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ABSTRACT 

As the most common cause of dementia, the study of Alzheimer’s disease (AD) faces challenges 

in terms of understanding the cause, monitoring the pathogenesis, and developing early diagnosis 

and effective treatment. Rapid and accurate identification of AD biomarkers in the brain is critical 

to provide key insights into AD and facilitate the development of early diagnosis methods. In this 

work, we developed a platform that enables a rapid screening of AD biomarkers by employing 

graphene-assisted Raman spectroscopy and machine learning interpretation in AD transgenic 

animal brains. Specifically, we collected Raman spectra on slices of mouse brains with and without 

AD and used machine learning to classify AD and non-AD spectra. By contacting monolayer 

graphene with the brain slices, the accuracy was significantly increased from 77% to 98% in 

machine learning classification. Further, using linear supporting vector machine (SVM), we 

identified a spectral feature importance map that reveals the importance of each Raman 

wavenumber in classifying AD and non-AD spectra. Based on this spectral feature importance 

map, we identified AD biomarkers including Aβ and tau proteins, and other potential biomarkers, 

such as triolein, phosphatidylcholine, and actin, which have been confirmed by other biochemical 

studies. Our Raman-machine learning integrated method with interpretability is promising to 

greatly accelerate the study of AD and can be extended to other tissues, biofluids, and for various 

other diseases. 
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INTRODUCTION 

Alzheimer’s disease (AD), a progressive disorder of the brain that causes memory losses and 

damages other brain functions, is the most common cause of dementia.1 By 2020, about 44 million 

people worldwide have been diagnosed with AD.2 Despite the prevalence, the causes of AD are 

still not fully understood. Studying biomarkers related to AD greatly accelerates the understanding 

of the disease and can lead to new treatment against dementia.3,4 Three biomarkers, T-tau, P-tau, 

and Aβ42, have been identified and confirmed in the cerebrospinal fluid that are strongly associated 

with AD and could be used as progression markers in developing drugs.5 To detect the AD-

associated biomarkers in the brain, various imaging techniques have been developed, such as 

magnetic resonance imaging (MRI) and positron emission tomography (PET).6–8 However, MRI 

and PET are costly and time-consuming while they still lack specific molecular information.6,7 

Other biosensing methods such as surface plasmon resonance biosensors and field-effect 

transistors offer specific information on the optical or electronic properties of the analyte 8–10 thus 

are insufficient to gain comprehensive insights into the biomarkers of AD. Recently, spectroscopy-

based detection of AD biomarkers via immunoassay and fluorescence on blood and cerebrospinal 

fluid (CSF), has been intensively investigated in preclinical stages,11–14 but they are not label-free 

which prevent the discovery of novel biomarkers. New methods to rapidly screen and identify 

potential AD biomarkers from a huge number of candidate molecules are still urgently needed.  
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Raman spectroscopy is a non-destructive and label-free molecular sensing method. By exciting 

the samples with a monochromatic laser and collecting the inelastically scattered signal from the 

analyte, the obtained Raman spectrum provides the fingerprints of the analyte. Additionally, it 

offers high multiplexity and high specificity due to the multiple and extremely narrow Raman 

peaks. Since Raman spectroscopy provides a desirable approach with rapid diagnosis, it has been 

utilized to investigate AD in terms of diagnosing AD with Lewy Bodies in blood plasma,15 

classifying early pathological states of AD with brain hippocampus regions,6 imaging amyloid 

plaques in brain tissues,16 etc. Despite the specificity, multiplexity, and rapid diagnosis, the 

interpretation of the Raman signals in complex bio-samples is challenging. Although spectral 

comparison and principal component analysis (PCA) have been employed in Raman spectral 

analysis, molecule identification is unreliable when the intra-class spectral variation is too high.17–

21  

In recent years, machine learning has been frequently employed in Raman spectral analyses for 

disease diagnosis such as AD, cancer, infectious disease, etc..22–25 High accuracy in diagnosis is 

enabled by machine learning models including support vector machine (SVM),26 random forest 

classifier27 and neural networks.28 Besides achieving outstanding performance in classification, 

machine learning can also interpret the correlation between Raman modes and diseases by 

providing spectral feature importance map.29,30 Such interpretability of machine learning can lead 

to key insights into the potential disease biomarkers by correlating spectral feature importance map 

with the signature molecular Raman spectra. However, so far machine learning interpretation lacks 
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quantitative correlation to molecular composition in the Raman analysis for biomedical systems.22–

