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Supplementary Material 1. Intracellular Electrophysiology Example using 
NWB and DANDI 

The following shows a simple example, demonstrating the use of NWB for storage of 
intracellular electrophysiology data. The file used in this example is from DANDISET 20 (available 
at https://dandiarchive.org/dandiset/000020) from the Allen Institute for Brain Science as part of 
the multimodal characterization of cell types in the mouse visual cortex (see https://portal.brain-
map.org/explore/classes/multimodal-characterization/multimodal-characterization-mouse-visual-
cortex).  

The following simple code example illustrates: 1) downloading of the file from DANDI, 2) 
reading the file with PyNWB, 3) visualization of the stimulus and response recording for a single 
sweep, and 4) visualization of the NWB file in NWB Widgets. 
 
# import required libraries 
from dandi.dandiapi import DandiAPIClient  
from pynwb import NWBHDF5IO  
from nwbwidgets import nwb2widget  
from nwbwidgets.timeseries import show_indexed_timeseries_mpl  
import numpy as np  
from matplotlib import pyplot as plt 
 
# Determine the s3path for the file on DANDI  
dandiset_id = '000020'   
filepath = 'sub-1001658946/sub-1001658946_ses-1003020741_icephys.nwb'  
with DandiAPIClient() as client:      
    asset = client.get_dandiset(dandiset_id, 'draft').get_asset_by_path(filepath)         
    s3_path = asset.get_content_url(follow_redirects=1, strip_query=True)      
 
# Open the file using the ros3 driver for streaming data access 
nwb_s3io = NWBHDF5IO(s3_path, mode='r', load_namespaces=True, driver='ros3') 
# Read the file from DANDI. Here we only read the structure and  
# attributes of the file, but not the bulk data 
nwbfile = nwb_s3f.read()  
 
# Create a simple example visualization of the response and stimulus  
# timeseries for a single sweep 
# get the timeseries associated with a particular sweep number 
sweep_number = 3 
series = nwbfile.sweep_table.get_series(sweep_number) 
# create a matplotlib figure for plotting 
plt.rcParams['font.size'] = '16' 
fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(12,8)) 
# plot the response and stimulus timeseries for the given sweep.  
show_indexed_timeseries_mpl(series[0],  
                            title=series[0].neurodata_type + " : " + series[0].name,  
                            xlabel=None,  
                            ax=ax1) 
show_indexed_timeseries_mpl(series[1],  
                            title=series[1].neurodata_type + " : " + series[1].name,   
                            ax=ax2) 
plt.show() 
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# Display the file with NWBWidgets 
nwb2widget(nwbfile)

 

 
 
 



3 

Supplementary Material 2: Creating a New Extension 
Using the ndx-simulation-output extension (see Fig.4c) as an example, we illustrate in the 
following the main steps for creating a new extension outlined in Fig.4a2.  
 
2.1 Set up new NDX using the NDX Template 
The following code snippet shows the process for setting up the ndx-simulation-output extension 
using the ndx-template template. The template guides the developer through the setup via a 
simple question-and-answer process. In the code snippet, text shown in black is printed by 
cookiecutter, and text shown in blue are commands/responses entered by the developer.  

With these simple steps the template automatically sets up the full structure for our extension.           

 

>> cookiecutter gh:nwb-extensions/ndx-template 
You've downloaded /Users/oruebel/.cookiecutters/ndx-template before. Is it okay to delete and 
re-download it? [yes]: yes 
namespace [ndx-my-namespace]: ndx-simulation-output 
description [My NWB extension]: Data types for recording data from multiple compartments of 
multiple neurons in a single TimeSeries. 
author [My Name]: Ben Dichter 
email [my_email@example.com]: ben.dichter@... 
github_username [myname]: bendichter 
copyright [2021, Ben Dichter]:  
version [0.1.0]: 0.2.6 
release [alpha]:  
license [BSD 3-Clause]:  
py_pkg_name [ndx_simulation_output]:  

