
STEPS 4.0: FAST AND MEMORY-EFFICIENT MOLECULAR
SIMULATIONS OF NEURONS AT THE NANOSCALE

A PREPRINT

Weiliang Chen1*, Tristan Carel2*, Omar Awile2, Nicola Cantarutti2, Giacomo Castiglioni2, Alessandro Cattabiani2,
Baudouin Del Marmol2, Iain Hepburn1, James G King2, Christos Kotsalos2, Pramod Kumbhar2, Jules Lallouette1,

Samuel Melchior2, Felix Schürmann2**, and Erik De Schutter1**+

1Okinawa Institute of Science and Technology Graduate University (OIST), Japan
2Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

*These authors share first authorship
**These authors share senior authorship

+Corresponding author: Erik De Schutter, erik@oist.jp

ABSTRACT

Recent advances in computational neuroscience have demonstrated the usefulness and importance of
stochastic, spatial reaction-diffusion simulations. However, ever increasing model complexity renders
traditional serial solvers, as well as naive parallel implementations, inadequate. This paper introduces
a new generation of the STochastic Engine for Pathway Simulation (STEPS) project, denominated
STEPS 4.0, and its core components which have been designed for improved scalability, performance,
and memory efficiency. STEPS 4.0 aims to enable novel scientific studies of macroscopic systems
such as whole cells while capturing their nanoscale details. This class of models is out of reach for
serial solvers due to the vast quantity of computation in such detailed models, and also out of reach
for naive parallel solvers due to the large memory footprint. Based on a distributed mesh solution, we
introduce a new parallel stochastic reaction-diffusion solver and a deterministic membrane potential
solver in STEPS 4.0. The distributed mesh, together with improved data layout and algorithm designs,
significantly reduces the memory footprint of parallel simulations in STEPS 4.0. This enables
massively parallel simulations on modern HPC clusters and overcomes the limitations of the previous
parallel STEPS implementation. Current and future improvements to the solver are not sustainable
without proper software engineering practices. For this reason, we also give an overview of how the
STEPS codebase and the development environment have been updated to follow modern software
development practices. We benchmark performance improvement and memory footprint on three
published models with different complexities, from a simple spatial stochastic reaction-diffusion
model, to a more complex one that is coupled to a deterministic membrane potential solver to simulate
the calcium burst activity of a Purkinje neuron. Simulation results of these models suggest that the
new solution dramatically reduces the per-core memory consumption by more than a factor of 30,
while maintaining similar or better performance and scalability.

Keywords STEPS · Stochastic Simulation ·Molecular Neuroscience · HPC · Supercomputing

1 Introduction

For several decades computational modeling has progressively proven its importance in the frontiers of neuroscience
research, covering a wide range of research domains and disciplines: from sub-cellular molecular reaction-diffusion
dynamics to whole-brain neural network simulations. Breakthroughs in experimental methods and community-driven
data sharing portals have significantly increased the amount of available experimental data, enabling the advance of
complex data-driven modeling and analysis. These efforts are further enhanced by large collaborative projects such as
the US BRAIN initiative (Insel et al., 2013), and the EU Human Brain Project, (Markram et al., 2011), where complex
computational modeling plays an essential role. The rapid progress of neuroscience modeling brings critical advances

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

to our understanding of neuronal systems, yet unprecedented challenges to simulator software development have
emerged from two primary directions: first, the need to simulate convoluted neuronal functionalities across multiple
spatio-temporal scales, and second, the requirement of simulating such systems with extraordinary efficiency.

1.1 The STEPS project and its applications

The STochastic Engine for Pathway Simulation (STEPS) project has also evolved following the above trends over the
years. The STEPS project started as a mesoscopic scale stochastic reaction-diffusion solution (Hepburn et al., 2012)
driven by a spatial variant of the renowned Gillespie SSA method (Gillespie, 1977). Over the years, serial STEPS has
contributed to a wide range of research domains, such as studies on viral RNA degradation and diffusion (Schelker et al.,
2016), longitudinal anomalous diffusion in neuron dendrites (Mohapatra et al., 2016), long-term depression in cerebellar
Purkinje cells (Zamora Chimal and De Schutter, 2018), and calcium signaling in astrocytic processes (Denizot et al.,
2019). We gradually expanded STEPS to support electrical potential calculation on tetrahedral meshes with the EField
solver (Hepburn et al., 2013), allowing combined simulation of reaction-diffusion and membrane potential dynamics on
a single mesh reconstruction of neuronal morphology. This solution was important for the research of the stochastic
effect on dendritic calcium spiking variability (Anwar et al., 2013). However, it was soon clear to us that the serial
nature of STEPS was the major bottleneck for simulating such complicated models; even a sub-branch of a Purkinje
neuron often took weeks to complete one realization. This issue was partially addressed in STEPS 3.0 by introducing
the parallel operator splitting method to the reaction-diffusion solution (Hepburn et al., 2016; Chen and De Schutter,
2017), which aided research such as platform development for automatic cancer treatment discovery (Stillman et al.,
2021). A parallel EField implementation supported by the PETSc library (Abhyankar et al., 2018) was added to STEPS
3.1. The parallel solution dramatically improved performance by thousand folds compared to the serial counterpart,
making it possible to model a complete neuron with detailed morphology and channel mechanisms (Chen et al., in
press).

1.2 The need of a new parallel solver

Moving to parallel STEPS has greatly improved performance compared to the serial solution. However, as the hardware
and software of high-performance computing have advanced in recent years, noticeable bottlenecks have been observed
in modeling applications with STEPS. The main objective of this article is to identify these bottlenecks and address
them with a new parallel implementation.

For many scientific applications, the memory capacity of High-Performance Computing (HPC) systems is one of the
main constraints for running simulations at scale. A large number of today’s HPC systems have about 2~3GB of
main memory per core (Zivanovic et al., 2017). This is an improvement compared to previous BlueGene-like systems
where memory capacity is typically ~1GB per core. Current systems are increasingly heterogeneous with the use of
accelerators such as GPUs. The memory capacity of such a system is significantly lower compared to what is commonly
available on host CPUs. We have seen a similar situation in the case of Intel Knights Landing (KNL) processors (Sodani
et al., 2016), with a total capacity of approximately 0.2GB per core. The next generation of processors such as Intel
Sapphire Rapids (SPR) will most likely have a similar per-core memory capacity. This poses a significant challenge to
application developers: on the one hand the raw computing power is significantly increasing with architectures like
GPUs, while on the other hand maintaining a low memory footprint becomes increasingly important to achieve better
performance.

One major limitation of the existing parallel implementation in STEPS comes from the mesh data architecture inherited
from the serial solution. While bridging the gap between serial and parallel STEPS and making many non-parallel
components reusable, the serial nature of the design requires the complete data of the whole mesh and the molecule
state of each mesh element to be stored in every computing core. This poses a hard limit on the maximum model
size determined by the per-core memory availability, the model complexity, and the mesh size. Thanks to the support
from the parallel solver, realistic simulations with a large number of chemical reactions for a great period of biological
time can now be accomplished in a reasonable computing time. However, this in turn raises research interests in even
more complicated models and more realistic morphologies, reaching the limits of the implementation. The memory
constraints in modern HPC systems further amplify such limitations.

The solution to this issue is a new parallel implementation constructed on the foundation of a sophisticated distributed
mesh library, Omega_h (Ibanez and Roberts, 2018). Thanks to the distributed nature of the mesh library and the
redesigns of other STEPS components, our new implementation dramatically reduces the memory footprint of the
simulation while maintaining similar or better performance and scalability. This enables super-large scale simulations
that were impossible with previous implementations due to hardware constraints.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

1.3 Naming conventions and the structure of the article

To avoid confusion, we will hereby call the non-parallel, spatial STEPS solver "serial STEPS", the existing parallel
implementation reported in Chen and De Schutter (2017) as "STEPS 3", and the new parallel implementation supported
by Omega_h that we introduce in this paper as "STEPS 4". Note that serial STEPS, STEPS 3 and STEPS 4 are all
integrated solutions of the STEPS 4.0 release, and the users are free to choose any of them for their simulations based
on the research requirements.

In the Methods section, we first describe our design principles and the implementation details of STEPS 4, and
then introduce some software engineering techniques applied to the overall STEPS project for maintainability and
efficiency improvements, which may be interesting to colleagues in the fields of computational neuroscience modeling
or scientific software development. In the Results section, we present the validations of the implementation with a
series of well-established models, followed by performance and scalability analysis of results. In Discussion, we further
discuss the achievements, limitations and potential solutions of this study, as well as the future development plans for
STEPS 4 and the STEPS project in general.

2 Methods

The STEPS development project follows three major methodological principles. First, it aims towards the researchers.
A successful simulator should provide a friendly modeling interface and significantly reduces the need for manual
coding efforts. Second, it focuses on improving performance. Because fundamentally, whether a simulator is a suitable
option for a research project greatly depends on if the simulations can complete within the expected research time
frame. Third, it aims to be future-proof. Since the first public release, the STEPS project has more than ten years
of history. Over the years, many new standards and solutions in programming and software engineering have been
established and become the new standard in software development. Some of them have been adopted in previous
STEPS development, but more work is still required to ensure that the software development infrastructure is ready for
future project expansions. The following sections detail how these principles are practically applied in the project.

2.1 API improvements for a user-friendly modeling environment

The field of computational neuroscience is recognized as very multi-disciplinary in nature, bringing researchers together
from a wide variety of backgrounds such as biology, computer science and physics, and so STEPS has always been
designed with a focus on supporting researchers from different backgrounds and with different levels of computational
expertise. In addition, designing, running, and analyzing a spatial molecular model is a complex task that is far better
suited to a scripting language such as Python as opposed to a standalone C++ application. Although it is known that
such detailed molecular models are computationally expensive, it is important for the user that the software is fast
and efficient, which is best achieved with a C++ backend. So very early on in STEPS’ development, it was decided
to combine a scripting interface in Python through which the user interacts with the software and can build detailed
spatial models, but with computations carried out in C++ for speed and efficiency (Wils and De Schutter, 2009). Of the
scripting languages, Python was chosen due to its maturity and increasing user-base among the computational biology
community, with many software packages in the field now providing a Python interface.

