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Plant function arises from a complex network of structural and physiological traits.  Explicit 

representation of these traits, as well as their connections with other biophysical processes, is

required to advance our understanding of plant-soil-climate interactions.  We used the 

Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait 

networks in maize.  Net primary productivity (NPP) and grain yield were simulated across five 

contrasting climate scenarios.  Simulations achieving high NPP and grain yield in high 

precipitation environments featured trait networks conferring high water use strategies: deep 

roots, high stomatal conductance at low water potential (“risky” stomatal regulation), high 

xylem hydraulic conductivity, and high maximal leaf area index.  In contrast, high NPP and 

grain yield was achieved in dry environments with low late-season precipitation via water 

conserving trait networks: deep roots, high embolism resistance, and low stomatal 

conductance at low leaf water potential (“conservative” stomatal regulation).  We suggest that 

our approach, which allows for the simultaneous evaluation of physiological traits and their 

interactions (i.e., networks), has potential to improve crop growth predictions in different 

environments.  In contrast, evaluating single traits in isolation of other coordinated traits does 

not appear to be an effective strategy for predicting plant performance.    

Key words:  maize; plant growth; hydraulic traits; xylem; stomata; water potential; 

photosynthesis; crop improvement; breeding; process simulation

Summary statement:  Our process-based model uncovered two beneficial but contrasting 

trait networks for maize which can be understood by their integrated effect on water 

use/conservation. Modification of multiple, physiologically aligned, traits were required to bring

about meaningful improvements in NPP and yield. 
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Introduction

Given the challenge to feed an increasing human population in the face of climate change, 

the need for improved crop genotypes has never been more important (Ainsworth and Ort 

2010; Flörke et al. 2018; Hasegawa et al. 2018; Bailey-Serres et al. 2019; IPCC 2021).  

However, current efforts to improve crops are beset by immense systems complexity – near-

infinite combinations of soil, climate, plant, and management interactions (Spiertz et al. 2007).

Although experimental methods in isolation have little chance to evaluate the scale of this 

complexity in a meaningful way, the integration of experimental methods and results with 

modeling represents a possible way forward for assessing trait combinations and their 

consequences on crop performance (Hammer et al. 2002).

Explicit representation of key biotic and abiotic processes is essential to develop a 

predictive understanding of plant function and the interactions between plant, climate, and soil

(Holzworth et al. 2014; Mackay et al. 2015).  Mechanistic plant models (i.e., process-based 

models) have therefore often been used to explore crop management strategies (Zhao et al. 

2015), physiology by climate interactions (Bauerle et al. 2014), physiological trait coordination

(de Wit 1965; Gifford et al. 1984), climate change impacts (Peng et al. 2020) and, more 

recently, trait selection, i.e., in combination with gene-to-phenotype trait models (Messina et 

al. 2009, 2018; Technow et al. 2015; Hammer et al. 2019; Wang et al. 2019; Cooper et al. 

2021).  Mechanistic models appear particularly well-suited to evaluate combinations of 

structural, morphological, and physiological traits, provided that key traits (and their 

interactions) are represented accurately (Alam et al. 2014; Sperry et al. 2016).  However, 

there remains much uncertainty about which trait combinations are desirable in specific 

contexts and how much biological complexity is needed in models, given the breadth of 

applications (Hammer et al. 2019; Peng et al. 2020; Cooper et al. 2021). 

Mechanistic models must simulate hypothetical trait networks of interest, i.e., the 

appropriate mechanisms and interactions relevant for the question being asked (Di Paola et 

al. 2016).  Here, we focus on identifying the key interactions among physiological processes 

that control carbon-water exchange, and how these interactions manifest as differences in 

growth and yield in contrasting climates (Fig. 1).  Given the complexity of the traits involved 

(e.g., photosynthesis, stomatal conductance, xylem water transport) and the heterogeneity of 

possible production environments (known as the target population of environments; TPE), we 
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expected that key insights would be learned from the emergent behavior of the model itself, in

addition to the outcomes of hypotheses testing.  Key to this approach is our assumption that 

the explicit representation of water-carbon linkages would allow for a more predictive 

understanding of trait interactions and how traits could be manipulated in theory (e.g., via 

breeding programs) to improve crop growth and grain yield across the TPE.    

The exchange of water for atmospheric CO2 depends critically on the plant vasculature

to deliver water to the sites of evaporation in the leaves (Brodribb et al. 2007).  However, 

large quantities of water (200 – 1100 g) are required to obtain a single gram of CO2 (Shantz 

and Piemeisel 1927).  As such, the conductive capacity of the vasculature needs to be closely

coordinated with stomatal conductance and photosynthesis (Brodribb et al. 2017; Martin-

StPaul et al. 2017; Deans et al. 2020; Xiong and Nadal 2020).  However, transporting water 

long distances within plants cannot be done without risk because water is drawn through 

narrow xylem conduits (vessels and tracheids) in a metastable state under negative pressure.

As the water content of the soil and atmosphere decrease, the negative pressure inside these

conduits also decreases.  If the pressure becomes too low, tiny bubbles of gas are pulled into 

the xylem, where they rapidly expand and block the conduits.  These “cavitated” or 

“embolized” conduits are thereafter nonfunctional unless they can be refilled or replaced.  As 

more conduits become embolized, the potential photosynthetic yield of the plant drops 

(Gleason et al. 2017b; Cardoso et al. 2018), or in severe cases, leaf tissue becomes 

damaged (Brodribb et al. 2021) and the risk of whole plant hydraulic failure increases 

(Meinzer and McCulloh 2013). 

Given that gas exchange and growth depend critically on water transported via the 

xylem and this process is vulnerable to failure, many physiological-based plant growth models

include hydraulic representation (Mackay et al. 2015; Venturas et al. 2018; Kennedy et al. 

2019; Mencuccini et al. 2019; Danabasoglu et al. 2020; Cochard et al. 2021).  Here, we used 

a modified version of one such model, the Terrestrial Regional Ecosystem Exchange 

Simulator (TREES) (Mackay et al. 2015, 2020) to evaluate structural and physiological 

processes, and how they interact in trait networks to govern the uptake, transport (soil-to-

leaf), and exchange of water for CO2 in maize (Zea mays) grown under contrasting soil and 

climate conditions (Fig. 1).  We addressed two questions: 1) can manipulation of the soil-to-

atmosphere continuum via root, xylem, and stomatal traits confer improved growth and yield 

under water limitation? 2) what are the key plant traits and their bio-physical interactions that 

result in improved growth and yield under diverse climate scenarios?  
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Methods

Coupled hydraulic–carbon model (TREES)

TREES has been used to successfully simulate hydraulic-carbon dynamics in gymnosperms 

(Mackay et al. 2015, 2020) and angiosperms (Wang et al. 2020a), including maize (Mackay et

al., in review).  The published references cited above provide a more detailed description of 

the model, as well as examples of TREES model validation.  Here we describe the basic 

features of the model, its parameterization (for maize), and further validation for field grown 

maize using a sap flow dataset.  Hydraulic-carbon coupling is represented in TREES by 

integrating soil-xylem conductivity (Sperry et al. 1998; Mackay et al. 2015), Penman-Monteith 

energy balance (Monteith and Unsworth 1990), C4 photosynthesis (von Caemmerer 2013), 

and carbon allocation (Mackay et al. 2015, 2020) sub models.  Key parameter settings 

(“static” parameters) and manipulated traits (“dynamic” parameters) are given in Table 1.  

Soil water uptake into roots is calculated as a function of root area, soil and root 

conductivity, and the driving force (water potential difference between root and soil) for each 

of five horizontal soil layers.  The number of soil-root layers can be specified by the user.  Soil

conductivity (between root and bulk soil) and the conductivity of each root, stem, and leaf 

xylem segment is obtained via integral transformation of the Richards’ equation.  Richards’ 

equation is a nonlinear partial differential equation that represents the unsaturated movement 

of water in soils and which, except in simple cases (e.g., uniform soil), has no analytical 

solution.  TREES divides the root-soil interface into discrete “shells” of increasing distance 

from the root, and estimates flow within each shell using the Kirchoff transform, which allows 

for accurate water flow estimates (< 2% error in most cases) in heterogeneous soil using a 

mass-conservative “mixed-form” of the Richards’ equation (Ross and Bristow 1990; Sperry et 

al. 1998).  Bulk water movement between soil layers is calculated via iteration of Darcy’s law. 

Initial maximum whole-plant hydraulic conductance per unit leaf area was based on 

midday sap flow measurements taken on mature maize plants and predawn and midday leaf 

water potentials (Han et al. 2018).  Embolism vulnerability was parameterized for each xylem 

segment (roots, stems, leaves) using vulnerability curves (2-parameter Weibull functions) 
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obtained on field-grown maize stems (Gleason et al. 2019).  Further information on how the 

embolism vulnerability curves were fit and interpreted is given in the supplemental materials 

(Fig. S1).  At each 30-min modeled time-step, water movement, water potential, and xylem 

conductivity were determined via iterative solution, until a stability threshold was met or 

exceeded.  Loss of xylem conductivity resulting from cavitation and embolism spread was 

remembered, allowing for progressive conductivity loss as xylem water potential declined.  

Although TREES allows for different Weibull coefficients for each root, stem, and leaf xylem 

segment, we used the same coefficients for all xylem segments, i.e., native embolism 

vulnerability was not allowed to differ among organs.  It is likely that maize can generate 

positive pressure (ca. 0.14 MPa) in its root and stem xylem at night when soil water potentials

exceed ca. -0.4 MPa (Gleason et al. 2017a).  Considering it is unlikely that embolism in roots 

and stems could exist under positive pressure, we allowed xylem conductivity to fully recover 

when soil water potential was greater than or equal to -0.4 MPa.           

Stomatal conductance was first estimated following the Whitehead-Jarvis application of

Darcy’s law (including soil and xylem conductivity) to plant canopies (Whitehead 1998).  

