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Abstract [300 words] 16 

Museum and herbarium specimen records are frequently used to assess species’ conservation 17 

status and responses to climate change. Typically, records of occurrence with imprecise 18 

geolocality information are discarded because they cannot be matched confidently to 19 

environmental conditions, and are thus expected to increase uncertainty in downstream analyses. 20 

However, using only those records that can be precisely georeferenced risks undersampling of 21 

species’ environmental and geographic distributions. Using simulated and real species, we 22 

compared the effect of discarding versus retaining imprecise records on the accuracy of 23 

ecological niche models (ENMs), and estimates of niche breadth and extent of occurrence. 24 

Imprecise records were assigned to locations or climate values using a conservative approach. 25 

For simulated species, including imprecisely-georeferenced records alongside precisely-26 
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georeferenced records improved the accuracy of ENMs projected to the present and the future. 27 

Improvements were especially notable for species with <~20 precise occurrences, but accuracy 28 

continued to improve and eventually matched the accuracy of ENMs using all records with no 29 

georeferencing error. Using only precise records underestimated loss in suitable habitat and 30 

overestimated the amount of suitable habitat in both the present and future. Including imprecise 31 

records also improved univariate and multivariate estimates of niche breadth, and of species’ 32 

extent of occurrence. An analysis of 44 species in the genus Asclepias (milkweeds) revealed 33 

similarly large differences between cases using only precise records and those using precise plus 34 

imprecise records. Although the inclusion of imprecisely-georeferenced occurrence records may 35 

not always be appropriate, careful consideration must be made regarding the trade-offs between 36 

fidelity of the match between occurrences and the environment, versus sample size and how well 37 

precisely-geolocated records sample species’ environmental and geographic distributions. The 38 

preponderance of imprecisely georeferences specimens in museums and herbaria could be 39 

gainfully employed to address known shortfalls in sampling of species’ distributions and climatic 40 

niche tolerances. 41 

Keywords 42 

climate change vulnerability, coordinate uncertainty, georeferencing, niche breadth, natural 43 

history museum specimen records, niche truncation, rare species 44 

Introduction 45 

Accurate estimation of species’ environmental tolerances and distributions is key to addressing 46 

many pressing issues in ecology, evolution, and conservation (e.g., Fisher-Reid et al. 2012; 47 

Foden et al. 2013; Quintero & Wiens 2013a and b). Information on species’ environmental 48 
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tolerances and distributions is commonly inferred from occurrence records obtained from natural 49 

history museums and herbaria. These records can be matched to associated environmental 50 

conditions and then used to calculate the range of environments inhabited by a species (e.g., 51 

Foden et al. 2013). Similarly, ecological niche models (ENMs; also known as species 52 

distribution models) can be employed to estimate niche breadth and predict the extent of suitable 53 

habitat (Dawson et al. 2011; Pacifici et al. 2015; Foden & Young 2016; Miller et al. 2012; 54 

Young et al. 2016; IUCN 2019). Conservation assessments also frequently utilize the extent of 55 

occurrence, or area encompassed by occurrence records, to appraise species’ potential exposure 56 

to broad-scale threats (IUCN 2019; Faber-Langendoen et al. 2012). Methods utilizing 57 

opportunistic occurrence records have thus become an important component of biodiversity and 58 

conservation research (Heberling 2020). Unfortunately, a large portion of these records is 59 

imprecisely geolocated (Moudrý & Devillers 2020), which poses challenges for estimating 60 

niches and distributions (Moudrý & Šímová 2012). 61 

For occurrence data to be useful for estimating niche limits and distributions, two key conditions 62 

are desirable. First, environmental information assigned to an occurrence record should reflect 63 

the conditions that were actually experienced by the species at the location where it was 64 

observed (Graham et al. 2008). When records can only be geolocated imprecisely (i.e., to a large 65 

region or geopolitical unit), it becomes difficult to confidently assign a specific environmental 66 

datum to each record (Feeley & Silman 2010).  Second, when the goal is to estimate 67 

environmental tolerances, the set of records used to estimate niche limits should encompass as 68 

much of the species’ fundamental niche as possible (Thuiller et al. 2004; Peterson et al. 2018). If 69 

available occurrences represent only a portion of the niche, then the species’ actual 70 

environmental tolerances will be underestimated (Thuiller et al. 2004; Qiao et al. 2019). 71 
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The desire for spatial precision and representative sampling of occurrences leads to a critical 72 

trade-off. On the one hand, if records can only be imprecisely geolocated, using them risks 73 

introducing uncertainty and bias into estimates of environmental tolerances (Graham et al. 2008; 74 

Fernandez et al. 2009; Osborne & Leitão 2009; Feeley & Silman 2010; Tulowiecki et al. 2015; 75 

Gábor et al. 2020; Mitchell et al. 2016; Collins et al. 2017; Cheng et al. 2021). On the other 76 

hand, discarding records risks under-representing the true geographic and environmental range of 77 

a species, even if the location of occurrences is uncertain (Graham et al. 2008). These risks are 78 

especially great for rare species, which tend to be represented by just a few records (Lomba et al. 79 

2010; Sheth et al. 2012; Zizka et al. 2018). 80 

To date, these trade-offs have been almost exclusively managed by discarding imprecisely 81 

georeferenced records (Moudrý & Šímová 2012). Indeed, in a literature survey of publications 82 

using museum or herbarium specimens with ENMs, we found that half of studies that included 83 

any description of their data cleaning process discarded spatially imprecise records, and no 84 

studies reported purposefully retaining them (Supplementary material Appendix 1 Fig. A2). In 85 

other words, the risk of including inaccurate climate data has been assumed more serious than 86 

undersampling of the realized niche.  However, the justification for discarding spatially 87 

imprecise records is often based on studies that do not necessarily reflect real-world use cases. 88 

Instead, these studies evaluate the effects of coordinate imprecision on the accuracy of ENMs by 89 

artificially adding spatial error to otherwise precise records, and then comparing results between 90 

“fuzzed” and accurate records (e.g., Graham et al. 2008; Fernandez et al. 2009; Osborne & 91 

Leitão 2009; Gueta & Carmel 2016; Mitchell et al. 2016; Hefley et al. 2017; Soultan & Safi 92 

2017; Tulowiecki et al. 2015; Gábor et al. 2020). This approach, however, is not reflective of the 93 

common situation where an assessor starts with a mix of relatively precisely- and imprecisely-94 
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geolocated records and must decide how to delineate the two groups and whether or not to 95 

discard the imprecise ones. 96 

Here we reexamine the trade-offs between retaining versus discarding spatially imprecise records 97 

using virtual and real species. We designated records as “precise” if they had spatial uncertainty 98 

small enough to match them with confidence to environmental data, and “imprecise” if they 99 

could not. Imprecision in record coordinates can be represented in a variety of ways, including 100 

through the use of user-defined polygons (Wieczorek et al. 2004) or by assignment of records to 101 

the smallest geopolitical unit encompassing the area of likely collection (e.g., county, parish, 102 

state, etc.; Park & Davis 2017). We emphasize that our definition of an imprecise record does not 103 

include records with locations appearing to be outside the range of the species (i.e., geographic 104 

outliers; Feeley & Silman 2010) or specimens that do not pass quality-assurance checks 105 