25  

In this work, we employed machine learning classification and interpretation on Raman spectra 

of mouse brain slices and screened AD biomarkers. Our workflow is primarily composed of three-

step procedures: first, we collected Raman spectra on mice brain slices with and without AD; then, 

we used machine learning to classify the collected Raman spectra on AD and non-AD brain slices; 

finally, we used linear SVM to interpret the spectral feature importance map which differentiates 

AD and non-AD spectra and discovered potential AD biomarkers (Figure 1). In our Raman 

measurements, we used a special noise reduction technique: contacting monolayer graphene with 

the brain slices. Compared to intrinsic Raman spectroscopy, our unique graphene-assisted Raman 

spectroscopy enhanced Raman signal-to-noise ratios (from 53.9 to 121.0) and improved machine 

learning classification performance (accuracy from 77% to 98%). By comparing the machine 

learning prediction accuracy on Raman spectra from different brain regions, our experiment 

revealed that certain brain regions, such as the cortex, are more informative in AD identification. 

In our machine learning interpretation, the spectral feature importance map is found to register 

well with the Raman signatures of known AD biomarkers including Aβ and tau proteins. We also 

located several other molecules that have high Raman spectral correlation with the spectral feature 

importance map, which have been verified in previous biochemical studies, indicating their 

potential as the biomarkers for AD diagnosis. Combining Raman sensing and machine learning 

analysis to enable biomarker identification on brain slices, our interpretable machine learning 
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based framework provides a route for fundamental study of AD pathology and can greatly 

accelerate AD diagnosis and drug development. Our Raman-machine learning integrated method 

has the potential to be extended to study other diseases and can be applied to various tissues, 

biofluids, and human samples.  

 

Figure 1. The overall workflow. Workflow of graphene-assisted Raman signals data collection, 

preprocessing, machine learning classification and interpretation. The machine learning classifier 

demonstrated is the linear SVM model to differentiate AD/non-AD Raman spectra. 
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RESULTS AND DISCUSSION 

Improving the Signal-to-Noise Ratio Using Graphene-Assisted Raman Spectroscopy 

We collected Raman spectra of brain slices harvested from AD transgenic mice and healthy 

mice. There are in total 351 spectra with AD and 376 spectra without AD in our dataset measured 

on three brain regions: cortex, hippocampus, and thalamus. During the Raman measurement, the 

brain slices were immersed in a neuroprotectant solution sealed between the silicon substrate and 

a fused quartz cover slide. For part of the measurements, we placed brain slices in direct contact 

with monolayer graphene which had been transferred onto the quartz cover slide (Figure S1).  

Before feeding the Raman spectra into machine learning classifiers, we implemented the 

Savitzky-Golay filter31 for spectral smoothing and asymmetric least squares smoothing32 for 

baseline correction. Comparisons of raw Raman spectra before and after preprocessing are shown 

in Figure S2 and Figure S3. Figure 2a and 2b show examples of the preprocessed Raman spectra 

for AD and non-AD samples measured with and without graphene contact. As can be seen, there 

are major Raman peaks at 1038 cm-1,1088 cm-1, 1283 cm-1, 1312 cm-1, 1439 cm-1, 1458 cm-1 

(Figure 2a and 2b). The graphene G band is at 1589 cm-1, noted as G (Figure 2a, Figure S4). The 

other Raman peaks are contributed by Aβ and tau proteins, and major molecular components in 

the brain (Table 1). For example, the 1283 cm-1 mode is contributed by the CH2 bending mode of 

oligomeric tau, actin, myelin basic protein, phosphatidylcholine, and triolein molecules. The 

Raman mode at 1458 cm-1 is contributed by the C – C stretching mode and CH2 bending mode of 
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oligomeric Aβ, oligomeric tau, actin, glycogen, lactate, phosphatidylcholine, and triolein 

molecules. 