TREES was modified in this study to allow for “conservative” and “risky” water use strategies 

by reducing stomatal conductance as a function of leaf water potential via an inverse logit 

model.  This allowed for manipulation of the hydraulic “safety factor” (relationship between 

stomatal conductance and xylem water potential) via the midpoint and rate coefficients.  

Coefficient values were based on measurements made on field-grown maize plants (Gleason 

et al. 2021).  Stomatal conductance was not allowed to decline below a minimum “cuticle” 

conductance (gmin) value, set to 3.05 mmol m-2 s-1 based on greenhouse grown maize plants 

(Gleason et al. 2017b).  Transpiration was then calculated from stomatal conductance via 

Penman Monteith energy balance and used to update the soil-xylem hydraulics (Mackay et al.

2015). 

Net CO2 assimilation (Anet) was calculated using the von Caemmerer C4 photosynthesis

model (von Caemmerer 2013), which considers both enzyme limitation (e.g., when internal 

CO2 [Ci] is saturating), as well as electron transport limitation (e.g., when irradiance is low).  

Temperature-dependent enzyme activities were modeled with Arrhenius functions (von 

Caemmerer 2013).  The photosynthesis model was parameterized using Anet~Ci 

measurements made on mature field-grown maize (Leegood and von Caemmerer 1989; 

Markelz et al. 2011; Gleason et al. 2017b).  
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Carbon allocation to roots, stems, and leaves was controlled by both carbon supply 

(photosynthesis) and hydraulic limitation (embolism).  Leaf area index (LAI) was 

increased/decreased as the carbon available for growth and the specific leaf area (SLA; fresh 

leaf area divided by leaf carbon mass) increased/decreased.  SLA was re-calculated at each 

time step and was calculated as a function of net CO2 assimilation rate (Wright et al. 

2004) and the amount of stored carbon (starch).  Root carbon was allocated to each of the 

five soil-root layers partially depending upon the hydraulic status of each layer, with larger 

carbon fractions allocated to more hydrated layers.  After the vegetative growth stages were 

complete, the model shifted the allocation of non-structural carbohydrates to reproductive 

structures, e.g., grain development.  All computations were done on 30-minute time steps. 

Validation of TREES for maize

TREES has been previously validated for maize using field datasets collected in 2012 and 

2013 at the USDA-ARS Limited Irrigation Research Farm in Greeley, Colorado (40.4486 

latitude, -104.6367 longitude, 1426 m elevation) (Mackay et al., in review).  This includes 

validation against field measurements of leaf area index (LAI), sap-flow (whole-plant 

transpiration), soil water content by soil layer, and leaf water potential.  Additionally, we 

provide further validation here using an additional sap flow dataset collected in 2017 from the 

same site (Greeley, Colorado).  Sap-flow was measured using energy balance sensors (i.e., 

“heat pulse”) and sapIP dataloggers (Dynamax, Inc, Houston, TX, USA).  Two sap flow 

sensors were placed on two representative plants selected randomly from within fully watered

and water limited treatments.  Fully watered treatments replaced 100% of unstressed crop 

evapotranspiration (ET) via irrigation and rainfall, whereas water limited treatments supplied 

40% of unstressed crop ET.  Plants were located within 20 m of one another and sap flow 

sensors were installed as described in Han et al. (2018).  Data were collected from July 26 to 

September 7, 2017.  sap flow simulations used 30-min mean values for precipitation, air 

temperature, wind speed, relative humidity, total shortwave radiation, and photosynthetically 

active radiation.  Data were downloaded from a weather station (Station GLY04; Colorado 

Agricultural Meteorological Network) positioned within 50 m of the planted maize crop 

surrounded by trimmed and well-watered grass (reference conditions).  Daily and seasonal 

variation in measured whole-plant transpiration (30-minute intervals) was well predicted by 

TREES.  The fully watered treatment R2, residual standard error (RSE), and bias were 0.58, 
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0.655 kg m-2 d-1, and -0.381 kg m-2 d-1, whereas under limited water, the values of these fit 

statistics were 0.63, 0.522 kg m-2 d-1, and 0.111 kg m-2 d-1.  Thus, TREES resulted in slightly 

more error and bias (negative bias; underestimated transpiration) under fully irrigated 

conditions than under limited water (Fig. S2).     

Simulation experiments

We evaluated the efficacy of physiological and structural trait combinations for two contrasting

regions where maize is an important agronomic crop – the temperate (hot summer) climate of

northeastern Missouri and the arid cold steppe climate of northeastern Colorado (Köppen-

Geiger climate classification) (Beck et al. 2018).  All simulations were run from June 1st to 

November 9th.  Parameter settings (traits) that were manipulated for the simulations are 

discussed individually below and key parameter settings are given in Table 1.   

Twenty-years of meteorological data (ca. 2000 – 2020) were obtained from the 

University of Missouri, Missouri Historical Agricultural Weather Database (Knox County, MO) 

and the Colorado Agricultural Meteorological Network (Yuma County, CO).  A typical “wet” 

year was chosen from the Missouri database as the year most closely aligned with the 75 th 

mean annual precipitation percentile.  The total precipitation over the growth season (June 1 

– November 9) for this scenario was 743 mm and included large early season precipitation 

events, followed by a relatively dry summer and large precipitation events occurring after 

September 25 (Hu and Buyanovsky 2003) (Fig. 2, “Central Plains Wet”).  Considering that the

amount and timing of precipitation is known to interact with other climate features (e.g., vapor 

pressure deficit; VPD) (Yuan et al. 2019), we focused on the effects of precipitation on plant 

growth by artificially creating a “dry” year for this site whilst conserving all other 

meteorological variables.  This was done by reducing every precipitation event by 40%, giving

a total seasonal precipitation for this scenario of 446 mm.  Similarly, a typical “dry” year was 

chosen from the Colorado database as the year most closely aligned with the 25 th mean 

annual precipitation percentile.  Total seasonal precipitation for this scenario was 289 mm, 

with most of this precipitation being received within the first 90 days of growth (Fig. 2, “High 

Plains Dry”).  We then increased every precipitation event by 100% to create a wet season for

this site (578 mm precipitation), keeping all other climate variables the same.  In addition to 

simulating “wet” and “dry” years for both locations, we included a fully irrigated scenario for 

the Central Plains.  For this scenario, we set the precipitation to zero and added 36-mm 
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irrigation events every 3 days (hereafter, “irrigated”) (Fig. 2, “Irrigated”).  We note that our 

manipulated climates (Central Plains Dry, High Plains Wet, Irrigated) are not meant to 

represent current or future climates at these locations but have been designed with the aim of

achieving a better understanding of how traits might interact with precipitation at sites with 

contrasting VPD and temperature.  Also, the labels “wet” and “dry” should not be viewed as a 

precipitation dichotomy because each climate scenario represents a different precipitation 

regime (amount and timing). 

Soil water holding capacity was manipulated by altering the soil textural properties of 

the whole soil column (Rawls and Brakensiek 1985; 1992).  The sand-silt-clay fractions for the

“fine” soil were set to 0.66-0.09-0.25, respectively, whereas these fractions for the “coarse” 

soil were set to 0.76-0.09-0.15.  These modifications of soil texture resulted in water holding 

capacities of 25% for the fine soil and 18% for the coarse soil.  In addition to manipulating the 

soil water holding capacity, we manipulated the starting value of the soil water content 

(volumetric fraction) for the bottom-most soil layer (0.75 m – 1.15 m), such that this layer was 

either “full” to field capacity (0.20 water fraction) or “not full” (0.15 water fraction) at the start of

the growth season.  The intention of this manipulation was to evaluate the shift in beneficial 

trait networks when deep antecedent soil water was readily available versus when it was 

limited.

Two levels of xylem embolism resistance were considered based on previous 

vulnerability curves constructed for maize (Gleason et al. 2017b, 2019, 2021).  Whole-plant 

embolism resistance (all xylem segments) was simulated by setting the rate (b) and midpoint 

(c) Weibull coefficients.  For embolism susceptible xylem, the rate and midpoint coefficients 

were set to 1.9 and 2.1, respectively (P50 = -1.6 MPa; P88 = -2.7 MPa), whereas the rate and 

midpoint coefficients were set to 2.7 and 2.1 (P50 = -2.3 MPa; P88 = -3.8 MPa) for embolism 

resistant xylem (Fig. S1).  Whole-plant leaf-specific hydraulic conductance (hereafter 

“hydraulic efficiency”) was manipulated by setting it to either 0.104 or 0.124 g m-2 s-1 MPa-1 

(Tsuda and Tyree 2000; Gleason et al. 2017b; Han et al. 2018).  The intention of this 

manipulation was to evaluate the effect of water transport capacity on trait network 

coordination in the different climate scenarios.   

Two levels of stomatal response to leaf water potential were considered based on 

previously measured stomatal conductance and leaf water potential measurements (Gleason 

et al. 2021).  Stomatal closure was initiated when leaf water potential fell below -1.5 MPa 

(“conservative”) or -2.5 MPa (“risky”) and the leaf water potential resulting in a 50% loss of 
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stomatal conductance was set to either -2.0 MPa (“conservative”) or -3.5 MPa (“risky”).  The 

intention of this manipulation was to evaluate the effect of stomatal regulation on water use, 

carbon assimilation, and crop performance. 

Deep and shallow root systems were simulated by either allowing or prohibiting root 

growth into the deepest soil layer (0.75-1.15 m).  Wide and narrow leaf area to root area 

ratios were simulated by setting the maximum leaf area index (leaf area per unit ground area) 

to either 4.0 or 4.5 (Comas et al. 2019).  Photosynthetic functioning was manipulated by 

setting the maximal activity of phosphoenolpyruvate carboxylase (Vpmax) to either 60 or 120 

µmol m-2 s-1, based on the range reported in previous studies on maize (Leegood and von 

Caemmerer 1989; Pfeffer and Peisker 1998; Markelz et al. 2011; Perdomo et al. 2016; 

Gleason et al. 2017b).    