When designing an Application Programming Interface (API), software developers frequently must deal with trade-offs
between efficiency, flexibility, and complexity. In such cases, decisions should be made based on the user expectations
of the application. Since its first release, STEPS provides a Python-based API that covers extensive details of the entire
simulation space with different resolutions. This gives the users extremely flexible control over the simulation according
to their research needs, although it also increases the complexity of modeling and sometimes also with the cost of
simulation efficiency. One good example is the task of acquiring the count of a given molecule species in the simulation.
In STEPS, this value can be returned as a single global count, similar to the result in a traditional biochemical simulation
under well-mixed conditions. Alternatively, it can also be returned as a distribution over a collection of Regions Of
Interest (ROIs) predefined by the modeler. Furthermore, it is possible to increase the spatial resolution up to elemental
scale, i.e., iterate over all tetrahedral sub-volumes of the mesh and acquire the individual molecule counts of each
sub-volume using elemental-based data access functions. However, every Python call to the C++ kernel incurs a
substantial performance overhead, which can add up to a bottleneck if the call is iterated on a massive number of mesh
elements. Such operations may be even more costly under STEPS 4 as global synchronization of data may be needed.
In order to reduce the overhead, batch access functions were introduced to assist element-iterative data queries of this
type.

In previous STEPS releases, the choices of the above functions were purely decided by the modeler, thus the same
functionality may differ between models, and sometimes with significant differences in terms of performance. In

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

STEPS 3.6, a new set of API, named API2, has been introduced. API2 provides encapsulations and abstractions of
previous APIs, thus reducing the programming workload for STEPS users and allowing them to better focus on model
development. In this work, we have further developed this new API to suit the distributed mesh nature in STEPS 4. At
the same time, we ensure that Python scripts written for previous STEPS versions are still entirely compatible with the
new release without any modification. Users are encouraged to use API2 for future model developments as the old API
system will be progressively deprecated in future releases.

In order to use the new API system, users need to import steps.interface before any other STEPS python imports.
There is no tool to fully convert a script, which uses the previous API, to the new one. While some parts of models
like reaction and diffusion rule declarations could be converted automatically to some extent, data querying and saving
is done in a substantially different way with the new API and thus does not lend itself well to automatic conversion.
Most notably, in API2, users do not explicitly call specific data querying methods during the simulation. Instead, the
data to be saved is specified beforehand and STEPS dynamically decides which internal methods should be called,
depending on which methods are available with the solver being used. Saving to files is now also done by STEPS
internally, allowing the user to only focus on which data needs to be saved instead of on how to save it. Finally, although
it is beyond the scope of this paper, API2 introduces some concepts from rule-based modeling (Chylek et al., 2013)
that allow the specification of multi-state complexes. For some biochemical models, this can considerably reduce the
number of chemical reactions that the modeler needs to declare. As with the automatic saving changes, this new feature
does not lend itself well to automatic conversion. Code examples about API2 and comparison to the original API are
provided as supplementary material (S1).

2.2 Code modernization and future-proofing

Although STEPS introduced many new features and additions in the following years since its first release in 2012 the
core coding components and style remained relatively unchanged. With this in mind, in this work we have implemented
various far-reaching changes in STEPS in general and adopted modern software design principles to STEPS 4 in
particular. All these changes have the aim to reduce bugs, improve maintainability and usability of the code and increase
the performance of time-critical data structures and routines.

First, we have adopted the C++17 standard for STEPS. This allowed us to take advantage of modern programming
language features, increasing code expressiveness and compactness through meta-programming techniques such as
SFINAE (Substitution Failure Is Not An Error). We have also removed raw-pointers in favor of references and other
safer data-passing and access strategies provided by the C++ standard and the GSL Guidelines Standard Library.
Second, we have reduced code branching and indirections using meta-programming techniques, which streamline
code execution. Third, when choosing container data structures we avoid C++ standard template library associative
containers, which are known to be very inefficient in terms of memory management and performance. Instead, we
have designed a new optimized data structure, named flat-multimap, which is designed to provide an associative
container stored in contiguous arrays, increasing data locality and thus increasing performance.

With the increased complexity of a software, there is a growing concern about introducing bugs in the code that remain
undetected. In the best case, these bugs will lead to crashes during runtime. In the worst case, they may silently
introduce erroneous results and non-reproducible behavior. Although STEPS runs an extensive validation set to try and
ensure this doesn’t happen, it is difficult to make sure that every base is covered by such efforts. In an attempt to address
this issue at least partially, we introduced C++ vocabulary types meant to indicate the compiler the different entities
used in a STEPS simulation (e.g. species, membrane, channel, patch, etc., but also tetrahedron, triangle,
etc.). For instance, vocabulary types can improve functions like below:

void process_local_tetrahedron(int index);

In the signature of this function, most of the information about the parameter is carried by the variable name and
function name, which the compiler cannot use. For the compiler, process_element is only a function that takes a
32 bits integer in parameter. For the developer, this integer is an index of a tetrahedron, local to the current process.
Vocabulary types allow us to transfer information traditionally held by the name of the symbols to the typing system by
rewriting the signature of the function like this:

void process(local_tetrahedron_id entity);

Thus, the compiler is now able to report an issue when the index of one type is erroneously passed to a function
expecting another type.

Furthermore, by ensuring the code compiles with GCC, clang, AppleClang and Intel OneAPI, we ensure that language
and system compatibility is maintained, further increasing code safety. Numerous compilation flags have been added
into our build system, which allow us to spot and fix potential issues in the code early in the development process. We

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

have also moved to a more module build design where features can be enabled via build configuration flags, which also
benefits overall software architecture.

Last but not least, we have taken a number of steps to improve software sustainability beyond code modernization. To
improve developer confidence and bug detection we have added continuous integration (CI) pipelines into the review
process. Proposed patches are automatically built and tested before they can be merged into the development trunk.
We have also created a STEPS package for the Spack (Gamblin et al., 2015) package manager. This not only adds a
software distribution channel for HPC systems but also provides the developers with a comprehensive build environment
that allows them to conveniently test STEPS with various dependency versions and build options. The choice of the
underlying libraries (cf. section 2.3.2) plays an important role in ensuring that STEPS remains well maintainable, and
easily extensible towards new features and use-cases while continuing to support the latest hardware architectures and
parallel programming paradigms.

2.3 Implementing a parallel solver with distributed mesh backend

2.3.1 Implementation criteria

To be able to make informed choices about the STEPS 4 implementation, we set early in the development a number
of criteria by which to make decisions. Clearly the first and most important criterion is simulation runtime. The
goal of the STEPS 4 implementation is to develop a new efficient solution for large-scale modeling with complex
geometries. From a user’s perspective, the most straightforward and important concern is time-to-solution, how fast a
simulation reaches a desired stopping time. For parallel simulations, another important concern is scalability. In high
performance computing, parallel scalability is commonly described by two notions, strong scaling and weak scaling.
The former describes runtime performance at increasing number of cores and a fixed problem size, while the latter
scales the problem size with the number of cores. In practice, the problem size of a STEPS production simulation
is often determined by the source materials. Thus, we focus on strong scaling as our parallel performance criterion.
STEPS 4 is designed mainly for simulations that run on high performance computing clusters. As mentioned previously,
one key characteristic of modern clusters is the large amount of computing cores together with the limited amount of
per-core memory, thus memory footprint management is essential to support large scale simulations. We regard it as
our third implementation criteria.

These criteria often affect each other in a simulation. For instance, the reduction of memory footprint could substantially
improve the efficiency of memory caching, and further improve scalability. Therefore, we do not focus on individual
criterion, but consider them as a whole when making implementation decisions.

2.3.2 Prototyping STEPS 4

Choosing the distributed mesh library with the most suitable abstractions and best performance properties is vital
for the success of STEPS 4. This library is the backbone of the whole implementation, providing fundamental data
layout and access functionalities, which tightly associates with the criteria discussed above. Besides performance
considerations, from a developer’s perspective, the mesh library should also provide a rich and extendable API that
can be connected with other STEPS components with ease. Furthermore, while STEPS 4 mainly targets CPUs, the
algorithms themselves could in principle be implemented on other hardware architectures and the right abstraction layer
should allow a relatively smooth transition towards supporting shared-memory parallelism or GPUs.

To investigate the advantages and drawbacks of different distributed mesh libraries, we used them to implement a series
of stand-alone mini-applications to cover a wide range of STEPS functionalities, from simple mesh importing and
exporting in a distributed manner, to a functional reaction-diffusion solution integrated with various validations and use
case models. These mini-applications were gathered in a library named Zee. Using the Zee library we were able to
investigate how different components of STEPS, for example, the operator splitting method, can be implemented on
top of different distributed mesh libraries, and to investigate the coding flexibility as well as the performance of our
implementations. These investigations provided us essential insight for the choice of a suitable distributed mesh library
for STEPS 4, and prototypes for the actual implementation.

We put our evaluation focus on two distributed mesh library candidates, Omega_h (Ibanez and Roberts, 2018) and the
DMPlex module from the PETSc library (Abhyankar et al., 2018). Both libraries provide very well-suited features and
showed promising performance. The choice for the library, however, also depends on factors beyond pure technical
considerations. On the one hand, PETSc seemed a natural choice since STEPS 3’s parallel EField solver already uses
PETSc as a backend. Choosing PETSc’s DMPlex would eliminate the need for an extra library, as well as the associated
data conversions and transfers between libraries. Additionally, PETSc is an extremely well-known and supported
library with a large active community. On the other hand, DMPlex is a minor component in the PETSc framework,
supported only by few developers and with a small user community. Since the Zee mini-applications revealed that not

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

all functionalities required in STEPS 4 are currently present in DMPlex, and some of which have considerably low
priority on the PETSc development roadmap, our choice had to fall on Omega_h.

Omega_h is a C++14 library providing highly-scalable distributed adaptive meshing primitives. Distributed-memory
parallelism is natively supported through MPI, while on-node shared-memory parallelism is supported via Kokkos
(Trott et al., 2022), a C++ library that provides abstractions for parallel execution with OpenMP on CPU and CUDA
on GPU. Omega_h ensures a fully deterministic execution. Given the same mesh, global numbering and size field,
mesh operations produce the exact same results regardless of parallel partitioning and ordering. This does, however, not
extend to changing compilers or hardware. Omega_h is being actively developed and is used for a number of ongoing
projects. Moreover, its codebase being much smaller than PETSc, it allowed us to have a comprehensive overview of
its capabilities. Despite the lack of documentation, the source code is concise and self-explanatory. Contributing to
Omega_h has been much easier than it would have been with PETSc. We were for instance able to add support to the
MSH multi-part file format version 4 into Omega_h quite easily.

Omega_h’s modern C++ interface was a significant advantage over PETSc as its ease of use allowed us to implement
compact yet expressive mini-applications very quickly. We found that the C-oriented API of PETSc makes the library
hard to comprehend and is much more error prone than Omega_h’s. Additionally, the data management policies of
DMPlex are quite complex and require a deep knowledge of PETSc internals as entity data is not directly exposed to
the user as it is in Omega_h. This leads to the code being more cluttered and difficult to maintain.

2.3.3 Solver components and the simulation core loop

Fundamentally, STEPS 4 adopts the same operator splitting solution for reaction-diffusion simulation as in STEPS 3
(Hepburn et al., 2016), but with significant differences in the implementation details due to its distributed nature and
other optimization goals.

