, GSE150674, GSE151928, GSE136831, 
GSE128169, GSE171668, GSE132771, GSE126030, GSE161382, GSE155249, GSE135851, GSE145926, 
EGA study IDs EGAS00001004082, EGAS00001004344, EGAD00001005064, EGAD00001005065, and under 
urls https://www.synapse.org/#!Synapse:syn21041850, 
https://data.humancellatlas.org/explore/projects/c4077b3c-5c98-4d26-a614-246d12c2e5d7, 
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001750.v1.p1, 
https://www.nupulmonary.org/covid-19-ms2/?ds=full&meta=SampleName, 
https://figshare.com/articles/dataset/Single-cell_RNA-
Seq_of_human_primary_lung_and_bronchial_epithelium_cells/11981034/1, 
https://covid19.lambrechtslab.org/downloads/Allcells.counts.rds, https://s3.amazonaws.com/dp-lab-data-
public/lung-development-cancer-progression/PATIENT_LUNG_ADENOCARCINOMA_ANNOTATED.h5, 
https://github.com/theislab/2020_Mayr, https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-
018-0449-8/MediaObjects/41586_2018_449_MOESM4_ESM.zip, 
http://blueprint.lambrechtslab.org/#/099de49a-cd68-4db1-82c1-cc7acd3c6d14/*/welcome (see also 
Supplementary Data Table 1). 
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MDL supervised analysis of integrated data. AAH, BHK, CHM, CJT, CM, JS, LA, LBW, LEZ, MB, MJA, MVB, 
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TMK, YC generated unpublished data. AVM, CF, HBS, JAK, JLS, KBM, MCN, MJ, NEB, PB, PRT, SAT, SL, 
TED supervised unpublished data generation and analysis. AC, ACAG, CB, CHM, LEZ, MA, MB, NSM, PKLM 
analyzed unpublished data. DCS performed integration benchmarking. LZ performed GSEA. AVM, EM, JAK, 
LEZ, MCN, NEB annotated integrated data. AW, CB, EM, KBW, KT, LB, LBW, MG, MY, NJ, PKLM, TT gathered 
metadata. AG, KT, NH, NJ re-aligned published data. CD, CRS, CTL, DCS, ILI, LD, LH, LS, LZ curated data. 
CB, LS, NSM, TW set up a shareable CellRanger pipeline. ML provided scArches support. LS, MP set up an 
automated scArches mapping pipeline. CX set up CellTypist automated annotation. AAH, AC, ACAG, AG, AMT, 
AVM, AW, BHK, CB, CD, CF, CHM, CJT, CM, CRS, CS, CTL, CX, DCS, DP, DPS, DS, EC, EM, FJT, GP, HBS, 
ILI, JAK, JEP, JL, JLS, JR, JS, JSH, JW, KBM, KBW, KT, KZ, LA, LB, LBW, LD, LEZ, LH, LP, LS, LZ, MA, MAS, 
MB, MC, MCN, MDL, MG, MJ, MJA, MK, ML, MN, MP, MVB, MY, MZN, NEB, NH, NJ, NK, NSM, OE, OR, PB, 
PH, PKLM, PRT, RL, SAT, SL, TED, TJD, TK, TMK, TT, TW, XS, YC, YX reviewed manuscript.  
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Extended Data Figure 1. Results of dataset integration benchmarking. Rows represent methods tested, using a 
particular preprocessing. Preprocessing is summarized by “Features” (either HVG or FULL, corresponding to a gene 
selection of the 2000 or 6000 most highly variable genes, respectively) and “Scaling” (specifying whether or not gene values 
were scaled to mean 0 and standard deviation 1 across cells). Methods are sorted by overall score. Overall score is a 
weighted mean of the batch correction score and an th bio conservation score, which in turn are a mean of the individual 
metrics within the category. Metrics have been previously described16. The output column specifies whether a method has 
corrected gene counts, an integrated embedding, or an integrated graph as output. Scanorama and fastMNN were 
benchmarked twice, once with a corrected gene matrix as output, and once with a corrected embedding as output. scANVI 
and scGen were given coarse cell type labels as input, as indicated by the asterisk. fastMNN required too much memory 
on the full feature (6000 gene) data, therefore only the hvg results are included in the figure. 
 
