Supplementary information: Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation

Yannik Schälte^{1,2,3} and Jan Hasenauer^{1,2,3,*}

¹ Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany

² Center for Mathematics, Technische Universität München, 85748 Garching, Germany

³ Faculty of Mathematics and Natural Sciences, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany

* To whom correspondence should be addressed (jan.hasenauer@uni-bonn.de)

1 Optimal summary statistics to recover distribution features

Theorem 1. Denote the joint distribution of parameters and data $\Theta, Y \sim \pi(\theta, y)$, with prior marginal $\pi(\theta) = \int \pi(\theta, y) \, dy$, likelihood $\pi(y|\theta) = \pi(\theta, y)/\pi(\theta)$, and posterior $\pi(\theta|y) = \pi(\theta, y)/\pi(y) = \pi(y|\theta)\pi(\theta)/\pi(y)$. Given a parameter transformation $\lambda : \mathbb{R}^{n_{\theta}} \to \mathbb{R}^{n_{\lambda}}$ such that $\mathbb{E}_{\pi(\theta)}[|\lambda(\theta)|] < \infty$, define summary statistics as the conditional expectation

$$s(y) := \mathbb{E}[\lambda(\Theta)|Y = y] = \int \lambda(\theta)\pi(\theta|y) \, d\theta$$
.

Given observed data y_{obs} , acceptance threshold ε , and assuming the distance metric $d(s(y), s(y_{obs})) = ||s(y) - s(y_{obs})||$ is norm-induced, denote the ABC posterior distribution

$$\pi_{ABC,\varepsilon}(\theta|s(y_{obs})) \propto \int I[\|s(y) - s(y_{obs})\| \le \varepsilon] \pi(y|\theta) \, dy \cdot \pi(\theta).$$

Then, it holds

$$\left\|\mathbb{E}_{\pi_{ABC,\varepsilon}}[\lambda(\Theta)|s(y_{obs})] - s(y_{obs})\right\| \le \varepsilon,\tag{1}$$

and therefore

$$\lim_{\varepsilon \to 0} \mathbb{E}_{\pi_{ABC,\varepsilon}}[\lambda(\Theta)|s(y_{obs})] = \mathbb{E}[\lambda(\Theta)|Y = y_{obs}].$$
(2)

Proof. Based on Fearnhead and Prangle [2012] and Jiang et al. [2017], a simple extension of the argumentation in the latter. Note that s(y) is almost surely finite due to $\mathbb{E}[|\lambda(\theta)|] < \infty$ and Fubini's Theorem. As for the induced σ -algebras holds $\sigma(s(Y)) \subset \sigma(Y)$, s(Y) is also a version of the conditional expectation $\mathbb{E}[\lambda(\Theta)|s(Y)]$, since

$$s(Y) = \mathbb{E}[s(Y)|s(Y)] = \mathbb{E}[\mathbb{E}[\lambda(\Theta)|Y]|s(Y)] = \mathbb{E}[\lambda(\Theta)|s(Y)]$$

by, respectively, measurability, definition, and tower property. Thus, denoting the acceptance region

$$A = \{ \|s(Y) - s(y_{\text{obs}})\| \le \varepsilon \} \in \sigma(s(Y)),$$

with $\mathbb{E}[\lambda(\Theta)|A] = \mathbb{E}[\lambda(\Theta)\mathbb{1}_A]/\mathbb{E}[\mathbb{1}_A]$, we have

$$\mathbb{E}_{ABC,\varepsilon}[\lambda(\Theta)|s(y_{obs})] = \mathbb{E}[\lambda(\Theta)|A] = \mathbb{E}[s(Y)|A],$$

such that by Jensen's inequality, given convexity of the norm,

$$\left\|\mathbb{E}_{\pi_{\mathrm{ABC},\varepsilon}}[\lambda(\Theta)|y_{\mathrm{obs}}] - s(y_{\mathrm{obs}})\right\| = \left\|\mathbb{E}[s(Y) - s(y_{\mathrm{obs}})|A]\right\| \le \mathbb{E}[\|s(Y) - s(y_{\mathrm{obs}})\| |A] \le \varepsilon.$$

(2) then follows directly from (1) by definition of $s(y_{obs})$.

Therefore, e.g. for $\lambda(\theta) = (\theta^1, \dots, \theta^k)$, the corresponding first k moments of the true posterior distribution are recovered by an ABC analysis employing the posterior expectation $s(y) = \mathbb{E}[\lambda(\Theta)|Y = y]$ as summary statistic, for $\varepsilon \to 0$. For $k \to \infty$, $\varepsilon \to 0$, and e.g. assuming existence of moment-generating functions, the approximate posterior converges to the true posterior.

2 Effective sample sizes

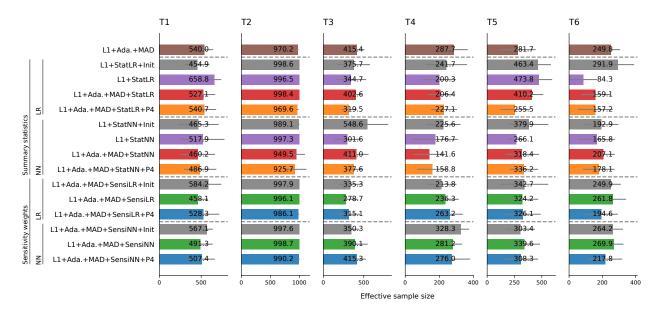


Figure S1: Effective sample sizes (ESS) for models T1-6. Given particles $P_{n_t} = \{(\theta_i, w_i)\}_i$ accepted in the last generation, the ESS is defined as $\text{ESS} = (\sum_i w_i)^2 / \sum_i w_i^2$ [Martino et al., 2017]. Shown are means and standard deviations (grey error bars) over all performed runs.

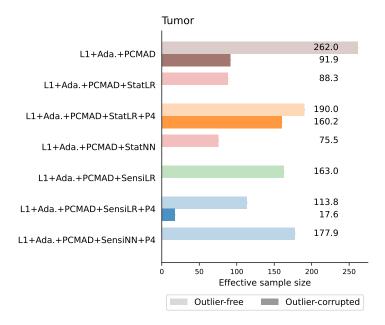


Figure S2: Effective sample sizes (ESS) for the tumor model, on outlier-free (light bars) and outlier-corrupted (dark bars) data, for selected settings. Note that on outlier-corrupted data, only three settings were run.

References

- Fearnhead, P. and Prangle, D. Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. J. R. Stat. Soc. B, 74(3):419–474, 2012.
- Jiang, B. et al. Learning summary statistic for approximate bayesian computation via deep neural network. *Statistica Sinica*, pages 1595–1618, 2017.
- Martino, L. et al. Effective sample size for importance sampling based on discrepancy measures. Signal Processing, 131:386–401, 2017.