 

Figure 2. Raman spectra on brain slices. (a) Preprocessed Raman spectra in cortex region with 

and without AD, with graphene. Graphene G-band at 1589 cm-1 is notated as “G”. (b) Preprocessed 
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Raman spectra in cortex region with and without AD, without graphene. (c) S/N of every brain 

region, measured with and without graphene. 

Table 1. Assignments of most important Raman bands. Raman vibration modes, Aβ and tau 

proteins, and 17 major composite molecules of the brain assigned to major Raman peaks.6,33–56 

Peak position (cm-1) Band assignment Tentative contribution 

1038 (C – O)ν Oligomeric Aβ, Fibril Aβ; Actin, Glycogen, Myelin basic 
protein 

1063 (C – C)ν  Oligomeric Tau; Actin, Myelin basic protein, 
Phosphatidylcholine, Triolein 

1088 (C – O – C)ν Aspartate amino, Ubiquitin 

1270 Amide III  

1283 (CH2)γ Oligomeric Tau; Actin, Myelin basic protein, 
Phosphatidylcholine, Triolein 

1297 (CH2)γ Oligomeric Aβ; Actin 

1312 (CH2)τ Monomeric Tau, Fibril Tau; Actin, Glycogen, Myelin basic 
protein, Phosphatidylcholine, Triolein 

1439 (CH2)γ Monomeric Aβ, Oligomeric Tau, Fibril Tau; Aspartate 
Amino, Lactate, Cholesterol, Myelin basic protein 

1458 (C – C)ν, 
(CH2)γ 

Oligomeric Aβ, Oligomeric Tau; Actin, Glycogen, Lactate, 
Phosphatidylcholine, Triolein 

νstretching, γbending, τtwisting   

We calculated the signal-to-noise ratios (S/N) for spectra with and without graphene in three 

brain regions. The S/N are shown in Figure 2c where red bars correspond to graphene-assisted 

spectra and blue bars represent the no-graphene results. It is clear that the graphene-assisted spectra 

exhibit much higher S/N than the no-graphene spectra for all the three brain regions (S/N average 

of 121.0 for graphene-assisted spectra compared to 53.9 for no-graphene spectra). Overall, we 
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observed that when brain slices were placed in contact with graphene, the Raman spectra exhibited 

less noise when compared to the measurements without graphene. Our prior work, along with 

others, has shown that graphene can reduce the noise of Raman spectra, enhance Raman signals, 

and quench fluorescence for organic and biomolecules.57–60 Here, the reduced noise can be 

attributed to the above factors, as well as the high heat conductivity of graphene which can reduce 

the laser heating effect during Raman measurements of brain slices.61,62 Therefore, we used 

graphene-assisted Raman spectra for further investigation described in the following sections.  

 

Machine Learning Classification 

In order to classify AD and non-AD spectra, we used the graphene-assisted spectra and applied 

different algorithms including linear SVM,26 random forest,27 XGBoost,63 CatBoost.64 The 

common metrics for machine learning including classification accuracy, area under the receiver 

operating characteristic curve (AUC), sensitivity, and specificity for graphene-assisted Raman 

spectra are shown in Figure 3. Although the Raman spectra for AD and non-AD brain slices are 

visually similar (Figure 2a), machine learning classification can capture minor differences and 

distinguish the two classes with high accuracy. It can be seen from Figure 3 that the cortex region 

rendered the accuracy over 93% for every classifier. Compared to the hippocampus and thalamus, 

the cortex region exhibited better accuracy, AUC, sensitivity, and specificity for all classifiers. 

Thus, we can infer that Raman fingerprints of AD-relevant biomarkers are better captured in the 

cortex region with graphene assistance.65 It should be noted that our results do not indicate that the 
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roles of hippocampus and thalamus in AD should be ignored since our observations only indicate 

that graphene-assisted Raman signal is more sensitive to AD-relevant molecular components in 

the cortex region compared to the other two regions. We also performed the same machine learning 

classification for Raman spectra measured without graphene, and the results are shown in Figure 

S5 and Table S1. 
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Figure 3. Machine learning classification summary on graphene-assisted Raman spectra. 

Accuracy, AUC, sensitivity, and specificity of graphene-assisted Raman spectra from the cortex, 

hippocampus, and thalamus regions.  