 
 

 
Extended Data Figure 2. Subject diversity per HLCA core cluster. Subject diversity is calculated for every cluster as 
entropy of subject proportions in the cluster, with high entropy indicating the cluster contains cells from many different 
subjects. Matching cell type annotations are shown in fig. 3d. 
 
 
 

 
Extended Data Figure 3. Marker expression among cells from a high-label-entropy cluster. DC2, monocyte and 
macrophage marker expression is shown for cells from the immune cluster with highest label entropy, as depicted in fig. 3c. 
Cells are labeled by their final annotation, as well as their original label. Log-normalized counts are scaled such that for 
each gene the 99th expression percentile, as calculated among all cells included in the heatmap, is set to 1. 
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Extended Data Figure 4. Final annotations and original annotations of mislabeled cells. a, Final annotations (left) and 
original harmonized labels (right) of epithelial cells for which the final annotation and original label are contradictory, i.e. 
misannotated cells. Original labels that represent less than 1% of epithelial cells are set to “Other”. b, c, d, as a but for 
immune, endothelial and stromal cells, respectively. 
 
 

 
Extended Data Figure 5. Expression of top 10 marker genes for every HLCA cell type annotation. Marker gene names 
are included in Supplementary Data Table 5. Where more than 750 cells of the cell type were present in the HLCA, 
expression is only shown for 750 randomly sampled cells from that cell type. Counts were normalized such that a gene’s 
99th expression percentile across all cells for the heatmaps was set to 1. DC: dendritic cell. AT1, 2: alveolar type 1, 2 cells. 
EC: endothelial cells. FB: fibroblasts. Mφ: macrophages. MT: metallothionein. NK cells: natural killer cells. SM: smooth 
muscle. SMG: submucosal gland. 
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Extended Data Figure 6. Rare cell identification and recovery for three different integration methods. a, Rare cell 
marker expression among different cell groups in the HLCA core. Markers of other cell types are included to show possible 
mis-annotations. Left: marker expression of cells originally labeled as rare, but who did not fall in one of the three rare cell 
clusters of the HLCA (“false positives”), subdivided by original label. Middle: Marker expression of cells originally labeled as 
rare, and who fell in one of the three rare cell clusters in the HLCA (“true positives”), subdivided by cluster. Right: marker 
expression of cells who were not originally labeled as rare, but which nonetheless were classified in one of the three rare 
cell clusters of the HLCA core (“false negatives”), subdivided by cluster. b, Recall and precision of rare cell types in distinct 
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clusters for three different integration methods: scANVI24, Harmony32 and Seurat’s RPCA28. Results are shown for the best-
performing preprocessing for each method, and based on the benchmarking data (12 datasets from the HLCA core). Recall 
(i.e. the percentage of cells with a specific label that are present in the cluster under consideration) and precision (i.e. the 
percentage of cells from a cluster labeled as the cell type under consideration) are shown for the three level 3 clusters with 
the highest recall of ionocytes, tuft, and NE cells respectively. NE: neuroendocrine. c, Expression of migratory DC marker 
CCR7 among migratory DCs versus other DCs, split by study. Number of migratory DCs per study is specified in the x-axis 
labels. DC: dendritic cell. 
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Extended Data Figure 7. Correlation of technical and biological covariates with number of samples, and with each 
other. a, Relation between the number of samples in which a cell type was observed, and the mean inter-sample variance 
explained by the technical and biological covariates. After n=40, these two variables become independent. Inter-sample 
variance was calculated based on the scANVI-integrated embedding, taking the mean score of each latent dimension across 
cells, for every sample for every cell type. b, The ratio of mean variance explained by biological covariates over that 
explained by technical covariates for different cell types (y-axis), and its association with the number of samples in which a 
cell type was observed (x-axis) (Pearson r: 0.28, p=0.21). c, Correlation between covariates for every cell type, calculated 
at sample level. The square root of the fraction of variance from one covariate that could be explained by the other covariate 
through linear regression is shown (equivalent of Pearson r for two continuous covariates). If both covariates were 
categorical and had more than two categories, normalized mutual information was calculated instead. d, Variance explained 
by sampling method depends only partly on diversity in sampling methods as quantified by the sampling method entropy 
(Pearson r=0.75, p=0.0001). Some cell types, such as T cells, are less sensitive to sampling than others, despite higher 
sampling method entropy. AT1, 2: alveolar type 1, 2 cells. DC: dendritic cells. DC1, 2: DC type 1, 2. EC: endothelial cells. 
Mφ: macrophages. NK cells: natural killer cells. NKT cells: natural killer T cells. SMG: submucosal gland.  
 