Figure S2.1. Files and folders generated by the cookiecutter 
ndx-template. The main folder contains the license and 
readme file for extension along with files required for 
installing the extension (e.g., setup.py, setup.cfg, 
MANIFEST.in, and requirements.txt) as well a markdown file 
with instructions for next steps. The docs/ folder contains the 
Sphinx documentation setup for the extension. Without any 
additional changes required, the developer can with this 
setup automatically generate documentation in HTML, PDF, 
ePub and many other formats directly from the extension 
schema using the HDMF-DocUtils. Generating the 
documentation is as simple as executing “make html” in the 
docs/ folder. The spec/ folder contains the schema files for 
the extensions. The schema files are generated by the script 
in /src/spec/create_extension_spec.py (see Sec. 2.2 next), 
and are typically not modified manually by the developers. 
The /src folder then contains main source codes for the 
extension, including the: spec/ folder with the code to 
generated the extension schema matnwb/ folder with code 
for MatNWB pynwb/ folder with code for PyNWB 
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2.2 Define the Extension Schema 
The code example below shows the /src/spec/create_extension_spec.py script to define and 
generate the schema for the ndx-simulation-output extension using the PyNWB data format 
specification API. Code shown in red has been auto-generated by the ndx-template. Code shown 
in blue has been defined by the developer to create the schema. Running this script then 
automatically generates the YAML schema files for the extension stored in the spec/ folder.      
# -*- coding: utf-8 -*-  
import os.path 
from pynwb.spec import NWBNamespaceBuilder, export_spec, NWBGroupSpec 
def main(): 
    # these arguments were auto-generated from your cookiecutter inputs 
    ns_builder = NWBNamespaceBuilder(doc='Data types for recording data from multiple compartments' 
                                         'of multiple neurons in a single TimeSeries.', 
                                     name='ndx-simulation-output', 
                                     version='0.2.6', 
                                     author='Ben Dichter', 
                                     contact='ben.dichter@gmail.com') 
    types_to_include = ['TimeSeries', 'VectorData', 'VectorIndex', 'DynamicTable', 'LabMetaData'] 
    for ndtype in types_to_include: 
        ns_builder.include_type(ndtype, namespace='core') 
    Compartments = NWBGroupSpec(default_name='compartments', 
                                neurodata_type_def='Compartments', 
                                neurodata_type_inc='DynamicTable', 
                                doc='Table that holds information about ' 
                                    'what places are being recorded.') 
    Compartments.add_dataset(name='number', 
                             neurodata_type_inc='VectorData', 
                             dtype='int', 
                             doc='Cell compartment ids corresponding to a each column in the data.') 
    Compartments.add_dataset(name='number_index', 
                             neurodata_type_inc='VectorIndex', 
                             doc='Index that maps cell to compartments.', 
                             quantity='?') 
    Compartments.add_dataset(name='position', 
                             neurodata_type_inc='VectorData', 
                             dtype='float', 
                             quantity='?', 
                             doc='Position of recording within a compartment. ' 
                                 '0 is close to soma, 1 is other end.') 
    Compartments.add_dataset(name='position_index', 
                             neurodata_type_inc='VectorIndex', 
                             doc='Index for position.', 
                             quantity='?') 
    Compartments.add_dataset(name='label', 
                             neurodata_type_inc='VectorData', 
                             doc='Labels for compartments.', 
                             dtype='text', 
                             quantity='?') 
    Compartments.add_dataset(name='label_index', 
                             neurodata_type_inc='VectorIndex', 
                             doc='indexes label', 
                             quantity='?') 
    CompartmentsSeries = NWBGroupSpec(neurodata_type_def='CompartmentSeries', 
                                      neurodata_type_inc='TimeSeries', 
                                      doc='Stores continuous data from cell compartments') 
    CompartmentsSeries.add_link(name='compartments', 
                                target_type='Compartments', 
                                quantity='?', 
                                doc='Metadata about compartments in this CompartmentSeries.') 
    SimulationMetaData = NWBGroupSpec(name='simulation', 
                                      neurodata_type_def='SimulationMetaData', 
                                      neurodata_type_inc='LabMetaData', 
                                      doc='Group that holds metadata for simulations.') 
    SimulationMetaData.add_group(name='compartments', 
                                 neurodata_type_inc='Compartments', 
                                 doc='Table that holds information about ' 
                                     'what places are being recorded.') 
    new_data_types = [Compartments, CompartmentsSeries, SimulationMetaData] 
    # export the spec to yaml files in the spec folder 
    output_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', 'spec')) 
    export_spec(ns_builder, new_data_types, output_dir) 
if __name__ == "__main__": 
    main() 
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2.3 Create API Classes 
The following code example is an abbreviated version of the simulation_output.py file located at 
ndx-simulation-output/src/pynwb/ndx_simulation_output/ as part of the ndx-simulation-output 
extensions. For illustration purposes and to allow us to focus on the code relevant to the definition 
of the API classes, we here omit code details of the find_compartments function, which defines 
custom functionality.  
 