As the graphene-assisted Raman signals from the cortex region yield better results in the 

machine learning classification, we visualized the data distribution using t-distributed stochastic 

neighbor embedding (t-SNE) plots, a non-linear dimensionality reduction technique, for selecting 

appropriate interpretable machine learning classifiers.66 As shown in Figure 4a, in the cortex 

region, the graphene-assisted Raman data can be well separated by a linear decision boundary 

while the Raman data measured without graphene are apparently not linearly separable (Figure 

4b). Meanwhile, the machine learning classification accuracy using graphene-assisted Raman data 

reaches as high as 98% using linear SVM; however, the accuracy is at most 77% among the four 

classifiers using the no-graphene data (Figure 4c). This, again, shows the high quality of our 

graphene-assisted Raman data, which are more suitable for feature importance matching and 

interpretation (t-SNE plots from other brain regions are in Figure S6). A linear classifier with high 

accuracy is preferable to perform this interpretation task, since it is simple yet sufficient to fit the 

linearly-separated data without introducing much model complexity, making its spectral feature 

map more straightforward for interpretation. Thus, we chose linear SVM from the series of 

machine learning models experimented for further investigation to determine candidate 

biomarkers in association with AD.  
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Figure 4. t-SNE plots for cortex region. (a) t-SNE plot of graphene-assisted spectra on cortex 

region. The red dashed line is the estimated linear decision boundary. (b) t-SNE plot of spectra 

without graphene on cortex region. The red dashed curves are estimated non-linear decision 

boundaries. (c) Comparison of classification accuracy between Raman spectra with and without 

graphene on cortex region. 
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Machine Learning Interpretation 

We further interpreted the machine learning classification results and studied the features 

learned, which can provide important information on AD biomarker molecules. Validated by high 

accuracy, AUC, sensitivity, and specificity (Figure 3), the features learned by SVM from the 

graphene-assisted data in the cortex region are considered reliable for interpretation. From the 

trained linear SVM model, we assigned a spectral mapping of Raman wavenumbers based on their 

importance in classifying AD/non-AD spectra. The extracted spectral feature importance map 

contains two sets of features: positive features and negative features (positive features shown in 

Figure 5, and complete features shown in Figure S7). Since the spectral feature importance map 

shows the importance of each Raman wavenumber in the AD/non-AD classification, it stresses the 

difference between AD and non-AD Raman spectra.  

As shown in Figure 5, the most important features from machine learning interpretation are 1038 

cm-1, 1283 cm-1, 1458 cm-1, whose importance values are 0.087, 0.056, 0.15, respectively. All of 

these wavenumbers have Raman peaks for both AD and non-AD samples, but there is a slight 

difference: the AD samples exhibit about 10.5 ± 7.4%, 12.5 ± 3.5%, and 12.6 ± 1.4% stronger 

intensity than the non-AD samples, respectively, as shown in Figure 2a, which matches our 

analysis results that these wavenumbers possess important positive spectral features. The Raman 

mode at 1038 cm-1 may correspond to C – O stretching mode in oligomeric Aβ and fibril Aβ 

proteins. It may also be contributed by actin, glycogen, and myelin basic protein molecules. The 

1283 cm-1 may correspond to CH2 bending mode in oligomeric tau protein. It may also be 
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contributed by actin, myelin basic protein, phosphatidylcholine, and triolein molecules. The 1458 

cm-1 may correspond to C – C stretching mode and CH2 bending mode in oligomeric Aβ and 

oligomeric tau proteins. It may also be contributed by actin, phosphatidylcholine, and triolein 

molecules. The high spectral feature importance in those wavenumbers suggests that the biological 

molecules mentioned here are potentially related to the diagnosis of AD. On the other hand, if the 

Raman peaks identified in both AD and non-AD samples do not exhibit significant spectral 

difference, the spectral feature importance does not necessarily show peaks in that wavenumber. 