All treatment combinations (2 levels of each trait) for soil texture, initial deep soil water 

fraction, xylem efficiency, embolism resistance, root depth, stomatal sensitivity, Vpmax, and 

leaf area index were simulated within each of the five climate scenarios (“Central Plains Wet”,

“Central Plains Dry”, “High Plains Wet”, “High Plains Dry”, “Irrigated”), giving a total of 1,280 

simulations.  All simulations were compiled using the GNU Compiler Collection (GCC) on 

Ubuntu Linux operating systems.  

Data analyses 

Treatments and treatment combinations were evaluated for each climate scenario using three

approaches.  Firstly, the efficacy of single traits was evaluated by determining the differences 

in mean seasonal net primary productivity (NPP; gross primary productivity minus respiration)

and grain yield when the trait contrast was “high” versus “low” (e.g., high or low hydraulic 

efficiency), relative to the efficacy of all other traits.  This was done by generating an 

ensemble of 350 decision trees using the randomForest package for R (Liaw and Wiener 

2002).  Each tree was created by sampling with replacement from the training dataset (50% 

of the dataset).  Branch points at each node were resolved using a random subset of 

predictors.  Over-fitting the training data was avoided in this way because each tree was fit 

with a different subset of simulations.  “Importance” values for the decision trees were 

calculated for every trait as the reduction in model variance (unaccounted for variance in NPP

or yield) when traits were included versus when they were omitted from the model.  Thus, a 

high importance value means that including a particular trait in the decision tree model (e.g., 
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manipulation of hydraulic safety to either a high or low value; Table 1) resulted in a meaningful

increase/decrease in NPP or yield that was predicted by the model.  Median, 25 th percentile, 

75th percentile, minimum, and maximum importance values were then calculated and used to 

evaluate single trait effects.  To evaluate the interaction between time and individual traits, we 

plotted NPP and grain yield against the annual day (days since January 1st).  This was done 

to determine if particular traits were more effective during specific periods of the growing 

season (e.g., early versus late season performance).

Considering that plants operate as connected trait networks, we focused our analyses 

on multiple trait effects, rather than single trait effects (Table 1 “dynamic parameters”).  

Therefore, our second analysis evaluated 2-trait effects by plotting all 2-trait combinations as 

heatmaps using the pheatmap package in R (Kolde 2019).  Pheatmap is a hierarchical 

clustering and mapping function that allowed us to visually represent the mean effect of every 

possible two trait combination (e.g., conservative stomata + deep roots) on NPP and grain 

yield within each climate scenario.  This provided a quick and intuitive representation of the 

best and worst performing two-trait combinations.  Lastly, we expanded our random forest 

modeling to include up to four trait combinations.  Decision tree models were fit to training 

datasets, created as described above, and then used to predict either NPP or grain yield in 

the test dataset.  Specifically, 350 decision trees were fit for each climate scenario with each 

tree trimmed to four nodes (e.g., Vpmax → root depth → max LAI → gs sensitivity).  An 

aggregate decision tree was then constructed for each climate scenario using the ctree and 

ggCtree (modified) packages for R (Hothorn et al. 2015; Martinez-Feria 2018).  This method 

gives a robust analysis of the best trait combinations conferring improved performance in 

each climate scenario.  When viewed in the context of individual trait effects and the timing of 

these traits throughout the growth season, these trait combinations provided information 

about why and when particular trait combinations were effective.  These aggregate decision 

trees were also useful for evaluating multiple trait strategies in the contrasting climates.  For 

example, they helped address the question: do we require specific trait combinations for each

individual climate scenario, or are there some trait combinations that are likely to perform well 

across climates?  

All data analyses and graphics were done using R software (R Core Team 2021).  All 

data and code (R, C++) used in this study are in the public domain and can be downloaded 

from GitHub (https://github.com/sean-gl/trait_network_ms_TREES_data_and_code).  
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Results

Single trait effects

Efficacy of single traits differed markedly by climate scenario.  High NPP and high yield 

simulations in both wet climate scenarios, with higher annual precipitation and sufficient late 

season precipitation, featured traits contributing to enhanced soil water extraction, efficient 

water transport, and high rates of gas exchange (deep roots, high hydraulic efficiency, high 

hydraulic safety, and risky stomata) (Figs 3, S3, S5).  Similar traits were effective in conferring

improved NPP and yield in the Central Plains Dry site, with the notable exception that 

conservative stomata (closure at higher water potential) were beneficial during late season 

growth (ca. after day 240), particularly during grain development (Fig. 4a).  This result reflects

the importance of achieving coordinated liquid- and gas-phase conductance when water is 

abundant, as well as traits conferring water conservation when water is scarce.  Water 

conservation traits, access to deep soil water, and high instantaneous water use efficiency 

(conservative stomata, deep roots, high Vpmax) improved plant performance in the High 

Plains Dry scenario by reducing the adverse impact of late season water deficit (Figs 3, 4b, 

S6).  In contrast to the three non-irrigated scenarios, irrigation kept soil water potentials near 

zero throughout the growing season, resulting in sufficient xylem water transport to support 

high rates of photosynthesis (even when hydraulic efficiency was low) with little risk of 

embolism, and thus featured traits maximizing canopy-level carbon income (high maximal 

LAI, high Vpmax) (Figs 3, S7).  These three contrasting trait networks reflect the importance 

of a coordinated trait response that balances the canopy water demand with, not only soil 

water availability, but also the capacity to move this water through the xylem.   

Traits that were beneficial in the High Plains were generally also beneficial in the 

Central Plains, but there were notable exceptions to this pattern.  Firstly, early season 

aboveground and belowground growth (ca. first 50 days of growth) was markedly faster in the

Central Plains than in the High Plains, in both the wet and dry scenarios (Figs S3-S6 & S8-

S11 “root depth”).  This outcome arose mainly from differences in soil and air temperature 

between the two sites – with lower early season temperatures at the High Plains site (means 

± SDs of 13.2 ± 6.2 °C and 3.5 ± 3.4 °C, respectively) than at the Central Plains site (means ±
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SDs of 21.6 ± 4.7 °C and 6.8 ± 4.2 °C, respectively) (Fig. 2).  Secondly, risky stomatal 

regulation, in combination with higher VPD at the High Plains site (Fig. 2), resulted in faster 

and more complete extraction of soil water before it could be evaporated from shallow soil 

layers.  This resulted in a larger fraction of the received precipitation passing through plant 

stomata (hereafter “transpiration fraction”; T-fraction) at the High Plains site than at the 

Central Plains site under both wet and dry scenarios (Figs S13-S16 “stomatal sensitivity”).  

For example, the transpiration fractions of plants with risky stomata were about 3% higher in 

the Central Plains Dry scenario and 6% higher in the High Plains Dry scenario (Figs S14 & 

S16, “T-fraction” in the “stomatal sensitivity” panel).  Predictably, the tradeoff associated with 

risky stomata was lower precipitation use efficiency (NPP per unit total received precipitation; 

PrUE), which was 4% lower in both dry scenarios (Figs S14 & S16, “PrUE” in the “stomatal 

sensitivity” panel).  This indicates that although plants with risky stomata achieved higher 

water use, they used this water less efficiently (lower instantaneous and seasonally integrated

water use efficiency) than plants with more conservative stomata.  

High PEP-carboxylase efficiency (increase in A per unit Ci; Vpmax) was beneficial in 

every scenario, but especially in the wet and irrigated scenarios (Figs 3 & S3-S7 “Vpmax”).  

This suggests that if it could be selected for, it would likely improve the performance of crops 

in nearly every case.  However, it is important to note that mitochondrial respiration does not 

scale to Vpmax, but rather to Vmax (rubisco activity) in our C4 photosynthesis model (von 

Caemmerer 2013).  Although we should expect general alignment between Vpmax and Vmax

within and across species (Schlüter and Weber 2020), we only examined the independent 

effect on variation in Vpmax on plant performance and therefore cannot extrapolate to its 

likely impact on mitochondrial respiration or to instances when soil nitrogen limits enzyme 

synthesis.  As such, high carboxylation efficiency should not be viewed as a “free lunch”, as 

also supported by the wide range in Vpmax within and across species (Pilon-Smits et al. 

1991), i.e., natural selection has not maximized Vpmax in all cases. 

Coarse soil texture had a similarly positive effect on plant performance in both dry 

climates (Figs S4 & S6 “soil texture”).  This effect was largely an outcome of manipulating the 

soil texture of the entire profile, rather than only the deeper layers.  Fine soil texture (high field

capacity) at the surface, combined with frequent but low volume precipitation events, resulted 

in much of the precipitation being held close to the surface and subject to evaporation.  

Additionally, low precipitation in the dry climate scenarios, coupled with low matric potential of 

fine textured soils, resulted in very little saturated (soil matric potential ≥ 0) and unsaturated 
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(soil matric potential < 0) flow out the bottom of the rhizosphere and a meaningful fraction of 

soil water being held at water potentials to low for uptake (Figs S9 & S11 “soil texture”).  

These conditions resulted in lower transpiration fractions in the fine textured soil (Figs S14 & 

S16 “T-fraction” in “soil texture” panel).  Predictably, when rainfall was increased, the effect of 

soil texture was reversed such that plants growing in finer textured soil (higher field capacity) 

had access to more water and achieved improved growth and reproductive output (Figs S3 & 

S5 “soil texture”).  We note that the soil texture effect in the dry scenarios would be less 

conspicuous, and even likely reversed, in a natural soil where layer silicate clays have been 

translocated to deeper horizons (Buol et al. 2011).  

Although examining single traits gives us some indication of which traits might be 

beneficial in certain climate scenarios, this approach cannot inform us about why particular 

traits appear to be beneficial in some cases and not others.  For example, high variation in the

importance values (reduction in residual variance when individual traits are included in the 

decision tree) (Fig. 3) indicates that some traits were only beneficial in simulations that 

included biologically aligned traits, and when these traits were omitted from the decision tree 

the simulation performed poorly.  To obtain a better understanding of trait synergies (beneficial

parameter interactions), as well as the biological reasons for them, we examined multiple trait 

effects simultaneously.  

