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Abstract. In biological pattern-forming systems, generic features have been previously iden-
tified that promote robustness with respect to variation between systems in components such as
protein production rates and gene-regulatory network architecture. By contrast, less is understood
about how individual systems respond to spatio-temporal changes in morphogen concentrations over
timescales faster than or similar to cell or tissue growth. Here, we formulate and apply a general
theory of biological pattern formation in spatio-temporally varying concentrations of “pre-pattern”
morphogens, which determine system parameters. Our analytical results reveal universal dynamical
regimes of biological pattern-forming systems, and quantify how the dynamics in each regime depend
on the mathematical properties of the relevant gene-regulatory network. By applying our theory, we
predict that two paradigmatic pattern-forming systems are robust with respect to spatio-temporal
morphogen variations that happen faster than growth timescales. More broadly, we predict that the
dynamics of pattern-forming systems with spatio-temporally varying parameters can be classified
based on the bifurcations in their governing equations.

INTRODUCTION

In biological pattern formation, concentrations of
chemicals termed morphogens are interpreted as signals
by cells to make developmental decisions based on their
location in a tissue, organ, embryo or population. Such
systems have been found to be remarkably robust to
a wide range of sources of variation between different
cells or tissues in morphogen signals and system compo-
nents [1, 2]. For example, in recent work, general prin-
ciples of biological pattern-forming systems have been
identified that promote robustness with respect to varia-
tions in morphogen and protein production rates [1, 3], in
tissue or organism size [4, 5], and in gene-regulatory net-
work architecture [6]. However, less is understood about
how such systems respond to spatio-temporal variations
in morphogen concentrations within individual cells, pop-
ulations or tissues over timescales faster than or similar
to growth.

Recent experimental and theoretical work has demon-
strated how specific gene-regulatory network architec-
tures convert spatio-temporal morphogen signals into a
required static or dynamic response [7–12]. This mor-
phogen “pre-pattern” can arise as a necessary part of
the developmental process [7, 13, 14]. However, un-
predictable morphogen fluctuations in a system may be
caused by intrinsic noise [15], growth [16], cell motility
or rearrangement [17–20], biochemical reactions [21, 22],
or external flows [11, 23–25]. These studies raise the
question of how to quantify the robustness of a system’s
gene-regulatory network output, i.e. emergent spatio-
temporal patterning, with respect to variations in its pre-
pattern morphogen input.

Here, we introduce a general method to classify and
quantify the dynamic response of pattern-forming sys-
tems to spatio-temporal variations in their parameters.

We use mathematical analysis to show how the dynam-
ics of pattern formation in a system depend on the bi-
furcations in the underlying equations, which are deter-
mined by the system’s gene-regulatory network. We ap-
ply our framework to classify two paradigmatic pattern-
forming systems in terms of their dynamics in variations
in pre-pattern morphogens, which affect the kinetics of
the gene-regulatory network. Our analysis and simula-
tions suggest that gene-regulatory networks in some bi-
ological systems may have been tuned, such that they
filter out variations or oscillations in morphogen concen-
trations that happen much faster than growth, while re-
sponding appropriately to physiological morphogen vari-
ations.

RESULTS

Canonical pattern-forming systems with
spatio-temporal variations

Reaction-diffusion systems, which are thought to un-
derlie various mechanisms of biological pattern forma-
tion [7], self organise in space and time via bifurca-
tions in their governing equations [26]. As a reaction-
diffusion system undergoes a bifurcation, its dynamics
can typically be approximated by a weakly nonlinear
canonical equation that depends on the type of bifur-
cation [27]. Under such an approximation, the effects of
spatio-temporal variations in system parameters are cap-
tured by corresponding variations in the parameters of
the related weakly nonlinear equation. In this paper, we
show how these mathematical systems model the dynam-
ics of biological systems with variations in “pre-pattern”
morphogens, which determine the kinetic parameters in
a gene-regulatory network (Fig. 1).
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FIG. 1: General asymptotic framework for classifying dynamics of pattern-forming systems. a) Bifurcation diagrams and related
minimal gene-regulatory network motifs for two classes of pattern-forming system. Top: autoinduction loops are associated
with transcritical bifurcations. Bottom: Activator-inhibitor systems are associated with pitchfork bifurcations. b) Example
morphogen concentration input into the asymptotic framework. To make quantitative predictions, we use focus on a travelling
gradient (top) and a (spatio-temporal) oscillation (bottom). c) General parameter space that classifies the dynamics in each
region, in this case for a travelling gradient causing the switch-off of an imperfect transcritical bifurcation. d) Examples of
predicted dynamics in each region of the parameter space, also for an imperfect pitchfork bifurcation. Results were generated by
solving Eq. (11) numerically, with k(x, t) specified to be either a travelling gradient or a sinusoidal oscillation, with parameter
values corresponding to each region of parameter space. Travelling gradients are indistinguishable from oscillations in Region
A and Region C because the system is quasi-steady in those regions. The dashed line shows spatio-temporally local results.