For example, the graphene G band at 1589 cm-1 in both AD and non-AD spectra does not appear 

as an important wavenumber in Figure 5 since graphene is deployed in the same way in both AD 

and non-AD samples. Also, the Raman peak around 1088 cm-1 for both AD and non-AD samples 

(Figure 2a), which is potentially related to C – O – C stretching mode for aspartate amino and 

ubiquitin molecules, is not important according to our spectral feature importance, since the 

aspartate amino and ubiquitin molecule is not closely associated with AD. The interpretability of 

machine learning we demonstrated here presents a tremendous advantage of machine learning 

interpretation and enables the discovery of biomarkers that have very small quantities in the 

diseased samples, potentially allowing for early-stage diagnosis and understanding of disease 

pathology.  
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Figure 5. Feature importance matching for AD biomarkers. (Top) The positive spectral feature 

importance map found by SVM, where wavenumbers with high feature importance scores (i.e. 

high values along the vertical axis) are important for AD recognition. On the spectral feature 

importance map, the blue dashed line is the threshold of positive important feature ranges used for 

matching scores. The purple solid lines are important feature ranges above the threshold. Important 

peaks corresponding to signature Raman modes are labeled in black. Non-important peaks 

corresponding to signature Raman modes are differentiated in red. (Bottom left) The matching 

scores and cross-correlation coefficients between SVM feature importance map and previously 

reported 6 biomarkers.51–53 (Bottom right) The black solid lines below the spectral feature 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2021.06.03.446929doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446929


  
 

  
  
Page 17 of 45 

 

importance map are Raman signature peak ranges of 6 biomarkers with plus/minus 5 cm-1. The 

wavenumber ranges from 1000 to 1600 cm-1.   

To better understand our spectral feature importance map and its relationship with molecular 

components, we developed two metrics for two application scenarios: Pearson cross-correlation 

coefficient based algorithm (if Raman spectra of biomarkers, including peak frequencies and 

intensities, are available), and matching score based on spectral overlap between important feature 

ranges and biomarker Raman peaks (if only the peak frequencies of biomarkers are known, and 

peak intensities are unavailable). Note that the former metric is relatively informative since it 

considers all spectral features including frequencies and intensities. On the other hand, the latter 

metric based only on peak frequency is relatively robust since peak frequency is stable compared 

with other spectral features such as intensity, which depends on the measurement conditions such 

as laser wavelength, laser power, and substrate. For validation, here we used both metrics to cross-

check our interpretation results. We first examined several major AD biomarker proteins using 

both metrics. From the results shown in Figure 5, it is obvious that the known AD biomarkers such 

as oligomeric tau (with Raman peaks at 1063, 1283, 1439, 1458 cm-1, etc.) and oligomeric Aβ 

(with Raman peaks at 1038, 1297, 1458 cm-1, etc.) have considerable cross-correlation coefficients 

(Metric #1) and matching scores (Metric #2). To be more specific, oligomeric tau has a cross-

correlation coefficient of 67% and a matching score of 49% and oligomeric Aβ has a cross-

correlation coefficient of 35% and a matching score of 62%, while other uncorrelated molecules 
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such as tropomyosin and hemoglobin beta only have cross-correlation coefficients and matching 

scores no more than 13%. Both of our metrics correctly identified the significance of Aβ and, 

meanwhile, recognized the role of tau in AD brain slices. This demonstrates the validity of the 

Pearson cross-correlation coefficient and matching score metrics that we developed. 

Using the above two metrics, we can further screen more molecules that are potentially 

correlated to AD. We applied the cross-correlation coefficient and matching score to 17 major 

composite molecules of the brain (Table S2). The spectra of the component molecules with cross-

correlation coefficients above 65% are shown in Figure 6. Triolein, phosphatidylcholine, and actin 

have the highest cross-correlation coefficients to spectral feature importance map of 72%, 71%, 

69%, respectively. Consistent with the cross-correlation coefficient metric, the matching scores of 

these three molecules are also the highest among the 17 composite molecules. As clearly seen in 

Figure 6, the signature Raman peaks of triolein molecule, phosphatidylcholine molecule, and actin 

molecule including 1283 cm-1 (CH2 bending mode), 1312 cm-1 (CH2 twisting mode), and 1458 cm-

