

Supplemental Material for
The Neurodata Without Borders ecosystem for

neurophysiological data science

1

Supplementary Material 1. Intracellular Electrophysiology Example using
NWB and DANDI

The following shows a simple example, demonstrating the use of NWB for storage of
intracellular electrophysiology data. The file used in this example is from DANDISET 20 (available
at https://dandiarchive.org/dandiset/000020) from the Allen Institute for Brain Science as part of
the multimodal characterization of cell types in the mouse visual cortex (see https://portal.brain-
map.org/explore/classes/multimodal-characterization/multimodal-characterization-mouse-visual-
cortex).

The following simple code example illustrates: 1) downloading of the file from DANDI, 2)
reading the file with PyNWB, 3) visualization of the stimulus and response recording for a single
sweep, and 4) visualization of the NWB file in NWB Widgets.

import required libraries
from dandi.dandiapi import DandiAPIClient
from pynwb import NWBHDF5IO
from nwbwidgets import nwb2widget
from nwbwidgets.timeseries import show_indexed_timeseries_mpl
import numpy as np
from matplotlib import pyplot as plt

Determine the s3path for the file on DANDI
dandiset_id = '000020'
filepath = 'sub-1001658946/sub-1001658946_ses-1003020741_icephys.nwb'
with DandiAPIClient() as client:
 asset = client.get_dandiset(dandiset_id, 'draft').get_asset_by_path(filepath)
 s3_path = asset.get_content_url(follow_redirects=1, strip_query=True)

Open the file using the ros3 driver for streaming data access
nwb_s3io = NWBHDF5IO(s3_path, mode='r', load_namespaces=True, driver='ros3')
Read the file from DANDI. Here we only read the structure and
attributes of the file, but not the bulk data
nwbfile = nwb_s3f.read()

Create a simple example visualization of the response and stimulus
timeseries for a single sweep
get the timeseries associated with a particular sweep number
sweep_number = 3
series = nwbfile.sweep_table.get_series(sweep_number)
create a matplotlib figure for plotting
plt.rcParams['font.size'] = '16'
fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(12,8))
plot the response and stimulus timeseries for the given sweep.
show_indexed_timeseries_mpl(series[0],
 title=series[0].neurodata_type + " : " + series[0].name,
 xlabel=None,
 ax=ax1)
show_indexed_timeseries_mpl(series[1],
 title=series[1].neurodata_type + " : " + series[1].name,
 ax=ax2)
plt.show()

2

Display the file with NWBWidgets
nwb2widget(nwbfile)

3

Supplementary Material 2: Creating a New Extension
Using the ndx-simulation-output extension (see Fig.4c) as an example, we illustrate in the
following the main steps for creating a new extension outlined in Fig.4a2.

2.1 Set up new NDX using the NDX Template
The following code snippet shows the process for setting up the ndx-simulation-output extension
using the ndx-template template. The template guides the developer through the setup via a
simple question-and-answer process. In the code snippet, text shown in black is printed by
cookiecutter, and text shown in blue are commands/responses entered by the developer.

With these simple steps the template automatically sets up the full structure for our extension.

>> cookiecutter gh:nwb-extensions/ndx-template
You've downloaded /Users/oruebel/.cookiecutters/ndx-template before. Is it okay to delete and
re-download it? [yes]: yes
namespace [ndx-my-namespace]: ndx-simulation-output
description [My NWB extension]: Data types for recording data from multiple compartments of
multiple neurons in a single TimeSeries.
author [My Name]: Ben Dichter
email [my_email@example.com]: ben.dichter@...
github_username [myname]: bendichter
copyright [2021, Ben Dichter]:
version [0.1.0]: 0.2.6
release [alpha]:
license [BSD 3-Clause]:
py_pkg_name [ndx_simulation_output]:

Figure S2.1. Files and folders generated by the cookiecutter
ndx-template. The main folder contains the license and
readme file for extension along with files required for
installing the extension (e.g., setup.py, setup.cfg,
MANIFEST.in, and requirements.txt) as well a markdown file
with instructions for next steps. The docs/ folder contains the
Sphinx documentation setup for the extension. Without any
additional changes required, the developer can with this
setup automatically generate documentation in HTML, PDF,
ePub and many other formats directly from the extension
schema using the HDMF-DocUtils. Generating the
documentation is as simple as executing “make html” in the
docs/ folder. The spec/ folder contains the schema files for
the extensions. The schema files are generated by the script
in /src/spec/create_extension_spec.py (see Sec. 2.2 next),
and are typically not modified manually by the developers.
The /src folder then contains main source codes for the
extension, including the: spec/ folder with the code to
generated the extension schema matnwb/ folder with code
for MatNWB pynwb/ folder with code for PyNWB

4

2.2 Define the Extension Schema
The code example below shows the /src/spec/create_extension_spec.py script to define and
generate the schema for the ndx-simulation-output extension using the PyNWB data format
specification API. Code shown in red has been auto-generated by the ndx-template. Code shown
in blue has been defined by the developer to create the schema. Running this script then
automatically generates the YAML schema files for the extension stored in the spec/ folder.
-*- coding: utf-8 -*-
import os.path
from pynwb.spec import NWBNamespaceBuilder, export_spec, NWBGroupSpec
def main():
 # these arguments were auto-generated from your cookiecutter inputs
 ns_builder = NWBNamespaceBuilder(doc='Data types for recording data from multiple compartments'
 'of multiple neurons in a single TimeSeries.',
 name='ndx-simulation-output',
 version='0.2.6',
 author='Ben Dichter',
 contact='ben.dichter@gmail.com')
 types_to_include = ['TimeSeries', 'VectorData', 'VectorIndex', 'DynamicTable', 'LabMetaData']
 for ndtype in types_to_include:
 ns_builder.include_type(ndtype, namespace='core')
 Compartments = NWBGroupSpec(default_name='compartments',
 neurodata_type_def='Compartments',
 neurodata_type_inc='DynamicTable',
 doc='Table that holds information about '
 'what places are being recorded.')
 Compartments.add_dataset(name='number',
 neurodata_type_inc='VectorData',
 dtype='int',
 doc='Cell compartment ids corresponding to a each column in the data.')
 Compartments.add_dataset(name='number_index',
 neurodata_type_inc='VectorIndex',
 doc='Index that maps cell to compartments.',
 quantity='?')
 Compartments.add_dataset(name='position',
 neurodata_type_inc='VectorData',
 dtype='float',
 quantity='?',
 doc='Position of recording within a compartment. '
 '0 is close to soma, 1 is other end.')
 Compartments.add_dataset(name='position_index',
 neurodata_type_inc='VectorIndex',
 doc='Index for position.',
 quantity='?')
 Compartments.add_dataset(name='label',
 neurodata_type_inc='VectorData',
 doc='Labels for compartments.',
 dtype='text',
 quantity='?')
 Compartments.add_dataset(name='label_index',
 neurodata_type_inc='VectorIndex',
 doc='indexes label',
 quantity='?')
 CompartmentsSeries = NWBGroupSpec(neurodata_type_def='CompartmentSeries',
 neurodata_type_inc='TimeSeries',
 doc='Stores continuous data from cell compartments')
 CompartmentsSeries.add_link(name='compartments',
 target_type='Compartments',
 quantity='?',
 doc='Metadata about compartments in this CompartmentSeries.')
 SimulationMetaData = NWBGroupSpec(name='simulation',
 neurodata_type_def='SimulationMetaData',
 neurodata_type_inc='LabMetaData',
 doc='Group that holds metadata for simulations.')
 SimulationMetaData.add_group(name='compartments',
 neurodata_type_inc='Compartments',
 doc='Table that holds information about '
 'what places are being recorded.')
 new_data_types = [Compartments, CompartmentsSeries, SimulationMetaData]
 # export the spec to yaml files in the spec folder
 output_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', 'spec'))
 export_spec(ns_builder, new_data_types, output_dir)
if __name__ == "__main__":
 main()

5

2.3 Create API Classes
The following code example is an abbreviated version of the simulation_output.py file located at
ndx-simulation-output/src/pynwb/ndx_simulation_output/ as part of the ndx-simulation-output
extensions. For illustration purposes and to allow us to focus on the code relevant to the definition
of the API classes, we here omit code details of the find_compartments function, which defines
custom functionality.