To characterise such systems in general, we analysed
the effects of spatio-temporal variations in the parame-
ters of two canonical equations, modified versions of the
Fisher-KPP equation and the Ginzburg-Landau equa-
tion – these equations represent weakly nonlinear normal
forms of transcritical and pitchfork bifurcations, respec-
tively. Each of these bifurcations is closely related to a
minimal gene-regulatory motif (Fig. 1a). For a concise
summary of our asymptotic results, we focus on two types
of spatio-temporal variation in equation parameters: a
travelling gradient, and a (spatio-temporal) oscillation.
We provide here a sketch of our analysis, focusing on the
physiologically relevant cases of switch-on of a transcrit-
ical bifurcation and switch-off of a pitchfork bifurcation;
the results are summarised in Fig. 1. A more general
asymptotic analysis of each system is contained in [28].

Modified Fisher-KPP equation

The weakly nonlinear normal form for (imperfect)
transcritical bifurcations relevant to our analysis is a
modified Fisher-KPP equation, which in the parameter
variations considered here can be written

ω
∂A

∂t
= D

∂2A

∂x2
+ a+ k(x, t)A− εA2, (1)

where ε ≪ 1, and we are typically interested in small
values of ω and D. This equation approximates the dy-
namics of a minimal self-activation motif (Fig. 1a); A is a

measure of the concentration of the self-activating mor-
phogen, D represents the strength of diffusion, a repre-
sents the strength of base production, k represents the
net strength of self-activation (in comparison to decay),
and ε represents nonlinear saturation effects. We note
that k = 0 corresponds to morphogen decay being as
fast as morphogen production via self-activation, and is
the value of k that causes a transcritical bifurcation in a
spatio-temporally uniform system. The parameter ω rep-
resents a measure of the frequency of variation in k(x, t).

Travelling gradients: Dynamical regimes

We consider spatio-temporal variations in an input
morphogen (Fig. 1a,b), such that the parameter k(x, t)
takes the form of a travelling gradient of slope η(t),

k(x, t) = (x− s(t))η(t). (2)

Note that the position of k = 0 is described by x = s(t)
and moves at speed ṡ(t). We transform into the frame
around this moving point, scaling x− s(t) with ε1/2 and
A with ε−1/2; these scalings are required to balance the
reaction terms in Eq. (1) around the bifurcation point.
Thus we write,

x = s(t) +
√
εX, A =

B√
ε
, (3)
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to yield

ω√
ε

∂B

∂t
− ωṡ

ε

∂B

∂X
=

D

ε3/2
∂2B

∂X2
+ a+Xη(t)B −B2. (4)

The second term in this equation dominates the first
term unless ṡ(t) = O(

√
ε), allowing us to ignore the time

derivative. The resulting equation can be simplified and
written in terms of only two non-dimensional groupings
– to this end, we further rescale using C = B/

√
a and

Z = ηX/
√
a, which gives

0 = Λ(t)
∂2C

∂Z2︸ ︷︷ ︸
(i)

+χ(t)
∂C

∂Z︸ ︷︷ ︸
(ii)

+ 1︸︷︷︸
(iii)

+ ZC︸︷︷︸
(iv)

− C2︸︷︷︸
(v)

, (5)

where

Λ(t) =
η2D

(εa)3/2
, χ(t) =

ηωṡ

εa
. (6)

These two key groupings can be determined in terms of
the parameters in Eq. (1) – if k(x, t) is a travelling wave
with constant gradient, both ṡ and η are constant and Λ
and χ do not depend on time. Broadly, in this system Λ
quantifies the importance of diffusion compared to base
production and χ quantifies the importance of spatio-
temporal changes in the parameters compared to base
production.

We have analysed Eq. (5) to characterise all possi-
ble dynamical regimes and their dependence on Λ and
χ (Fig. 1c). Our analysis shows that three regimes are
possible, which we summarise here for a dynamic switch-
on, i.e. a function k(x, t) that moves towards the unpat-
terned region (so that ṡη < 0 and hence χ < 0):

Region A. Spatially local and quasi-steady pattern-
ing. In this case, Λ ≪ 1 and |χ| ≪ 1, and terms (iii)-(v)
dominate in Eq. (5) – the dynamical position of the bi-
furcation is Z = 0.