In STEPS 3, the data and operators are intermixed in the solver, and data that are associated may be stored sparsely due
to the data structures inherited from previous STEPS implementations. For instance, the molecule state of a tetrahedron
and the states of its neighboring tetrahedrons may be stored far away from each other in memory. This is because
the molecule state is stored sparsely in individual tetrahedrons together with other data such as mesh connectivity
and kinetic processes. This means operator visits to the molecule state often require significant address jumps across
memory, decreasing cache efficiency. The bundle of operators and data also make their optimization cumbersome, as
new operator solutions or new data structures can not be implemented directly as independent alternatives.

In STEPS 4 one critical implementation change is the separation and encapsulation of different solver components. The
two major components are: SimulationData, the data that represents the current state of the simulation, and the operator
collection, which are applied to the data so that the simulation evolves to the next state. The simulation state consists
of the molecule state M , where the distribution of molecule species is stored and updated, the kinetic process state
K, which stores and maintains all kinetic processes such as reactions and surface reactions in the simulation and the
information of each kinetic process, including the propensity and update dependencies, and finally the voltage state V
of the mesh if voltage-dependent surface reactions and channels are expressed in the model. The voltage state contains
the electrical potential at each vertex of the mesh, as described in Hepburn et al. (2013). The operator collection consists
of the operators needed for each step of the simulation core loop, mainly, the reaction SSA operator, the diffusion
operator and the PETSc EField operator. As the state data is encapsulated and accessed by operators via a unified
interface, new operators can be easily developed and provided to the solver as alternative solutions. The encapsulation
of simulation states M , K and V also allows the state data to be stored contiguously in memory space, thus improving
caching efficiency of the solution.

As mentioned in Introduction, while the kinetic processes and their dependency graphs are partitioned and distributed
among computing cores in STEPS 3, all mesh elements and their molecule states are duplicated, leading to high memory
consumption and communication overhead when dealing with large scale models. In STEPS 4, the mesh itself is
partitioned and distributed, thus each computing core only operates on the data for the sub-domain problem of its
associated partition. Ghost layers were implemented for partition boundaries so that simulation states of the boundaries
can be synchronized through regular data exchange. This solution ensures a relatively consistent memory footprint for
any given sub-domain problem with a fixed partition size, regardless of the size of the overall problem.

Figure 1 schematically illustrates the simulation core loop. When the simulation enters the core loop that advances the
simulation state from time Tstart to Tend = Tstart + ∆T , the simulation period is divided into multiple time windows,
whose period is either determined by a user-defined EField period ∆TEField if the EField operator is involved, or
equals ∆T otherwise. We call this the EField time window. Each EField time window is then further subdivided by a
period of ∆TRD, where ∆TRD is determined by the mesh and the diffusion constants of the simulated model. This is
the reaction-diffusion (RD) time window.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

Tstart Tend

ΔTEField
ΔTRD

Δt

Run(Tend)

While t < Tend

Run_EF(t + ΔTEField)

Run_EF(TEFend)

While t < TEFend

Run_RD(t + ΔTRD)

EField Operator

Run_RD(TRDend)

SSA Operator

Diffusion Operator

While t < TRDend
Select Δt and kp

Apply kp

Update propensities

t += Δt

SSA Operator

Compute ΔM

Synchronize ΔM

Apply ΔM

Update propensities

Diffusion OperatorModified SimulationData
: Molecule StateM

: Kinetic Process StateK

: Voltage StateV

M

K

M

K

MPI Communication

V
At t == TRDend:

Figure 1: Schematic representation of the STEPS 4 simulation core loop. In this example, when running the simulation
from Tstart to Tend, the simulation time is first split into ∆TEField time windows (blue ticks). Each ∆TEField time
window is further subdivided into ∆TRD time windows (red ticks). Kinetic process events are represented as green
ticks, their number in each time window depends on the propensities of the reactions. Current state time is denoted t.
The leftmost Run(Tend) box is the entry point into the core loop, it splits the time in ∆TEField time windows. The
second box (Run_EF(TEFend)) runs a full EField time step until TEFend, the end-time that was passed form the first
loop. It first subdivides the EField time window in ∆TRD time windows and calls Run_RD for each one. When state
time t reaches TEFend, it runs the EField operator. The third box (Run_RD(TRDend)) represents one RD time window, it
is composed of the SSA operator and the diffusion operator. The SSA operator first selects and applies kinetic processes
until the state time reaches TRDend; it’s in this loop that the state time is updated. The diffusion operator is then applied:
it computes the changes ∆M to the molecule state and applies them. Each of these steps can involve the modification of
the simulation data. When it does, a letter with a colored background is present to its right. The letter M with an orange
background signifies that this operation modifies the molecule state; the letter K with a yellow background signifies
that it modifies the kinetic process state; and the letter V on a purple background signifies that it modifies the voltage
state. Finally, steps with a darker background and a dashed outline involve MPI communication between processes.

At the beginning of each RD time window, the reaction SSA operator is applied to the simulation data repeatedly.
Each time, the SSA operator first randomly selects a kinetic process event kp from the kinetic process state K and the
event time ∆t according to the SSA solution described by the operator and the propensities of the kinetic processes. It
then applies the molecule changes caused by the event to the molecule state M , updates the propensities of all kinetic
processes that depend on kp in K, and advances the simulation state time for ∆t. The SSA iteration stops when the
state time reaches the end of the RD time window. As explained in (Hepburn et al., 2016) and (Chen and De Schutter,
2017), the SSA operator is executed independently by each MPI rank without the need for any communication.

At the end of the the RD time window, the diffusion operator computes the number of molecules that should diffuse
out of each tetrahedron for the time window period ∆TRD. For this calculation the diffusion rates of each diffusive
molecule species must be taken into account. The operator then removes them from their original tetrahedrons and
redistributes them to their target tetrahedrons. The redistribution is stored in a delta molecule state ∆M , which is then
synchronized by Omega_h across all simulation ranks. After the synchronization, each rank applies the changes in ∆M
to M for the tetrahedrons it owns, and updates the propensities that are affected by the changes. This completes the
operations in a single RD time window.

The solver then repeats this process until the state time reaches the end of the EField time window, at which point the
EField operator evolves the voltage state V for the period of ∆TEField, based on the electric currents computed from
M and K. This concludes the operations in a EField time window.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

If ∆TEField < ∆T the EField time window process is repeated, otherwise the simulation core loop is completed and
the user regains the simulation control for data inquiry.

2.3.4 Optimization on kinetic process dependency graph

Efforts have been made to also improve the fundamental solution of the SSA operator, specifically on the optimization
of the kinetic process dependency graph. A kinetic process dependency graph describes the update dependency of each
kinetic process in the system. Technically, it returns a list of kinetic processes, whose propensities should be updated
when a certain kinetic process is selected and applied by the SSA operator. Under the operator splitting framework, the
reactions in each tetrahedron are independent until the diffusion operator is applied. Therefore it is possible to subdivide
the dependency graph into independent subgraphs and apply the SSA operator to them separately. This independent
graph optimization further compresses the targeting domain of the SSA operator, providing potentially substantial gains
in simulation performance.

An example of the optimization for a small model is depicted on Figure 2. This model has two tetrahedrons, each
with three volume reactions. One tetrahedron also contains four surface reactions. Each colored node in the figure
represents a kinetic process. An arrows goes from one node to the other if the occurrence of an event of the first entails
a change in propensity of the second. The whole dependency graph of the model can therefore be subdivided into two
independent subgraphs, in red and blue as shown in the figure. Each subgraph can be evolved freely by a SSA operator
without the other’s interference in a RD time window period. Note that the effect of this optimization depends on the
duration of the RD time window period, as well as the rates of the reactions. Generally speaking, this optimization
favors simulations with high molecule concentrations and highly active reactions, but disfavors simulations with low
molecule concentrations and less active reactions.

Tri0
C

A

BC

A

BC

Tet0 Tet1

ATet1 BTet1

Reaction

BTet1 CTet1

Reaction

CTet1 ATet1

Reaction

ATet0 BTet0

Reaction

BTet0 CTet0

Reaction

CTet0 ATet0

Reaction

CTet0 CTri0

Surface Reaction

CTri0 CTet0

Surface Reaction

CTet0

GHK Surf. Reaction

CTet0

GHK Surf. Reaction

Figure 2: Structure of the reaction dependencies graph on a mesh with two connected tetrahedron labeled 0 and 1. The
top right part of the figure represents the two tetrahedron and the reactions they contain. Both tetrahedrons contain
reactions A→ B, B → C and C → A. Tetrahedron 0 also contains four surface reactions: species C can be transferred
back and forth to a triangle (Ctet → Ctri and Ctri → Ctet); and species C can cross the membrane back and forth as a
GHK current (since the amount of C outside of tetrahedron 0 is not modeled, it is equivalent to creating and removing
species C). In the main figure, each colored node represents a kinetic process. An arrows goes from one node to the
other if the occurrence of an event of the first entails a change in propensity of the second. In blue and red are the
extracted connected components of the graph.

2.3.5 EField solver improvements

Generally, in order to obtain the most accurate results and the best performance, solver and preconditioner need to be
tailored to the particular simulation. Previously STEPS 3 used by default the Conjugate Gradient iterative solver (CG)

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

and the Geometric Algebraic Multigrid (AMG) preconditioner. However, performance tests have consistently shown
that they do not scale well for large problems. Thus, for STEPS 4 we replaced solver and preconditioner with the widely
used Pipelined Conjugate Gradient method (KSPPIPECG) and the Point Block Jacobi preconditioner (PCPBJACOBI),
respectively. The same configuration was also applied to STEPS 3 as the new default option. We have not performed a
thorough investigation on solvers and preconditioners as it was out of the scope of the present manuscript.

Another improvement is the distribution of PETSc vectors and matrices for the EField computation. STEPS 3 distributes
them equally among computing cores without considering if the mesh elements represented by the matrix partition are
owned by the same core. This causes owner mismatches between the EField solution data and the reaction-diffusion
solution data, which need to be resolved by expensive cross process data exchanges. In order to avoid this issue, STEPS
4 assembles the vectors and matrices so that each processor only takes care of the degrees of freedom corresponding to
the sub-part of the mesh that is owned locally on this processor. This greatly increases data locality and performances
since reaction-diffusion and the EField solvers exchange data only locally.

2.3.6 Mesh generation, partition and annotation

Due to the distributed nature of STEPS 4, a new mesh importing, partitioning and annotation solution has been added,
supported by the Omega_h and Gmsh (Geuzaine and Remacle, 2009) libraries. Currently it supports importing Gmsh
.msh meshes, with or without pre-partitioning. If the mesh is not pre-partitioned, the Omega_h backend in STEPS
4 performs a recursive bisection partitioning on the mesh at MPI rank 0, then distributes each mesh partition to the
owner rank. If the mesh is pre-partitioned in Gmsh, each rank imports its associated partition directly from the file and
then establishes the connectivity to other processes. In both cases, the number of MPI processes used in a STEPS 4
simulation should always be a power of 2. It is also worth mentioning that the two solutions apply different partitioning
schemes, which may affect simulation performance drastically depending on the mesh morphology.