The example shown here illustrates three main patterns for creating API classes for extensions.
In part A. the extension uses the get_class method to dynamically generate an API Container
class for the SimulationMetaData type directly from the schema. In part B., the extension uses
the same approach for CompartmentSeries, but then further customizes the class by adding the
find_compartments to the class to provide additional user functionality. In part C. the extension
then defines a custom API Container class for the Compartments type that extends the
DynamicTable type.

Import methods for registering and creating container class
from pynwb import register_class, docval, get_class
Import the docval decorator used for documenting functions and type checking
from hdmf.utils import docval, call_docval_func
Import the base Container classes we are extending
from hdmf.common.table import DynamicTable, ElementIdentifiers

Define the name of the namespace of our extension needed to register Container classes
namespace = 'ndx-simulation-output'

A. Auto-generate a Container class for the SimuluationMetaData type
SimulationMetaData = get_class('SimulationMetaData', namespace)

B. Auto-generate a Container class for the CompartmentSeries type
CompartmentSeries = get_class('CompartmentSeries', namespace)
B.1. Use monkey patching to add custom functionality to the auto-generated class
def find_compartments(self, cell, compartment_numbers=None, compartment_labels=None):
 [...] # Details of the find_compartment omitted here for clarity.
CompartmentSeries.find_compartments = find_compartments

C. Define a custom Container class for the Compartments table type
@register_class('Compartments', namespace) # Register the class with the TypeMap
class Compartments(DynamicTable):

 # Define the columns for the table. HDMF then automatically handles
 # setting up the columns for us as part of the class
 __columns__ = (
 {'name': 'number', 'index': True,
 'description': 'cell compartment ids corresponding to a each column in the data'},
 {'name': 'position', 'index': True,
 'description': 'the observation intervals for each unit'},
 {'name': 'label', 'description': 'the electrodes that each spike unit came from',
 'index': True, 'table': True}
)

 # Document and define the allowable types for the parameters of the __init__ function
 @docval({'name': 'name', 'type': str,
 'doc': 'Name of this Compartments object’,'default': 'compartments'},
 {'name': 'id', 'type': ('array_data', ElementIdentifiers),
 'doc': 'the identifiers for the units stored in this interface', 'default': None},
 {'name': 'columns', 'type': (tuple, list),
 'doc': 'the columns in this table', 'default': None},
 {'name': 'colnames', 'type': 'array_data',
 'doc': 'the names of the columns in this table’, 'default': None},
 {'name': 'description', 'type': str,
 'doc': 'a description of what is in this table',
 'default': 'Table that holds information about what places are being recorded.'},
)
 def __init__(self, **kwargs):
 call_docval_func(super(Compartments, self).__init__, kwargs)

6

2.4 Documenting the Extension
The ndx-template automatically generates as part of the docs/ folder the full setup for
automatically generating Sphinx-based documentation for the extension from the schema using
the hdmf-docutils library. To generate the documentation we simply need to run the command
“make html” in the docs/ folder. Using the same approach we can generate documentation in a
large range of common formats, e.g., HTML, PDF, man, or ePub. The ndx-template also
generates standard credits.rst, format.rst, release_notes.rst, description.rst, and index.rst source
files to make it easy for developers to customize the documentation and include additional details
about the extension.

7

Supplementary Material 3. Process for Creating, Publishing, and Updating
Neurodata Extensions (NDX)

Figure S3.1 Illustration of the process for creating, publishing, and updating extensions via the
Neurodata Extension Catalog (NDX Catalog), and (3) updating an extension/record. Boxes shown
in gray indicate Git repositories; boxes in orange describe user actions; and boxes in blue indicate
actions by administrators of the NDX catalog.