(Chapman 2005). We compared ENMs, niche breadth, and the spatial extents of occurrence 106 

estimated using only precise records to estimates based on precise plus imprecise records. We 107 

hypothesized that the inclusion of imprecise records alongside precise records would improve the 108 

accuracy of predicted distributions, estimates of univariate and multivariate niche breadth, and 109 

extents of occurrence. We evaluated the accuracy of each of these metrics as a function of how 110 

many imprecise records were included, and compared them to benchmark estimates based on 111 

“omniscient” records where all populations of a species could be georeferenced without error. 112 

Methods 113 

Study region 114 
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For both virtual and real species, the region of analysis encompassed North America (i.e., 115 

Canada, the United States, and Mexico, excluding distant islands such as the Hawaiian Islands). 116 

However, we calibrated and evaluated ENMs within species-specific regions as noted below. 117 

Virtual species 118 

We used virtual species, for which we could obtain “true” distributions and environmental 119 

relationships, to explore the effects of including versus excluding imprecisely geolocated 120 

specimens. Full details are found in Fig. 1 and Supplementary material Appendix 2, so are 121 

briefly described here. We first calculated a principal component (PC) analysis of all present-day 122 

climatic conditions for North America using all 19 BIOCLIM variables (Nix 1986) from 123 

WorldClim Version 2.1 at 10 arcmin resolution, which represents average conditions across 124 

1970-2000 (Fick & Hijmans 2017). Species’ niches were generated using a trivariate Gaussian 125 

distribution in the first three PC axes, then projected to North America (Fig. 1, steps ). We 126 

interpreted these values as probabilities of presence. 127 

We then created occurrence data for each species by sampling raster cells according to their 128 

probability of occurrence times cell area. We first drew a set of “omniscient” records, which 129 

reflect an ideal case where a collector is able to georeference every single population of a species 130 

with negligible error. We generated species with 20, 40, 80, 160, and 320 omniscient records. 131 

From the omniscient records we randomly sampled a subset of 5, 10, 15, 20, 25, or 30 to 132 

represent “precise” records (so long as the number of precise records was less than the number of 133 

omniscient records). Precise records represent a realistic case where a collector has access to a 134 

subset of the species’ occurrences georeferenced with little error. To represent “imprecise” 135 

records that could only be georeferenced to a county, parish, or equivalent, from the remainder of 136 
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omniscient records we sampled a subset of 1, 2, 4, 8, …, records, up to the total number of 137 

omniscient records minus the number of precise records. We then assigned these records to the 138 

county in which they fell. 139 

For each combination of number of omniscient, precise, and imprecise records, we generated 200 140 

species. We then constructed ENMs and estimated climatically suitable area and niche breadth 141 

for each species in three separate ways. First, we calibrated an ENM and niche breadth metrics 142 

using all omniscient occurrences to represent a baseline against which to assess the other two 143 

sets of models and metrics. Second, we calculated a “precise-only” ENM and metrics using just 144 

the precise records, recreating the common practice of discarding imprecise records before 145 

biogeographic analysis. Third, we combined the precise and imprecise records to generate 146 

“precise + imprecise” ENMs and metrics. 147 

ENMs: We modeled each species’ realized niche using MaxEnt (Phillips et al. 2006; Phillips & 148 

Dudík 2008) with linear, quadratic, and interaction terms, with the optimal set of terms and 149 

master regularization parameter identified using AICc (Warren & Siefert 2011). Models were 150 

projected to the present and to a future climate scenario defined by the average across five earth 151 

system models for 2061-2080 from CMIP6 under Representative Concentration Pathway 8.5 152 

(achievable under Shared Socioeconomic Pathway 5-8.5; O’Neill et al. 2015). We assessed 153 

calibration accuracy (the degree to which model output reflects the true probability of presence) 154 

of the model predictions in the present and the future using the Pearson correlation coefficient 155 

between the ENM predictions and the actual probability of presence. Background sites for model 156 

calibration and assessment were drawn from a 300-km buffer around the minimum convex 157 

polygon constructed around all omniscient points. We also assessed area of climatically suitable 158 

habitat within this same region by applying a threshold such that training sensitivity was 0.9. We 159 
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calculated the area of current and future favorable habitat, and the area of habitat that was lost, 160 

gained, or remained favorable. To determine how inclusion of imprecise records affected model 161 

complexity, we calculated the number of non-zero coefficients (ignoring the intercept) for each 162 

type of model. 163 

Niche breadth and extent of occurrence: We also calculated a set of metrics broadly used in 164 

ecology, evolution, and conservation: (a) univariate niche breadth in mean annual temperature 165 

(MAT) and total annual precipitation (TAP), estimated from the range of the inner 90% of values 166 

of each variable across each set of occurrences; (b) multivariate niche breadth, represented by the 167 

volume and surface area of a minimum convex hull around each set of occurrences in three-168 

dimensional environmental space; and (c) extent of occurrence (EOO), which is the area of the 169 

minimum convex polygon encompassing all records in geographic space (IUCN 2019). EOO is 170 

used in conservation assessments as an index of the propensity for multiple populations to 171 

experience the same broad scale threat (IUCN 2019). 172 

Assigning imprecise records locations and environments: Since the imprecise records could not, 173 

by design, be geolocated with confidence to a single cell, we used a simple yet conservative 174 

approach to assign climatic conditions to these records. For the ENMs and multivariate niche 175 

breadth, we used the PC score of the cell in each imprecise record’s county that was closest in 176 

PC space to the mean of the precise records’ PC scores. To calculate univariate niche breadth, we 177 

used the value of MAT or TAP from across each imprecise record’s county that was closest to 178 

the mean across the precise records (Fig. 2b and c). To calculate extent of occurrence, we 179 

assigned each imprecise occurrence to the point in the county where it was located closest to the 180 

centroid of the precise records (Fig. 2a). For example, the actual location of an imprecise record 181 
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in a county was almost always further from the precise records’ centroid than the closest point in 182 

the county.  183 

We did not formally compare results between data types (omniscient, precise, precise plus 184 

imprecise) using statistical tests since these are inappropriate for simulations where the existence 185 

of differences is known a priori (White et al. 2014). Rather, we compared the inner 90th-186 

percentile distribution of each metric (calibration accuracy, EOO, etc.) for each case. 187 

Real species 188 

We also evaluated 44 species of Asclepias (milkweeds; family Apocynaceae) native to North 189 

America, which display a range distributions from narrowly endemic to those covering 190 

approximately one-third of the continent. Records were obtained from the Global Biodiversity 191 