Another significant change on mesh preparation is the annotation of physical entities of the mesh such as "compartments"
representing volumetric regions such as the cytosol and extracellular space, and "patches" representing surface regions
such as the cell membrane and intracellular membranes. In STEPS 3, the user provides a list of tetrahedron/triangle
indices to create a compartment/patch of the mesh. The index lists are either generated on the fly during the simulation,
or generated in advance, stored externally then provided to the simulation. The user is expected to take full responsibility
of the generation and maintenance of these lists. In STEPS 4, the annotation of compartment/patch is embedded into
the mesh file itself by utilizing the physical tag functionality in Gmsh. As a general procedure, the user can create
physical entities on the mesh using the Gmsh application and provide a string as the physical tag for each of the entities.
These string tags can then be used as identifiers to create the compartments and patches in STEPS 4. If the anticipated
boundaries of the compartments/patches are irregular, but can be described by a combination of enclosed polyhedral
surfaces, then the user can also utilize the gmsh backend implementation of the PolyhedronROI1 utility to embed the
physical tags into associated mesh elements.

2.3.7 Coupling with other STEPS components

Setting up a simulation in STEPS 4 is mostly done in the same way as in STEPS 3: it involves the declaration of a
biochemical model and a description of the geometry in which the model will be simulated. The biochemical model is
composed of species, channels, reactions, diffusion rules and currents that are grouped by volume or surface systems.
Although most of the biochemical modeling features available in STEPS 3 are also available in STEPS 4, surface
diffusion rules are not yet supported. Internally, the same classes are used for declaring a biochemical model in STEPS
3 and in STEPS 4. While in STEPS 3, tetrahedral meshes were managed with the TetMesh class, a different class
(DistMesh) was added for distributed meshes in STEPS 4. This class inherits from the same Geom base class as
TetMesh but acts as a wrapper around the Omega_h::Mesh distributed mesh class. Classes related to the declaration of
compartments (DistComp), patches (DistPatch) and membranes (DistMemb) in a distributed mesh are also different
from the ones used in STEPS 3. Most notably, as explained in the previous section, while tetrahedral compartments
in STEPS 3 are usually built from a list of tetrahedron identifiers, STEPS 4 makes use of physical tags in distributed
meshes to create distributed compartment and distributed patches. On solver creation, the DistTetOpSplit distributed
solver class in STEPS 4 initializes the relevant data structures from the biochemical model and geometry description
classes. Although this type of initialization through the python API corresponds to the most frequent use case, the
distributed solver can also be used and initialized directly in C++, without requiring the creation of a STEPS biochemical
model and geometry classes.

1https://github.com/CNS-OIST/STEPS_PolyhedronROI

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://github.com/CNS-OIST/STEPS_PolyhedronROI
https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

2.3.8 Python API changes due to the distributed nature

As described above, the main difference between a serial or parallel model and a distributed model consists in the
declaration of compartments and patches. In order to use the DistTetOpSplit solver in STEPS 4, one must first
create an instance of the DistMesh class. Compartments and patches are then usually created by using physical tags
in the mesh: the tetrahedrons/triangles tagged with the name of the compartment/patch will be used to build it. The
following example shows the creation of a compartment and a patch in a distributed mesh:

mdl = Model()
with mdl:

Declaration of the biochemical model, unchanged
...

mesh = DistMesh('path/to/mesh')
with mesh:

Create a compartment from tetrahedrons tagged with "comp1"
comp1 = Compartment.Create()
Create a patch from triangles tagged with "patch1" with inner compartment comp1
patch1 = Patch.Create(comp1, None)
...

...
Create the simulation and use the 'DistTetOpSplit' solver
sim = Simulation('DistTetOpSplit', mdl, mesh, rng)

Note that it is also possible to use lists of tetrahedrons to create a compartment. In that case, the compartments and
patches creation code is identical to STEPS 3. Finally, automatic data saving code is unchanged. Detailed documentation
is available2.

2.4 Validation strategy

In order to ensure accurate results, STEPS 4 is validated on a series of published models. The faster validations are
integrated into the STEPS release and used in continuous integration while the others are available in the STEPS
validation repository 3. However, since these models are stochastic models that are designed to run in a reasonable
amount of time, they each contain a small tolerance that could mask minor numerical inaccuracies. So as to rigorously
test our new methods and implementations in STEPS 4 and ensure even no small loss of numerical accuracy, we go
further in this manuscript and investigate STEPS 4 in a series of models, comparing either to STEPS 3 results or
analytical solutions to a high degree of accuracy.

Validating stochastic simulation solutions has always been a difficult challenge. Often, analytical solutions exist only
for a few trivial problems and, even in those cases, the stochastic nature of the simulator may make results fluctuate
around the analytical solution depending on the particular seed provided to the random number generator (RNG).
Unfortunately, fixing the seeds and numerically comparing STEPS 3 and 4 results is not a meaningful strategy since the
two simulators use RNG streams in different ways. Thus, we validate STEPS 4 in a statistical sense.

2.4.1 Statistical analysis

We extract meaningful statistical data from multiple realizations with different RNG seeds and compare either with
STEPS 3 results or the analytical solution when available.

The general steps are:

• Record relevant trace results such as the voltage traces in a particular location in the mesh from multiple
realizations of STEPS 3 and 4 simulations.

• Refine traces to extract key features of the simulation. E.g. the frequency of a spike train.

• Collect refined features among the various simulation runs and statistically compare STEPS 3 and 4.

The choice of what must be recorded and what are the relevant features depends on the particular model at hand.

We choose the well-known two independent samples Kolmogorov-Smirnov test (KS test) for our statistical comparisons
between STEPS 3 and STEPS 4, utilizing the Scientific Python (SciPy) library. The null hypothesis in our KS tests is

2http://steps.sourceforge.net/manual/manual_index.html
3https://github.com/CNS-OIST/STEPS_Validation

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

http://steps.sourceforge.net/manual/manual_index.html
https://github.com/CNS-OIST/STEPS_Validation
https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

that the two samples come from the same distribution. Perhaps a common misconception of this test is that a p-value
below 0.05 means that the null hypothesis must be rejected and, therefore, the distributions are different. In fact, when
comparing two identical distributions the p-value is expected to be uniformly distributed on [0,1], and so if this test
is repeated many times one would expect to see a p-value below 0.05 5% of the time. In our tests, where multiple
distributions are compared within one model, we reject the null hypothesis only if there is strong evidence that p-values
are consistently low, evidenced by significantly more than 5% of the p-values generated being below the 0.05 level.

Conversely, when traces are relatively smooth and the features are few, we study directly the confidence intervals at the
customary 95% confidence level. In this case, we reject the null hypothesis if the mean of the STEPS 3 traces does not
lie in the confidence interval of the STEPS 4 traces or vice versa.

3 Results

3.1 Validations

As STEPS 4 contains multiple operator components targeting different sub-systems, such as molecular reaction-
diffusion and EField, we carefully select the models and independently validate each component before testing the
whole implementation on a complex, real case scenario.

3.1.1 Validations of the reaction-diffusion solver

We extend the validation pack described in Hepburn et al. (2012) and Hepburn et al. (2016) to validate the reaction-
diffusion solver and the basic functionalities of other data structures introduced in the new code implementation.
STEPS 4 passes all of them. For the sake of brevity and since the reaction-diffusion operator splitting solution remains
theoretically the same as in STEPS 3, we hereby skip the detailed analysis of these validations.

3.1.2 Validations of the EField solver

To validate the EField solver we use the Rallpack models described in Bhalla et al. (1992).

• Rallpack 1 simulates a simple uniform unbranched passive cable. Since no randomness is involved in this
validation, STEPS 4 results are compared directly to the analytic solution.

• Rallpack 2 model is superfluous and can be skipped here as it is the same model as Rallpack 1 but with
a branching morphology. This mathematical morphological description is also in practice very difficult to
capture realistically in a mesh.

• Rallpack 3 examines the interaction between the EField system and the stochastic channel activities of the
well-known Hodgkin-Huxley model (Hodgkin and Huxley, 1952). No analytical solution is available for
this test, thus we compare STEPS 3 and 4 solutions using the statistical validation framework illustrated in
Statistical analysis.

Rallpack 1 Rallpack 1 (Bhalla et al., 1992) focuses on the validation of the EField solver and is one of the most basic
examples one can think of. It consists of a leaking, sealed straight cable with a current injection (J) at zmin. For the
sake of brevity, Rallpack 1 setup is depicted in Figure 3 (A). Table 1 provides the parameters.

Without loss of generality, we can focus on the voltage traces at the extremes of the cable because the equations are
linear and all the intermediate solutions are super-positions of the results at the extremities.

Since this simple problem presents an analytical solution and no source of randomness, it is the perfect candidate to
benchmark the STEPS 4 EField solver passive properties. A leak channel is introduced on every surface triangle. This
is slightly different from the analytical solution setup where the leak is uniformly distributed along the cable. However,
the effects should be negligible if the mesh is sufficiently refined.

Figure 3 visually compares STEPS 4 results with the analytic solution. As expected, the curves overlap and the mean
square errors (mse) mseVzmin

= 2.515 · 10−8 and mseVzmax
= 1.087 · 10−12 are quite small compared to the traces.

It is interesting to note that STEPS 3 presents almost exactly the same results. In fact, when comparing STEPS 3 with
STEPS 4 on the same mesh, the mse is 1e− 18 for both Vzmin

and Vzmax
and is due to numerical precision.

Convergence through mesh refinement proceeds as expected with an initial steep drop followed by a plateau at numerical
precision. For the sake of brevity, it is left in the Supplementary Material Section S1.1.1.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

Table 1: Parameters for Rallpack 1.

Parameters value

Leak conductance 0.25 S/m2

Reversal potential −0.065 V
Resistance 1 Ω
Current 0.1 nA
Cable length 1 mm
Membrane capacitance 0.01 F
EField time step (∆TEField) 5 µs
Number of tetrahedrons 1135

A

B C

zmin zmax

V tapV tap

cable
J

Figure 3: (A) illustrates the general setup for Rallpack 1. (B) and (C) compare STEPS 4 voltage traces with the
analytical solution at the extremes of the cable respectively. Results overlap with mse: mseVzmin

= 2.515 · 10−8 and
Vzmax

= 1.087 · 10−12.