Figure S3.1 shows an overview of the process for (1) creating a new extension, (2) creating a
record to publish an extension via the Neurodata Extension Catalog (NDX Catalog), and (3)
updating an extension/record. The figure also illustrates the automated CI processes that are
managed in the NDX Catalog. The catalog process is modeled after the conda-forge model, which
enables automation of many catalog processes using free, public services and avoiding the need
for NWB to host its own services.

8

In the NDX Catalog, extensions are shared via the dedicated nwb-extensions GitHub organization
for the NDX Catalog (blue column). The NDX Catalog provides the ndx-template cookiecutter
extension template repository as well as the staged-extensions repository for submitting
extensions to the NDX Catalog. Each extension record is then managed in a corresponding ndx
record Git repository as part the nwb-extensions GitHub organization. The public NDX record
repositories contains a README.md file describing the extension along with a ndx-meta.yaml
metadata record for extensions, with basic information required for installing and locating the
extension (see Fig. S3.2).

Creation and changes to the extension on record are usually performed by a developer on their
local system, e.g., laptop computer (green column). The developer then submits the changes to
the extension or record repository via pull requests.

In this process, the Git repository with the sources of the extension remains in the lab organization
of the submitter (yellow column). Here the only requirements are that: 1) the extension is stored
in a Git repository and 2) the repository must be publicly accessible via the organization of the
submitter, such that the repository can be cloned directly from the source location indicated in the
NDX metadata record (Fig. S3.2). This strategy allows for labs, universities, and independent
groups to maintain ownership of the source code for their extensions in their own public Git space
(e.g, on GitHub, Bitbucket, or GitLab) while creating an open, standardized record of all public
extensions in a central location as part of the NDX Catalog. The ability for submitters to retain
ownership of their extensions in their own organization is important to facilitate development as
well as to retain a clear chain of responsibility and ownership. This is particularly important when
the developers of the extension are funded by their own grants and/or are applying for funding.

Figure S3.2. Example ndx-meta.yaml metadata record for the ndx-simulation-output extension.

name: ndx-simulation-output
version: 0.2.6
src: https://github.com/bendichter/ndx-simulation-output
pip: https://pypi.org/project/ndx-simulation-output
license: BSD
maintainers:
 - bendichter

9

Supplementary Material 4: Overview of Select Data Analysis, Visualization,
and Management Tools That Support NWB

Figure S.4. Visualization showing select data analysis, visualization, and management tools
that support NWB organized by their main application (x-axis) and programming environment (y-
axis).

10

Supplementary Material 5. Assessment of FAIRness of NWB + DANDI
Table 5.1 – 5.4 below assess different solutions for sharing neurophysiology data with

regard to their compliance with FAIR data principles, with cells shown in: i) gray indicate non-
compliance, ii) green indicate compliance, and iii) yellow indicate partial compliance either due
to incomplete implementation or optional support, leaving achieving compliance ultimately to the
end user. The assessment for NIX is based on the INCF review for SPP endorsement1. The
“Custom” row in the tables refers to lab-specific binary formats.

In practice, the various approaches target different principle uses, and as such this is not
an assessment of the quality of a product per-se, but rather its out-of-the-box compliance with
FAIR principles in the context of neurophysiology. For example, self-describing data formats (like
HDF5 or Zarr) seek to address challenges in high-performance data management and storage
independent of a particular application, and as such lack specifics about (meta)data related to
neurophysiology. However, while self-describing formats (like HDF5) are by themselves not
sufficient to achieve FAIR compliance, they still form a critical building block in an overall strategy
for FAIR data as evidenced by the fact that NIX, NWB, and many other application standards
across science domains build on HDF5. Similarly, NIX provides a generic data model to enable
storage of “fully annotated scientific datasets, i.e. the data together with its metadata within the
same container” with the goal to enable “standardization by providing a common/generic data
structure for a multitude of data types.”2 As such, NIX provides important functionality towards
building a FAIR data strategy, but the NIX data model by itself lacks specificity with regard to
neurophysiology, leaving it up to the user to define appropriate schema to facilitate FAIR
compliance. Broadly speaking, with increasing specificity of data standards–––i.e., as we move
from general-purpose, self-describing formats (Zarr, HDF5) to generic data standards (NIX) to
application-specific standards (NWB)–– compliance with FAIR principles and rigidness of the data
specification increases.