The example shown here illustrates three main patterns for creating API classes for extensions. 
In part A. the extension uses the get_class method to dynamically generate an API Container 
class for the SimulationMetaData type directly from the schema. In part B., the extension uses 
the same approach for CompartmentSeries, but then further customizes the class by adding the 
find_compartments to the class to provide additional user functionality. In part C. the extension 
then defines a custom API Container class for the Compartments type that extends the 
DynamicTable type.  

 

# Import methods for registering and creating container class 
from pynwb import register_class, docval, get_class 
# Import the docval decorator used for documenting functions and type checking 
from hdmf.utils import docval, call_docval_func 
# Import the base Container classes we are extending 
from hdmf.common.table import DynamicTable, ElementIdentifiers 
 
# Define the name of the namespace of our extension needed to register Container classes 
namespace = 'ndx-simulation-output' 
 
# A. Auto-generate a Container class for the SimuluationMetaData type 
SimulationMetaData = get_class('SimulationMetaData', namespace) 
 
# B. Auto-generate a Container class for the CompartmentSeries type 
CompartmentSeries = get_class('CompartmentSeries', namespace) 
# B.1. Use monkey patching to add custom functionality to the auto-generated class 
def find_compartments(self, cell, compartment_numbers=None, compartment_labels=None): 
    [...]    # Details of the find_compartment omitted here for clarity.  
CompartmentSeries.find_compartments = find_compartments 

# C. Define a custom Container class for the Compartments table type 
@register_class('Compartments', namespace) # Register the class with the TypeMap  
class Compartments(DynamicTable):  
 
    # Define the columns for the table. HDMF then automatically handles  
    # setting up the columns for us as part of the class 
    __columns__ = ( 
        {'name': 'number', 'index': True, 
         'description': 'cell compartment ids corresponding to a each column in the data'}, 
        {'name': 'position', 'index': True, 
         'description': 'the observation intervals for each unit'}, 
        {'name': 'label', 'description': 'the electrodes that each spike unit came from', 
         'index': True, 'table': True} 
    ) 
 
    # Document and define the allowable types for the parameters of the __init__ function 
    @docval({'name': 'name', 'type': str,  
             'doc': 'Name of this Compartments object’,'default': 'compartments'}, 
            {'name': 'id', 'type': ('array_data', ElementIdentifiers), 
             'doc': 'the identifiers for the units stored in this interface', 'default': None}, 
            {'name': 'columns', 'type': (tuple, list),  
             'doc': 'the columns in this table', 'default': None}, 
            {'name': 'colnames', 'type': 'array_data',  
             'doc': 'the names of the columns in this table’, 'default': None}, 
            {'name': 'description', 'type': str,  
             'doc': 'a description of what is in this table', 
             'default': 'Table that holds information about what places are being recorded.'}, 
            ) 
    def __init__(self, **kwargs): 
        call_docval_func(super(Compartments, self).__init__, kwargs) 
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2.4 Documenting the Extension 
The ndx-template automatically generates as part of the docs/ folder the full setup for 
automatically generating Sphinx-based documentation for the extension from the schema using 
the hdmf-docutils library. To generate the documentation we simply need to run the command 
“make html” in the docs/ folder. Using the same approach we can generate documentation in a 
large range of common formats, e.g., HTML, PDF, man, or ePub. The ndx-template also 
generates standard credits.rst, format.rst, release_notes.rst, description.rst, and index.rst source 
files to make it easy for developers to customize the documentation and include additional details 
about the extension. 
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Supplementary Material 3. Process for Creating, Publishing, and Updating 
Neurodata Extensions (NDX) 

 
Figure S3.1 Illustration of the process for creating, publishing, and updating extensions via the 
Neurodata Extension Catalog (NDX Catalog), and (3) updating an extension/record. Boxes shown 
in gray indicate Git repositories; boxes in orange describe user actions; and boxes in blue indicate 
actions by administrators of the NDX catalog.  