Rallpack 3 Rallpack 3 is an active model that builds on Rallpack 1 by adding Hodgkin-Huxley sodium and potassium
channels, and is simulated on the same simple, uniform, unbranched cable geometry. The model tests ion channel
activation as well as spike propagation. As for Rallpack 1, voltage is recorded and analyzed at the two ends of the cable
and referred to as Vzmin

and Vzmax
. Differently from Rallpack 1, Rallpack 3 presents sources of randomness and the

problem cannot be solved analytically. A statistical analysis is employed to study this simulation and validate the code.

The two sample sets consist each of 1000 simulation runs performed with STEPS 3 and 4 respectively. As for Rallpack
1, we record voltages at the extremes of the cable (Vzmin

Vzmax
) (the raw traces). Figure 4 illustrates two realizations of

the model.

The voltage trace at zmin presents a higher peak at ~0.04 V followed by a constant spike train which just surpasses
0.02 V. Conversely, the spike train at zmax has no bigger spike at the beginning (in fact the opposite is true: the first
spike is slightly smaller than the others) and their values is above 0.04 V. For both traces valleys are at ~-0.065 V and
frequencies are ~69 Hz. Over the total simulation time of 0.25 s, usually, 17 peaks appear. However, sometimes a peak
or two can be skipped due to failed spikes as illustrated by the second row of results in Figure 4. It is interesting to note
that this behavior can occur only with a stochastic simulator.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

A B

C D

Figure 4: The panels present the traces at zmin and zmax for two different realizations of the simulation with STEPS 3.
Panels (A) and (B) illustrate a run where peaks are present. Conversely, the panels (C) and (D) present a run with a
failed spike and thus a skipped peak. The simulated time span is 0.25 s. At zmin a higher peak (~0.04 V) is followed
by a constant spike train while at zmax spikes result all similar to each other and have the same height as the first,
bigger peak at zmin. Valleys are at ~-0.065 V and the spike frequency is ~69 Hz. Since Rallpack 3 is run on a simple
conducting cable, the frequency is the same at both ends.

Given that traces are spike trains with, possibly, a single greater initial peak, the key features extracted and statistically
analyzed are:

• peak height;

• peak timestamps;

• the most relevant frequency peak, extracted using the Fast Fourier Transform (FFT);

• number of peaks.

The null hypothesis is that STEPS 3 and 4 simulation results come from the same population, in other words, the
simulations are identical. We use the KS test to confute it with the customary 95% confidence level. Figure 5 depicts
the p-values and their distributions for timestamp and height for the 17 peaks on Vzmin and Vzmax . Overall, the p-values
look to be distributed uniformly on the interval [0, 1] for all the graphs. This is what we expect to see if comparing
two identical distributions, as described in Statistical analysis. Therefore, we cannot refute the null hypothesis, and we
accept that the two samples are taken from the same population.

3.1.3 Full validation

Finally, we validate the full STEPS 4 simulator with a complex scenario, which combines reaction-diffusion and EField
features and their possible interactions.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

A B

C D

Figure 5: Distribution of the 17 p-values for peak height and timestamp at Vzmin
and Vzmax

. They all present a uniform
distribution. A few peaks do not pass the usual p-value test at 0.05. That is expected since, by definition, two samples
taken from the same population, on average, do not pass the test once every 20 tests. Since their distribution is overall
uniform we refute the null hypothesis and accept that the two samples are taken from the same population.

The calcium burst model The previously published calcium burst model (Anwar et al., 2013) is selected for the full
validation. It contains most of the modeling features supported by STEPS 4, such as regular molecule reaction-diffusion
events, ligand-based channel activation and electric potential dynamics. Thus, it is the perfect candidate to validate
STEPS 4 as a whole. Minor modifications are applied to the original model in Anwar et al. (2013) in order to run on a full
dendritic mesh, as opposed to the sub-branch mesh used in previous studies. For the sake of clarity, Figure 6 illustrates
its dendritic morphology. The full dendritic mesh was created from reconstruction retrieved from NeuroMorpho.Org
(Ascoli et al., 2007), data ID: NMO_35058 (Anwar et al., 2014)4. The calcium burst model is also used to analyze the
performance of the implementation in the Performance section.

The raw traces used for this analysis are minimum and maximum voltages on smooth and spiny membranes. Figure 6
presents these traces for 100 runs of STEPS 3. After the first depolarization burst at ~0.018 ms another, smaller peak
appears at ~0.028 ms before slowly repolarizing.

As for Section 3.1.2, our null hypothesis is that the two simulators run the same simulation and results are picked from
the same population. Given the low number of peaks and the relatively small stochastic effects, we try to confute this
statement computing the confidence intervals of the averages of the traces at the typical 95% probability. By definition,
the confidence intervals mark a region where the trace average lies with 95% probability. Thus, if the average of the
traces of the STEPS 3 set does not lie in between the confidence intervals of the STEPS 4 set or vice versa we reject
the hypothesis. Figure 7 presents averages and confidence intervals of the minimum and maximum of the voltages on
smooth and spiny membranes. Confidence intervals are extremely narrow due to the regularity of the traces. Since

4http://neuromorpho.org/neuron_info.jsp?neuron_name=10-2012-02-09-001

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

http://neuromorpho.org/neuron_info.jsp?neuron_name=10-2012-02-09-001
https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

A

B C

D E

Figure 6: (A) illustrates the Purkinje dendrite mesh reconstruction for both the Calcium burst background and complete
models. The mesh consists of 853,193 tetrahedrons. Dendrite elements are further classified and annotated into two
components, representing the smooth dendrite and the spiny dendrite of a Purkinje cell. Different channel density
configuration is assigned to each component in the complete model. The remaining (B), (C), (D), and (E) are raw
traces of minimum and maximum voltages on smooth and spiny surfaces for 100 runs of STEPS 3. After the first
depolarization at ~18 ms the systems starts to behave stochastically. It also presents another, smaller peak at ~28 ms
before slow repolarizing. The spiny minimum is particularly noisy.

STEPS 4 average lies in the confidence interval of the STEPS 3 simulation set and vice versa we cannot reject the null
hypothesis and we consider STEPS 4 validated even in this complex scenario.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

A B

C D

Figure 7: The subplots present average and confidence intervals of STEPS 3 and 4 simulation sets. The traces averages
overlap almost perfectly and the confidence intervals at 95% probability are extremely narrow due to the regularity of
these results. Since the average of one set lies in the confidence intervals of the other and vice versa we cannot confute
the null hypothesis and we consider STEPS 4 validated even in this complex scenario. nt stands for Number of Tests.

3.2 Performance

We evaluated the performance of the implementation using three models with gradually increased complexity to cover
the use cases from a wide range of research interests. The first one is a simple reaction-diffusion model on a simple
cuboid mesh. In the second model, we simulate the background activities of the calcium burst model to investigate
the performance of the reaction-diffusion solution on complex Purkinje cell morphology. Finally, in the third model
we simulate the complete calcium model to study how the combined solution performs with a real world model. The
simple model and the calcium burst background model have previously been used to study performance and scalability
of the reaction-diffusion operator splitting solution in STEPS 3 (Chen and De Schutter, 2017). As the implementation
has been improved since the initial implementation, and the hardware used in the previous research is now outdated,
new simulation series of these two models are performed to acquire up-to-date results for comparison. The parallel
performance of the combined solution with the complete calcium burst model has not been reported previously. The
independent graph optimization is disabled for these simulation series to provide fair comparison between models.

3.2.1 Benchmarking Setup

All simulation benchmarks were run on the Blue Brain V (BB5) supercomputer hosted at the Swiss National Computing
Center (CSCS) in Lugano, Switzerland. A complete description of the hardware and software configuration details of
the BB5 system are provided in Table 2. All benchmarks were executed in pure MPI mode by pinning one MPI rank

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

Table 2: Hardware and Software Configurations of the Blue Brain 5 (Phase 2). Supercomputer

Hardware

System HPE SGI 8600
Compute Node (880×) 2× Intel Xeon Gold 6248 Cascadelake @2.5GHz (20 physical cores per CPU)
Memory 384GB of main memory (12× 32GB DDR4-2933 DIMMS)
Network InfiniBand EDR 100Gbps / Fat-tree topology
Accelerator GPFS/ IBM Spectrum Scale Filsystem (6.2PB)

Software

Compiler GCC C++ compiler 9.3.0
Operating System Red Hat Enterprise Linux Server 7.9
MPI HPE MPI (SGI MPT) 2.25
Python 3.8.3

Linked Libraries PETSc 3.14.1, Omega_h 9.34.6, Intel MKL 2018.3, Eigen 3.3.8,
SUNDIALS 2.7.0, mpi4py 3.1.3, NumPy 1.21.4, GMSH 4.9.0

Table 3: Species and reactions as well as the initial configuration of the simple model.
Species Diffusion Coefficient (µm2/s) Initial count

A 100 1,000
B 90 2,000
C 80 3,000
D 70 4,000
E 60 5,000
F 50 6,000
G 40 7,000
H 30 8,000
I 20 9,000
J 10 10,000

Reaction Rate Constant
A + B
 C kf : 1, 000(µM · s)−1, kb : 100s−1

C + D
 E kf : 100(µM · s)−1, kb : 10s−1

F + G
 H kf : 10(µM · s)−1, kb : 1s−1

H + I
 J kf : 1(µM · s)−1, kb : 1s−1

per core. As the number of cores used for simulation needs to be a power of 2 (see Section 2.3.6), for each series of
benchmark we first choose an initial core count as a baseline and then double the core count.

The code instrumentation for the performance measurement in STEPS is performed through an Instrumentor interface.
This is a light wrapper that allows for marking/profiling code regions of interests either by calling a start/stop method or
by C++ Resource Acquisition Is Initialization (RAII) style. Various backends are used by this interface, in particular in
this work we use Caliper 2.6 (Boehme et al., 2016), and LIKWID 5.2.0 (Treibig et al., 2010).

For each benchmark configuration, we repeat the simulation 30 times, and show the average results in the figures. The
standard deviations of the results are reported as the error bars for each data point in the figures. Per-core memory
consumption of each simulation is also measured using the psutil Python module (Rodola, 2020) and reported. The
comparisons are mainly conducted between STEPS 3 and STEPS 4. For the scalability studies, we also compare the
results with the theoretical ideal speedup scenarios. We further investigate the contribution and scaling properties
of operator components in STEPS 4, namely, the SSA operator, the diffusion operator and the EField operator, by
measuring their individual speedup as well as the proportion in the overall simulation time cost.