1 M. Martone. R. Gerkin, R. Moucek, S. Das, W. Goscinski, J. Hellgren-Kotaleski, D. Kennedy, T.Leergaard, J. Boline,
M. Abrams, “SBP Review: NIXV1.0, “ May 13, 2020, DOI: https://doi.org/10.7490/f1000research.1117858.1
2 Text in italic quoted from http://g-node.github.io/nix/

11

 Findable

F1. (Meta)data are
assigned a globally
unique and
persistent identifier

F2. Data are
described with rich
metadata (defined
by R1 below)

F3. Metadata
clearly and
explicitly include
the identifier of the
data they describe

F4. (Meta)data are
registered or
indexed in a
searchable
resource

Custom No No No

● N/A. This is a key
function of data
archives and
management
systems

Zarr No ● Self-describing, structural metadata (e.g.,
data type, array shape etc.) only

● Scientific (meta)data is fully user defined HDF5 No

NIX
● UUIDs are

assigned to all
objects

● Self-describing, structural metadata (uses
HDF5)

● Generic data model (i.e., scientific
(meta)data is user-defined)

NWB 1.0 No

● Yes, but the
schema language
was not formally
defined

● Similar to NWB
2.x but the much
more flexible
schema (including
inclusion of
arbitrary data)
often lead to non-
compliance

NWB 2.x

● UUIDs are
assigned to all
objects

● External file
identifier can be
stored in the
identifier field

● Rich schema for
neurophysiology
(meta)data

● Self-describing,
structural
metadata (uses
HDF5)
constrained by the
standard schema

● Metadata is either
directly associated
with or explicitly
linked to by the
corresponding
objects

DANDI

● All dandisets and
assets carry
unique and
persistent
identifiers

● Uses NWB and
other modern data
standards

● Provides its own
Dandiset schema
for metadata
about whole data
collections

● Yes, persistent
identifiers used by
the archive are
included with the
metadata

● DANDI is a public
archive that
features rich
search features
over publicly
shared data

Table 5.1 Compliance of NWB+DANDI with FAIR principles: Findability

12

 Accessible

A1. (Meta)data are
retrievable by their
identifier using a
standardised
communications
protocol

A1.1 The protocol
is open, free, and
universally
implementable

A1.2 The protocol
allows for an
authentication and
authorisation
procedure, where
necessary

A2. Metadata are
accessible, even
when the data are
no longer available

Custom No No

● N/A. This is a key
function of data
archives and
management
systems

Zarr

● Non-persistent
file/object paths
only

● Yes, but python-
only API

● Long-term support
is not clear

● N/A. This is a key
function of data
archives and
management
systems

● Encryption of files
is possible via
external tools

● HDF5/Zarr could
support
encryption of data
elements via I/O
filters

HDF5

● Portable format
with broad
support across
programming
languages and
compute systems

● Intended for long-
term support

NIX ● Yes

● Uses HDF5
● NIX API for C++.

Matlab, Python
and Java

● Open source

NWB 1.0

● Non-persistent
file/object paths
only (same as
HDF5)

● Yes, but schema
language was not
formally defined
and available APIs
were limited

NWB 2.x
● Yes. Objects

retrievable based
on UUID and path.

● Uses HDF5
● NWB API in

Python and Matlab
● Open source

DANDI

● Uses NWB
● Metadata is

exported as
JSON/JSON-LD
alongside with data

● Uses standard
protocols (e.g.,
REST API)

● Supports user
authentication and
authorized access
to all Dandisets,

● Searchable on the
the archive and
exposed as
LinkedData

13

● REST API, Python,
CLI, DataLad, ROS3
HDF5

● Supports
integration with
external services

assets and other
DANDI resources

Table 5.2 Compliance of NWB+DANDI with FAIR principles: Accessibility

 Interoperable

I1. (Meta)data uses a
formal, accessible,
shared, and broadly
applicable language for
knowledge representation.