Multiple trait effects

Trait combinations that increased access to deep water, efficient and safe water transport to 

the leaves, and high stomatal conductance were associated with improved growth and yield in

both wet climate scenarios and the irrigated scenario (Figs S18, S20 & S22).  Importantly, 

much of the variation in NPP and yield that was accounted for in the random forest models 

was dependent upon specific trait combinations.  Modifications of individual traits, either in 

isolation or in combination with other poorly aligned traits, resulted in little improvement in 

NPP or yield.  For example, deep rooting was most beneficial at the Central Plains Wet site, 

but only in combination with traits that facilitated the efficient and safe movement of this water

to the leaves (high hydraulic efficiency, high hydraulic safety) and exchange of water for CO2 

(risky stomata, high Vpmax, high maximum LAI) (Figs S18 & S23).  Beneficial trait networks 

in the two dry climate scenarios differed from one another depending on the total amount of 

precipitation and the timing of precipitation.  The High Plains Dry scenario, with lower 
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seasonal precipitation and markedly low late season precipitation, featured networks that 

included conservative stomata (firstly) in coordination with access to deep soil water (deep 

roots), and uninterrupted xylem functioning during periods of low water potential (hydraulic 

safety) (Figs 6, S26).  In contrast, the Central Plains Dry scenario, with higher total and late 

season precipitation, featured traits conferring access to deep soil water (deep roots) in 

coordination with safe and efficient water transport, and then conservative stomata (Figs S19,

S24).  Thus, differences in the timing and amount of precipitation resulted in notable 

differences in trait coordination, but also remarkable similarities, at least within the two “wet” 

and two “dry” scenarios.    

The two-trait analysis of the High Plains Dry scenario revealed that nearly every 

simulation that did not include both deep roots and conservative stomata were largely failures,

whereas the late season precipitation events and lower evaporation at the Central Plains site 

allowed for other alternative, albeit less successful, trait networks, e.g., high LAI coupled with 

high hydraulic safety and conservative stomata (Figs S24 & S26).  Notably, the benefit of high

LAI in this scenario was reversed when gmin (minimum stomatal and cuticle conductance to 

water vapor) was increased from 3 mmol m-2 s-1 to 10 mmol m-2 s-1, suggesting that stomatal 

“leakiness” may be an important trait to consider for future trait networks (Barnard and 

Bauerle 2013; Blackman et al. 2019), particularly if stomatal leakiness increases at higher 

temperatures (e.g., under climate change), which has been reported for some species (Slot et

al. 2021).

Seasonal dynamics

Differences in plant performance between the High Plains and Central Plains can be largely 

understood from the different seasonal trajectories of precipitation and temperature (air and 

soil).  Firstly, the efficacy of the conservative water use strategies (e.g., conservative stomata,

high hydraulic safety), depended critically on ample early season precipitation and low late 

season precipitation.  In contrast, high water extraction and transport strategies (e.g., risky 

stomata, high hydraulic efficiency) were most beneficial, in the face of cold early season 

temperatures, when soil water was available water during grain development.  This switch in 

the importance of water conserving versus water using strategies can be seen in the seasonal

NPP plots under both dry climate scenarios (Fig. 4 a & b).  In both of these scenarios, risky 

stomatal response (initiating stomatal closure at low xylem water potential; dark green 
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symbols in Fig. 4) resulted in higher NPP during the first few weeks of growth when soil water 

was available, but later in season, when shallow soil water was largely depleted and the 

reproductive structures were developing, conservative stomata (initiating stomatal closure at 

high xylem water potential) conferred a strong advantage, especially in reproductive output 

(Fig. 4 a & b).  Similarly, high hydraulic conductivity conferred an early season advantage at 

the High Plains Dry site, but later in the season resulted in poorer performance (Fig. S6 

“hydraulic efficiency”).  

Trait combinations associated with success in all climate scenarios reflected the 

relative costs and benefits of: 1) accessing shallow and deep soil water, minimizing losses to 

saturated/unsaturated flow and evaporation (deep roots), 2) transporting water efficiently 

through the xylem at low water potential (high hydraulic efficiency and safety), 3) the effective 

use of soil water after it reached the leaves, avoiding high VPD conditions (conservative 

stomata), and 4) achieving high instantaneous water use efficiency (high Vpmax).  Even 

seemingly subtle differences in air and soil temperature, the timing of precipitation, the 

frequency and volume of precipitation events, and soil water storage capacity, resulted in 

meaningful differences in beneficial trait combinations (e.g., Central Plains Dry versus High 

Plains Dry; Figs 5, S19, S24, S26).  

Discussion

The purpose of our simulations was to evaluate the potential efficacy of structural and 

physiological trait networks to improve the performance of maize grown under contrasting soil

and climate conditions.  It was not the purpose of our simulations to generate trait selection 

goals for any particular site or region of interest, and our results should be used with caution 

for this purpose.  Thus, we place particular emphasis on biological interactions (trait 

combinations, rather than single traits) and the shift of these interactions across climates.  

However, simulating the outcomes of this complex biological system requires that we 

understand and can successfully model the important components of its complexity.  In our 

case, we included eight soil, xylem, and leaf traits affecting soil water retention, soil water 

uptake, water transport to the leaves, and the exchange of water for atmospheric CO2 (Fig. 1).

As such, our simulations represent an important network of traits governing the fluxes of 
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water and carbon, and which exhibited coordinated shifts in their alignment to confer either 

high instantaneous CO2 uptake or soil water conservation, depending on the climate context.  

Although these simulated trait assemblages are hypothetical, they are supported by both 

empirical measurements and our conceptual understanding of plant functioning, in particular 

the well-understood linkages among water uptake (roots), water transport (xylem), stomatal 

conductance, and photosynthesis (Brodribb and Holbrook 2003; Brodribb et al. 2007; Creek 

et al. 2018; Deans et al. 2020), and the utilization of stored soil water during anthesis and 

ovule development (Sinclair et al. 2005; Vadez et al. 2014; Messina et al. 2015, 2021; Reyes 

et al. 2015; Diepenbrock et al. 2021).  

Effective seasonal transpiration trait networks

Traits leading to improved water availability during reproductive development in grain crops 

have been identified via comparative physiology and modeling studies, and include increasing

transpiration efficiency (biomass produced per unit transpiration) by limiting maximal 

transpiration (Vadez et al. 2014; Messina et al. 2015), increasing net CO2 assimilation (Gilbert

et al. 2011; Niinemets et al. 2017; Wang et al. 2020b), and reducing xylem conductivity 

(Richards and Passioura 1989; Sinclair et al. 2008; Choudhary and Sinclair 2014).  Given that

transpiration efficiency represents the integrated product of several structural and 

physiological traits (e.g., xylem-specific conductivity, xylem embolism resistance, stomatal 

regulation, root depth, and leaf/root surface area), the detailed modeling presented here 

allowed us to investigate the possible effects of these finer scale traits.  

In our simulations we increased transpiration efficiency by either increasing the A~C i 

slope (higher Vpmax) or else manipulating traits that resulted in reduced stomatal 

conductance, i.e., increasing the sensitivity of stomata to xylem water potential, reducing 

xylem conductivity, reducing xylem embolism resistance, or restricting root growth.  Although 

higher PEP-carboxylase efficiency was associated with improved plant performance in all 

cases, the other trait manipulations resulted in reduced access to soil water (restricted root 

growth), or else slower relative growth rate (stomatal sensitivity, low xylem conductivity, low 

xylem safety) (Figs S3-S7 & S8-S12).  Reducing xylem conductivity, either via lowering 

maximal conductivity or decreasing embolism resistance, did not result in meaningful 

improvements to growth in yield in the dry scenarios (Figs S19, S21, S24, S26).  In contrast to

this, increasing the stomatal sensitivity to leaf water potential resulted in markedly improved 

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


growth and yield (especially) in both dry climate scenarios (Figs S19, S21, S24, S26 

“gs_sensitivity”).  This difference in late season water conservation, resulting from lower 

xylem conductivity (not effective) versus higher stomatal sensitivity (effective), was 

unexpected because both these traits are functions of water potential.  The reason for this 

difference was the timing of water use.  In particular, “sensitive” stomata closed mainly during 

periods of low water potential (high VPD, midday hours), thus reducing midday transpiration, 

but also effectively preventing xylem embolism.  The combined effect of this was improved 

deep soil water availability during grain development, higher precipitation use efficiency (Figs 

S14 & S16 “stomatal sensitivity”), improved water transport (without embolism), and effective 

gas exchange immediately after precipitation events (Figs S4 & S6 “stomatal sensitivity”, i.e., 

spikes in NPP after day 225).  In contrast, reducing maximal hydraulic efficiency resulted in 

lower water use overall, but midday (high VPD) stomatal conductance and transpiration were 

higher than for the sensitive stomata trait.  This resulted in lower daily and seasonally 

integrated water use efficiency (Fig. S14 & S16 “PrUE”).    

The importance of fast early season growth, and especially early season root growth, 

is well aligned with previous empirical and simulated results (Tron et al. 2015; Palta and 

Turner 2019; Diepenbrock et al. 2021; Freschet et al. 2021).  A recent analysis of 2,367 maize

hybrids grown across 23 environments (North America and Chile) and 3 years found root 

elongation rate an important determinant of grain yield in combination with other structural 

and morphological traits (trait networks) (Diepenbrock et al. 2021).  Similarly, the result 

reported here that high hydraulic efficiency was associated with improved performance in 

both dry climate scenarios also has empirical support (Gleason et al. 2019, 2021).  For 

example, two maize field experiments performed in Colorado under water deficit (Gleason et 

al. 2019, 2021) reported that maize plants with high hydraulic efficiency transpired a greater 

fraction of soil water than low efficiency plants, but were also able to “self regulate” (decrease 

hydraulic conductance) as water potential declined (Pammenter and Vander Willigen 

1998) (Fig. S1). The loss of xylem conductivity at low water potential was made even more 

beneficial in our simulations because we allowed roots and stems to regain conductive 

capacity overnight if sufficient soil water was available (see methods) (Gleason et al. 2017a).  