Information Facility (www.gbif.org), and detailed procedures for data cleaning and modeling are 192 

described in Supplementary material Appendices 3 and 4. For this analysis we used only 193 

herbarium specimens and species with ≥5 precise and unique (i.e., non-duplicate) records. We 194 

evaluated the same set of metrics as for the virtual species and created ENMs following the same 195 

procedures. However, because we did not have omniscient records for the real species, we 196 

estimated climatically suitable habitat area within the region defined by a 300-km buffer around 197 

the minimum convex polygon surrounding all available records. We tested for differences in 198 

EOO and in univariate and multivariate niche breadth calculated with or without imprecise 199 

records using a paired Wilcoxon signed-rank test. 200 

Reproducibility 201 
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The analysis relied primarily on the sp (Bivand et al. 2013), rgeos (Bivand & Rundel 2020), 202 

geosphere (Hijmans 2019), dismo (Hijmans et al. 2017), raster (Hijmans 2021), and enmSdm 203 

(Smith 2021) packages for R Version 4.10 (R Core Team 2021). Scripts used in this analysis are 204 

available on the GitHub repository https://github.com/adamlilith/enms_impreciseRecords. 205 

Results 206 

Virtual species 207 

For brevity, we focus on results for species with 40 and 320 omniscient records, each with 5 or 208 

20 precise records (see Supplementary material Appendix 2 for all results). We found that adding 209 

imprecise records caused the greatest improvements in metrics when the number of precise 210 

records was <15-20, although the accuracy of some measures continued to improve as imprecise 211 

records were added. To reflect real-world use cases where assessors may have a set of records 212 

that can only be located to a geopolitical unit but not otherwise know if they represent truly 213 

geographically unique specimens, we plotted the change in each metric (ENM accuracy, niche 214 

breadth, etc.) against the number of county-level records accrued as imprecise records were 215 

added. Hence, hereafter we refer to changes in metrics as a function of the number of counties 216 

encompassing the imprecise records (counties are only counted once, regardless of the number of 217 

imprecise records they contain). 218 

ENMs: Compared to precise-only models, precise + imprecise models were more accurate when 219 

projected to both present and future climate scenarios (Figs. 3a and b, and Appendix 2 Figs. A1 220 

and A2). Accuracy increased most rapidly when the number of precise records in precise + 221 

imprecise models was ≤15, but continued to rise thereafter. For example, for present-day climate 222 

and a species with 40 total occurrences and only 5 precise occurrences, the median correlation 223 
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between the true probability of presence and predictions from precise-only ENMs was 0.15 (90% 224 

inner quantiles: -0.02 to 0.58). Adding county records increased the correlation up to 0.63 (0.30-225 

0.86), which was equivalent to the accuracy of omniscient ENMs (median: 0.60, 90% quantile: 226 

0.27-0.81). Similar results were obtained for species with a greater number of total occurrences. 227 

When the number of precise records was ≥20 or when >~30 county records were included, 228 

increases in accuracy of precise + imprecise models were more gradual (Fig. 3a). However, for 229 

species with ≥160 total occurrences, there was a second notable increase in accuracy when the 230 

number of county records surpassed about half of the total number of omniscient records (Fig. 3a 231 

and b). Accuracy decreased when ENMs were projected to the future, although precise + 232 

imprecise models still outperformed precise-only models when a sufficient number of county 233 

records was included (Fig. 3b). Precise-only models were simpler (fewer non-zero coefficients) 234 

than omniscient and precise + imprecise models (Supplementary material Appendix 2 Fig. A13). 235 

Compared to estimates based on omniscient records, precise-only ENMs overestimated the area 236 

of climatically suitable habitat by up to >300% (median value) for the present (Fig. 3c) and by 237 

>500% for the future (Fig. 3d and Supplementary material Appendix Figs. A6 and A7). 238 

Overestimation was greatest when the number of precise occurrences was <15. Adding just ~10-239 

30 county-level records reduced bias to ~0 relative to omniscient models. 240 

When the number of precise records was ≤15, precise-only ENMs underestimated loss of 241 

suitable area by 90% or more (median; Fig. 3e and f, Supplementary material Appendix 2 Fig. 242 

A3). Adding 10-30 county records eliminated this bias. Gains in suitable area were on average 243 

unbiased (Supplementary material Appendix 2 Fig. A4). Precise-only ENMs overestimated area 244 

that remained climatically suitable through time (Supplementary material Appendix 2 Fig. A5). 245 
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Niche breadth: Using just precise records underestimated univariate niche breadth and 246 

multivariate niche volume and surface area (Fig. 4b-e and Supplementary material Appendix 2 247 

Figs. A8 to A11). For example, for a species with 40 total occurrences of which just 5 could be 248 

geolocated precisely, precise-only niche breadth in MAT was only 29% (6-71%) of omniscient 249 

niche breadth. However, precise + imprecise niche breadth in temperature increased up to ~90% 250 

(~70-110%) of omniscient breadth as county records were added. For species with ≥20 precise 251 

occurrences, improvements in estimates of niche breadth were less dramatic. Similar trends were 252 

observed in niche breadth in TAP, and in multivariate niche volume and surface area (Fig. 4c-d). 253 

Occasionally, adding imprecise data led to overestimation, especially for niche breadth in MAT 254 

and niche volume. For MAT, across all species and scenarios, 4.5% of precise + imprecise 255 

estimates were larger than omniscient values, with the median of overestimated values 5% larger 256 

than the true value. For niche volume, 9% of precise + imprecise estimates were larger than 257 

omniscient values, with the median of overestimated values 27% larger than the true value. For 258 

MAT, overestimation was more common when the number of precise records was large and 259 

additional county records was small (Fig. 4b), but for niche volume overestimation was more 260 

likely as county records increased (Fig. 4d). 261 

Extent of occurrence: EOO was consistently underestimated when only precise records were 262 

used (Fig. 4a and Supplementary material Appendix 2 Fig. A12). Underestimation was worse for 263 

species with few precise records and a large number of occurrences. In these cases, median 264 

estimated EOO was as small as 12% of the actual value (inner 90% quantile range: 2-37%). 265 

Adding county records improved estimates in nearly every case, though the rate of improvement 266 

declined as more county records were added. EOO was occasionally overestimated when county 267 
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records were included. Across all scenarios, 1.7% of precise/imprecise estimates were larger than 268 

omniscient values, with the median of overestimate values 47% larger than the true value. 269 

Asclepias 270 

The data obtained from GBIF comprised 53,623 herbarium records. Following data cleaning, 271 

removal of observational and duplicate records, and elimination of species with fewer than 5 272 

geographically unique precise records, we were left with just 16% of the original records (8,480) 273 

and only 32% of the species (44 of 137). Imprecise records were the most abundant, comprising 274 

on average 70% of all usable records for a species (range: 44-97%; Supplementary material 275 