Figure S3.1 shows an overview of the process for (1) creating a new extension, (2) creating a 
record to publish an extension via the Neurodata Extension Catalog (NDX Catalog), and (3) 
updating an extension/record. The figure also illustrates the automated CI processes that are 
managed in the NDX Catalog. The catalog process is modeled after the conda-forge model, which 
enables automation of many catalog processes using free, public services and avoiding the need 
for NWB to host its own services. 
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In the NDX Catalog, extensions are shared via the dedicated nwb-extensions GitHub organization 
for the NDX Catalog (blue column). The NDX Catalog provides the ndx-template cookiecutter 
extension template repository as well as the staged-extensions repository for submitting 
extensions to the NDX Catalog. Each extension record is then managed in a corresponding ndx 
record Git repository as part the nwb-extensions GitHub organization. The public NDX record 
repositories contains a README.md file describing the extension along with a ndx-meta.yaml 
metadata record for extensions, with basic information required for installing and locating the 
extension (see Fig. S3.2).  

Creation and changes to the extension on record are usually performed by a developer on their 
local system, e.g., laptop computer (green column). The developer then submits the changes to 
the extension or record repository via pull requests.  

In this process, the Git repository with the sources of the extension remains in the lab organization 
of the submitter (yellow column). Here the only requirements are that: 1) the extension is stored 
in a Git repository and 2) the repository must be publicly accessible via the organization of the 
submitter, such that the repository can be cloned directly from the source location indicated in the 
NDX metadata record (Fig. S3.2). This strategy allows for labs, universities, and independent 
groups to maintain ownership of the source code for their extensions in their own public Git space 
(e.g, on GitHub, Bitbucket, or GitLab) while creating an open, standardized record of all public 
extensions in a central location as part of the NDX Catalog.  The ability for submitters to retain 
ownership of their extensions in their own organization is important to facilitate development as 
well as to retain a clear chain of responsibility and ownership. This is particularly important when 
the developers of the extension are funded by their own grants and/or are applying for funding. 

 

Figure S3.2. Example ndx-meta.yaml metadata record for the ndx-simulation-output extension. 

 

 

 

 

 

 

 

 

name: ndx-simulation-output 
version: 0.2.6 
src: https://github.com/bendichter/ndx-simulation-output 
pip: https://pypi.org/project/ndx-simulation-output 
license: BSD 
maintainers: 
  - bendichter 
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Supplementary Material 4: Overview of Select Data Analysis, Visualization, 
and Management Tools That Support NWB 

 

Figure S.4. Visualization showing select data analysis, visualization, and management tools 
that support NWB organized by their main application (x-axis) and programming environment (y-
axis).  
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Supplementary Material 5. Assessment of FAIRness of NWB + DANDI 
Table 5.1 – 5.4 below assess different solutions for sharing neurophysiology data with 

regard to their compliance with FAIR data principles, with cells shown in: i) gray indicate non-
compliance, ii) green indicate compliance, and iii) yellow indicate partial compliance either due 
to incomplete implementation or optional support, leaving achieving compliance ultimately to the 
end user. The assessment for NIX is based on the INCF review for SPP endorsement1. The 
“Custom” row in the tables refers to lab-specific binary formats. 

In practice, the various approaches target different principle uses, and as such this is not 
an assessment of the quality of a product per-se, but rather its out-of-the-box compliance with 
FAIR principles in the context of neurophysiology. For example, self-describing data formats (like 
HDF5 or Zarr) seek to address challenges in high-performance data management and storage 
independent of a particular application, and as such lack specifics about (meta)data related to 
neurophysiology. However, while self-describing formats (like HDF5) are by themselves not 
sufficient to achieve FAIR compliance, they still form a critical building block in an overall strategy 
for FAIR data as evidenced by the fact that NIX, NWB, and many other application standards 
across science domains build on HDF5. Similarly, NIX provides a generic data model to enable 
storage of “fully annotated scientific datasets, i.e. the data together with its metadata within the 
same container” with the goal to enable “standardization by providing a common/generic data 
structure for a multitude of data types.”2 As such, NIX provides important functionality towards 
building a FAIR data strategy, but the NIX data model by itself lacks specificity with regard to 
neurophysiology, leaving it up to the user to define appropriate schema to facilitate FAIR 
compliance. Broadly speaking, with increasing specificity of data standards–––i.e., as we move 
from general-purpose, self-describing formats (Zarr, HDF5) to generic data standards (NIX) to 
application-specific standards (NWB)–– compliance with FAIR principles and rigidness of the data 
specification increases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