Region B. Critical slowing down. In this case
Λ2/3/|χ| ≪ 1 and |χ| ≫ 1, and terms (ii)-(v) dominate
in Eq. (5) – the dynamical position of the bifurcation is
Z =

√
|χ| log |χ|. Saturation, i.e. term (v), can be ig-

nored before switch-on, and base production, i.e. term
(iii), can be ignored after switch-on.

Region C. Diffusively enhanced, quasi-steady pat-
terning. In this case Λ ≫ 1 and Λ2/3/|χ| ≫ 1, and
terms (i), (iii)-(v) dominate in Eq. (5) – the dynami-

cal position of the bifurcation is Z = −
(
Λ
4 log2 Λ

)1/3
.

Again, saturation can be ignored before switch-on, and
base production can be ignored after switch-on.

In each case, the (asymptotic) dynamical position of
the bifurcation is located at the position at which the
base production term in Eq. (5) is equal to the saturation
term (corresponding to C = 1).

Oscillations: Critical time period

In finite domains with oscillating parameters, an equi-
librium analysis might suggest the repeated emergence
and disappearance of a bifurcation at the edge of the do-
main. However, if the parameters change quickly enough,
dynamical effects can cause a delay in the global switch-
on or switch-off of such a bifurcation – this suggests the
presence of a critical oscillation time period, with im-
plications for robustness. To analyse and quantify this
effect, we consider a finite domain x ∈ (0, 1) with Neu-
mann boundary conditions. We impose an oscillatory
function k(x, t) and transform into the stationary frame
near the edge of the domain at x = 1, around the time at
which the bifurcation reaches the edge. To balance the
reaction terms, we use the scalings

x = 1 +
√
εσ, t = t∗ +

√
εT, A =

B√
ε
, (7)

where t∗ is defined such that k(1, t∗) = 0, i.e. t∗ is the
time at which the bifurcation would be expected to arrive
at the boundary of the domain if the problem were quasi-
steady. This transforms (1) into

ω

ε

∂B

∂T
=

D

ε3/2
∂2B

∂σ2
+ a+

k(1 +
√
εσ, t∗ +

√
εT )√

ε
B −B2.

(8)

To obtain an analytical result, in the remainder of this
subsection we limit ourselves to the case of fast oscilla-
tions in long domains before the switch-on of the bifurca-
tion – in this case, spatial and saturation effects are less
important and (8) can be approximated by

ω

ε

∂B

∂T
= a+ k̂(T )B, (9)

where k̂(T ) = k(1, t∗ +
√
εT )/

√
ε, which we leave in its

general form at this stage. Eq. (9) can be solved to de-
termine the delayed growth of B on the boundary, which
is given by

B(0, T ) ∼ εa

ω
eεK̂(T )/ω

∫ T

−∞
e−εK̂(s)/ωds, (10)

where K̂(T ) =
∫ T

0
k̂(s) ds = (1/ε)

∫√
εT

0
k(1, t − t∗) dt.

For a specified oscillatory function k(x, t), we calculate
the critical oscillation period by identifying whether B
reaches a critical value via simple 1D root finding (see
Fig. S1).

Modified Ginzburg-Landau equation

The weakly nonlinear normal form for (imperfect, su-
percritical) pitchfork bifurcations relevant to our analy-
sis is a modified Ginzburg-Landau equation, which in the

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.18.484904doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.18.484904
http://creativecommons.org/licenses/by/4.0/


4

parameter variations considered here can be written

ω
∂A

∂t
= D

∂2A

∂x2
+ a+ k(x, t)A− εA3, (11)

where ε ≪ 1, and we are typically interested in small val-
ues of ω and D. This equation approximates a minimal
activation-inhibition motif (Fig. 1a); A is a measure of
the deviation of the concentration of the activating mor-
phogen from the non-patterned state. (More specifically,
it represents the amplitude of the envelope of the pat-
terned state, as predicted by the fastest growing mode at
the onset of instability.) The parameter D represents the
strength of diffusion. The interpretation of the parame-
ter a is less straightforward than in the previous case – in
terms of this gene-regulatory motif, a represents a mea-
sure of the contribution of any spatially varying base pro-
duction at the wavenumber of the patterned state. We
would typically expect to find a = 0 in a system without
noise (see below). Similarly to the previous system, the
parameter k represents the net strength of self-activation
(in comparison to decay), ε represents nonlinear satura-
tion effects, ω represents a measure of the frequency of k
variation, and k = 0 causes a pitchfork bifurcation in the
spatio-temporally uniform system.