Appendix 3 Table A1). Thirty-six percent (16 of 44) of species had ≤20 precise records and 276 

twenty percent (9 of 44) had ≤10. 277 

ENMs: Relative to precise-only ENMs, precise + imprecise models predicted greater climatically 278 

suitable area for 63% of species (28 of 44) in the present and 71% of species (31 of 44) in the 279 

future (Fig. 5a and b, Supplementary material Appendix A7 Figs. A3). Gains and losses in 280 

suitable area were also larger when imprecise records were included (median gain 16% ranging 281 

from -80 to 3952%; median loss 30% ranging from -89 to 1652%; Supplementary material 282 

Appendix A7 Fig. A5). 283 

Niche breadth: Including imprecise records increased median univariate niche breadth in MAT 284 

and TAP by 25% across species (range: 0 to 353%) and 28% (0 to 292%), respectively (Fig. 5d; 285 

Wilcoxon V ~0 and P<10-6 in both cases). Including imprecise records increased multivariate 286 

niche volume by a median value of 175% (8 to 13,909%; P<10-12, Wilcoxon V~0) and niche 287 

surface area by 79% (3 to 1515%; P<10-12, Wilcoxon V~0; Fig. 5e). Species with the fewest 288 
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records had the greatest increase in niche breadth, volume, and area when imprecise records were 289 

included. 290 

Extent of occurrence: Precise + imprecise EOO was 86% larger (median; range 0-2011%) than 291 

precise-only EOO (Fig. 5c). Including imprecise records at least doubled EOO for 34% of 292 

species (15 of 44), and at least tripled EOO for 27% of species (12 of 44). Species with fewer 293 

precise records tended head greater increases in EOO when imprecise records were included. 294 

Discussion 295 

Spatially imprecise occurrences are commonly discarded prior to biogeographic analyses 296 

(Appendix 1 Fig. S2). Although the justification for this decision is due to the potential for 297 

spatial error to propagate through an analysis (Moudrý & Šímová 2012), discarding records also 298 

risks introducing error by undersampling geographic and environmental space. We found that 299 

including geospatially-imprecise records increased the accuracy of niche models projected to 300 

both present and future climate conditions (Fig. 3a and b). Including these records also led to 301 

more accurately estimated climatically suitable area (Fig. 3c-e) and improved estimates of niche 302 

breadth and extent of occurrence (EOO; Fig. 4). Sometimes estimates using just precise records 303 

were orders-of-magnitude different from those based on “omniscient” records, but adding 304 

imprecise records helped close this gap. 305 

A critical distinction of our work is that we show the effects of adding imprecise records to 306 

precise records, whereas most studies on coordinate uncertainty demonstrate the effects of 307 

making precise records spatially imprecise (e.g., Graham et al. 2008; Fernandez et al. 2009; 308 

Soultan & Safi 2017; Gábor et al. 2020). Likewise, studies that have examined the effects of 309 

adding additional imprecise records to ENMs have typically not employed a conservative 310 
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method for assigning environmental values or locations to imprecise records (e.g., Bloom et al. 311 

2018; Collins et al. 2017; Cheng et al. 2021), or have focused on mean values (versus extremes, 312 

which define environmental limits; Pender et al. 2019). Our findings have direct implications for 313 

studies in ecology, evolution, and conservation that use occurrences to estimate species’ 314 

relationships to the environment. More broadly, the uncertainty inherent in the decision over 315 

whether to use or discard imprecise records should be reflected in the outcome of analyses 316 

relying on occurrence data. 317 

Why including imprecise records improves niche models and estimates of niche breadth 318 

The effect of imprecise records on ENM accuracy and niche breadth depends on the abundance 319 

of precise records and how well they sample geographic and niche space (Moudrý & Šímová 320 

2012; Tulowiecki et al. 2015; Soultan & Safi 2017). We found that including a sufficient number 321 

of imprecise records could fully compensate for a lack of precise records even when there were 322 

as few as 5 precise occurrences. Gains in accuracy were most notable for species with <~20 323 

precise records, but even species >20 precise occurrences experienced improvements from 324 

adding imprecise records. Sample size is one of the largest influences on niche model accuracy 325 

(Santini et al. 2021), with minimum recommended sizes ranging from <10 to several hundred 326 

(Wisz et al. 2008; van Proossdij et al. 2016; Santini et al. 2021; see also Rivers et al. 2011). 327 

Given that many species are known from just a handful of records (Zizka et al. 2018), including 328 

imprecise records could be especially helpful when sample sizes are small. Adding imprecise 329 

records can improve the sampling of geographic and environmental space (e.g., Fig. 2a). 330 

Implications for studies in evolution, ecology, and conservation 331 
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Although the amount of biodiversity data is growing at an astounding rate, most species’ 332 

distributions remain poorly characterized (Meyer et al. 2016). For North American Asclepias, 333 

even with >53,000 specimen records we had enough data to analyze only a third species found in 334 

North America. Of those we did analyze, 70% of their records would have normally been 335 

discarded due to spatial uncertainty in their locations. Similar rates of spatial uncertainty are 336 

common in biodiversity databases (Moudrý & Devillers 2020). 337 

Spatially imprecise records, if used carefully, have great potential to address the “Wallacean 338 

shortfall,” the lack of information on species’ distributions (Hortal et al. 2015), and the 339 

“Hutchinsonian” shortfall, the lack of information on species’ environmental tolerances 340 

(Cosentino & Maiorano 2021). Answers to many key questions in ecology and evolution are 341 

susceptible to these shortfalls, and so could be informed by addition of erstwhile “unusable” 342 

imprecise records. For example, inadequate representation of environmental conditions 343 

inhabitable by a species can bias estimates of the rate of climatic niche evolution (Saupe et al. 344 

2018) and alter species’ response curves along environmental gradients (Hannemann et al. 2016). 345 

Likewise, investigations of relationships between niche breadth, geographic range size and 346 

environmental variation (Quintero & Wiens 2013a and b), and measurements of niche overlap 347 

(Warren et al. 2008) will be inherently sensitive to the degree to which realized niches are 348 

adequately sampled. The many studies that rely on ENMs for reconstructing species’ past, 349 

present, and potential future distributions are especially sensitive to sample size (Santini et al. 350 

2021) and uneven sampling intensity among inhabitable environments (Raes 2012; Perret & Sax 351 

2022). 352 

Discarding imprecise records has the potential to overestimate species’ vulnerability and thus 353 

bias conservation assessments. For example, under IUCN Red List criterion B1, species qualify 354 
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as threatened if they have an EOO <100 km2 (in addition to other criteria; IUCN 2019; see also 355 

Young et al. 2016). While none of the 44 species of Asclepias in our analysis had an EOO <100 356 

km2 when using just precise records, it is certainly possible that this threshold could be crossed 357 

by some of the other 93 species in our original data that we did not analyze because they had <5 358 

geographically unique precise records. Similarly, estimates of species’ adaptive capacities (Cang 359 

et al. 2016), rates of community thermophilization (Feeley et al. 2020), and exposure to 360 

anticipated climate change (Fig. 3) could be misrepresented by undersampling due to removal of 361 

imprecise specimens. 362 

Our intent is to provoke a reconsideration of the benefits and costs of discarding spatially 363 

imprecise records when assessing a species’ response to environmental gradients and geographic 364 

distributions. These trade-offs must be assessed within the goals and philosophical approach of 365 

an analysis. For example, many conservation assessments adopt a precautionary strategy that errs 366 

on the side of assuming a species is more vulnerable than it may actually be (Moyle 2005; 367 