I2. (Meta)data use
vocabularies that follow
FAIR principles

I3. (Meta)data include
qualified references to
other (meta)data

Custom No No No

Zarr No No No

HDF5 No No No

NIX ● Uses odML
● Uses HDF5 ● User defined ● User defined

NWB 1.0 ● Uses custom schema
definition in Python

● Data follows the NWB
1.0 schema

● Partially. NWB 2.x
significantly enhanced
support for linking of
metadata with data.

NWB 2.x

● Schema defined in
JSON/YAML using json-
schema

● NWB and extension
schema are available with
NWB files and online

● Uses HDF5

● Data follows the NWB
schema

● NWB supports use of
ontologies via linking to
external resources3

● The NWB schema
explicitly models links
between (meta)data

● NWB supports linking to
external resources3

DANDI ● Uses NWB, JSON + json-
schema, JSON-LD

● Uses NWB and other
FAIR ontologies

● schema.org, spdx.org
(licenses), PROV

Table 5.3 Compliance of NWB+DANDI with FAIR principles: Interoperability

3 Support for external resources has been released in HDMF >2.3 and is currently undergoing community review for
integration with the NWB core data standard.

14

 Reusable

R1. (Meta)data are
richly described
with a plurality of
accurate and
relevant attributes

R1.1. (Meta)data
are released with a
clear and
accessible data
usage license

R1.2. (Meta)data
are associated
with detailed
provenance

R1.3. (Meta)data
meet domain-
relevant
community
standards

Custom No

● N/A. Usage
licences are
typically managed
by data archives

No No

Zarr No No No

HDF5 No No No

NIX ● User defined No ● User defined

NWB 1.0 ● Yes
● Yes. NWB 2.x

further refined this
significantly

● Yes

NWB 2.x ● Yes

● Includes detailed
metadata about
publications,
experimenters,
devices, subjects
etc.

● Derived data
(e.g., ROIs) link to
the source data

● Yes, NWB
provides detailed,
neurophysiology-
specific data
schema

DANDI
● Uses NWB and

defined dandiset
schema

● All data in DANDI
is published with
a clear data
usage licence

● Dandisets support
detailed metadata
about the data
generation

● Dandisets are
versioned

● Uses NWB

Table 5.4 Compliance of NWB+DANDI with FAIR principles: Reusability

15

Supplementary Material 6. Diverse Community of Data Producers Adopting
NWB.
The table shown below provides an overview of select labs that are using NWB. The last

column of the table lists relevant DANDI datasets that have been published via the DANDI

data archive using NWB. Each DANDI dataset typically consists of a large collection of

NWB files related to a particular publication or experiment, with each NWB file

representing the data from a particular recording session. All DANDI datasets can be

found online at https://dandiarchive.org/dandiset/{6-digit-zero-padded-id}, e.g.,

https://dandiarchive.org/dandiset/000007. In the “Modality” column of the table we use the

following abbreviations:

● ecephys: extracellular electrophysiology
● icephys: intracellular electrophysiology
● ophys: optical physiology
● ECoG: Electrocorticography
● fNIRS: Functional near-infrared spectroscopy

Name, Affiliation Species Modality DANDI datasets

AE Studio human fNIRS 122

Allen Institute mouse, human
ecephys,
icephys, ophys

12, 20, 21, 22, 23, 24, 30, 36, 37,
39, 42, 43, 48, 49, 50, 66, 107, 109,
142, 209