                                                
1 M. Martone. R. Gerkin, R. Moucek, S. Das, W. Goscinski, J. Hellgren-Kotaleski, D. Kennedy, T.Leergaard, J. Boline, 
M. Abrams, “SBP Review: NIXV1.0, “ May 13, 2020, DOI: https://doi.org/10.7490/f1000research.1117858.1  
2 Text in italic quoted from http://g-node.github.io/nix/  
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 Findable 

 

F1. (Meta)data are 
assigned a globally 
unique and 
persistent identifier 

F2. Data are 
described with rich 
metadata (defined 
by R1 below) 

F3. Metadata 
clearly and 
explicitly include 
the identifier of the 
data they describe 

F4. (Meta)data are 
registered or 
indexed in a 
searchable 
resource 

Custom No No No 

● N/A. This is a key 
function of data 
archives and 
management 
systems 

 

Zarr No ● Self-describing, structural metadata (e.g., 
data type, array shape etc.) only 

● Scientific (meta)data is fully user defined HDF5 No 

NIX 
● UUIDs are 

assigned to all 
objects 

● Self-describing, structural metadata (uses 
HDF5) 

● Generic data model (i.e., scientific 
(meta)data is user-defined) 

NWB 1.0 No 

● Yes, but the 
schema language 
was not formally 
defined 

● Similar to NWB 
2.x but the much 
more flexible 
schema (including 
inclusion of 
arbitrary data) 
often lead to non-
compliance 

NWB 2.x 

● UUIDs are 
assigned to all 
objects 

● External file 
identifier can be 
stored in the 
identifier field 

● Rich schema for 
neurophysiology 
(meta)data 

● Self-describing, 
structural 
metadata (uses 
HDF5) 
constrained by the 
standard schema 

● Metadata is either 
directly associated 
with or explicitly 
linked to by the 
corresponding 
objects 

DANDI 

● All dandisets and 
assets carry 
unique and 
persistent 
identifiers 

● Uses NWB and 
other modern data 
standards 

● Provides its own 
Dandiset schema 
for metadata 
about whole data 
collections 

● Yes, persistent 
identifiers used by 
the archive are 
included with the 
metadata 

● DANDI is a public 
archive that 
features rich 
search features 
over publicly 
shared data 

Table 5.1 Compliance of NWB+DANDI with FAIR principles: Findability 
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 Accessible 

 

A1. (Meta)data are 
retrievable by their 
identifier using a 
standardised 
communications 
protocol 

A1.1 The protocol 
is open, free, and 
universally 
implementable 

A1.2 The protocol 
allows for an 
authentication and 
authorisation 
procedure, where 
necessary 

A2. Metadata are 
accessible, even 
when the data are 
no longer available 

Custom No No  

● N/A. This is a key 
function of data 
archives and 
management 
systems 

Zarr 

● Non-persistent 
file/object paths 
only 

● Yes, but python-
only API 

● Long-term support 
is not clear 

● N/A. This is a key 
function of data 
archives and 
management 
systems 

● Encryption of files 
is possible via 
external tools 

● HDF5/Zarr could 
support 
encryption of data 
elements via I/O 
filters  

HDF5 

● Portable format 
with broad 
support across 
programming 
languages and 
compute systems 

● Intended for long-
term support 

NIX ● Yes 

● Uses HDF5 
● NIX API for C++. 

Matlab, Python 
and Java 

● Open source 

NWB 1.0 

● Non-persistent 
file/object paths 
only (same as 
HDF5) 

● Yes, but schema 
language was not 
formally defined 
and available APIs 
were limited 

NWB 2.x 
● Yes. Objects 

retrievable based 
on UUID and path. 

● Uses HDF5 
● NWB API in 

Python and Matlab 
● Open source 

DANDI 

● Uses NWB  
● Metadata is 

exported as 
JSON/JSON-LD 
alongside with data  

● Uses standard 
protocols (e.g., 
REST API) 

● Supports user 
authentication and 
authorized access 
to all Dandisets, 

● Searchable on the 
the archive and 
exposed as 
LinkedData 
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● REST API, Python, 
CLI, DataLad, ROS3 
HDF5 

● Supports 
integration with 
external services  

assets and other 
DANDI resources 

Table 5.2 Compliance of NWB+DANDI with FAIR principles: Accessibility 
 
 
 
 

 Interoperable 

 

I1. (Meta)data uses a 
formal, accessible, 
shared, and broadly 
applicable language for 
knowledge representation. 