Huntley et al. 2016a; IUCN 2019). In contrast, an evidentiary approach aims to classify species 368 

as vulnerable only if there is strong evidence to support such a designation (IUCN 2019). 369 

Discarding imprecise records decreased estimates of niche breadth and EOO (Fig. 4), so aligns 370 

with a precautionary approach because the species appear more vulnerable then they may be. 371 

However, using just precise records did overestimate climatically suitable area for the virtual 372 

species (Fig. 3c and 3d). In contrast, niche breadth and EOO were occasionally overestimated 373 

when imprecise records were included (Fig. 4). Hence, whether or not a decision to retain versus 374 

keep imprecise records is precautionary or evidentiary depends on the metric used to assess 375 

vulnerability. 376 
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In this context, we did find some differences between virtual and real species. Specifically, 377 

including imprecise records reduced the estimated climatically suitable area in the present and 378 

future for virtual species, but increased it for real species (Fig. 3c and d versus Fig. 5d and f; cf. 379 

Collins et al. 2017). Inspection of the individual ENMs for virtual species revealed that models 380 

that overestimated suitable habitat were: a) largely relegated to cases with small sample size 381 

(total number of precise or precise plus imprecise records) and small EOO; and b) were much 382 

simpler (i.e., had only a single term or were intercept-only models; Supplementary material 383 

Appendix 2 Fig. A13). Small sample size favors simpler models because available information 384 

does not justify complex responses (Phillips et al. 2006; Warren & Siefert 2011; Merow et al. 385 

2014; Vignali et al 2020). However, simple models containing, say, just linear terms cannot 386 

represent unimodal responses along environmental gradients (Whittaker 1953). Rather, they 387 

predict that suitability increases along a gradient, even if conditions eventually become worse 388 

again. As a result, and somewhat ironically, overly simple models tended to predict that suitable 389 

habitat for species with few occurrences is larger than for the same species with more 390 

occurrences, which allowed for more complex models (Brun et al. 2020). We did not see this 391 

effect in the real species, but 70% of our real species (31 of 44) had >15 precise records, so 392 

models were less likely to be simple. 393 

Uncertainty 394 

Analyses are most informative when they account for all relevant aspects of uncertainty (Huntley 395 

et al. 2016b; IUCN 2019).  The decisions over whether to retain or discard imprecise records, 396 

and indeed, over what constitutes an “imprecise” record, represent key aspects of uncertainty. 397 

However, across all of the articles that we reviewed, none of them evaluated the consequences of 398 

discarding imprecise records (Supplementary material Appendix 1 Fig. A2). Ignoring the 399 
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subjectivity inherent in these decisions reduces apparent uncertainty in the final assessment of 400 

species’ distributions and environmental tolerances. Acknowledging uncertainty is important 401 

even in cases where the exclusion of imprecise records would not change a species’ overall 402 

vulnerability status, since increased uncertainty reduces the reliability of returns on conservation 403 

investment (Smith et al. 2016). 404 

Conclusions 405 

We advocate for a re-consideration over whether spatially imprecise occurrence records should 406 

be excluded from biogeographic analyses.  Using only precise records reduces niche model 407 

accuracy, and can underestimate niche breadth and extent of occurrence. The decision over how 408 

to define imprecise records and whether or not to use them is an important contributor to the 409 

overall uncertainty in inherent in the outcome of analyses relying on specimen data. Discarding 410 

imprecise records ignores a critical aspect of uncertainty and risks undersampling species’ 411 

realized environmental and geographic distributions. Practitioners need to consider the trade-offs 412 

between using versus discarding imprecise records, especially given the preponderance of 413 

imprecise records available in specimen databases and the Wallacean and Hutchinsonian 414 

shortfalls that beset our sampling of the distribution of life on Earth. 415 
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exigency of using this data to its fullest potential. 427 

Literature cited 428 

Bivand, R. and Rundel, C. 2020. rgeos: Interface to Geometry Engine: Open Source ('GEOS'). 429 

Version 0.5-5. https://CRAN.R-project.org/package=rgeos 430 

Bivand, R., Pebesma, E., and Gómez-Rubio, V. 2013. Applied Spatial Data Analysis with R. 431 

Springer-Verlag, New York. 432 

Bloom, T.D.S., Flower, A., and DeChaine, E.G.  2018.  Why georeferencing matters: 433 

Introducing a practical protocol to prepare species occurrence records for spatial analysis.  434 

Ecology and Evolution 8:765-777. 435 

Brun, P., Thuiller, W., Chauvier, Y., Pellissier, L., Wüest, R.O., Wang, Z., and Zimmermann, 436 

N.E.  2020.  Model complexity affects species distribution projections under climate change.  437 

Journal of Biogeography 47:130-142. 438 

Cang, F.A., Wilson, A.A., and Wiens, J.J.  2016. Climate change is projected to outpace rates of 439 

niche change in grasses. Biology Letters 12: 20160368. 440 

Chapman, A.D.  2005.  Principles and Methods of Data Cleaning: Primary Species and Species-441 

Occurrence Data, Version 1.0.  Report for the Global Biodiversity Information Facility, 442 

Copenhagen. 443 

Cheng, Y., Tjaden, N.B., Jaeschke, A., Thomas, S.M, and Beierkuhnlein, C.  2021.  Using 444 

centroids of spatial units in ecological niche modeling: Effects on model performance in the 445 

context of environmental data grain size.  Global Ecology and Biogeography 30:611-621. 446 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2021.06.10.447988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447988
http://creativecommons.org/licenses/by/4.0/


 

21 

 

Collins, S.D., Abbott, J.C., and McIntyre, N.E.  2017.  Quantifying the degree of bias from using 447 

county-scale data in species distribution modeling: Can increasing sample size or using 448 

county-averaged environmental data reduce distributional overprediction?  Ecology and 449 

Evolution 7:6012-6022. 450 

Cosentino, F. and Laiorano, L.  2021.  Is geographic sampling bias representative in 451 

environmental space?  Ecological Informatics 64:101369. 452 

Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C., and Mace, G.M.  2011.  Beyond 453 

predictions: Biodiversity conservation in a changing climate.  Science 332:53-58.  454 

Faber-Langendoen, D., J. Nichols, L. Master, K. Snow, A. Tomaino, R. Bittman, G. Hammerson, 455 

B. Heidel, L. Ramsay, A. Teucher, and B. Young. 2012. NatureServe Conservation Status 456 

Assessments: Methodology for Assigning Ranks. NatureServe, Arlington, VA. 457 

Feeley, K.J. and Silman, M.R.  2010.  Modelling the responses of Andean and Amazonian plant 458 

species to climate change: The effects of georeferencing errors and the importance of data 459 

filtering.  Journal of Biogeography 37:733-740.  460 

Feeley, K.J., Bravo-Avila, C., Fadrique, B., Perez, T.M., and Zuleta, D. 2020.  Climate-driven 461 

changes in the composition of New World plant communities. Nature Climate Change 462 