3.2.2 The Simple Model

We reuse the simple model in Chen and De Schutter (2017) which consists of 10 diffusing species with different initial
molecule counts within simple cuboid geometry with 13,009 tetrahedrons. These species interact with each other
through 4 different reversible reactions with different rate constants. The details of the model can be found in Table 3.
We choose 2 cores as the performance baseline and increase the core count to 211 = 2048 as the maximum. Note each
core has less than 10 tetrahedrons with this maximum, at which point it is unlikely that the simulations remain scalable.
However, the result is still interesting as it illustrates the behavior of our solution under extreme scaling scenarios.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

21 22 23 24 25 26 27 28 29 210 211

Number of Cores

0

2

4

6

8

10
W

al
l C

lo
ck

 [s
]

A

STEPS3
STEPS4

21 22 23 24 25 26 27 28 29 210 211

Number of Cores

20

40

60

80

M
em

or
y

Co
ns

um
pt

io
n

[M
B]

B

STEPS3
STEPS4

21 22 23 24 25 26 27 28 29 210 211

Number of Cores

100

101

102

103

St
ro

ng
 S

ca
lin

g
Sp

ee
du

p

C

STEPS3
STEPS4
ideal

21 22 23 24 25 26 27 28 29 210 211

Number of Cores

100

101

102

103

St
ro

ng
 S

ca
lin

g
Sp

ee
du

p

D

SSA (STEPS4)
Diffusion (STEPS4)
ideal

21 22 23 24 25 26 27 28 29 210 211

Number of Cores
0

20

40

60

80

100

Av
er

ag
e

Co
m

pu
ta

tio
na

l T
im

e
[%

]

E SSA Diffusion Other Wall Clock (STEPS4)

0

2

4

6

8

W
al

l C
lo

ck
 [s

]

Figure 8: The performance results and scalability of the simple model. (A) Both STEPS 3 and STEPS 4 implementations
demonstrate a steady decrease of time cost early on, then maintain similar time cost beyond 26 = 64 cores. (B) STEPS
4 consumes significantly less per-core memory than STEPS 3, ranging from 60% in the baseline simulation, to
approximately 30% in high core count simulations. (C) STEPS 4 achieves close-to-ideal speedup until 26 = 64 cores,
but has poor scalability afterward. Similar but slightly worse scalability can be observed for STEPS 3. (D) Component
scalability analysis of STEPS 4 suggests a linear speedup of the SSA operator. (E) Component proportion analysis of
STEPS 4. Because of the highly scalable SSA operator, the time cost of simulations with high core counts is dominated
by the diffusion operator and other non-scalable bookkeeping routines, leading to the poor overall scalability in high
core count scenarios.

Simulation results of the simple model are summarized in Figure 8. Both STEPS 3 and STEPS 4 implementations
demonstrate a steady decrease of simulation time early on until 26 = 64 cores, and maintain roughly the same time cost
for the rest of the configurations. The memory footprint improvement from STEPS 4 is significant. In the baseline

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

simulations, STEPS 4 consumes 45.6MB of memory per core, about 60% of the required memory for STEPS 3. When
simulating the model with thousands of cores, the memory consumption of STEPS 4 further decreases to about 4.5MB
per core, 10% of the baseline simulation consumption, thanks to the completely distributed nature of the solution. While
the memory footprint of STEPS 3 simulations also decreases with high core counts, the number stabilizes at 16MB, 2.6
times more than STEPS 4 requires. The strong scaling speedup for both STEPS 3 and STEPS 4 in Figure 8C suggests
that the STEPS 4 achieves close-to-ideal speedup until 26 = 64 cores, reflecting the time cost result in Figure 8A. In
fact, the SSA component further maintains a linear speedup until 29 = 512 cores according to the component scalability
analysis in Figure 8D. However, due to the high scalability, its proportion in the overall time cost reduces significantly
in high core count simulations. For these simulations, the diffusion operator and other background maintenance routines
become the two major proportions of the simulation time cost.

3.2.3 The Calcium Burst Background Model

We extend our investigation on the reaction-diffusion component with the the calcium burst background model with
complex Purkinje cell morphology as described in section 3.1.3. The voltage component of this model is removed and
only background channel reaction and diffusion is simulated. In total, the model consists of 15 molecule species, 8 of
which are diffusive, and 22 reactions. The simulated mesh consists of 853,193 tetrahedrons. To eliminate any difference
caused by partitioning, we pre-partition the mesh in Gmsh then import the partitioned mesh to the simulations, therefore
the partitioning is always the same for each benchmark configuration. We start the simulation series from 25 = 32
cores within a single node, then double the core count each time until the maximum of 512 nodes with 214 = 16384
cores is reached.

Figure 9 presents the key results of the simulation series. In general, STEPS 4 performs slightly worse than STEPS 3 in
low core count configurations, but eventually achieves similar performance as the core count increases. This is because
currently STEPS 4 implements the widely accepted Gibson and Bruck (Gibson and Bruck, 2000) next reaction method
as the default SSA operator. This method provides logarithmic computational complexity with simple data structures
that we find suitable for the distributed solution. On the other hand, STEPS 3 inherits the serial implementation of
the Composition and Rejection method (Slepoy et al., 2008), which requires a more complex data structure but takes
advantage of its constant time complexity, particularly when dealing with large number of reactions in low core count
simulations. It is worth noting that the compartmental design in STEPS 4 supports multiple operator implementations,
therefore more efficient operators can be easily integrated to the solution in the future.

Dramatic improvement on memory consumption can be observed for STEPS 4 in Figure 9B. All STEPS 3 simulations
require no less than 2GB of memory per core; on the other hand, the highest per-core memory footprint for STEPS 4 is
about 630 MB with 25 = 32 cores, and drops down to about 67MB with 210 = 1024 cores and above, roughly 3% of
what is required by STEPS 3.

Both STEPS 4 and STEPS 3 demonstrate linear to super-linear speedup until 212 = 4096 cores in Figure 9C. Component
scaling analysis in Figure 9D suggests that both the SSA and the diffusion operators contribute to this result. The
diffusion operator maintains close-to-linear speedup until 212 = 4096, while the SSA operator demonstrates super-linear
speedup throughout the series. We investigated this scaling behavior and further profiling on the SSA operator indicates
that the super-linear speedup mainly comes from the update routine of the operator, including the propensity calculations
and the priority queue updates. This suggests that the improvement on memory caching may play an important role
here.

The diffusion operator is the dominating component in this series, as shown in Figure 9E. Its proportion in the overall
time cost increases from 65% to 95%. The proportion of other non-scaling routines also rises but is still less than 10%
with the maximum 214 = 16384 cores. Overall the performance profile of the background model is very similar to the
simple model profile. This is not surprising as they both involve the same operators but the background model has more
tetrahedrons and reactions per core compared to the simple model.

3.2.4 Complete Calcium Burst Model

The complete calcium burst model as described in section 3.1.3 extends the background model by coupling molecular
reaction-diffusion updates with voltage-dependent channel activation as well as membrane potential changes. Different
channel density parameters are assigned to the smooth and the spiny sections of the mesh to approximate the effect
caused by regional spine density difference. The model consists of 15 regular species, 8 of which are diffusive, 5
types of channels with in total 27 different channel states, 59 regular reactions and 16 voltage-dependent reactions.
Compared to the previous two models, the complete model produces a simulation with extremely complex dynamics
and imbalanced computational load, both spatially and temporally. We consider it as an excellent demonstration of
STEPS 4 performance in realistic research projects.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

25 26 27 28 29 210 211 212 213 214

Number of Cores

0

50

100

150

200

250

300

350
W

al
l C

lo
ck

 [s
]

A

STEPS3
STEPS4

25 26 27 28 29 210 211 212 213 214

Number of Cores

0

500

1000

1500

2000

M
em

or
y

Co
ns

um
pt

io
n

[M
B]

B

STEPS3
STEPS4

25 26 27 28 29 210 211 212 213 214

Number of Cores

100

101

102

St
ro

ng
 S

ca
lin

g
Sp

ee
du

p

C

STEPS3
STEPS4
ideal

25 26 27 28 29 210 211 212 213 214

Number of Cores

100

101

102

103

St
ro

ng
 S

ca
lin

g
Sp

ee
du

p

D

SSA (STEPS4)
Diffusion (STEPS4)
ideal

25 26 27 28 29 210 211 212 213 214

Number of Cores
0

20

40

60

80

100

Av
er

ag
e

Co
m

pu
ta

tio
na

l T
im

e
[%

]

E SSA Diffusion Other Wall Clock (STEPS4)

0

50

100

150

200

250

300

W
al

l C
lo

ck
 [s

]

Figure 9: The performance results and scalability of the calcium burst background model. (A) Steady decrease of
simulation time cost can be observed in both STEPS 4 and STEPS 3 simulations. STEPS 4 performs slightly worse
than STEPS 3 in low core count simulations, both eventually achieves similar performance as core count increases. (B)
The memory footprint of STEPS 4 is superior comparing to the STEPS 3 counterparts, requiring about 630MB for
25 = 32 core simulations, and 67MB for 210 = 1024 core and above simulations. STEPS 3 consumes more than 2GB
of memory per core for the whole series. (C) Both STEPS 4 and STEPS 3 demonstrates linear to super-linear scaling
speedup. (D) Component scalability analysis of STEPS 4 suggests that the diffusion operator in STEPS 4 exhibits
linear speedup until 210 = 1024 cores, while the SSA operator shows a remarkable super-linear speedup throughout the
series. (E) Component proportion analysis of STEPS 4. The diffusion operator is the dominating component, taking
from 65% to 95% of the overall computational time.

Figure 10 summarizes the key results of the simulation series. While STEPS 4 performs slightly worse than STEPS
3 initially, it reaches similar performance with 29 = 512 cores, and outperforms STEPS 3 for the rest of the series.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

25 26 27 28 29 210 211 212 213 214

Number of Cores

0

100

200

300

400

500
W

al
l C

lo
ck

 [s
]

A

STEPS3
STEPS4

25 26 27 28 29 210 211 212 213 214

Number of Cores

1000

2000

3000

4000

5000

M
em

or
y

Co
ns

um
pt

io
n

[M
B]

B

STEPS3
STEPS4

25 26 27 28 29 210 211 212 213 214

Number of Cores

100

101

102

St
ro

ng
 S

ca
lin

g
Sp

ee
du

p

C

STEPS3
STEPS4
ideal

25 26 27 28 29 210 211 212 213 214

Number of Cores

100

101

102

103

St
ro

ng
 S

ca
lin

g
Sp

ee
du

p

D

SSA (STEPS4)
Diffusion (STEPS4)
EField (STEPS4)
ideal

25 26 27 28 29 210 211 212 213 214

Number of Cores
0

20

40

60

80

100

Av
er

ag
e

Co
m

pu
ta

tio
na

l T
im

e
[%

]

E SSA Diffusion EField Other Wall Clock (STEPS4)

0

100

200

300

400

500

W
al

l C
lo

ck
 [s

]

Figure 10: The performance results and scalability of the calcium burst complete model. (A) STEPS 4 performs
slightly worse than STEPS 3 in low core count simulations, but reaches similar performance with 29 = 512 cores, and
outperforms STEPS 3 afterward. (B) STEPS 4 requires about 1.5GB for the 25 = 32 core baseline simulations. Its
memory footprint quickly decreases to 500MB for 29 = 512 cores and above. STEPS 3 consumes more than 5GB of
memory per core for the whole series. (C) STEPS 4 achieves a better scalability comparing to STEPS 3. (D) Component
scalability analysis of STEPS 4. The SSA operator shows a super-linear speedup throughout the series. The diffusion
operator also exhibits linear speedup until 213 = 8192 cores. However, the EField operator shows limited scalability
with maximum 10x speedup with 210 = 1024 cores and above. (E) Component proportion analysis of STEPS 4. The
EField operator progressively dominates the computational time, from 10% in the baseline simulations to 76% in the
214 = 16384 core simulations, due to its limited scalability comparing to other operator components.