 

 
Extended Data Figure 8. Trends associated with BMI and sample anatomical location. a, The percentage of basal 
cells per sample decreases with higher anatomical region CCF score, i.e. towards the distal lung (Spearman r=-0.89, 
p<0.001). CCF: common coordinate framework. b, Proportions of gene sets significantly up- and down-regulated with BMI, 
per cell type. AT2: Alveolar type 2 cells. DC: dendritic cells. DC2: DC type 2. EC: endothelial cells. Mφ: macrophages. SMG: 
submucosal gland. 
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Extended Data Figure 9. Mapping of unseen healthy lung scRNA-seq data to the HLCA core. a, A UMAP of the jointly 
embedded HLCA core and the newly mapped healthy lung data. Cells from the new data are shown in gray, cells from the 
HLCA are shown in blue and plotted on top. b, Same as a, but now plotting cells from the HLCA in gray, and cells from the 
new data on top in light blue. c, Same as a, but now coloring cells from the HLCA core by their final annotation, and coloring 
cells from the new data in black. d, Uncertainty of label transfer (ranging from 0 to 1) for cells from the mapped data, 
subdivided by original cell type label. Number of cells per label is shown between brackets. Cell labels are ordered by mean 
uncertainty. Boxes of cell labels not present in the HLCA core are colored red. Boxes show median and interquartile range 
of uncertainty. Cells with uncertainties more than 1.5 times the interquartile range away from the high and low quartile are 
considered outliers and plotted as points. Whiskers extend to the furthest non-outlier point. e, Sankey plot of original labels 
of cells from the mapped dataset versus predicted annotations based on label transfer. Cells with uncertainty >0.3 are 
labeled “unknown”. AT1, 2: alveolar type 1, 2 cells. DC: dendritic cells. DC1, 2: DC type 1, 2. EC: endothelial cells. ILCs: 
innate lymphoid cells. MT: metallothionein. Mφ: macrophages. NK cells: natural killer cells. NKT cells: natural killer T cells. 
SM: smooth muscle. SMG: submucosal gland. 
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Extended Data Figure 10. Mapping of unseen lung cancer data to the HLCA. a, A UMAP of the jointly embedded HLCA 
and lung cancer data. Cells from the lung cancer dataset are shown in gray, cells from the HLCA core are shown in blue 
and plotted on top. b, Same as a, but now plotting cells from the HLCA core in gray. Cells from the mapped data are plotted 
on top, and colored by the cancer type of the patient. c, Same as a, but now coloring cells from the HLCA core by their final 
(coarse) annotation, and coloring cells from the mapped cancer data in black. d, Uncertainty of label transfer, shown for all 
cells from the mapped data. Regions dominated by high-uncertainty cells are labeled by the original cell type label. e, 
Uncertainty of label transfer (ranging from 0 to 1) for the mapped cells, subdivided by original cell type label. Number of 
cells per label is shown between brackets. Boxes of cell type labels not present in the HLCA core are colored red. Cell types 
are ordered by mean uncertainty. Boxes show median and interquartile range of uncertainty. Cells with uncertainties more 
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than 1.5 times the interquartile range away from the high and low quartile are considered outliers and plotted as points. 
Whiskers extend to the furthest non-outlier point. f, Sankey plot of original labels of the mapped data versus predicted 
annotations based on label transfer. Cells with uncertainty >0.3 are labeled “unknown”. g, Percentage of cells from newly 
mapped healthy lung dataset that are either annotated correctly or incorrectly by label transfer annotation, or annotated as 
unknown, subdivided by original cell type label. The number of cells in the mapped dataset labeled with each label are 
shown between brackets after cell type names. Cell type labels not present in the HLCA are boxed. AT1, 2: alveolar type 1, 
2 cells. DC: dendritic cells. DC1, 2: DC type 1, 2. EC: endothelial cells. MT: metallothionein. Mφ: macrophages. NK cells: 
natural killer cells. NKT cells: natural killer T cells. SM: smooth muscle. SMG: submucosal gland. 
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Extended Data Figure 11. Endothelial cell clustering and marker expression in the joint embedding of unseen lung 
cancer data and the HLCA core. a, Cell type composition of EC clusters from the joint embedding of the HLCA core and 
the mapped lung cancer data. Final HLCA core annotations are shown, with cells from the cancer data as well as HLCA 
core annotations with fewer than 50 cells set to “Other/NA”. Clusters are named by their dominant cell type. b, Tissue source 
composition of EC clusters. Tissue source is either tumor, normal (but from cancer patients), or healthy (from subjects 
without lung cancer). Normal is split by dataset, including the Krasnow dataset from the HLCA core (with non-tumorous 
tissue from lung cancer patients) for comparison. c, ACKR1 expression in EC clusters, split by tissue source. Boxes show 
median and interquartile range of expression. Cells with uncertainties more than 1.5 times the interquartile range away from 
the high and low quartile are considered outliers and plotted as points. Whiskers extend to the furthest non-outlier point. d, 
same as c, but now showing EDNRB expression. EC: endothelial cell.  
  