Travelling gradients: Dynamical regimes

As before, we consider the parameter k(x, t) to take
the form of a travelling gradient (see Eq. 2), and trans-
form into the frame around the moving point x = s(t). In
this case, we scale x− s(t) with ε1/3 and A with ε−1/3 to
balance the reaction terms in Eq. (11) around the bifur-
cation point. Incorporating an additional scaling concur-
rently, in order to write the resulting equation in terms of
two non-dimensional groupings, we introduce the scaled
variables

Z =
η(x− s(t))

(εa2)1/3
, A =

(a
ε

)1/3

C. (12)

Similarly to the transcritical case, this scaling results in
the leading-order governing equation:

0 = Λ(t)
∂2C

∂Z2
+ χ(t)

∂C

∂Z
+ 1 + ZC − C3, (13)

where now

Λ(t) =
η2D

εa2
, χ(t) =

ηωṡ

(εa2)2/3
. (14)

By analysing Eq. (13), we find the same three regimes
as for the transcritical case (Fig. 1c), but with differences
in the dynamical positions of the bifurcation. In contrast
to the transcritical case, we summarise the results here
for dynamic switch-off, i.e. a function k(x, t) that moves

towards the patterned region (so that ṡη > 0 and hence
χ > 0):

Region A. Spatially local and quasi-steady pattern-
ing. In this case, Λ ≪ 1 and χ ≪ 1, and the dynamical
position of the bifurcation is Z = 0.

Region B. Critical slowing down. In this case
Λ2/3/χ ≪ 1 and χ ≫ 1, and the dynamical position
of the bifurcation is Z = −

√
χ
2 logχ.

Region C. Diffusively enhanced, quasi-steady pat-
terning. In this case Λ ≫ 1 and Λ2/3/χ ≫ 1,
and the dynamical position of the bifurcation is Z =

−
(

Λ
16 log

2 Λ
)1/3

.

In this case, the dominating terms in each region are
similar to those in the transcritical case.

Special case: Perfect bifurcations

As we will see later, in typical applications it is of in-
terest to consider the case of a perfect bifurcation, where
a = 0. This is a singular limit that involves a fundamen-
tal change in the far-field behaviour of the local system.
The key dimensionless parameter grouping here is

Γ(t) :=
χ(t)

[Λ(t)]
2/3

=
ωṡ

(ηD2)1/3
, (15)

which quantifies the importance of spatio-temporal
changes in the parameters compared to diffusion. We fo-
cus here on the dynamical switch-off of a pattern which
corresponds to Γ > 0 (from ηṡ > 0). Using the scaled
quantities

ξ =
( η

D

)1/3

(x− s(t)) , Y =
ε1/2

D1/6|η|1/3
A, (16)

the leading-order version of Eq. (11) with a = 0 becomes

0 =
∂2Y

∂ξ2
+ Γ(t)

∂Y

∂ξ
+ ξY − Y 3. (17)

By analysing Eq. (17), we find that in this case only two
of the previously identified regimes can be exhibited:

Region B. Critical slowing down. In this case, Γ ≫ 1.

Region C. Diffusively enhanced, quasi-steady pat-
terning. In this case Γ ≪ 1.

In the case of perfect bifurcations, natural definitions
of the location of the dynamic bifurcation typically de-
pend on the initial conditions [29]. In practice, in the ap-
plications considered here, emergent patterns are highly
oscillatory; therefore, for consistency we use the wave-
length of the fastest growing mode at the onset of the
instability to define the critical size of Y at switch-off
(Fig. S1).
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FIG. 2: Effect of spatio-temporal morphogen variations on bacterial quorum sensing in a small biofilm or cell population. a)
We model quorum sensing in V. fischeri, which causes bioluminescence in the Hawaaian bobtail squid (top; images adapted
from [30], with permission). We model the LuxR system, in which an autoinducer, 3OC6HSL, promotes its own synthesis by
binding with a protein, LuxR, to form a transcription factor (bottom). The binding parameter k+ is modulated by competitive
binding with a second autoinducer, C8HSL. b) The parameter k+ (units: nM−1s−1) at t = 0 (top) and throughout the spatio-
temporal oscillations (bottom). c) Top: Effect of the time period T of the spatio-temporal oscillations in C8HSL on the
mean 3OC6HSL concentration (line), and the range of 3OC6HSL concentration (grey area) during the oscillations. Bottom:
Oscillations in 3OC6HSL concentration, for fast (T ≈ 30 min) and slow (T ≈ 3 · 104 min) oscillations in C8HSL. d) For
oscillations that are filtered out, the system remains at low 3OC6HSL concentration (top). For oscillations that are not filtered
out, the cell population fills with 3OC6HSL during th oscillation (bottom). Images correspond to the black dots in the bottom
graph of panel c. Concentrations in the figure are scaled by the quorum sensing activation threshold of 5 nM [11].