As expected, STEPS 4 continues its advantage on per-core memory footprint management, starting from 1.5GB for
25 = 32 core simulations, to approximately 500MB for 29 = 512 cores and above. The minimum memory requirement

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

for STEPS 3 is 5GB, 10 times what is needed with STEPS 4. While the BB5 cluster has high memory capacity per
compute node and is able to provide 12GB of memory per core for simulations (given the 32 active processes per node),
many HPC clusters commonly have the memory capacity restriction of about 4GB per core (Zivanovic et al., 2017),
therefore only STEPS 4 simulations may be run on those clusters.

Overall, STEPS 4 achieves a better scalability compared to STEPS 3, thanks to the linear speedup from the diffusion
operator, and the super-linear speedup from the SSA operator. However, the EField operator has limited scalability,
reaching maximum 10x speedup relative to the baseline. This results in a great increase of EField operator time cost
in proportion to the total computation time, from 10% in the baseline simulations to 76% in the 214 = 16384 core
simulations, making it the major performance bottleneck of the series, as shown in Figure 10E.

3.2.5 Memory Footprint with Refined Mesh

As shown in the above results, the significantly reduced memory footprint is one of the major advantages of STEPS 4.
To further investigate the memory consumption difference between STEPS 4 and STEPS 3, we refine the Purkinje cell
mesh and rerun both the calcium burst background model and the complete calcium burst model with the new mesh.
The refined mesh consists of 3,176,770 tetrahedrons. For simplicity, we name the original mesh as the "1M" mesh, and
the refined mesh as the "3M" mesh accordingly. As the 3M simulations exhibit similar performance profiles as the 1M
versions, we skip the performance analysis and focus on the memory footprints of the simulations. Performance and
scalability results of the 3M simulations can be found in the Supplementary Material Section 1.2.

Figure 11 provides an overall view of the results. For all simulation series, the baseline configuration has the highest
memory footprint, then progressively reduces to a consistent minimum. We hereby use the minimum memory
consumption from each series for comparison. Figure 11A presents the memory consumption of the background model,
for both STEPS 3 and STEP4, and for both 1M and 3M meshes. For the 1M mesh simulations, STEPS 4 requires
67MB memory per core, while STEPS 3 requires approximate 2GB, 30x of the STEPS 4 requirement. For the 3M
mesh simulations, 200MB memory per core is required by STEPS 4, while 6.6GB is required by STEPS 3, about 33x
of the STEPS 4 requirement. Results of the complete model are shown in Figure 11B. For the 1M series, STEPS 4
requires about 500MB of memory, while STEPS 3 requires approximate 5.1GB, resulting in a 10x difference. For the
3M series, the memory footprint of STEPS 4 increases to 770MB. We are unable to simulate the 3M complete model
with STEPS 3 as the 12GB per core memory capacity remains inadequate.

25 26 27 28 29 210 211 212 213 214

Number of Cores
0

5000

10000

M
em

or
y

Co
ns

um
pt

io
n

[M
B]

max memory per core

Calcium Burst BackgroundA
STEPS3 (1M)
STEPS4 (1M)

STEPS3 (3M)
STEPS4 (3M)

25 26 27 28 29 210 211 212 213 214

Number of Cores
0

5000

10000

M
em

or
y

Co
ns

um
pt

io
n

[M
B]

max memory per core

Calcium Burst CompleteB
STEPS3 (1M)
STEPS4 (1M)

STEPS4 (3M)

Figure 11: Memory footprints of the calcium burst background and complete model simulations with 1M and 3M
meshes. (A) Results of the background model simulations. For the 1M series, STEPS 4 requires minimum 67MB per
core, while STEPS 3 requires minimum 2GB. For the 3M series, STEPS 4 requires minimum 200MB, and STEPS
3 requires minimum 6.6GB. (B) Results of the complete model simulations. For the 1M series, STEPS 4 requires
minimum 500MB per core, while STEPS 3 requires minimum 5.1GB. For the 3M series, STEPS 4 requires minimum
770MB. The 12GB per core memory capacity of the cluster is inadequate for the 3M complete model simulations with
STEPS 3.

3.2.6 Single Node Roofline Analysis of STEPS 4

In general, STEPS 4 demonstrates similar or better performance compared to STEPS 3 in high core count simulations,
but has lower performance in small core count simulations. As discussed previously, one of the reasons is the different
SSA operator implementations but other factors may also be involved. As the performance with small core count

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

simulations is also important for STEPS 4 usage, a detailed performance analysis of current simulations is necessary to
determine the direction of future optimizations. We choose the complete model as the profiling target since all major
operators are included in the simulation. Note that in low core count configuration, the SSA and the diffusion operators
are the dominating components in the simulation, thus they are the main focus of the analysis here. This is different
from the optimization of high core count simulations, where the EField operator dominates the computation.

The analysis is based on the the Roofline model (Williams et al., 2009), evaluating the scaling trajectory (Ibrahim et al.,
2018) of the most computationally expensive routines, in our case, the SSA reaction operator, the Diffusion operator,
and the EField operator. The Roofline model is one of the simplest tools to apply hardware/software co-design, enabling
investigation on the interaction between hardware characteristics like memory bandwidth and peak performance, and
the software characteristics such as memory locality and arithmetic intensity. Thus it provides essential information on
whether the investigated components are memory bandwidth or compute bound, and consequently vital suggestions on
optimization strategies.

The Roofline model shown in Fig. 12 for the Cascade Lake node on BB5 is constructed from a measured memory
bandwidth (≈ 197GB/s) and a measured peak core performance (≈ 78Gflop/s, where flop stands for floating-point
operations). Both metrics are measured with the likwid-bench utility (Treibig et al., 2010). In the Roofline graph,
the x-axis is the arithmetic (or computational) intensity (AI), computed as the ratio of floating point operations to
transferred bytes from the main memory (DRAM traffic), and the y-axis is the observed performance. To obtain a
scaling trajectory (Ibrahim et al., 2018) the measures are taken for varying core counts. Additionally, we run simulations
with hyper-threading (26 = 64 processes) in order to utilize maximum resources.

For the measurements of the routine with LIKWID, a MPI synchronization barrier is added before and after each
measured kernel. This is done to ensure that the measured metrics (e.g. hardware counters) indeed belong to the
respective routines.

From Figure 12, it can be seen that all routines have a low arithmetic intensity. Each routine is represented by a different
symbol and each data point is labeled by the number of processes. As described in Ibrahim et al. (2018), for ideal
scaling, a doubling of concurrency corresponds to a change in ∆y (observed Flop/s) of ≈ 2× without a corresponding
change in ∆x (arithmetic intensity), a behavior observed in our experiments. The SSA kernel is the one with the
lowest arithmetic intensity (AI) and it is well into the AI regime where we expect the kernel to be memory bound. The
Diffusion kernel presents similar behavior but with higher arithmetic intensity. Both kernels reach a saturation point
as they approach the peak memory bandwidth. This observation suggests that there would be little to no gain to be
had by vectorizing these kernels, instead possible improvements would have to come from algorithmic changes and/or
cache blocking strategies in order to either increase the arithmetic intensity or fit the working memory set into the last
level cache (LLC). For the EField kernel, we observe both ∆y > 0 and ∆x > 0 as we perform the strong scaling.
This transition indicates that the number of floating-point operations has remained constant, so data movement must
have decreased (Ibrahim et al., 2018). Finally, for all the computational kernels hyper-threading does not lead to any
substantial performance increase.

To reach the maximum performance of a compute node, we need to efficiently utilize the cache memory hierarchy. In
the Roofline graph, the higher the cache efficiency the higher the computational intensity. In our case, the low arithmetic
intensity could be explained by the use of data structures that do not favor data locality (e.g. maps/dictionaries over
vectors). Thus, a substantial improvement in the computational intensity of STEPS 4 can be achieved by favoring data
locality and thus higher cache utilization. Towards this direction, we already mentioned in 2.2 the flat-multimap
container, which we plan on using extensively throughout STEPS 4 codebase.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

1
128

1
64

1
32

1
16

1
8

1
4

1
2

1 2 4 8 16 32 64 128

Arithmetic Intensity (Flop/Byte)

1
16

1
2

4

32

256

2048

G
F

lo
p

/
s

8

8

8

2

2

2

4

4

4

8

8

8

16

16

16

32

32

32

64

64

64
pea

k
m

em
ory

bandwid
th

peak FLOPS

w/o FMA

w/o vectorization

SSA (STEPS4)

Diffusion (STEPS4)

EField (STEPS4)

Figure 12: Roofline single-node scaling trajectories. The solid black lines are the full node hardware limits and the
dashed gray line is the peak memory bandwidth for one socket. Each data point is labeled by the number of processes.
All the computational kernels present a low arithmetic intensity mainly due to not ideal data locality (not optimal cache
utilization). Nevertheless, the scaling is close to ideal (especially for the SSA and Diffusion operators) given that the
doubling of concurrency leads to a corresponding ∆y > 0. Hyper-threading at 64 cores does not give any substantial
performance increase.

4 Discussion

In the present manuscript we achieved several major goals:

• We developed a more user-friendly modeling environment by introducing the new API2 system to STEPS 4
development.

• We modernized the existing code base of the entire framework adopting modern programming standards and
practices such as C++17 and continuous integration. Particular care was posed on safety features such as
strong type indexing. These improvements provided a solid modern foundation for STEPS 4 development.

• A distributed solution that addressed the bottlenecks of STEPS 3.

STEPS 4 achieves similar performance and scalability as STEPS 3 while dramatically reducing the memory footprint.
This is a key feature for future realistic modeling using STEPS. The Purkinje dendrite morphology simulated in the
calcium burst model was reconstructed from light microscopic imaging. The spines were ignored and only the skeleton
of the dendrite was preserved. It is possible to reconstruct a highly realistic Purkinje neuron containing all visible spines
from high resolution electron microscopic imaging, however, the mesh generated from such morphology is expected to
have 10 to 100 times more tetrahedrons than the one used in current simulations. Such large models are completely
out-of-reach for STEPS 3 since even the relatively small 3M calcium burst model already exceeds the 12GB per-core
memory capacity on a state-of-the-art cluster like BB5. Conversely, STEPS 4 showed its potential on supporting super
large scale simulations thanks to its distributed nature.