10:965-970. 463 

Fernandez, M.A., S.D. Blum, S. Reichle, Q. Guo, B. Holzman, and H. Hamilton.  2009.  Locality 464 

uncertainty and the differential performance of four common niche-based modeling 465 

techniques.  Biodiversity Informatics 6:36-52.  466 

Fick, S.E. and Hijmans, R.J.  2017.  WorldClim 2: New 1-km spatial resolution climate surfaces 467 

for global land areas.  International Journal of Climatology 37:4302-4315. 468 

Fisher-Reid, M.C., Kozak, K.H., and Wiens, J.J.  2012.  How is the rate of climatic-niche 469 

evolution related to climatic-niche breadth?  Evolution 66:3836-3851. 470 

Foden, W.B. and Young, B.E. (eds.) 2016. IUCN SSC Guidelines for Assessing Species’ 471 

Vulnerability to Climate Change. Version 1.0. Occasional Paper of the IUCN Species 472 

Survival Commission No. 59. Cambridge, UK and Gland, Switzerland: IUCN Species 473 

Survival Commission. x+114 pp.  474 

Foden, W.B., Mace, G.M., and Butchart, S.H.M.  2013.  Indicators of climate change impacts on 475 

biodiversity.  Pp. 120-137 in Collin, B., Pettorelli, N., Baillie, J.E.M., and Durant, S.M.  476 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2021.06.10.447988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447988
http://creativecommons.org/licenses/by/4.0/


 

22 

 

(eds.) Biodiversity Monitoring and Conservation: Bridging the Gap between Global 477 

Commitment and Local Action, 1st ed.  John Wiley and Sons, Indianapolis. 478 

Gábor, L., Moudrý, V., Lecours, V., Malavasi, M., Barták, V., Fogl, M., Šímová, P., Rocchini, 479 

D., and Václavík, T.  2020.  The effect of positional error on fine scale species distribution 480 

models increases for specialist species.  Ecography 43:256-269. 481 

Graham, C.H., Elith, J., Hijmans, R.J., Guisan, A., Peterson, A.T., Loiselle, B.A., and the 482 

NCEAS Predicting Species Distributions Working Group.  2008.  The influence of spatial 483 

errors in species occurrence data used in distribution models.  Journal of Applied Ecology 484 

45:239-247. 485 

Gueta, T. and Carmel, Y.  2016.  Quantifying the value of user-level cleaning for big data: A 486 

case study using mammal distribution models.  Ecological Informatics 34:139-145.  487 

Hannemann, H., Willis, K.J., and Macias-Fauria, M.  2016.  The devil is in the details: Unstable 488 

response functions in species distribution models challenge bulk ensemble modeling.  Global 489 

Ecology and Biogeography 25:26-35. 490 

Heberling, J.M. 2020. Global change biology: Museum specimens are more than meet the eye. 491 

Current Biology 30: R1368-R1370. 492 

Hefley, T.J., Brost, B.M., and Hooten, M.B.  2017.  Bias correction of bounded location errors in 493 

presence-only data.  Methods in Ecology and Evolution 8:1566-1573. 494 

Hijmans, R.J. 2016. raster: Geographic Data Analysis and Modeling. R package version 2.5-8. 495 

https://CRAN.R-project.org/package=raster.  496 

Hijmans, R.J. 2019. geosphere: Spherical Trigonometry. R package version 1.5-10.  497 

https://CRAN.R-project.org/package=geosphere.  498 

Hijmans, R.J., Phillips, S.J., Leathwick, J., and Elith, J. 2020. dismo: Species Distribution 499 

Modeling. R package version 1.3-3. https://CRAN.R-project.org/package=dismo. 500 

Hortal, J., de Bello, F., Diniz-Filho, J.A.F., Lewinson, T.M., Lobo, J.M., and Ladle, R.J. 2015. 501 

Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, 502 

Evolution, and Systematics 46:523-549. 503 

Huntley, B., Foden, W.B., Pearce-Higgins, J., and Smith, A.B. 2016. Chapter 6. Understanding 504 

and working with uncertainty. In W.B. Foden and B.E. Young, editors. IUCN SSC 505 

Guidelines for Assessing Species’ Vulnerability to Climate Change. Version 1.0. Occasional 506 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2021.06.10.447988doi: bioRxiv preprint 

https://cran.r-project.org/package=dismo
https://doi.org/10.1101/2021.06.10.447988
http://creativecommons.org/licenses/by/4.0/


 

23 

 

Paper of the IUCN Species Survival Commission No. 59. Gland, Switzerland and 507 

Cambridge, UK. pp 49-56. 508 

Huntley, B., Foden, W.B., Smith, A.B., Platts, P., Watson, J. and Garcia, R.A. 2016. Chapter 5. 509 

Using CCVAs and interpreting their results. In W.B. Foden and B.E. Young, editors. IUCN 510 

SSC Guidelines for Assessing Species’ Vulnerability to Climate Change. Version 1.0. 511 

Occasional Paper of the IUCN Species Survival Commission No. 59. Gland, Switzerland and 512 

Cambridge, UK. pp 33-48. 513 

IUCN Standards and Petitions Committee. 2019. Guidelines for Using the IUCN Red List 514 

Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. 515 

Downloadable from http://www.iucnredlist.org/documents/RedListGuidelines.pdf (2021-05-516 

24). 517 

Lomba, A., L. Pellissier, C. Randin, J. Vicente, J. Horondo, and A. Guisan.  2010.  Overcoming 518 

the rare species modeling complex: A novel hierarchical framework applied to an Iberian 519 

endemic plant.  Biological Conservation 143:2647-2657.  520 

Merow, C., Allen, J.M., Aiello-Lammens, M., and Silander, Jr., J.A.  2016.  Improving niche and 521 

range estimates with Maxent and point process models by integrating spatially explicit 522 

information.  Global Ecography and Biogeography 25:1022-1036. 523 

Merow, C., Smith, M.J., Edwards, Jr., T.C., Guisan, A., McMahon, S.M., Normand, S., Thuiller, 524 

W., Wüest, R.O., Zimmermann, N.E., and Elith, J.  2014.  What do we gain from simplicity 525 

versus complexity in species distribution models?  Ecography 37:1267-1281. 526 

Miller, J.S., Porter-Morgan, H.A., Stevens, H., Boom, B., Krupnick, G.A., Acevedo-Rodríguez, 527 

P., Fleming, J., and Gensler, M.  2012.  Addressing targets two of the Global Strategy for 528 

Plant Conservation by rapidly identifying plants at risk.  Biodiversity Conservation 21:1877-529 