Oscillations: Critical time period

We again consider an oscillatory function k(x, t) and
transform into the stationary frame near the edge of the
domain x = 1, around the time at which the bifurcation
reaches the edge. In this case we assume a = 0. To
balance the reaction terms, we use the scalings

x = 1 + ε1/3σ, t = t∗ + ε1/3T, A =
B

ε1/3
, (18)

where k(1, t∗) = 0. This transforms (11) into

ω

ε2/3
∂B

∂T
=

D

ε

∂2B

∂σ2
+

k(1 + ε1/3σ, t∗ + ε1/3T )

ε1/3
B −B3.

(19)

In the case of fast oscillations in long domains before the
switch-off of the bifurcation, Eq. (19) can be approxi-
mated by

ω

ε2/3
∂B

∂T
= k̂(T )B −B3, (20)

where k̂(T ) = k(1, t∗ + ε1/3T )/ε1/3, which can be solved
to give

B(0, T ) ∼ ω1/2

ε1/3
eε

2/3F (T )/ω√
2
∫ T

−∞e2ε2/3F (s)/ω ds
, (21)

where F (T ) =
∫ T

0
k̂(s) ds = (1/ε2/3)

∫ ε1/3T

0
k(1, t− t∗) dt.

For a specified oscillatory function k(x, t), we calculate

the critical oscillation period via 1D root finding, as be-
fore (Fig. S1).

Biological pattern-forming systems with
spatio-temporal variations

We now explore the implications of our analytical re-
sults to biological pattern-forming systems with varia-
tions in “pre-pattern” morphogens. We analyze and sim-
ulate two pattern-forming systems in which an input
morphogen concentration determines the kinetic param-
eters in the gene-regulatory network: bacterial quorum
sensing, in which changes in the kinetic parameters cause
a transcritical bifurcation, and a model for digit forma-
tion via Turing patterns, in which changes in the kinetic
parameters cause a pitchfork bifurcation.

Transcritical system: Bacterial quorum sensing

Model. We consider the LuxR bacterial quorum
sensing system in Vibrio fischeri, which causes biolu-
minescence in the Hawaaian bobtail squid [31]. We
model a population, biofilm or cell layer of height H
and length L, and consider the influence of two autoin-
ducers, 3OC6HSL and C8HSL, with cross-talk between
them [32]. We model this basic mechanism of autoin-
ducer crosstalk for simplicity; more complicated crosstalk
mechanisms have been found (e.g. [33]). We model the
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concentration A of one of the autoinducers, 3OC6HSL,
which is part of a positive feedback loop: it forms a com-
plex C with a cognate protein LuxR (R) that activates
the expression of LuxI (I), a synthase that catalyses the
expression of 3OC6HSL (Fig. 2a). The system is de-
scribed by the equations

∂A

∂t
= ∇ · (D∇A) + ρfA(A, I,R,C;x, t)− κA, (22)

∂I

∂t
= fI(I, C),

∂R

∂t
= fR(A,R,C),

∂C

∂t
= fC(A,R,C).

(23)

Here, D is the diffusivity of 3OC6HSL, ρ is the volume
fraction of cells-to-total-volume, κ is the decay rate of
3OC6HSL, and the reaction terms inside each bacterium
are defined as the following:

fA(A, I,R,C) = a+ λI + k−C − k+(x, t)AR, (24a)

fI(I, C) = µC − αI, (24b)

fR(A,R,C) = r − βR+ k−C − k+(x, t)AR, (24c)

fC(A,R,C) = k+(x, t)AR− k−C − γC, (24d)

where the kinetic parameters are described in the Sup-
plemental Material. We consider the effects of environ-
mental fluctuations in, for example, external fluid flow,
temperature, light, or antibiotic treatment. Such changes
can affect gene expression profiles, community composi-
tion [34–36], or, as in the case of fluid flow, act directly
on autoinducer concentrations [11] (with effects depend-
ing on each autoinducer’s effective diffusion coefficient,
as determined by interactions with extracellular matrix
proteins [37]). In each case, the relative concentrations
of the autoinducers would be expected to vary. Here we
aim to capture such differential variations in a simple
way by modelling only changes in C8HSL concentration;
we assume that they predominantly affect the binding
of 3OC6HSL to LuxR, and therefore let k+(x, t) vary in
space and time as follows:

k+(x, t) = kR+f(x, t), (25)

where kR+ is a typical value of the binding coefficient. For
simplicity, we investigate two different types of spatio-
temporal variation: one with the form of a linear gradient
in space travelling with constant speed

f(x, t) = x/L− t/T, (26)

and one with a linear gradient in space and a sinusoidal
oscillation in time

f(x, t) = (x/L) (1 +K sin (2πt/T )) , (27)

where K quantifies the relative magnitude of the oscil-
lation (see Supplemental Material). This model could
easily be extended to account explicitly for fluctuations

in external flow or cell density [11]. We note that our
model assumes that the C8HSL-LuxR complex does not
promote the expression of LuxR, in line with experimen-
tal findings [32].

Analysis. We show in the Supplemental Material
that with a travelling gradient in the kinetic parame-
ter (Eq. 26), this system reduces to Eq. (5), with Λ(t)
and χ(t) written in terms of the kinetic parameters (Eq.
S29). For physiologically relevant values of the param-
eters in a small bacterial population or biofilm (Table
S1), with the timescale of variation T corresponding to a
growth timescale, our analysis predicts that the system
sits in Regime C of parameter space (diffusively enhanced
patterning; see Fig. 1c). Specifically, because our analy-
sis outputs the dynamical location of the bifurcation, we
predict that diffusive enhancement causes the switched-
on region to be larger than the size of the population
(Table S1). Therefore, any local switch on in quorum
sensing caused by changes over a growth timescale would
be expected to cause the entire population to switch on.

Interestingly, by varying the timescale T in Eq. (26),
we find that if C8HSL concentration changes faster than
a critical timescale of around 30 minutes (Table S1), the
system transitions to Region B (critical slowing down) of
parameter space. To investigate the implications of this
critical timescale, we analysed the system dynamics with
oscillatory kinetic parameters by applying Eq. (10) to a
long, thin cell layer (Table S1), for which this thin-film
result is expected to be valid. With oscillations of the
form Eq. (27), we found that if T is shorter than around
3-10 hours (Fig. S1), the oscillations occur fast enough
to cause the system to remain stuck in the switched-off
state, because of the critical slowing down in the system.
Therefore, we expect changes in C8HSL concentration
to be ignored if they occur much faster than a growth
timescale.

Simulations. To confirm our findings, we performed
simulations in the finite-element computational software
COMSOL Multiphysics of a small biofilm or cell popula-
tion in two dimensions, with the switched-off state as the
initial condition. We imposed oscillations in k+ of the
form Eq. (27), for physiological values of the parameters
(Fig. 2b, Table S1; see Supplemental Material for further
details). Our simulations demonstrate that if oscillations
happen over timescales much faster than growth, the sys-
tem remains stuck in the switched-off state, and that the
system responds to slower changes in k+ (Fig. 2c), in
qualitative agreement with our asymptotic results. We
also simulated long, thin cell layers [23] for which the
thin-film result Eq. (21) is expected to be valid, and
found quantitative agreement in the critical oscillation
time period (Fig. S1). Furthermore, our simulations con-
firm that when the bifurcation is switched on, the domain
fills with autoinducers because of the diffusive enhance-
ment in the system (Fig. 2d).
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FIG. 3: Effect of spatio-temporal morphogen variations on Turing patterns. a) We model Turing patterns during digit formation
(top; image reproduced from [14] with permission). The system’s pattern can be represented as an activator-inhibitor system,
with the self-activation parameter fA modulated by a morphogen called Fgf (bottom). b) The parameter fA (units: min−1)
at t = 0 (top) and throughout the spatio-temporal oscillations (bottom). c) Top: Effect of time period T of spatio-temporal
oscillations in Fgf on the mean concentration of the activator morphogen (line), and the range of concentration (grey area) during
the oscillations. Bottom: Oscillations in the activator morphogen concentration for fast (T = 1 min) and slow (T = 104 min)
oscillations in Fgf. d) For oscillations that are filtered out, patterning remains the same (top). For oscillations that are not
filtered out, patterning completely disappears (bottom). Images correspond to the black dots in the bottom graph of panel c.
Concentrations in the figure are non-dimensional and represent deviation from a base state at x = 0 [16].