Thus, maize plants with intrinsically high hydraulic conductance were also able to achieve a 

relatively high precipitation use efficiency (Figs S14 & S16 “hydraulic efficiency”).  However, 

given that that embolism reversal has never been directly observed (e.g., using microCT or 

Optical methods) in maize leaves (or the leaves of any other species), and claims of 
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embolism reversal in other species have been questioned (Cochard and Delzon 2013; 

Johnson et al. 2018), our assumption that xylem conductivity can be perfectly restored 

overnight could be overly optimistic.  Another possibility is that reduced soil-plant hydraulic 

conductance may result from a reversible decrease in rhizosphere conductivity (Figs S13-S17

gray bars) (Bourbia et al. 2021).  

Although the direct effects of reduced stomatal conductance during midday (i.e., when 

VPD is high) has been reported elsewhere (Zaman-Allah et al. 2011; Turner et al. 2014; 

Vadez et al. 2014; Condon 2020; Collins et al. 2021), the interactions evident in our results 

between stomatal regulation, rooting depth, temperature (beyond its effect on VPD), and 

embolism resistance have not been previously noted.  However, the importance of trait 

networks is being increasingly recognized in both plant physiology and genetics (Gleason et 

al. 2018, 2019; Hammer et al. 2019, 2021; Momen et al. 2019; Peng et al. 2020; Cooper et al.

2021; Diepenbrock et al. 2021).  By utilizing biologically realistic statistical models (e.g., 

structural equation modeling, Gleason et al. 2019; Momen et al. 2019; He et al. 2020), as well

as process-oriented plant growth models (Mackay et al. 2015; Holzworth et al. 2018; Venturas

et al. 2018; Cochard et al. 2021), it is now possible to evaluate the physiological and 

structural determinants of transpiration efficiency, as well as the interactions and tradeoffs 

associated with these traits.

Water uptake, xylem transport, and photosynthesis trait networks

Trait networks conferring improved crop performance under the wet and irrigated climate 

scenarios included relatively well-understood theoretical (Deans et al. 2020) and empirically 

observed linkages between soil water access, water transport to the sites of evaporation in 

the leaves, and the exchange of water for atmospheric CO2 (Brodribb and Holbrook 2003; 

Brodribb et al. 2007; Brodribb and Jordan 2008; Vadez 2014; Scoffoni et al. 2016; Martin-

StPaul et al. 2017; Xiong and Nadal 2020).  Similar trait assemblages have been found in 

maize, sorghum, sugarbeet, sunflower, wheat, olive, and chickpea (de Wit 1958; Steduto et 

al. 2007; Zhu and Cao 2009; Hanks 2015; Zhao et al. 2018; Gleason et al. 2019, 2021; 

Klimešová et al. 2020; Pires et al. 2020).  Although there were important differences between 

the High Plains Wet and Central Plains Wet scenarios, as noted above, deep rooting, risky 

stomata, safe and efficient water transport, high Vpmax, and high maximal LAI, were 

advantageous, but only when aligned as a network with one another (e.g., Fig. 5).  This trait 
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network reflects the biological linkage between water uptake → water transport → stomatal 

conductance, and → high carboxylation efficiency (A~Ci slope) (Fig. 1).  In addition to this 

result arising from carbon-water linkage, there were two less intuitive results.  Firstly, the trait 

network that conferred improved performance in the wet and irrigated scenarios was 

meaningfully different from the trait network that conferred improved performance in the dry 

scenarios.  As such, superior genotypes tailored for the wet scenario would be ill-designed for

dry scenarios (and vice versa), and especially dry scenarios where late season growth 

requires stored soil water.  However, roots, stomata, and photochemistry are known to be 

significantly plastic in field grown maize (Gleason et al. 2017b; Schneider et al. 2020; Ding et 

al. 2021).  Although we do not address trait plasticity here, we should almost certainly expect 

attenuation of adverse intrinsic trait effects via a coordinated plastic response.  The second 

important finding was that, even under fully watered conditions, transporting water from the 

soil to the leaves is a risky biological process.  This is evident from the efficacy of high 

embolism resistance in every scenario, as well as the negative impact of xylem embolism on 

maize growth and reproductive development (e.g., “tassel blasting”) (Gleason et al. 2017b, 

2019; Dong et al. 2020).  This result is supported by multiple measurements of maize 

embolism resistance, which by all accounts is low, i.e., half the xylem conductive capacity is 

lost at relatively high/hydrated water potential (ca. -2.6 to -1.4 MPa) (Cochard 2002; Li et al. 

2009; Gleason et al. 2017a, b, 2019).  Higher embolism resistance in the wet and irrigated 

scenario was especially beneficial when combined with traits maximizing the delivery of liquid 

phase water to the stomata – deep roots, risky stomata, and high hydraulic efficiency, i.e., 

embolism safety was not particularly beneficial in isolation.

Implications for crop improvement

Selection of a plant growth model should be guided by the needs of the user (McMaster and 

Ascough 2011; Di Paola et al. 2016).  In the case we present here, modeling physiological 

processes and their interactions resulted in growth and water use outcomes that were broadly

aligned with field measurements; however, it remains an important question how much 

biological resolution can be added (e.g., organ-level, protein-level, gene expression) without 

losing upper-level functioning and rigor (Hammer et al. 2019; Peng et al. 2020; Tardieu et al. 

2020).  Although we do not address this topic at length here, we caution that modeling fine 

scale physiological processes should not be viewed as a necessary step towards crop 
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improvement, or even towards achieving better biological understanding.  Given the difficulty 

of developing “bottom-up” models that perform well at higher levels of biological organization, 

hybrid approaches that allow for the nesting of specific lower order processes within whole-

plant ecophysiological models may represent an effective bridge between fine scale and 

coarse scale modeling approaches (Tardieu et al. 2020).  

The application of detailed process-based physiological models to assist breeding 

efforts has recently been discussed at length elsewhere (Messina et al. 2018; Hammer et al. 

2019; Wang et al. 2019; Cooper et al. 2021), but the key advantage provided by such models 

is to breakdown higher order processes (e.g., transpiration) into their constituent components 

(e.g., xylem conductivity, xylem embolism resistance, stomatal conductance, xylem pressure 

gradient), and connect these component traits to causal genetic variation.  For example, the 

development of AQUAmax® (Pioneer Hi Bred International, Inc., Johnston) maize hybrids, 

which were initially targeted for the western corn belt of North America, represent a coupling 

of water conservation, photosynthesis, and carbon partitioning traits, and thus required the 

careful consideration of multiple physiological processes (Cooper et al. 2014a, b; Messina et 

al. 2020).  Assuming that modeling processes at these finer scales can reliably simulate plant 

performance, and also assuming that component traits can be linked with their corresponding 

functional nucleotide polymorphisms, it is then possible to predict trait values from the 

genotype and select target genotypes with desired traits (Hammer et al. 2019; Messina et al. 

2020; Cooper et al. 2021).  

Despite the potential usefulness of physiological trait networks, identified either through

modeling or experiment, they should not be viewed as “end point” ideotypes, whether they are

achievable or not.  Breeding programs are themselves rich sources of highly relevant trait 

information, much of it having been earned over many breeding cycles within and across 

complex target environments.  Given these considerations, physiological trait networks are 

best used as selection criteria to enrich breeding programs, and only after carefully evaluating

what is already known about beneficial traits, the available agronomic practices, as well as 

the express aims of the breeder.  Integration of crop growth models with whole-genome 

prediction (CGM-WGP methodology) was designed to achieve this aim and is widely 

considered a revolution in molecular breeding (Technow et al. 2015; Messina et al. 2020).  

The continued development of models that enable linkage between performance, physiology, 

and functional genomics remain a priority for agriculture and will require the continued close 

collaboration of breeders, geneticists, physiologists, and modelers (Tardieu et al. 2018).
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Conclusions

We uncovered two contrasting trait networks likely to confer improved performance when 

water limits plant growth (particularly late-season growth) versus when water is non-limiting.  

These two trait networks can be understood by their aggregate effect on water use and water 

conservation.  Dry climates with late-season deep soil water availability featured plants with 

conservative stomata, deep roots, and high Vpmax, whereas wet environments featured 

plants with risky stomata, deep roots, efficient and safe water transport, and high maximum 

LAI.  The efficacy of these trait networks arose from climate differences among sites 

(precipitation amount, precipitation timing, VPD, and temperature), i.e., “envirotype” (Xu 

2016).  In addition to the trait differences separating these two broad water use strategies, we

also found striking trait similarities within each of these groups (e.g., among the two “wet” and 

irrigated scenarios).  Such generalization is important because if the benefit of a single trait 

network cannot be extended across multiple sites then every site and crop combination will 

represent an independent breeding challenge (Tardieu 2012).  Custom designing crop plants 

for every situation is at odds with the global challenges facing agriculture.  The process-based

approach to crop modeling presented here may help to meet these challenges by 

complementing and extending site-specific experimental results to a broader range of 

cropping systems, soils, and climates, and thus improve our general understanding of trait 

network effects on water use, plant growth, and grain yield.   

Acknowledgments

The contributions of Mark Cooper, Graeme Hammer, Timothy Brodribb and Ian Wright were 

supported by the Australian Research Council Centre of Excellence for Plant Success in 

Nature and Agriculture (CE200100015).  Hervé Cochard was supported by the ANR projects 

16-IDEX-0001 and 18-CE20-0005.  Jared Stewart was supported by the National Science 

Foundation (IOS-1907338).  

Conflict of interest

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


The authors declare no conflict of interest.