I2. (Meta)data use 
vocabularies that follow 
FAIR principles 

I3. (Meta)data include 
qualified references to 
other (meta)data 

Custom No No No 

Zarr No No No 

HDF5 No No No 

NIX ● Uses odML 
● Uses HDF5 ● User defined ● User defined 

NWB 1.0 ● Uses custom schema 
definition in Python 

● Data follows the NWB 
1.0 schema 

● Partially. NWB 2.x 
significantly enhanced 
support for linking of 
metadata with data.  

NWB 2.x 

● Schema defined in 
JSON/YAML using json-
schema 

● NWB and extension 
schema are available with 
NWB files and online 

● Uses HDF5 

● Data follows the NWB 
schema 

● NWB supports use of 
ontologies via linking to 
external resources3 

● The NWB schema 
explicitly models links 
between (meta)data 

● NWB supports linking to 
external resources3 

DANDI ● Uses NWB, JSON + json-
schema, JSON-LD 

● Uses NWB and other 
FAIR ontologies 

● schema.org, spdx.org 
(licenses), PROV 

Table 5.3 Compliance of NWB+DANDI with FAIR principles: Interoperability 
 
 
 
                                                
3 Support for external resources has been released in HDMF >2.3 and is currently undergoing community review for 
integration with the NWB core data standard.  
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 Reusable 

 

R1. (Meta)data are 
richly described 
with a plurality of 
accurate and 
relevant attributes 

R1.1. (Meta)data 
are released with a 
clear and 
accessible data 
usage license 

R1.2. (Meta)data 
are associated 
with detailed 
provenance 

R1.3. (Meta)data 
meet domain-
relevant 
community 
standards 

Custom No 

● N/A. Usage 
licences are 
typically managed 
by data archives 

No No 

Zarr No No No 

HDF5 No No No 

NIX ● User defined No ● User defined 

NWB 1.0 ● Yes 
● Yes. NWB 2.x 

further refined this 
significantly 

● Yes 

NWB 2.x ● Yes 

● Includes detailed 
metadata about 
publications, 
experimenters, 
devices, subjects 
etc. 

● Derived data 
(e.g., ROIs) link to 
the source data 

● Yes, NWB 
provides detailed, 
neurophysiology-
specific data 
schema 

DANDI 
● Uses NWB and 

defined dandiset 
schema 

● All data in DANDI 
is published with 
a clear data 
usage licence  

● Dandisets support 
detailed metadata 
about the data 
generation 

● Dandisets are 
versioned 

● Uses NWB 

Table 5.4 Compliance of NWB+DANDI with FAIR principles: Reusability 
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Supplementary Material 6. Diverse Community of Data Producers Adopting 
NWB.  
The table shown below provides an overview of select labs that are using NWB. The last 

column of the table lists relevant DANDI datasets that have been published via the DANDI 

data archive using NWB. Each DANDI dataset typically consists of a large collection of 

NWB files related to a particular publication or experiment, with each NWB file 

representing the data from a particular recording session. All DANDI datasets can be 

found online at https://dandiarchive.org/dandiset/{6-digit-zero-padded-id}, e.g., 

https://dandiarchive.org/dandiset/000007. In the “Modality” column of the table we use the 

following abbreviations: 

● ecephys: extracellular electrophysiology 
● icephys: intracellular electrophysiology 
● ophys: optical physiology 
● ECoG: Electrocorticography 
● fNIRS: Functional near-infrared spectroscopy 

Name, Affiliation Species Modality DANDI datasets 

AE Studio human fNIRS 122 

Allen Institute mouse, human 
ecephys, 
icephys, ophys 

12, 20, 21, 22, 23, 24, 30, 36, 37, 
39, 42, 43, 48, 49, 50, 66, 107, 109, 
142, 209 