1 (C – C stretching mode and CH2 bending mode) match well with both our spectral feature 

importance map (Figure 6) and Raman peak analysis (Figure 2a and Table 1). This suggests that 

triolein, phosphatidylcholine, and actin may be associated with AD, which have been suggested 

by prior reports of biochemical and physiological studies.67–69 For example, Bamburg et al. found 

an increase of actin in the AD brain compared to the normal brain.67 Johnson et al. suggested that 

triglycerides, including triolein, can also lead to cognitive impairments., where they reported 

concentration levels of 46.49 mg/dl for AD animals and 35.01 mg/dl for healthy animals.70 Banks 
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et al. also showed that the decrease of triglycerides improves both learning and memory 

capabilities.68 Additionally, phosphatidylcholine is found to be significantly lower in AD 

patients,71 where high levels of phosphatidylcholine usually reduce the progression of dementia.72 

However, it is worth noting that the AD pathogenesis is different in mice and human brains in 

terms of the phosphatidylcholine level. According to Chan et al., phosphatidylcholine levels are 

lower in the AD human brain while higher in the mouse forebrain (18 Mol% for AD animals and 

16 Mol% for healthy animals).69  

  

Figure 6. Other potential AD biomarkers identified. Biomolecular component spectra with the 

top 3 cross-correlation coefficients to the spectral feature importance map: triolein, 
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phosphatidylcholine and actin.39,41,49 M refers to the matching score, and C refers to the cross-

correlation coefficient. 

In addition to the positive features shown in Figures 5 and 6, the SVM classifier also found 

negative features in the range 1100-1250 cm-1, i.e., the representative Raman spectral range for 

non-AD brain slices (Figure S7). This means that biomolecules with Raman peaks in this 

wavenumber range tend to be negatively correlated with AD (i.e. they likely reduce in amount or 

disappear with AD). These negative features correspond to cytochrome (with Raman peak at 1139 

cm-1) and glycogen (with Raman peak at 1237 cm-1) in both matching metrics, suggesting that 

cytochrome and glycogen are negatively correlated to AD, again consistent with prior biochemical 

experiments.73–76 In earlier studies, glycogen has been purposed to have beneficial effects for 

cognition,73 whose negative correlation has been confirmed by Bass et al.74 Furthermore, a 

decreased level of cytochrome has also been found in AD brain slices. For example, cytochrome 

c oxidase is found decreased in AD as reported by Parker et al. and Cardoso et al..75,76 

We note that our approach is able to screen potential biomarkers, rather than to accurately 

pinpoint all the biomarkers which requires further biochemical verification. The accuracy of our 

matching score and cross-correlation coefficient metrics depends on the quality and range of 

molecular Raman data available in the literature. For instance, the matching score and cross-

correlation coefficient values in Figure 5 and Figure 6 are not directly comparable, because the 

Raman signal range used was 1000 – 1600 cm-1 for results shown in Figure 5, and the Raman range 
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used was 1000 – 1670 cm-1 for results shown in Figure 6. The smaller Raman range for biomarker 

analysis (Figure 5) was due to the limited Raman spectral range reported for Aβ and tau proteins 

in the literature.53 Although not reported before, Aβ and tau proteins might have many important 

Raman modes between 1600 – 1670 cm-1, such as amide I mode at 1665 cm-1 for oligomer Aβ 

protein and amide I mode at 1654 cm-1 for fibril Aβ protein,51,52 which could affect the matching 

scores and cross-correlation coefficients of Aβ and tau in our analysis. We further note that our 

biomarker screening method in principle is not limited by the number of biomarkers. To identify 

more potential biomarkers, we simply input the Raman spectra of other biomolecules within the 

same spectral range (e.g. from a Raman spectra database) in our component matching with spectral 

feature importance map. 

 

CONCLUSION 

In summary, we measured and analyzed Raman spectra on mice brain slices with and without 

AD and used machine learning to classify AD/non-AD spectra in order to screen biomarkers 

through the interpretation of spectral feature importance. Raman spectra, with their multiple and 

narrow Raman peaks, contain rich molecular information and potentially provide an ideal dataset 

for machine learning analysis. Our graphene-assisted Raman measurements demonstrated further 

enhanced S/N, and thus effectively improved the performance of machine learning classification 

to achieve a high accuracy of 98%. To further interpret the molecular information in the Raman 

spectra, we obtained calculated spectral feature importance map based on our machine learning 
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classifier, and developed two new metrics, including cross-correlation coefficient and matching 

score, to identify molecules that are relevant to AD. Our interpretable machine learning based 

framework recognized a series of known AD biomarkers such as oligomeric tau and oligomeric 