Data availability statement

All data and code (R, C++) used in this study are in the public domain and can be 

downloaded from GitHub: 

https://github.com/sean-gl/trait_network_ms_TREES_data_and_code  

ORCID

Sean M. Gleason, https://orcid.org/0000-0002-5607-4741

723

724

725

726

727

728

729

730

731

732

733

734

735

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


Literature cited
 
Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant 

Physiol 154:526–530. https://doi.org/10.1104/pp.110.161349

Alam MM, Hammer GL, Van Oosterom EJ, et al (2014) A physiological framework to explain 
genetic and environmental regulation of tillering in sorghum. New Phytol 203:. 
https://doi.org/10.1111/nph.12767

Bailey-Serres J, Parker JE, Ainsworth EA, et al (2019) Genetic strategies for improving crop 
yields. Nature 575:109–118. https://doi.org/10.1038/s41586-019-1679-0

Barnard DM, Bauerle WL (2013) The implications of minimum stomatal conductance on 
modeling water flux in forest canopies. J Geophys Res Biogeosciences 118:1322–1333. 
https://doi.org/10.1002/jgrg.20112

Bauerle WL, Daniels AB, Barnard DM (2014) Carbon and water flux responses to physiology 
by environment interactions: A sensitivity analysis of variation in climate on 
photosynthetic and stomatal parameters. Clim Dyn 42:2539–2554. 
https://doi.org/10.1007/s00382-013-1894-6

Beck HE, Zimmermann NE, McVicar TR, et al (2018) Present and future köppen-geiger 
climate classification maps at 1-km resolution. Sci Data 5:180214. 
https://doi.org/10.1038/sdata.2018.214

Blackman CJ, Li X, Choat B, et al (2019) Desiccation time during drought is highly predictable
across species of Eucalyptus from contrasting climates. New Phytol 224:. 
https://doi.org/10.1111/nph.16042

Bourbia I, Pritzkow C, Brodribb TJ (2021) Herb and conifer roots show similar high sensitivity 
to water deficit. Plant Physiol 186:1908–1918. https://doi.org/10.1093/plphys/kiab207

Brodribb T, Brodersen CR, Carriqui M, et al (2021) Linking xylem network failure with leaf 
tissue death. New Phytol 232:68–79. https://doi.org/10.1111/nph.17577

Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are 
linked by hydraulics. Plant Physiol 144:1890–1898

Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with 
other leaf physiological traits. Plant Physiol 132:2166–2173

Brodribb TJ, Jordan GJ (2008) Internal coordination between hydraulics and stomatal control 
in leaves. Plant Cell Environ 31:1557–1564

Brodribb TJ, McAdam SAM, Carins Murphy MR (2017) Xylem and stomata, coordinated 
through time and space. Plant Cell Environ 40:872–880. 
https://doi.org/10.1111/pce.12817

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


Buol SW, Southard RJ, Graham RC, McDaniel PA (2011) Soil Genesis and Classification, 6th 
edn. John Wiley & Sons, Chichester

Cardoso AA, Brodribb TJ, Lucani CJ, et al (2018) Coordinated plasticity maintains hydraulic 
safety in sunflower leaves. Plant Cell Environ 41:2567–2576. 
https://doi.org/10.1111/pce.13335

Choudhary S, Sinclair TR (2014) Hydraulic conductance differences among sorghum 
genotypes to explain variation in restricted transpiration rates. Funct Plant Biol 41:270–
275. https://doi.org/10.1071/FP13246

Cochard H (2002) Xylem embolism and drought-induced stomatal closure in maize. Planta 
215:466–471

Cochard H, Delzon S (2013) Hydraulic failure and repair are not routine in trees. Ann For Sci 
70:659–661. https://doi.org/DOI 10.1007/s13595-013-0317-5

Cochard H, Pimont F, Ruffault J, Martin-StPaul N (2021) SurEau: a mechanistic model of 
plant water relations under extreme drought. Ann For Sci 78:. 
https://doi.org/10.1007/s13595-021-01067-y

Collins B, Chapman S, Hammer G, Chenu K (2021) Limiting transpiration rate in high 
evaporative demand conditions to improve Australian wheat productivity. In Silico Plants 
3:. https://doi.org/10.1093/insilicoplants/diab006

Comas LH, Trout TJ, DeJonge KC, et al (2019) Water productivity under strategic growth 
stage-based deficit irrigation in maize. Agric Water Manag 212:433–440. 
https://doi.org/10.1016/j.agwat.2018.07.015

Condon AG (2020) Drying times: plant traits to improve crop water use efficiency and yield. J 
Exp Bot 71:2239–2252. https://doi.org/10.1093/jxb/eraa002

Cooper M, Gho C, Leafgren R, et al (2014a) Breeding drought-tolerant maize hybrids for the 
US corn-belt: Discovery to product. J Exp Bot 65:6191–6194. 
https://doi.org/10.1093/jxb/eru064

Cooper M, Messina CD, Podlich D, et al (2014b) Predicting the future of plant breeding: 
Complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311–
336. https://doi.org/10.1071/CP14007

Cooper M, Powell O, Voss-Fels KP, et al (2021) Modelling selection response in plant-
breeding programs using crop models as mechanistic gene-to-phenotype (CGM-G2P) 
multi-trait link functions. in silico Plants 3:1–21. 
https://doi.org/10.1093/insilicoplants/diaa016

Creek D, Blackman CJ, Brodribb TJ, et al (2018) Coordination between leaf, stem, and root 
hydraulics and gas exchange in three arid-zone angiosperms during severe drought and 
recovery. Plant Cell Environ.

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


Danabasoglu G, Lamarque JF, Bacmeister J, et al (2020) The Community Earth System 
Model Version 2 (CESM2). J Adv Model Earth Syst 12:. 
https://doi.org/10.1029/2019MS001916

de Wit CT (1958) Transpiration and crop yields. Versl van Landbouwkd Onderz 64:1–88

de Wit CT (1965) Photosynthesis of leaf canopies. Centre for Agricultural Publications and 
Documentation, Wageningen University, Wageningen

Deans RM, Brodribb TJ, Busch FA, Farquhar GD (2020) Optimization can provide the 
fundamental link between leaf photosynthesis, gas exchange and water relations. Nat 
Plants 6:1116–1125. https://doi.org/10.1038/s41477-020-00760-6

Di Paola A, Valentini R, Santini M (2016) An overview of available crop growth and yield 
models for studies and assessments in agriculture. J. Sci. Food Agric. 96:709–714

Diepenbrock C, Tang T, Jines M, et al (2021) Can we harness digital technologies and 
physiology to hasten genetic gain in United States maize breeding? Plant Physiol 
kiab527. https://doi.org/10.1093/plphys/kiab527

Ding R, Xie J, Mayfield-Jones D, et al (2021) Plasticity in stomatal behavior across a gradient 
of water supply is consistent among field-grown maize inbred lines with varying stomatal 
patterning. bioRxiv. https://doi.org/10.1101/2021.10.28.466255

Dong Z, Xu Z, Xu L, et al (2020) Necrotic upper tips1 mimics heat and drought stress and 
encodes a protoxylem-specific transcription factor in maize. Proc Natl Acad Sci U S A 
117:20908–20919. https://doi.org/10.1073/pnas.2005014117

Flörke M, Schneider C, McDonald RI (2018) Water competition between cities and agriculture 
driven by climate change and urban growth. Nat Sustain 1:51–58. 
https://doi.org/10.1038/s41893-017-0006-8

Freschet GT, Roumet C, Comas LH, et al (2021) Root traits as drivers of plant and ecosystem
functioning: current understanding, pitfalls and future research needs. New Phytol. 
https://doi.org/10.1111/nph.17072

Gifford RM, Thorne JH, Hitz WD, Giaquinta RT (1984) Crop productivity and photoassimilate 
partitioning. Science (80- ) 225:801–808. https://doi.org/10.1126/science.225.4664.801

Gilbert ME, Zwieniecki MA, Holbrook NM (2011) Independent variation in photosynthetic 
capacity and stomatal conductance leads to differences in intrinsic water use efficiency in
11 soybean genotypes before and during mild drought. J Exp Bot 62:2875–2887

Gleason SM, Cooper M, Wiggans DR, et al (2019) Stomatal conductance, xylem water 
transport, and root traits underpin improved performance under drought and well-watered
conditions across a diverse panel of maize inbred lines. F Crop Res 234:119–128. 
https://doi.org/10.1016/j.fcr.2019.02.001

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


Gleason SM, Nalezny L, Hunter C, et al (2021) Growth and grain yield of eight maize hybrids 
are aligned with water transport, stomatal conductance, and photosynthesis in a semi-
arid irrigated system. Physiol Plant 171:. https://doi.org/10.1111/ppl.13400

Gleason SM, Stephens AEA, Tozer WC, et al (2018) Shoot growth of woody trees and shrubs 
is predicted by maximum plant height and associated traits. Funct Ecol 32:247–259. 
https://doi.org/10.1111/1365-2435.12972

Gleason SM, Wiggans DR, Bliss CA, et al (2017a) Embolized stems recover overnight in Zea 
mays: the role of soil water, root pressure, and nighttime transpiration. Front Plant Sci 
8:662. https://doi.org/10.3389/fpls.2017.00662

Gleason SM, Wiggans DR, Bliss CA, et al (2017b) Coordinated decline in photosynthesis and
hydraulic conductance during drought stress in Zea mays. Flora Morphol Distrib Funct 
Ecol Plants 227:1–9. https://doi.org/10.1016/j.flora.2016.11.017

Hammer G, Messina C, Wu A, Cooper M (2019) Biological reality and parsimony in crop 
models—why we need both in crop improvement! in silico Plants 1:diz010. 
https://doi.org/10.1093/insilicoplants/diz010

Hammer GL, Cooper M, Reynolds MP (2021) Plant production in water-limited environments. 
J Exp Bot 72:5097–5101. https://doi.org/10.1093/jxb/erab273

Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2002) Future contributions of crop modelling - 
from heuristics and supporting decision making to understanding genetic regulation and 
aiding crop improvement. Eur J Agron 18:15–31. https://doi.org/10.1016/S1161-
0301(02)00093-X

Han M, Zhang H, DeJonge KC, et al (2018) Comparison of three crop water stress index 
models with sap flow measurements in maize. Agric Water Manag 203:. 
https://doi.org/10.1016/j.agwat.2018.02.030

Hanks RJ (2015) Yield and water-use relationships: An overview. In: Limitations to Efficient 
Water Use in Crop Production. pp 393–411

Hasegawa T, Fujimori S, Havlík P, et al (2018) Risk of increased food insecurity under 
stringent global climate change mitigation policy. Nat Clim Chang 8:699–703. 
https://doi.org/10.1038/s41558-018-0230-x

He N, Li Y, Liu C, et al (2020) Plant Trait Networks: Improved Resolution of the Dimensionality
of Adaptation. Trends Ecol. Evol. 35:908–918

Holzworth D, Huth NI, Fainges J, et al (2018) APSIM Next Generation: Overcoming 
challenges in modernising a farming systems model. Environ Model Softw 103:43–51. 
https://doi.org/10.1016/j.envsoft.2018.02.002

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


Holzworth DP, Huth NI, DeVoil PG, et al (2014) APSIM - evolution towards a new generation 
of agricultural systems simulation. Environ Model Softw 62:327–350. 
https://doi.org/10.1016/j.envsoft.2014.07.009

Hothorn T, Hornik K, Zeileis A (2015) ctree: Conditional Inference Trees. Compr R Arch Netw

Hu Q, Buyanovsky G (2003) Climate effects on corn yield in Missouri. J Appl Meteorol 
42:1626–1635. https://doi.org/10.1175/1520-0450(2003)042<1626:CEOCYI>2.0.CO;2

IPCC (2021) AR6 Climate Change 2021: The Physical Science Basis

Johnson KM, Jordan GJ, Brodribb TJ (2018) Wheat leaves embolized by water stress do not 
recover function upon rewatering. Plant Cell Environ.