1887. 530 

Mitchell, P.J., Monk, J., and Laurenson, L.  2016.  Sensitivity of fine-scale species distribution 531 

models to locational uncertainty in occurrence data across sample sizes.  Methods in Ecology 532 

and Evolution 8:12-21. 533 

Moudrý, V. and Devillers, R.  2020.  Quality and usability challenges of global marine 534 

biodiversity databases: An example for marine mammal data.  Ecological Informatics 535 

56:101051. 536 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2021.06.10.447988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447988
http://creativecommons.org/licenses/by/4.0/


 

24 

 

Moudrý, V. and Šímová, P.  2012.  Influence of positional accuracy, sample size and scale on 537 

modeling species distributions: A review.  International Journal of Geographic Information 538 

Science 26:2083-2095. 539 

Moyle, B.  2005.  Making the Precautionary Principle work for biodiversity: Avoiding perverse 540 

outcomes in decision-making under uncertainty.  Pp. 159-172 in Cooney, R. and B. Dickson 541 

(eds.) Biodiversity and the Precautionary Principle: Risk and Uncertainty in Conservation 542 

and Sustainable Use.  Earthscan, London.  314 pp. 543 

Nix, H.A. 1986. A biogeographic analysis of Australian elapid snakes. Atlas of elapid snakes of 544 

Australia: Australian flora and fauna series 7 (ed. by R. Longmore), pp. 4-15. Bureau of 545 

Flora and Fauna, Canberra.  546 

O'Neill, B.C., Kreigler, E., Ebi, K.L., Kemp-Benedict, E., Riahi, K., Rothman, D.S., van 547 

Ruijven, B., van Vuuren, D.P., Birkman, J., Kok, K., Levy, M., and Solecki, W.  2017.  The 548 

roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 549 

21st century.  Global Environmental Change 42:169-180. 550 

Osborne, P.E. and Leitão, P.J.  2009.  Effects of species and habitat positional errors on the 551 

performance and interpretation of species distribution models.  Diversity and Distributions 552 

15:671-681. 553 

Pacifici, M., Foden, W.B., Visconti, P., Watson, J.E.M., Butchart, S.H.M., Kovacs, K.M., 554 

Scheffers, B.R., Hole, D.G., Martin, T.G., Akçakaya, H.R., Corlett, R.T., Huntley, B., 555 

Brickford, D., Carr, J.A., Hoffmann, A.A., Midgley, G.F., Pearce-Kelly, P. Pearson, R.G., 556 

Williams, S.E., Willis, S.G., Yoing, B., and Rondinini, C.  2015.  Assessing species 557 

vulnerability to climate change.  Nature Climate Change 5:215-225.  558 

Park, D.S. and Davis, C.C.  2017. Implications and alternatives of assigning climate data to 559 

geographical centroids.  Journal of Biogeography 44:2188-2198.  560 

Pender, J.E., Hipp, A.L., Hahn, M., Kartesz, J., Nishino, M., and Starr, J.R.  2019.  How 561 

sensitive are climatic niche inferences to distribution data sampling? A comparison of Biota 562 

of North America Program (BONAP) and Global Biodiversity Information Facility (GBIF) 563 

datasets.  Ecological Informatics 54:100991. 564 

Perret, D.L. and Sax, D.F.  2022.  Evaluating a study design for optimal sampling of species' 565 

climatic niches.  Ecography 2022:e06014. 566 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2021.06.10.447988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447988
http://creativecommons.org/licenses/by/4.0/


 

25 

 

Peterson, A.T., Cobos, M.E., and Jiménez-García, D.  2018.  Major challenges for correlational 567 

ecological niche model projections to future climate conditions.  Annals of the New York 568 

Academy of Sciences 1429:66-77.  569 

Phillips, S.J. and Dudík, M.  2008.  Modeling species distributions with Maxent: New extensions 570 

and a comprehensive evaluation.  Ecography 31:161-175. 571 

Phillips, S.J., Anderson, R.P., and Schapire, R.E.  2006.  Maximum entropy modeling of species 572 

geographic distributions.  Ecological Modelling 190:231-259.  573 

Qiao, H., Feng, X., Escobar, L.E., Peterson, A.T., Soberón, J., Zhu, G., and Papeş.  2019.  An 574 

evaluation of transferability of ecological niche models.  Ecography 42:521-534.  575 

Quintero, I. and Wiens, J.J.  2013a.  What determines the climatic niche width of a species? The 576 

role of spatial and temporal climatic variation in three vertebrate clades.  Global Ecology and 577 

Biogeography 22:422-432. 578 

Quintero, I. and Wiens, J.J.  2013b.  Rates of projected climate change dramatically exceed past 579 

rates of climate niche evolution among vertebrate species.  Ecology Letters 16:1095-1103. 580 

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for 581 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 582 

Raes, N.  2012.  Partial versus full species distribution models.  Natureza and Conservação 583 

10:127-138. 584 

Rivers, M.C., Taylor, L., Brummitt, N.A., Meagher, T.R., Roberts, D.L., and Lughadha, E.N.  585 

2011.  How many herbarium specimens are needed to detect threatened species?  Biological 586 

Conservation 144:2541-2547. 587 

Santini, L., Benítez-López, Maiorano L., Čengič, M., and Huijbreghts, M.A.  2021.  Assessing 588 

the reliability of species distribution projections in climate change research.  Diversity and 589 

Distributions 27:1035-1050. 590 

Saupe, E.E. Barve, N., Owens, H.L., Cooper, J.C., Hosner, P.A., and Peterson, A.T.  2018.  591 

Reconstructing niche evolution when niches are incompletely characterized.  Systematic 592 

Biology 67:428-438.  593 

Sheth, S.N., L.G. Lohmann, T. Distler, and I. Jiménez.  2012.  Understanding bias in geographic 594 

range size estimates.  Global Ecology and Biogeography 21:732-742. 595 

Smith, A.B. 2021. enmSdm: Tools for modeling niches and distributions of species. R package 596 

version 0.7.0. http://github.com/adamlilith/enmSdm 597 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2021.06.10.447988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447988
http://creativecommons.org/licenses/by/4.0/


 

26 

 

Smith, A.B., Long, Q.G., and Albrecht, M.A.  2016.  Shifting targets: spatial priorities for ex situ 598 

plant conservation depend on interactions between current threats, climate change, and 599 

uncertainty.  Biodiversity and Conservation 25:905-922.  600 

Soultan, A. and Safi, K.  2017.  The interplay of various sources of noise and reliability on 601 

species distribution models hinges on ecological specialization.  Public Library of Science 602 

ONE 12:e0187906. 603 

Thuiller, W., Araújo, M.B., Pearson, R.G., Whittaker, R.J., Brotons, L., and Lavorel, S.  2004.  604 

Uncertainty in predictions of extinction risk.  Nature 430:33. 605 

Tulowiecki, S.J., Larsen, C.P.S., and Wang, Y-C.  2015.  Effects of positional error on modeling 606 

species distributions: A perspective using presettlement land survey records.  Plant Ecology 607 