Pitchfork system: Turing patterns during development

Model. We consider the Turing pattern that is
thought to promote digit formation [14]. We model a
limb of height H and length L with an activator of
concentration A and an inhibitor of concentration I,
and consider the effect of a morphogen called fibroblast
growth factor (Fgf), which controls the self-activation of
the activator (Fig 3a). The system is described by the
equations

∂A

∂t
= DA

∂2A

∂x2
+ fA(x, t)A− fII − fcA

3, (28)

∂I

∂t
= DI

∂2I

∂x2
+ gAA− gII, (29)

where DA and DI are diffusion coefficients and fA, fI ,
gA and gI are kinetic parameters. To simulate variations
in the concentration of the Fgf morphogen [14], we let
fA(x, t) vary in space and time by setting

fA(x, t) = f b
A + kAf(x, t), (30)

where f b
A is the base self-activation, and kA is a typical

increase in the self-activation. As before, we investigate
two different types of spatio-temporal variation: one with
the form of a linear gradient in space travelling with con-
stant speed

f(x, t) = x/L− t/T, (31)

and one with a linear gradient in space and a sinusoidal
oscillation in time

f(x, t) = (x/L) (1 +K sin (2πt/T )) , (32)

where K quantifies the relative magnitude of the oscil-
lation (see Supplemental Material). For simplicity, we
fix the other parameters, although more detailed mod-
els could also involve oscillations in those parameters, or
could consider Turing patterns formed by more compli-
cated gene-regulatory networks [14, 16].

Analysis. We show in the Supplemental Material
that with a travelling gradient in the kinetic parame-
ter (Eq. 31), this system reduces to Eq. (17), with Γ(t)
written in terms of the kinetic parameters (Eq. S53). For
physiologically relevant values of the parameters (Table
S2), with the timescale of variation T corresponding to a
growth timescale, our analysis predicts that the system
sits in Region C of parameter space (diffusively enhanced
patterning; see Fig. 1c). Similarly to the transcritical sys-
tem, we are able to predict the size of diffusive enhance-
ment in this system; in this case, we find the enhance-
ment to the switched-on region to be less than 10% of the
size of the domain (Table S2). Therefore, we expect pat-
terns generated by variations in Fgf concentration over a
growth timescale to be relatively localised to the region
in which Fgf concentration is above its critical value for
patterning.

In contrast to the transcritical system, here we find a
critical timescale T of approximately 5 hours for a trav-
elling gradient (Table S2) in Eq. (26), below which the
system transitions to Region B of parameter space (crit-
ical slowing down). By applying Eq. (21) with oscilla-
tions of the form Eq. (32), we find a critical oscillation
timescale of around 10 hours (Fig. S1). Therefore, we
expect changes in Fgf concentration to be ignored by the
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system if they occur much faster than a growth timescale.
Simulations. To confirm our findings, we performed

simulations of the system in two dimensions for physio-
logical values of the parameters (Table S2). In this case,
we used as initial condition the patterned state with hor-
izontal stripes, which corresponds to the physiologically
relevant switched-on state [14] (Fig. 3b; see Supplemen-
tal Material for further details). Our simulations again
confirmed the analytical results qualitatively and quanti-
tatively (Fig. 3c, Fig. S1). In particular, our results show
that the system ignores oscillations in fA that occur much
faster than growth, even if they are large enough such
that an equilibrium analysis would predict the pattern
to completely disappear (Fig. 3c).

DISCUSSION

Universal dynamics of pattern-forming sys-
tems. This study characterises the effects of spatio-
temporally varying parameters on pattern-forming sys-
tems. We have demonstrated that such systems exhibit
universal dynamics that are determined by the underly-
ing bifurcations in their governing equations. Systems
that undergo transcritical and pitchfork bifurcations are
described by modified versions of the Fisher–KPP (Eq. 1)
and Ginzburg–Landau (Eq. 11) equations, respectively.
Through analysis of these canonical equations, we have
identified universal parameter regimes: the emergent sys-
tem dynamics are determined in time and space by the
regime in which the parameters lie (Fig. 1b-d). We have
quantified how, in each regime, a dynamic bifurcation is
determined either locally or non-locally by the system
parameters in space and time (Fig. 1c,d) – broadly, spa-
tial non-locality is associated with diffusion and temporal
non-locality is associated with dynamic variations in the
parameters. A striking example of spatio-temporal non-
locality is the “critical slowing down” regime, in which
dynamics are slowed by the bifurcation and the system
may become stuck in the “off” or “on” state, despite
large variations in its parameters (Fig. 1d). These results
complement recent work on pattern formation in various
systems of equations with spatio-temporally varying pa-
rameters (e.g. [10, 38–45]) and on the effect of critical
slowing down in a range of contexts [46, 47]. Overall, our
analytical results improve our fundamental understand-
ing of how the mathematical properties of a pattern-
forming system’s underlying equations determine the sys-
tem’s emergent dynamics.