Kennedy D, Swenson S, Oleson KW, et al (2019) Implementing Plant Hydraulics in the 
Community Land Model, Version 5. J Adv Model Earth Syst 11:485–513. 
https://doi.org/10.1029/2018MS001500

Klimešová J, Holková L, Středa T (2020) Drought stress response in maize: Molecular, 
morphological and physiological analysis of tolerant and sensitive genotypes. Maydica 
65:1–9

Kolde R (2019) Pretty Heatmaps R package. In: Version 1.0.12

Leegood RC, von Caemmerer S (1989) Some relationships between contents of 
photosynthetic intermediates and the rate of photosynthetic carbon assimilation in leaves 
of Zea mays L. Planta 178:258–266

Li Y, Sperry JS, Shao M (2009) Hydraulic conductance and vulnerability to cavitation in corn 
(Zea mays L.) hybrids of differing drought resistance. Environ Exp Bot 66:341–346

Liaw A, Wiener M (2002) Classification and Regression by randomForest. R News 2:

Mackay DS, Comas LH, Gleason SM, et al Hydraulic traits improve vegetation model 
predictions of canopy growth applied to maize. Water Resour Res (submitted)

Mackay DS, Roberts DE, Ewers BE, et al (2015) Interdependence of chronic hydraulic 
dysfunction and canopy processes can improve integrated models of tree response to 
drought. Water Resour Res 51:. https://doi.org/10.1002/2015WR017244

Mackay DS, Savoy PR, Grossiord C, et al (2020) Conifers depend on established roots during
drought: results from a coupled model of carbon allocation and hydraulics. New Phytol 
225:679–692. https://doi.org/10.1111/nph.16043

Markelz RJC, Strellner RS, Leakey ADB (2011) Impairment of C4 photosynthesis by drought 
is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize. J Exp 
Bot 62:3235–3246

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


Martin-StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely 
stomatal closure. Ecol Lett 20:1437–1447. https://doi.org/10.1111/ele.12851

Martinez-Feria R (2018) ggCtree: A better regression ctree plot using ggplot2. 
https://github.com/rmartinezferia/ggCtree. Accessed 24 Jul 2021

McMaster GS, Ascough JC (2011) Crop management to cope with global change: A systems 
perspective aided by information technologies. In: Crop Stress Management and Global 
Climate Change. pp 172–190

Meinzer FC, McCulloh KA (2013) Xylem recovery from drought-induced embolism: Where is 
the hydraulic point of no return? Tree Physiol. 33:331–334

Mencuccini M, Manzoni S, Christoffersen B (2019) Modelling water fluxes in plants: from 
tissues to biosphere. New Phytol. 222:1207–1222

Messina C, Cooper M, Hammer GL, et al (2020) Two decades of creating drought tolerant 
maize and underpinning prediction technologies in the US corn-belt: Review and 
perspectives on the future of crop design. bioRxiv 2020.10.29.361337

Messina C, Hammer G, Dong Z, et al (2009) Modelling Crop Improvement in a G×E×M 
Framework via Gene–Trait–Phenotype Relationships. In: Crop Physiology. pp 235–581

Messina C, McDonald D, Poffenbarger H, et al (2021) Reproductive resilience but not root 
architecture underpins yield improvement under drought in maize. J Exp Bot 72:5235–
5245. https://doi.org/10.1093/jxb/erab231

Messina CD, Sinclair TR, Hammer GL, et al (2015) Limited-transpiration trait may increase 
maize drought tolerance in the US corn belt. Agron J 107:1978–1986

Messina CD, Technow F, Tang T, et al (2018) Leveraging biological insight and environmental 
variation to improve phenotypic prediction: Integrating crop growth models (CGM) with 
whole genome prediction (WGP). Eur J Agron 100:151–162. 
https://doi.org/10.1016/j.eja.2018.01.007

Momen M, Campbell MT, Walia H, Morota G (2019) Utilizing trait networks and structural 
equation models as tools to interpret multi-trait genome-wide association studies. Plant 
Methods 15:. https://doi.org/10.1186/s13007-019-0493-x

Monteith JL, Unsworth MH (1990) Principles of environmental physics. Chapman and Hall, 
New York

Niinemets Ü, Berry JA, von Caemmerer S, et al (2017) Photosynthesis: ancient, essential, 
complex, diverse … and in need of improvement in a changing world. In: New 
Phytologist. pp 43–47

Palta JA, Turner NC (2019) Crop root system traits cannot be seen as a silver bullet delivering
drought resistance. Plant Soil 439:31–43. https://doi.org/10.1007/s11104-018-3864-6

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the 
curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593

Peng B, Guan K, Tang J, et al (2020) Towards a multiscale crop modelling framework for 
climate change adaptation assessment. Nat. Plants 6:338–348

Perdomo JA, Carmo-Silva E, Hermida-Carrera C, et al (2016) Acclimation of biochemical and 
diffusive components of photosynthesis in rice, wheat, and maize to heat and water 
deficit: Implications for modeling photosynthesis. Front Plant Sci 7:1719. 
https://doi.org/10.3389/fpls.2016.01719

Pfeffer M, Peisker M (1998) CO2 gas exchange and phosphoenolpyruvate carboxylase 
activity in leaves of Zea mays L. Photosynth Res 58:281–291

Pilon-Smits EAH, ’t Hart H, Van Brederode J (1991) Seasonal Variation of 
Phosphoenolpyruvate Carboxylase Specific Activity in Fifteen Species Exhibiting 
Facultative or Obligate Crassulacean Acid Metabolism. J Plant Physiol 138:581–586. 
https://doi.org/10.1016/S0176-1617(11)80245-2

Pires MV, de Castro EM, de Freitas BSM, et al (2020) Yield-related phenotypic traits of 
drought resistant maize genotypes. Environ Exp Bot 171:103962. 
https://doi.org/10.1016/j.envexpbot.2019.103962

R Core Team (2021) R: a language and environment for statistical computing. https://www.r-
project.org/

Rawls WJ, Ahuja LR, Brakensiek M (1992) Estimating soil hydraulic properties from soils 
data. In: Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils

Rawls WJ, Brakensiek DL (1985) Prediction of Soil Water Properties for Hydrologic Modeling. 
pp 293–299

Reyes A, Messina CD, Hammer GL, et al (2015) Soil water capture trends over 50 years of 
single-cross maize (Zea mays L.) breeding in the US corn-belt. J Exp Bot 66:7339–7346. 
https://doi.org/10.1093/jxb/erv430

Richards RA, Passioura JB (1989) A breeding program to reduce the diameter of the major 
xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed 
environments. Aust J Agric Res 40:943–950

Ross PJ, Bristow KL (1990) Simulating Water Movement in Layered and Gradational Soils 
Using the Kirchhoff Transform. Soil Sci Soc Am J 54:. 
https://doi.org/10.2136/sssaj1990.03615995005400060002x

Schlüter U, Weber APM (2020) Regulation and evolution of C4 photosynthesis. Annu Rev 
Plant Biol 2020 71:183–215

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


Schneider HM, Klein SP, Hanlon MT, et al (2020) Genetic control of root architectural plasticity
in maize. J Exp Bot 71:3185–3197. https://doi.org/10.1093/jxb/eraa084

Scoffoni C, Chatelet DS, Pasquet-Kok J, et al (2016) Hydraulic basis for the evolution of 
photosynthetic productivity. Nat Plants 2:. https://doi.org/10.1038/nplants.2016.72

Shantz HL, Piemeisel LN (1927) The water requirement of plants at Akron, Colorado. J Agric 
Res 34:1093–1190

Sinclair TR, Hammer GL, Van Oosterom EJ (2005) Potential yield and water-use efficiency 
benefits in sorghum from limited maximum transpiration rate. Funct Plant Biol 32:945–
952. https://doi.org/10.1071/FP05047

Sinclair TR, Zwieniecki MA, Holbrook NM (2008) Low leaf hydraulic conductance associated 
with drought tolerance in soybean. Physiol Plant 132:446–451. 
https://doi.org/10.1111/j.1399-3054.2007.01028.x

Slot M, Nardwattanawong T, Hernández GG, et al (2021) Large differences in leaf cuticle 
conductance and its temperature response among 24 tropical tree species from across a 
rainfall gradient. New Phytol. https://doi.org/10.1111/nph.17626

Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by 
rhizosphere and xylem conductance: results from a model. Plant, Cell Environ 21:347–
359. https://doi.org/10.1046/j.1365-3040.1998.00287.x

Sperry JS, Wang Y, Wolfe BT, et al (2016) Pragmatic hydraulic theory predicts stomatal 
responses to climatic water deficits. New Phytol n/a-n/a. 
https://doi.org/10.1111/nph.14059