Aβ that have a considerable correlation to AD. Our model also identified three molecules (triolein, 

phosphatidylcholine, and actin) that are positively correlated to AD, and two molecules 

(cytochrome and glycogen) that are negatively correlated to AD. Our work offers a rapid approach 

to detect AD and to screen AD biomarker molecules, thus is promising to greatly accelerate the 

study of AD in terms of diagnosis and treatment. Our approach integrating graphene-assisted 

Raman spectroscopy and interpretable machine learning can also be widely applied to study 

various other diseases and to a wide range of biological samples including tissues and biofluids. 

 

METHODS 

Animals and brain slice preparation  

Animal investigation procedures were conducted in accordance with institutional and NIH 

guidelines. The animals were housed with ad libitum access to food and water in a room with a 

12-hr light and dark cycle in the animal facility. We utilized the previously reported 5XFAD mouse 

model expressing APPSwedish/Florida/London and PSEN1M146L/ L286V mutations,77,78 which recapitulates 

the features of Alzheimer’s β-amyloid pathology in animal brains. 5XFAD mice of different ages 

and non-transgenic (non-AD) control mice were investigated. All animal study procedures were 

approved by MGH IACUC (Protocol #: 2011N000022). 
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Brain slices were prepared following previously reported methods.79,80 Particularly, animals 

were anesthetized with isoflurane and then decapitated. Isolated brains were longitudinally 

bisected, and hemispheres were separated and incubated in 4% paraformaldehyde-containing 0.1 

M phosphate-buffered saline (PBS) at 4 oC for 48 hrs, followed by incubation in 30% sucrose 

solution in 0.1 M PBS. Next, brains were snap frozen from a dry ice-cooled block on a sliding 

microtome (Leica SM 2010R), and sectioned in 40 μm thickness. The free-floating brain sections 

were stored at −20°C in a cryoprotective buffer containing 28% ethylene glycol, 23% glycol, and 

0.05 M PBS, until subsequent analysis by Raman testing. 

Raman measurement 

The Raman measurement was performed on the Horiba LabRam system with a 50× objective. 

The laser power on the sample was controlled below 0.4 mW to avoid potential laser bleaching. 

The excitation laser wavelength was 532.5 nm. All the measurements were performed on mice 

brain slices in the neuroprotectant solution that was sealed between a quartz cover slide and the 

silicon substrate. In the case with graphene in contact, the quartz slide has monolayer graphene 

transferred on the surface. In each Raman measurement, we carried out 3 accumulations, thus each 

spectrum is in effect averaged 3 times. 

Graphene synthesis and transfer 

The graphene layers were synthesized by chemical vapor deposition method. For the graphene 

growth, Cu foil was first placed in a quartz tube furnace and annealed at 1065°C for 1hr under 60 
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sccm H2 and 940 sccm Ar at atmospheric pressure. For the growth, the furnace was brought down 

to 1000°C and the gas flow rates were updated to 36 sccm H2 and 2204 sccm Ar. Then 0.6 sccm 

CH4 was introduced for 1hr. After 1hr, the CH4 was turned off and the Cu foil was rapidly cooled 

by removing it from the furnace area.  

For the transfer, a supporting PMMA layer was spin-coated on top of the graphene/Cu stack. 

Then the Cu was etched away using commercial Cu etchant. After the Cu has etched, the 

PMMA/graphene was put into three separate water baths for several hours, before being 

transferred to the desired final substrate. After the sample has dried, it was placed into acetone 

overnight in order to remove the PMMA and then rinsed with isopropyl alcohol and blow dried. 