R. Axel, Columbia fly ophys  

Blue Brain Project mouse icephys 25 

J. Berke, UCSF rat ecephys  

K. Bouchard, LBNL/UC 
Berkeley rat, simulation ecephys, uECoG  

C. Brody, Princeton rat, mouse ecephys  

B. Brunton, U Washington human ECoG 55 

E. Buffalo, U Washington monkey ecephys  

T. Buschman, Princeton monkey ecephys  

G. Buzsaki, NYU rat, mouse ecephys 
3, 41, 44, 56, 59, 61, 67, 166, 213, 
218 

M. Capogna, Aarhus mouse ecephys  

M. Carandini, UCL mouse ecephys 17 

E. Chang, UCSF human ECoG 19 
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A. Churchland, CSHL mouse ecephys, ophys 16 

R. Cossart, Inserm mouse ophys 219 

D. Feldman, UC Berkeley mouse ecephys  

A. Fleischmann, Brown mouse ophys 167 

L. Frank, UCSF mouse ecephys 65, 115, 165 

L. Giocomo, Stanford mouse ecephys, ophys 53, 54 

A. Groh, Heidelberg mouse ecephys, ophys  

K. Harris, UCL mouse ecephys 17 

M. Hennig, Edinburgh mouse ecephys 28, 34 

S. Husainni, Columbia mouse ecephys  

International Brain Lab mouse ecephys 45, 149 

M. Jazayeri, MIT monkey ecephys 130 

D. Jaeger, Emory mouse 
ophys, ecephys, 
icephys  

S. Kastner, Princeton monkey ecephys  

N. Li, Baylor mouse ecephys 7 

A. Losonczy, Columbia mouse ophys  

G. Maimon, Rockefeller fly behavior 212 

J. Martinez, Western 
mouse, monkey, 
human icephys  

R. McGreal, UCSB mouse ophys 206 

L. Miller, Northwestern monkey ecephys 127 

T. Movshon, NYU monkey ecephys  

D. O'Connor, Johns 
Hopkins mouse ecephys, ophys  

J. Parvizi, Stanford human ECoG  

U. Rutishauser, Cedars-
Sinai human ecephys 4, 207 

B. Sabatini, Harvard mouse icephys  

S. Schultz, Imperial mouse ecephys, ophys  

K. Shenoy, Stanford monkey ecephys 70, 121 

M. Smear, U Oregon mouse behavior 217 
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S. Smith, UCSB mouse ophys 206 

I. Soltesz, Stanford mouse, simulation ophys, icephys  

N. Steinmetz, U 
Washington mouse ecephys 17 

K. Svoboda, Janelia mouse ecephys, ophys 5, 6, 9, 10, 11, 13, 15, 60, 168 

N. Tandon, UT Houston human ECoG  

D. Tank, Princeton mouse ecephys  

H. Tao, USC mouse icephys 117 

A. Tolias, Baylor mouse icephys 8, 35 

S. Tripathy, 
UofToronto/CAMH human, mouse icephys  

T. Valiante, Toronto human icephys  
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Supplementary Material 7: Software Release Process and History 
 
Software releases and processes are one indicator for the maturity of software products. As such, 
looking at the release history of NWB also provides some insight into how NWB has evolved over 
the course of the project from a first prototype of NWB 2 to a production data standard and 
software ecosystem.  
 
The initial development of NWB 2 occurred during Nov. 2016 – Nov.2017. This phase did not 
include formal releases as the focus was on agile and rapid development of functionality with the 
goal to establish design principles and create a usable, fully functional prototype. Changes to the 
standard and software were evaluated in this phase by early adopters and reviewed by the 
community as part of NWB community hackathons.  
 
The first beta release of the NWB 2 schema, PyNWB 0.2.0, and MatNWB 0.1.0b then occurred 
in November 2017 in conjunction with SfN. This marked the start of the beta testing and 
development phase of NWB, which occurred between Nov.2017 – Jan.2019. During the beta 
phase NWB adopted a more formal release process of versioned releases via pip, conda, and 
GitHub. These releases were targeted at early adopters and beta testers while development was 
still largely agile based on GitHub source releases. During this phase the focus was on evaluation, 
refinement, and productization.  
 
In Jan.2019 we then released the first official version of NWB 2, including nwb-schema 2.0, 
PyNWB 1.0, and matnwb 0.2.0. This marked the beginning of the adoption and integration phase 
for the NWB 2 project. During Jan.2019 – Apr. 2021, a key focus has been on the one hand to 
continue to advance and refine NWB to meet the needs of adopters as well as to work with 
neuroscience labs and tool developers to support NWB. With the shift in focus from development 
to adoption then also came further refinement of the release processes and adoption of stricter 
software versioning guidelines based on semantic versioning to facilitate integration of NWB 
software with other software tools and adoption in lap data pipelines. While software releases in 
this phase were still often determined on a per-need-basis, the goal was to keep the APIs and 
standard as stable as possible.  
 