Spiertz JHJ, Struik PC, Laar HH van (2007) Scale and Complexity in Plant Systems 
Research. Springer-Verlag GmbH, Heidelberg

Steduto P, Hsiao TC, Fereres E (2007) On the conservative behavior of biomass water 
productivity. Irrig Sci 25:189–207. https://doi.org/10.1007/s00271-007-0064-1

Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the 
right drought scenario. J Exp Bot 63:25–31. https://doi.org/10.1093/jxb/err269

Tardieu F, Granato ISC, Van Oosterom EJ, et al (2020) Are crop and detailed physiological 
models equally ‘mechanistic’ for predicting the genetic variability of whole-plant 
behaviour? The nexus between mechanisms and adaptive strategies. in silico Plants 2:. 
https://doi.org/10.1093/insilicoplants/diaa011

Tardieu F, Simonneau T, Muller B (2018) The physiological basis of drought tolerance in crop 
plants: a scenario-dependent probabilistic approach. Annu Rev Plant Biol 69:733–759. 
https://doi.org/10.1146/annurev-arplant-042817- 040218

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


Technow F, Messina CD, Totir LR, Cooper M (2015) Integrating crop growth models with 
whole genome prediction through approximate Bayesian computation. PLoS One 
10:e0130855. https://doi.org/10.1371/journal.pone.0130855

Tron S, Bodner G, Laio F, et al (2015) Can diversity in root architecture explain plant water 
use efficiency? A modeling study. Ecol Modell 312:200–210. 
https://doi.org/10.1016/j.ecolmodel.2015.05.028

Tsuda M, Tyree MT (2000) Plant hydraulic conductance measured by the high pressure flow 
meter in crop plants. J Exp Bot 51:823–828. https://doi.org/10.1093/jexbot/51.345.823

Turner NC, Blum A, Cakir M, et al (2014) Strategies to increase the yield and yield stability of 
crops under drought – are we making progress? Funct Plant Biol 41:1199–1206. 
https://doi.org/https://doi.org/10.1071/FP14057

Vadez V (2014) Root hydraulics: The forgotten side of roots in drought adaptation. F Crop 
Res 165:15–24. https://doi.org/10.1016/j.fcr.2014.03.017

Vadez V, Kholova J, Medina S, et al (2014) Transpiration efficiency: new insights into an old 
story. J Exp Bot 65:6141–6153. https://doi.org/10.1093/jxb/eru040

Venturas MD, Sperry JS, Love DM, et al (2018) A stomatal control model based on 
optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to 
drought. New Phytol.

von Caemmerer S (2013) Steady-state models of photosynthesis. Plant, Cell Environ 
36:1617–1630. https://doi.org/10.1111/pce.12098

Wang DR, Guadagno CR, Mao X, et al (2019) A framework for genomics-informed 
ecophysiological modeling in plants. J Exp Bot 70:2561–2574. 
https://doi.org/10.1093/jxb/erz090

Wang DR, Venturas MD, Mackay DS, et al (2020a) Use of hydraulic traits for modeling 
genotype-specific acclimation in cotton under drought. New Phytol 228:898–909. 
https://doi.org/10.1111/nph.16751

Wang Y, Burgess SJ, de Becker EM, Long SP (2020b) Photosynthesis in the fleeting 
shadows: an overlooked opportunity for increasing crop productivity? Plant J 101:. 
https://doi.org/10.1111/tpj.14663

Whitehead D (1998) Regulation of stomatal conductance and transpiration in forest canopies. 
Tree Physiol 18:633–644

Wright IJ, Reich PB, Westoby M, et al (2004) The worldwide leaf economics spectrum. Nature
428:821–827. https://doi.org/http://www.nature.com/nature/journal/v428/n6985/suppinfo/
nature02403_S1.html

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


Xiong D, Nadal M (2020) Linking water relations and hydraulics with photosynthesis. Plant J 
101:800–815. https://doi.org/10.1111/tpj.14595

Xu Y (2016) Envirotyping for deciphering environmental impacts on crop plants. Theor Appl 
Genet 129:653–673. https://doi.org/10.1007/s00122-016-2691-5

Yuan W, Zheng Y, Piao S, et al (2019) Increased atmospheric vapor pressure deficit reduces 
global vegetation growth. Sci Adv 5:eaax1396. https://doi.org/10.1126/sciadv.aax1396

Zaman-Allah M, Jenkinson DM, Vadez V (2011) Chickpea genotypes contrasting for seed 
yield under terminal drought stress in the field differ for traits related to the control of 
water use. Funct Plant Biol 38:270–282. https://doi.org/10.1071/FP10244

Zhao G, Webber H, Hoffmann H, et al (2015) The implication of irrigation in climate change 
impact assessment: A European-wide study. Glob Chang Biol 21:. 
https://doi.org/10.1111/gcb.13008

Zhao J, Xue Q wu, Jessup KE, et al (2018) Shoot and root traits in drought tolerant maize 
(Zea mays L.) hybrids. J Integr Agric 17:1093–1105. https://doi.org/10.1016/S2095-
3119(17)61869-0

Zhu S-D, Cao K-F (2009) Hydraulic properties and photosynthetic rates in co-occurring lianas 
and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol 204:295–304

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061
1062
1063
1064
1065
1066

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.482897doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.482897


Table 1

Parameter settings for all manipulated traits (“dynamic parameters”) and for parameters that were constant
across all simulations (“static” parameters). Specific leaf area (SLA) was calculated as a function of the net
CO2 assimilation rate and the amount of stored carbon (starch), and was allowed to vary within the given
range.

Parameter description Unit Value / Range

Dynamic parameters (two values, all climate scenarios)
Water potential initiating stomatal closure (“Stomatal sensitivity”) MPa -1.5 or -2.5

Leaf-specific hydraulic conductivity (“Hydraulic efficiency”) 4.2 or 5.0

Water potential resulting in 50% loss of conductance (“Hydraulic safety”) MPa -1.60 or -2.70

Maximum root depth (“Root depth”) m 0.75 or 1.15

Maximum Leaf Area Index (LAI) unitless 4.0 or 4.5

Activity of Phosphoenolpyruvate carboxylase (PEPC) (Vpmax) 60 or 120

Soil water fraction of bottom-most soil layer at day 1 (“Initial soil water”) unitless 0.15 or 0.20

Soil texture (sand-silt-clay fraction) unitless 0.66-0.09-0.25 or 0.76-0.09-0.15

Static parameters (same for all simulations)
Leaf absorptance fraction unitless 0.92

Quantum yield of photosynthesis 0.32

175

80

PEPC regeneration rate 80

Mesophyll conductance 1.78

Bundle sheath conductance 0.003

Reference conductance 0.303

Specific leaf area range 29-60

Plant height m 2

Specific root length at 0.25 mm diam. 350

Minimum fine root diameter mm 0.125

Root lifespan of the finest roots years 0.33

mmol m-2 s-1

μmol m-2 s-1

e- photon-1

Max. electron transport rate at 25 °C μmol m-2 s-1

Michaelis constant of PEPC for CO
2
 at 25 °C (Kp) μbar

μmol m-2 s-1

mol m-2 s-1

mol m-2 s-1

mol m-2 s-1

m2 kgC-1

m gC-1 

1
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Fig. 1
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Fig. 1 Key interactions among physiological processes (green shaded arrows) that control carbon-water ex-
change, and how these interactions manifest as differences in CO2 assimilation in a given climate (blue box).
Traits manipulated in this study are represented by beige shaded arrows.
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Fig. 2
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Fig. 2 Daily precipitation, air temperature, vapor pressure deficit, and photosynthetically active radiation
for each of the five climate scenarios. Cumulative precipitation for each climate scenario is represented with
an unbroken black line.
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Fig. 3
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Fig. 3 “Importance” scores for individual traits that have been derived from 350 decision tree ensembles.
Larger importance values denote trait contrasts (e.g., deep vs shallow roots) that resulted in large differences
in net primary productivity (NPP), i.e., reduction in root mean square error (MSE; square root of model
variance) when the trait was included in the model. Small importance values reflect trait contrasts that
resulted in smaller reductions in model variance.
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Fig. 4
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Fig. 4 Net primary productivity (NPP) and reproductive output for stomatal sensitivity trait contrast (“risky”
vs “conservative” stomatal response to leaf water potential) for the Central Plains, Dry (a) and the High
Plains, Dry (b) sites. Symbol size has been scaled proportionately with variance in NPP across simulations.
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Fig. 5
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Tree fit statistics:

r2 = 0.8   MAE = 38.6   RMSE = 48.8
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Fig. 5 Representative multiple trait decision tree for the High Plains Wet scenario. Manipulated traits are
represented with shaded boxes, whereas the contrasting values of these traits (e.g., “low”, “high”) are denoted
by labeled arrows. The first branch point (trait contrast) is the trait resulting in the largest decrease in
model variance, whereas the last branch point denotes the trait contrast resulting in the smallest decrease
in model variance. The first four most important nodes (trait contrasts) are shown. Error bars denote +/-
1 standard deviation (n=16). Vpmax = maximum activity of PEP-carboxylase. Root depth = maximum
depth of root system. Max LAI = maximum achievable leaf area index. Saf = xylem embolism resistance.
Gs sensitivity = stomatal response to leaf water potential. Eff = maximum xylem conductance.
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Fig. 6
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Fig. 6 Representative multiple trait decision tree for the High Plains Dry scenario. Manipulated traits are
represented with shaded boxes, whereas the contrasting values of these traits (e.g., “low”, “high”) are denoted
by labeled arrows. The first branch point (trait contrast) is the trait resulting in the largest decrease in
model variance, whereas the last branch point denotes the trait contrast resulting in the smallest decrease
in model variance. The first four most important nodes (trait contrasts) are shown. Error bars denote +/-
1 standard deviation (n=16). Vpmax = maximum activity of PEP-carboxylase. Root depth = maximum
depth of root system. Max LAI = maximum achievable leaf area index. Saf = xylem embolism resistance.
Gs sensitivity = stomatal response to leaf water potential. Eff = maximum xylem conductance.
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