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1 Optimal summary statistics to recover distribution features

Theorem 1. Denote the joint distribution of parameters and data Θ, Y ∼ π(θ, y), with prior

marginal π(θ) =
∫
π(θ, y) dy, likelihood π(y|θ) = π(θ, y)/π(θ), and posterior π(θ|y) = π(θ, y)/π(y) =

π(y|θ)π(θ)/π(y). Given a parameter transformation λ : Rnθ → Rnλ such that Eπ(θ)[|λ(θ)|] < ∞,

define summary statistics as the conditional expectation

s(y) := E[λ(Θ)|Y = y] =

∫
λ(θ)π(θ|y) dθ .

Given observed data yobs, acceptance threshold ε, and assuming the distance metric d(s(y), s(yobs)) =

‖s(y)− s(yobs)‖ is norm-induced, denote the ABC posterior distribution

πABC,ε(θ|s(yobs)) ∝
∫
I[‖s(y)− s(yobs)‖ ≤ ε]π(y|θ) dy ·π(θ).

Then, it holds ∥∥EπABC,ε [λ(Θ)|s(yobs)]− s(yobs)
∥∥ ≤ ε, (1)

and therefore

lim
ε→0

EπABC,ε [λ(Θ)|s(yobs)] = E[λ(Θ)|Y = yobs]. (2)

Proof. Based on Fearnhead and Prangle [2012] and Jiang et al. [2017], a simple extension of the

argumentation in the latter. Note that s(y) is almost surely finite due to E[|λ(θ)|] < ∞ and

Fubini’s Theorem. As for the induced σ-algebras holds σ(s(Y )) ⊂ σ(Y ), s(Y ) is also a version of

the conditional expectation E[λ(Θ)|s(Y )], since

s(Y ) = E[s(Y )|s(Y )] = E[E[λ(Θ)|Y ]|s(Y )] = E[λ(Θ)|s(Y )]
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by, respectively, measurability, definition, and tower property. Thus, denoting the acceptance region

A = {‖s(Y )− s(yobs)‖ ≤ ε} ∈ σ(s(Y )),

with E[λ(Θ)|A] = E[λ(Θ)1A]/E[1A], we have

EABC,ε[λ(Θ)|s(yobs)] = E[λ(Θ)|A] = E[s(Y )|A],

such that by Jensen’s inequality, given convexity of the norm,∥∥EπABC,ε [λ(Θ)|yobs]− s(yobs)
∥∥ = ‖E[s(Y )− s(yobs)|A]‖ ≤ E[‖s(Y )− s(yobs)‖ |A] ≤ ε.

(2) then follows directly from (1) by definition of s(yobs).

Therefore, e.g. for λ(θ) = (θ1, . . . , θk), the corresponding first k moments of the true posterior distri-

bution are recovered by an ABC analysis employing the posterior expectation s(y) = E[λ(Θ)|Y = y]

as summary statistic, for ε → 0. For k → ∞, ε → 0, and e.g. assuming existence of moment-

generating functions, the approximate posterior converges to the true posterior.
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2 Effective sample sizes
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Figure S1: Effective sample sizes (ESS) for models T1-6. Given particles Pnt = {(θi, wi)}i accepted in the

last generation, the ESS is defined as ESS = (
∑

i wi)
2/
∑

i w
2
i [Martino et al., 2017]. Shown are means and

standard deviations (grey error bars) over all performed runs.
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Figure S2: Effective sample sizes (ESS) for the tumor model, on outlier-free (light bars) and outlier-corrupted

(dark bars) data, for selected settings. Note that on outlier-corrupted data, only three settings were run.
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