R. Axel, Columbia fly ophys

Blue Brain Project mouse icephys 25

J. Berke, UCSF rat ecephys

K. Bouchard, LBNL/UC
Berkeley rat, simulation ecephys, uECoG

C. Brody, Princeton rat, mouse ecephys

B. Brunton, U Washington human ECoG 55

E. Buffalo, U Washington monkey ecephys

T. Buschman, Princeton monkey ecephys

G. Buzsaki, NYU rat, mouse ecephys
3, 41, 44, 56, 59, 61, 67, 166, 213,
218

M. Capogna, Aarhus mouse ecephys

M. Carandini, UCL mouse ecephys 17

E. Chang, UCSF human ECoG 19

16

A. Churchland, CSHL mouse ecephys, ophys 16

R. Cossart, Inserm mouse ophys 219

D. Feldman, UC Berkeley mouse ecephys

A. Fleischmann, Brown mouse ophys 167

L. Frank, UCSF mouse ecephys 65, 115, 165

L. Giocomo, Stanford mouse ecephys, ophys 53, 54

A. Groh, Heidelberg mouse ecephys, ophys

K. Harris, UCL mouse ecephys 17

M. Hennig, Edinburgh mouse ecephys 28, 34

S. Husainni, Columbia mouse ecephys

International Brain Lab mouse ecephys 45, 149

M. Jazayeri, MIT monkey ecephys 130

D. Jaeger, Emory mouse
ophys, ecephys,
icephys

S. Kastner, Princeton monkey ecephys

N. Li, Baylor mouse ecephys 7

A. Losonczy, Columbia mouse ophys

G. Maimon, Rockefeller fly behavior 212

J. Martinez, Western
mouse, monkey,
human icephys

R. McGreal, UCSB mouse ophys 206

L. Miller, Northwestern monkey ecephys 127

T. Movshon, NYU monkey ecephys

D. O'Connor, Johns
Hopkins mouse ecephys, ophys

J. Parvizi, Stanford human ECoG

U. Rutishauser, Cedars-
Sinai human ecephys 4, 207

B. Sabatini, Harvard mouse icephys

S. Schultz, Imperial mouse ecephys, ophys

K. Shenoy, Stanford monkey ecephys 70, 121

M. Smear, U Oregon mouse behavior 217

17

S. Smith, UCSB mouse ophys 206

I. Soltesz, Stanford mouse, simulation ophys, icephys

N. Steinmetz, U
Washington mouse ecephys 17

K. Svoboda, Janelia mouse ecephys, ophys 5, 6, 9, 10, 11, 13, 15, 60, 168

N. Tandon, UT Houston human ECoG

D. Tank, Princeton mouse ecephys

H. Tao, USC mouse icephys 117

A. Tolias, Baylor mouse icephys 8, 35

S. Tripathy,
UofToronto/CAMH human, mouse icephys

T. Valiante, Toronto human icephys

18

Supplementary Material 7: Software Release Process and History

Software releases and processes are one indicator for the maturity of software products. As such,
looking at the release history of NWB also provides some insight into how NWB has evolved over
the course of the project from a first prototype of NWB 2 to a production data standard and
software ecosystem.

The initial development of NWB 2 occurred during Nov. 2016 – Nov.2017. This phase did not
include formal releases as the focus was on agile and rapid development of functionality with the
goal to establish design principles and create a usable, fully functional prototype. Changes to the
standard and software were evaluated in this phase by early adopters and reviewed by the
community as part of NWB community hackathons.

The first beta release of the NWB 2 schema, PyNWB 0.2.0, and MatNWB 0.1.0b then occurred
in November 2017 in conjunction with SfN. This marked the start of the beta testing and
development phase of NWB, which occurred between Nov.2017 – Jan.2019. During the beta
phase NWB adopted a more formal release process of versioned releases via pip, conda, and
GitHub. These releases were targeted at early adopters and beta testers while development was
still largely agile based on GitHub source releases. During this phase the focus was on evaluation,
refinement, and productization.

In Jan.2019 we then released the first official version of NWB 2, including nwb-schema 2.0,
PyNWB 1.0, and matnwb 0.2.0. This marked the beginning of the adoption and integration phase
for the NWB 2 project. During Jan.2019 – Apr. 2021, a key focus has been on the one hand to
continue to advance and refine NWB to meet the needs of adopters as well as to work with
neuroscience labs and tool developers to support NWB. With the shift in focus from development
to adoption then also came further refinement of the release processes and adoption of stricter
software versioning guidelines based on semantic versioning to facilitate integration of NWB
software with other software tools and adoption in lap data pipelines. While software releases in
this phase were still often determined on a per-need-basis, the goal was to keep the APIs and
standard as stable as possible.