Data preprocessing and calculation of signal-to-noise ratio 

After obtaining the raw data, it is essential to apply preprocessing methods to reduce the effect 

of noise and background on classifiers. For each spectrum, we applied Savitzky-Golay filter to 

reduce the spectral noise.31 We removed the background using baseline correction with 

asymmetric least squares smoothing.32 To calculate S/N, we selected peaks of interest at 1038 cm-

1, 1088 cm-1, 1283 cm-1, 1458 cm-1 and 1649 cm-1. Then, we divided the average intensity of each 

peak by the standard deviation of the peak intensity across different AD spectra from the same 

brain region to calculate the S/N for a single peak. Finally, we averaged the S/N of all peaks of 

interest to get the S/N of spectra of the area. Notice that since we used the same preprocessing for 
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all (both graphene and no-graphene) spectra, comparison between S/N of graphene and no-

graphene spectra are not affected. 

Classifiers architecture and feature importance 

As shown in Figure 3, multiple classifiers were used in the experiment including linear SVM, 

random forest, XGBoost, and CatBoost. Classification experiments were implemented using 

stratified 5-fold cross-validation to preserve the same percentage of samples for each class to 

improve robustness. For experiments with a relatively small sample set, SVM is usually an 

efficient and reliable option, for it is designed to find the optimal decision boundary represented 

by a hyperplane that maximizes the margin of separation between different classes.24 In our binary 

classification, we used linear SVM to find the optimal linear decision boundary between the two 

classes. The sign of a feature weight obtained from the Linear SVM classifier represents that 

feature’s direction to predict class.81,82 Hence, the feature weights can be intuitively interpreted as 

spectral feature importance map shown in Figure 5 (positive only), while the positive (negative) 

features correspond to Raman signals more represented in AD (non-AD) samples. We used scikit-

learn package to implement linear SVM and extract spectral feature importance map.83 

Component Cross-correlation Coefficient for Raman  

Pearson correlation coefficient measures the linear correlation between two variables.84 The 

method is a standard measure of similarity between two Raman spectra.85 Here, we used the 

cross-correlation coefficient to measure the levels of correlation between the machine-learning 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2021.06.03.446929doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446929


  
 

  
  
Page 26 of 45 

 

derived feature map and the Raman spectra of 17 commonly known components in the brain 

from literature (Table S2).33–48 We modified the Pearson cross-correlation coefficient method 

and excluded negatively correlated trends as shown as follows:  

𝑟 =
∑ max 0, (𝑥 − �̅�)(𝑦 − 𝑦)

∑ (𝑥 − �̅�) ∑ (𝑦 − 𝑦)
 (1) 

Considering the range difference of each spectrum, we normalized the components’ spectra and 

the spectral feature importance map so that they were within the same interval (1000 – 1600 cm-1) 

and have the same dimension. Then we used Equation 1 to calculate the cross-correlation 

coefficient. This results in a coefficient that ranges from [0,1] where r=0 means no correlation and 

r=1 means perfect correlation.  

Matching Score Between Machine-learning derived Feature Map and Biomolecule Raman 
Spectra 

Raman peak intensities vary with a number of factors including excitation wavelength and 

substrate. To avoid the influence of Raman peak intensity variation, we developed another metric, 

the Matching Score, for measuring the correlation between biomarkers and distinguishable 

patterns learned from machine learning models to some extent. The metric is designed as a ratio, 

with the numerator as the sum of important feature ranges of the extracted feature map of a 

particular class (i.e. either AD or No AD) that overlap with Raman spectra peak ranges of a certain 

biomarker, the sum of the aforementioned biomarker peak ranges is used as the denominator. 

Significant Raman peak ranges of 6 biomarkers (Fibril tau, Fibril Aβ, Oligomeric tau, Oligomeric 
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Aβ, Monomeric tau and Monomeric Aβ) that are commonly known to be present in brain slides 

are gathered from literature.51–53 As demonstrated in Figure 5, Raman peak ranges are constructed 

by granting a shift of 5 wavenumbers for each biomarker representing important feature regions, 

the sum of which is utilized as the denominator for further calculations. Similarly, pinpointing the 

important feature ranges for the feature map as numerator is also desired. Rather than extracting 

peaks from feature map, we applied a 40% percentile threshold as the cutoff, regions above which 

we considered as significant and used the sum of their intersection with the denominator as the 

numerator. Matching scores of all six biomarkers and the positive feature map extracted from 

Linear SVM training are presented in Figure 5, indicating that results from our Matching Score 

approach are consistent with biomedical findings using other methods. 
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