One strategy to achieve this goal then was to separate the core data modeling capabilities from 
PyNWB into the separate HDMF library. Publishing HDMF as its own software product has been 
essential both to facilitate reuse of HDMF capabilities for other applications as well as to ensure 
stability of the PyNWB user API. As shown in Fig. S.7, PyNWB has undergone only 1 major 
release and 5 minor releases since the first release of PyNWB 1.0.0. At the same time, HDMF 
underwent a much larger number of releases. This illustrates the effectiveness of the approach 
of separating core infrastructure from user-APIs, as it allowed us to continue to advance core 
NWB technologies while limiting impact on end users. Similarly, extracting general schema (e.g., 
for dynamic data tables) into the separate hdmf-common-schema allowed to further make these 
common building blocks broadly accessible to science applications and to continue to develop 
them as part of the HDMF core software infrastructure. 
 
MatNWB, through its strategy to auto-generate API classes directly from the NWB schema, is tied 
directly in a particular release to the most recent version of the NWB schema that the particular 
release supports. In April 2020, MatNWB, therefore, adopted a new, extended semantic 
versioning scheme for its software release consisting of 4 digits, with the first 3 digits indicating 
the major, minor, and patch release of the NWB schema and the last digit indicating the software 
patch release of MatNWB. As such, version 2.2.5.1 of MatNWB supports NWB schema 2.2.5 as 
the most recent version of the NWB format and includes 1 software patch release of MatNWB. 
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MatNWB then also added all tagged versions of the NWB schema with each release to avoid the 
need for git checkouts during the use of the software and facilitate interaction with NWB files with 
varying schema versions.  
 
With the start of the NIH U24 project in April 2021, NWB then entered its next main phase with a 
focus on more widespread adoption to advance standardization of neurophysiology data through 
dissemination and integrating of NWB. With this transition, then also comes the need for further 
refinement of software release processes. This also means that adoption and integration projects 
increasingly no longer involve the NWB team directly, but are being led independently by other 
project teams. To facilitate planning and interaction, this required further refinement of release 
processes to adopt more rigid release plans and schedules and to facilitate contribution of other 
projects to NWB with predictable release timelines.  
 
In addition to the software, key components are also releases of the NWB schema. Here, a main 
goal has been stability to ensure that files remain accessible. This is also reflected in the release 
history of the NWB schema, which has undergone only four minor releases and no major releases 
since the first full release of the schema. These releases largely focused on addition and 
refinement of data schema, while the APIs support reading of data of all NWB 2.x file versions. 
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Figure S.7. Overview of the release history of the PyNWB, HDMF, and MatNWB APIs and the 
NWB and hdmf-common data standard schema. 
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Supplementary Material 8. NWB Online and Social Media Resources 
NWB online and social media resources provide additional resources for users and the 

broader community to engage with and learn about NWB. The nwb.org website69 serves as the 
central entry-point for users to NWB and provides high-level information about NWB and links to 
all relevant online resources and tools discussed in the Methods. Additional online resources 
include [Slack]70, [Twitter]71, [YouTube]72, and the [NWB Mailing List]73. 
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Supplementary Material 9. NWB Training Resources 
NWB provides a broad range of training resources for users and developers. Users who 

want to learn more about how to use NWB can view the NWB online video training course as part 
of the [INCF Training Space]74. Detailed code tutorials are further available as part of the 
[PyNWB Documentation]58 and [MatNWB Documentation]60. 

For Neurodata Extensions (NDX), detailed documentation of versioning guidelines, 
sharing guidelines and strategies, and the proposal review process are available online as part of 
the NDX Catalog66. Step-by-step instructions for creating new NDX are provided as part of the 
[NWB Extensions Template]67.  

Additional resources for developers and data managers include the API documentation 
for [HDMF]51, [PyNWB]58, and [MatNWB]60 and documentation of the format schema as part of 
the [NWB Schema]63, [HDMF Common Schema]55, [NWB Storage]65, and [Specification 
Language]64. 