One strategy to achieve this goal then was to separate the core data modeling capabilities from
PyNWB into the separate HDMF library. Publishing HDMF as its own software product has been
essential both to facilitate reuse of HDMF capabilities for other applications as well as to ensure
stability of the PyNWB user API. As shown in Fig. S.7, PyNWB has undergone only 1 major
release and 5 minor releases since the first release of PyNWB 1.0.0. At the same time, HDMF
underwent a much larger number of releases. This illustrates the effectiveness of the approach
of separating core infrastructure from user-APIs, as it allowed us to continue to advance core
NWB technologies while limiting impact on end users. Similarly, extracting general schema (e.g.,
for dynamic data tables) into the separate hdmf-common-schema allowed to further make these
common building blocks broadly accessible to science applications and to continue to develop
them as part of the HDMF core software infrastructure.

MatNWB, through its strategy to auto-generate API classes directly from the NWB schema, is tied
directly in a particular release to the most recent version of the NWB schema that the particular
release supports. In April 2020, MatNWB, therefore, adopted a new, extended semantic
versioning scheme for its software release consisting of 4 digits, with the first 3 digits indicating
the major, minor, and patch release of the NWB schema and the last digit indicating the software
patch release of MatNWB. As such, version 2.2.5.1 of MatNWB supports NWB schema 2.2.5 as
the most recent version of the NWB format and includes 1 software patch release of MatNWB.

19

MatNWB then also added all tagged versions of the NWB schema with each release to avoid the
need for git checkouts during the use of the software and facilitate interaction with NWB files with
varying schema versions.

With the start of the NIH U24 project in April 2021, NWB then entered its next main phase with a
focus on more widespread adoption to advance standardization of neurophysiology data through
dissemination and integrating of NWB. With this transition, then also comes the need for further
refinement of software release processes. This also means that adoption and integration projects
increasingly no longer involve the NWB team directly, but are being led independently by other
project teams. To facilitate planning and interaction, this required further refinement of release
processes to adopt more rigid release plans and schedules and to facilitate contribution of other
projects to NWB with predictable release timelines.

In addition to the software, key components are also releases of the NWB schema. Here, a main
goal has been stability to ensure that files remain accessible. This is also reflected in the release
history of the NWB schema, which has undergone only four minor releases and no major releases
since the first full release of the schema. These releases largely focused on addition and
refinement of data schema, while the APIs support reading of data of all NWB 2.x file versions.

20

Figure S.7. Overview of the release history of the PyNWB, HDMF, and MatNWB APIs and the
NWB and hdmf-common data standard schema.

21

Supplementary Material 8. NWB Online and Social Media Resources
NWB online and social media resources provide additional resources for users and the

broader community to engage with and learn about NWB. The nwb.org website69 serves as the
central entry-point for users to NWB and provides high-level information about NWB and links to
all relevant online resources and tools discussed in the Methods. Additional online resources
include [Slack]70, [Twitter]71, [YouTube]72, and the [NWB Mailing List]73.

22

Supplementary Material 9. NWB Training Resources
NWB provides a broad range of training resources for users and developers. Users who

want to learn more about how to use NWB can view the NWB online video training course as part
of the [INCF Training Space]74. Detailed code tutorials are further available as part of the
[PyNWB Documentation]58 and [MatNWB Documentation]60.

For Neurodata Extensions (NDX), detailed documentation of versioning guidelines,
sharing guidelines and strategies, and the proposal review process are available online as part of
the NDX Catalog66. Step-by-step instructions for creating new NDX are provided as part of the
[NWB Extensions Template]67.

Additional resources for developers and data managers include the API documentation
for [HDMF]51, [PyNWB]58, and [MatNWB]60 and documentation of the format schema as part of
the [NWB Schema]63, [HDMF Common Schema]55, [NWB Storage]65, and [Specification
Language]64.