216:67-85. 608 

van Proossdij, A.S.J., Sosef, M.S.M., Wieringa, J.J. and Raes, N.  2016.  Minimum number of 609 

specimen records to develop accurate species distribution models.  Ecography 39:542-552. 610 

Vignali, S., Barras, A.G., Arlettaz, R. and Braunisch, V.  2020.  SDMtune: An R package to tune 611 

and evaluate species distribution models.  Ecology and Evolution 10:11488-11506. 612 

Warren, D.L. and S.N. Siefert.  2011.  Ecological niche modeling in Maxent: The importance of 613 

model complexity and the performance of model selection criteria.  Ecological Applications 614 

21:335-342.  615 

Warren, D.L., Glor, R.E., and Turelli, M.  2008.  Environmental niche equivalency versus 616 

conservatism: Quantitative approaches to niche evolution.  Evolution 62:2868-2883.  617 

White, J.W., Rassweiler, A., Samhouri, J.F., Stier, A.C., and White, C.  2014.  Ecologists should 618 

not use statistical significance tests to interpret simulation model results.  Oikos 123:385-388.  619 

Whittaker, R.H.  1953.  A consideration of climax theory: the climax as a population and a 620 

pattern.  Ecological Monographs 23:41-78.  621 

Wieczorek, J., Guo, Q., and Hijmans, R.J.  2004.  The point-radius method for georeferencing 622 

locality descriptions and calculating associated uncertainty.  International Journal for 623 

Geographical Information Science 18:745-767. 624 

Wisz, M.S., Hijmans, R.J., Peterson, A.T., Graham, C.H., Guisan, A., and NCEAS Predicting 625 

Species Distributions Working Group.  2008.  Effects of sample size on the performance of 626 

species distribution models.  Diversity and Distributions 14:763-773. 627 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2021.06.10.447988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447988
http://creativecommons.org/licenses/by/4.0/


 

27 

 

Young, B.E., Byers, E., Hammerson, G., Frances, A., Oliver, L., and Treher, A.  2016.  628 

Guidelines for Using the NatureServe Climate Change Vulnerability Index, Version 3.02. 629 

NatureServe, Arlington. 630 

Zizka, A., ter Steege, H., Pessoa, M. de C.R, and Antonello, A.  2018.  Finding needles in the 631 

haystack: Where to look for rare species in the American tropics.  Ecography 41:321-330. 632 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2021.06.10.447988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447988
http://creativecommons.org/licenses/by/4.0/


 

28 

 

 633 

  634 

Generate species’ fundamental niche using trivariate 
normal

Generate omniscient 
occurrences from 
suitability surface

Subsample to 
generate precise

occurrences

Subsample to
generate imprecise

occurrences

Identify counties 
containing imprecise 

occurrences

Combine precise and county 
occurrences to make precise + 

imprecise occurrences

Calculate “omniscient” 
SDM, niche breadth, 

and EOO

Calculate “precise-only” 
SDM, niche breadth, 

and EOO

3a

4a 5a

3b 4b 5d

5b 5c

Variances drawn from gamma 
distributions, covariances from rescaled, 

peaked beta distributions

Means for normals 
from one randomly 

drawn cell

1
Project probability of 
presence onto present and 

future climate of North America

present 
probability
of presence

future 
probability
of presence

2

present 
SDM

future
SDM

present 
SDM

future 
SDM

Calculate 
“precise/imprecise” SDM, 
niche breadth, and EOO

present 
SDM

future 
SDM

PC1

PC3

PC2

1

0

Probability 
of presence

P
C

1

P
C

2

P
C

3

PC1

PC2

PC3

β

-1         10 .

Γ

0             .

Γ

0 .

Γ

β

-1         1

β

-1         1

β

-1         1

β

-1         1

β

-1         1

predicted suitable

predicted unsuitable

area of analysis

SDM predictions

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2021.06.10.447988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447988
http://creativecommons.org/licenses/by/4.0/


 

29 

 

Figure 1. The process of generating and analyzing a virtual species starting with generation of 635 

the fundamental niche (step 1), projection to geographic space (2), and generation of omniscient 636 

(3), precise (4), and imprecise (5) occurrences. Suitable climate area is analyzed within a 637 

buffered region surrounding omniscient records (bottom row).  The process was repeated 200 638 

times for each combination of number of omniscient, precise, and imprecise records.   639 
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 640 

 641 

Figure 2. An example of including versus discarding imprecise records using Asclepias 642 

viridiflora. a) Extent of occurrence estimated using either just precise or precise plus imprecise 643 

records from the minimum convex polygon (MCP). Imprecise records are represented by the 644 

smallest geopolitical unit to which a record can be located, or by circles representing area of 645 

likely collection. Projection: Albers conic, equal-area. b) and c) Difference in climatic niche 646 

breadth. The values of temperature or precipitation at precise records are represented by points 647 

(green). The distributions of temperature or precipitation across all locations encompassed by 648 

imprecise records are represented by smoothed density kernels, one per record (orange). Niche 649 

breadths estimated using just precise versus precise plus imprecise are shown.  650 
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 651 

Figure 3. Adding imprecise records (here, reflected as the number of counties they occupy) 652 

improves niche model accuracy for the present (a) and future (b). Calibration accuracy is the 653 

correlation between the real probability of presence and model output. Current (c) and future (d) 654 

climatically suitable area are overestimated when only precise records are included. Values are 655 

the ratio between estimates using only precise or precise + imprecise records to estimates from 656 

models using all “omniscient” occurrences of a species. Note the log scales. Each point 657 

represents a species. Violins encompass the inner 90% quantile of values. Thick trendlines 658 

represent the median trend, and thin trendlines encompass the inner 90% quantile of values. 659 
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Figure 4. Adding imprecise records (here, reflected as the number of counties they occupy) 661 

increases the accuracy of estimates of extent of occurrence (a), univariate niche breadth in mean 662 

annual temperature (b) and total annual precipitation (c), and multivariate niche volume (d) and 663 

surface area (e). In each case, values represent the ratio of estimates using only precise or precise 664 

+ imprecise records to estimates calculated using all “omniscient” occurrences of a species. Each 665 

point represents a species. Violins encompass the inner 90% quantile of values. Thick trendlines 666 

represent the median trend, and thin trendlines encompass the inner 90% quantile of values. To 667 

aid visualization for univariate niche breadth and niche volume, the y-axis limits encompass only 668 

the lower 99.9% of values. 669 

 670 
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 672 

  673 

Figure 5. Effects of including imprecise records on niche breadth and climatically suitable area 674 

for Asclepias. Differences in climatically suitable area in the present (a) and future (b) under 675 

RCP8.5. (c) Change in extent of occurrence. (d) Change in univariate niche breadth in mean 676 

annual temperature and mean annual precipitation. (e) Change in multivariate niche volume and 677 

surface area of this volume. In panels c-e, species are sorted from top to bottom from most to 678 

least number of precise records. Also note the log scale along the x-axis. 679 
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