 

 
 
Extended Data Figure 12. Identification of spatial-location-based cell types in the HLCA core based on mapping of 
spatially labeled data. a, Precision (i.e. the percentage of cells from a cluster labeled as the cell type under consideration) 
and recall (i.e. the percentage of cells with a specific label that are present in the cluster under consideration) of spatial cell 
types in spatial clusters. Precision and recall were calculated among cells of the mapped data only. Clustering resolution at 
which the cluster was identified, and number of clusters per spatial cell type is also shown. % of all cells specifies the 
percentage of cells with the label among cells of both the projected data and the HLCA core. b, Composition of spatially 
annotated clusters in terms of study from which the cells came. c, Marker expression of spatially annotated cell type markers 
across spatially annotated clusters, splitting clusters in cells from the HLCA core, and cells from the newly mapped data 
(“query”). Gene expression was normalized to range, within fibroblasts, from 0 to 1. 
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Extended Data Figure 13. Association of lung cell types with depression. Negative control for analysis of fig. 5d. 
Association is based on phenotype-related genomic variants from a GWAS study on depression, and cell-type specific 
differentially expressed genes calculated from the HLCA core. Horizontal dashed line indicates significance threshold 
alpha=0.05. p-values are multiple-testing-corrected with the Benjamini-Hochberg procedure. 
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Extended Data Figure 14. Expression of CCR7 among cells annotated as migratory DCs by label transfer. Expression 
of CCR7 is shown for all cells that were annotated as migratory DCs with low uncertainty (<0.2) (top) and all other cells 
annotated as DC (bottom) by label transfer from the HLCA core to the extended HLCA. Cells are grouped based on study 
of origin (some studies contain multiple datasets). X-tick labels show study, number of cells annotated as migratory DCs, 
and number of total cells (in thousands) per study. CCR7 counts shown are counts that were normalized based on the total 
count among 2000 genes used for mapping to the HLCA core, and then log-transformed. DCs: dendritic cells. 
 
 
 

 
Extended Data Figure 15. Label transfer uncertainty per cell type across different experimental features. Label 
transfer uncertainty of cell types is shown for categories of three experimental features, as compared to uncertainty in 
healthy cells. For every category and for each cell type, the mean uncertainty across datasets from that category was 
calculated, using per-dataset means and splitting up datasets with samples from more than one category. The difference 
between cell type uncertainty from each category and those of healthy datasets is shown. Where mean uncertainty was 
higher than 0.25 even in healthy, coarser parent labels were included (e.g. for macrophages) instead of the finest cell type 
annotations. Datasets with fewer than 20 cells of a cell type are excluded for that cell type. When no dataset sampled 
enough cell types, the plot is masked in gray. Values higher than 0.2 or lower than -0.2 are cut off to 0.2 and -0.2, 
respectively. 
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Extended Data Figure 16. Transferred labels and matching uncertainty for a mapped IPF dataset. a, UMAPs of cells 
originally labeled as stroma, from a mapped IPF dataset62 including both healthy and IPF samples. Cells are labeled by 
annotation transferred from the HLCA core (left), by disease status (middle), and by label transfer uncertainty (right). Cells 
with labels transferred to fewer than 10 cells were excluded. b, same as a, but showing cells originally labeled as 
macrophages. c, As b, but now colored by expression of SPP1 and FABP4. 
 
 

 
Extended Data Figure 17. Calibration of label transfer uncertainty cutoff. ROC curve of label transfer accuracy across 
7 datasets. The true and false positive rate of the chosen cutoff point (0.2), below which transferred labels will be considered 
low uncertainty, are shown as a red point on the ROC curve. 
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