Robustness of biological pattern-forming sys-
tems. We have demonstrated the biological implica-
tions of our analysis by applying our method to two
pattern-forming systems with spatio-temporally varying
morphogens: bacterial quorum sensing with variations
in a cross-talking autoinducer, and digit formation with
variations in fibroblast growth factor. We have shown

that both systems are subject to the universal regimes
that we have identified, by reducing the governing equa-
tions to their corresponding weakly nonlinear canonical
forms. Interestingly, our analysis predicts that in os-
cillatory morphogen variations in which the kinetic pa-
rameters pass through their bifurcation values and then
return to their original values, both biological systems
change dynamical regime depending on the magnitude
and time period of the oscillations. For fast enough
morphogen oscillations, the systems remain in the “crit-
ical slowing down” regime of parameter space, and no
dynamic bifurcation occurs. However, in each system,
if morphogen oscillations are slow enough, the system
leaves this region of parameter space and a dynamical
bifurcation occurs. These results have significant impli-
cations for understanding and quantifying the robustness
of pattern-forming systems to changes in morphogen con-
centrations. For example, we predict that both systems
filter out changes that occur much faster than growth,
in line with experimental evidence that suggests physi-
ologically relevant changes to patterning in each system
happen over growth timescales [14, 16, 48].

Furthermore, our analyses and simulations suggest
that the effects of diffusion in each system are quanti-
tatively different. In the bacterial quorum sensing sys-
tem, we predict significant levels of “diffusively enhanced
patterning” – the autoinducers flood the entire popula-
tion or biofilm after a bifurcation occurs. This would be
expected to benefit the population by ensuring all cells
commit together to a multicellular program of gene ex-
pression [11]. By contrast, diffusive enhancement to pat-
terning is much weaker in the Turing system, so that
patterning would be expected to be controlled relatively
locally by the concentration of the input morphogen Fgf.
This prediction is in line with recent analyses of Turing
systems in steady “pre-pattern” morphogen gradients, in
which patterning was found to be controlled relatively
locally in space [10].

In modelling the biological systems in this paper we
have performed significant simplifications to extract gen-
eral results, and to improve the clarity of our analysis and
exposition. In particular, for simplicity we have specified
morphogen variations to be linear in space and either
travelling at constant speed or sinusoidally oscillating in
time, although our results hold more generally [28]. We
have not modelled the effect of white noise, which we
expect to have non-trivial effects that are not captured
by our analysis [49, 50]. Furthermore, our models are
effective macroscopic representations of microscopic pro-
cesses, and the process of coarse-graining the microscopic
dynamics to obtain effective macroscopic dynamics is of-
ten not trivial [51].

General applications to pattern-forming sys-
tems. In principle, any pattern-forming system that
undergoes a transcritical or pitchfork bifurcation can be
analysed using our asymptotic framework and plotted
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on the parameter space that our analysis has produced
(Fig. 1c), to classify and quantify its dynamics in spatio-
temporal morphogen variations. We expect that our re-
sults can also be extended to wider classes of systems,
such as those with Hopf bifurcations in their underly-
ing governing equations. Our general framework to clas-
sify the dynamics of gene-regulatory network architec-
tures via their low-dimensional mathematical structure
(i.e. bifurcations) complements recent work on dimen-
sionality reduction of systems without spatio-temporal
heterogeneity [52–54] and systems transitioning from a
dynamic to a static regime [21].

Conclusion. To conclude, we have presented a gen-
eral framework that classifies and quantifies the dynamic
response of pattern-forming systems to spatio-temporal
variations in their parameters. We have applied our
framework to simple models of two biological pattern-
forming systems, each with variations in a pre-pattern
morphogen that affects kinetic parameters: bacterial
quorum sensing, and digit formation via Turing pat-
terns. Our theory predicts that both systems filter out
spatio-temporal morphogen variations that occur much
faster than growth. We demonstrate that the type of
bifurcation in the system, which is determined by the
gene-regulatory network, controls patterning dynamics
and structure. Predictions such as these are testable in
newly developed systems that allow spatio-temporal con-
trol over gene-expression and the external environment,
such as synthetic model organisms [55], organoids [56]
and microfluidic devices [23]. Owing to the generality
of the canonical equations that we have analysed, our
theoretical framework is extendable to a wide class of
pattern-forming systems.
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