4.1 Limitations and solutions

STEPS 4 is not a complete replacement for STEPS 3. It is a highly specialized version of the operator-splitting solution
specifically tailored for cluster-based, super-large scale simulations. Thus, we paid particular attention to performance
optimizations whilst maintaining accuracy.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

Even if STEPS 4 covers most features available in STEPS 3, some remain missing. For instance, the diffusion of species
on surfaces (i.e. between patch triangles), and the associated surface diffusion boundaries, are not yet available. Patches
between compartments are in principle supported but meshes have to be partitioned in such a way that tetrahedrons on
both sides of patch triangles are owned by the same process. Differently from STEPS 3 where automatic partitioning
adjustment is provided, this constraint is currently unenforced by Omega_h and STEPS 4. It relies on the modelers to
generate suitable partitioned meshes for their simulations. We plan to support automatic partitioning adjustment with
constraints in STEPS 4, however, this requires further collaboration with the Gmsh and Omega_h developers as these
libraries need further development to support such functionality. Finally, some auxiliary features in STEPS 3 such as
the Region of Interest (ROI) functionality and visualization are not yet supported as implementations of new STEPS
modeling toolkits are required to adapt the new distributed mesh formats and protocols.

4.2 Potential enhancements for STEPS 4

The distributed mesh backend of STEPS 4, Omega_h, not only supports traditional MPI based distributed-memory
parallelism, but also shared-memory parallelism through OpenMP, and GPU parallelization via the CUDA framework.
It also provides unique features such as mesh adaptation suitable for GPUs using flat array data structures and bulk
transformations. These advanced features are currently not utilized in STEPS 4 as it relies solely on CPU based MPI
parallelism. With the importance of GPU based fat compute nodes in modern HPC clusters, such features will play
important role when STEPS 4 is transitioned to other parallelism schemes.

In addition, the scalability analysis in Section 3.2 suggests two major axes for future development. On one hand, the
EField operator is shown to be the major bottleneck in high core count simulations due to its poor scalability. On the
other hand, the Roofline analysis shows low computational intensity for all major kernels (SSA, Diffusion, EField).
This behavior points to unsatisfactory use of cache memory, mainly caused by containers/data structures with poor
data locality. A more extensive use of the flat-multimap could greatly improve cache utilization and increase the
arithmetic intensity of these computational kernels.

4.3 Other current developments and future directions

4.3.1 Vesicle modeling

Currently STEPS, as also all the SSA methods in general, models molecules as points that do not occupy a significant
volume of the space in which they reside. This is an obvious limitation if one wants to model certain types of structures
in the cell such as vesicles. Vesicles are relatively large structures (∼40nm diameter in the case of synaptic vesicles for
example) that play many important roles in biology, and their complex structure and diverse functionality mean they
cannot be realistically simulated by the point-molecule approach. Vesicles undergo processes such as endocytosis and
exocytosis, interact with cytosolic and surface-bound molecules, and can be spatially organized into clusters such as
in the presynaptic readily-retrievable pool. In an upcoming release, STEPS aims to support all of these features in an
initial parallel implementation.

While the vesicle modeling development has been a separate project from STEPS 4, one tantalizing prospect is to marry
many of the novel features of STEPS 4 with the vesicle modeling to allow bigger, more detailed simulations that can be
run for longer biological times.

4.3.2 Coupling of STEPS with other simulator software

Recently, the STEPS team at OIST and the Blue Brain Project (BBP) at EPFL have been collaborating in software
development and scientific research such as simulation support for multi-scale modeling. As part of the BBP mission to
create a large scale reconstruction of brain tissue, a multi-scale approach for simulation is deemed necessary to capture
elements at various temporal and spatial scales. One time scale for rapidly changing neuron voltages, a different, slower
time scale for changing ion concentrations. Likewise, neuron morphologies can be distributed among computing ranks
irrespective of geometric boundaries whereas bulk ion concentrations and metabolism use a coarse grain division of
the spatial scale. For this purpose different simulators are used to leverage their specialized capabilities. NEURON
(Carnevale and Hines, 2009) is used to solve relevant equations for membrane voltage and communication between
neurons in addition to calcium in astrocyte morphologies. Meanwhile STEPS is employed to compute concentrations
of diffusing ions in the extracellular space. A more memory efficient STEPS better enables sharing of computing
resources between the two simulators.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

5 Conclusion

The STEPS 4.0 project development reported in this article addresses several issues in previous STEPS releases, im-
proving the user modeling experience, as well as modernizing the existing code base in order to aid future developments.
The main contribution of this research is a new parallel stochastic reaction-diffusion solver supported by a sophisticated
distributed mesh library. While maintaining similar performance and scalability, the new solver dramatically reduces the
memory footprint of simulations, resolving the major bottleneck in previous solutions. This breakthrough is essential to
future neuroscience research as it enables super-large scale molecular reaction-diffusion simulations with biologically
realistic models. Into the future, the STEPS project aims to continue to innovate, bringing new features, realism and
detail to molecular neuronal models. Such efforts cater to researchers as they ask new questions and investigate new
problems through computer simulation to advance our understanding of the brain and other biological systems.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Author contributions

EDS and FS conceptualized and led this study. TC and WC led the overall software development of STEPS 4. SM and
TC added in Omega_h the support to Gmsh file format 4 and features required in STEPS 4. BDM, SM, TC and WC
contributed to the Zee library development and evaluations. AC, BDM, CK, GC, JL, SM, TC and WC contributed to the
software development of STEPS 4. AC, CK, IH, JL, TC and WC contributed to the pre-release testing, debugging and
optimization of STEPS 4. JL contributed to the API2 development for STEPS 4 and model conversions from STEPS 3
to STEPS 4. AC and IH designed and conducted the validation benchmarks. CK, GC and WC designed and conducted
the performance benchmarks. NC checked statistical soundness of the tests and contributed in CI. OA, JK and PK
contributed to technical discussions and supervised the BBP team. WC coordinated the writing of the manuscript. AC,
BDM, CK, EDS, FS, GC, IH, JK, JL, NC, OA, PK, SM, TC and WC contributed to the manuscript. All authors gave
feedback on the manuscript.

Funding

Research reported in this publication was supported by the Okinawa Institute of Science and Technology Graduate
University (OIST) and funding to the Blue Brain Project, a research center of the École polytechnique fédérale
de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology and
the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant
Agreement No. 785907 (Human Brain Project SGA2).

Acknowledgements

Data Availability Statement

The STEPS simulator is available at http://steps.sourceforge.net/. Models for validation and performance investigation
presented in this publication are available at https://github.com/CNS-OIST/STEPS4ModelRelease/.

References
Abhyankar, S., Brown, J., Constantinescu, E. M., Ghosh, D., Smith, B. F., and Zhang, H. (2018). Petsc/ts: A modern

scalable ode/dae solver library. arXiv preprint arXiv:1806.01437

Anwar, H., Hepburn, I., Nedelescu, H., Chen, W., and De Schutter, E. (2013). Stochastic calcium mechanisms cause
dendritic calcium spike variability. Journal of Neuroscience 33, 15848–15867. doi:10.1523/JNEUROSCI.1722-13.
2013

Anwar, H., Roome, C. J., Nedelescu, H., Chen, W., Kuhn, B., and De Schutter, E. (2014). Dendritic diameters affect the
spatial variability of intracellular calcium dynamics in computer models. Frontiers in Cellular Neuroscience 8, 168

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

http://steps.sourceforge.net/
https://github.com/CNS-OIST/STEPS4ModelRelease/
https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies.
J Neurosci 27, 9247–9251

Bhalla, U., Bilitch, D., and Bower, J. (1992). Rallpacks: A set of benchmarks for neuronal simulators. Trends in
neurosciences 15, 453–8. doi:10.1016/0166-2236(92)90009-W

Boehme, D., Gamblin, T., Beckingsale, D., Bremer, P.-T., Gimenez, A., LeGendre, M., et al. (2016). Caliper:
performance introspection for HPC software stacks. In SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (IEEE), 550–560

Carnevale, N. T. and Hines, M. L. (2009). The NEURON Book (USA: Cambridge University Press), 1st edn.

Chen, W. and De Schutter, E. (2017). Parallel STEPS: Large scale stochastic spatial reaction-diffusion simulation with
high performance computers. Frontiers in Neuroinformatics 11, 13. doi:10.3389/fninf.2017.00013

Chen, W., Hepburn, I., Martyushev, A., and De Schutter, E. (in press). Modeling neurons in 3d at the nanoscale. In
Computational Neuroscience Approaches to Cells and Circuits, ed. M. Guigliano (Springer Nature)

Chylek, L. A., Stites, E. C., Posner, R. G., and Hlavacek, W. S. (2013). Innovations of the rule-based modeling approach.
In Systems Biology (Springer). 273–300

Denizot, A., Arizono, M., Nägerl, U. V., Soula, H., and Berry, H. (2019). Simulation of calcium signaling in
fine astrocytic processes: Effect of spatial properties on spontaneous activity. PLoS computational biology 15,
e1006795–e1006795. doi:10.1371/journal.pcbi.1006795. 31425510[pmid]

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski, B. R., et al. (2015). The Spack
Package Manager: Bringing Order to HPC Software Chaos (Austin, Texas, USA), Supercomputing 2015 (SC’15).
doi:10.1145/2807591.2807623. LLNL-CONF-669890

Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-
processing facilities. International Journal for Numerical Methods in Engineering 79, 1309–1331. doi:10.1002/nme.
2579

Gibson, M. A. and Bruck, J. (2000). Efficient exact stochastic simulation of chemical systems with many species and
many channels. The Journal of Physical Chemistry A 9, 104

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry
81, 2340–2361. doi:10.1021/j100540a008

Hepburn, I., Cannon, R., and De Schutter, E. (2013). Efficient calculation of the quasi-static electrical potential
on a tetrahedral mesh and its implementation in steps. Frontiers in Computational Neuroscience 7, 129. doi:
10.3389/fncom.2013.00129

Hepburn, I., Chen, W., and De Schutter, E. (2016). Accurate reaction-diffusion operator splitting on tetrahedral meshes
for parallel stochastic molecular simulations. The Journal of Chemical Physics 145, 054118. doi:10.1063/1.4960034

Hepburn, I., Chen, W., Wils, S., and De Schutter, E. (2012). STEPS: efficient simulation of stochastic reaction–diffusion
models in realistic morphologies. BMC Systems Biology 6, 36. doi:10.1186/1752-0509-6-36

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application to
conduction and excitation in nerve. J Physiol 117, 500–544

Ibanez, D. and Roberts, N. (2018). Omega_h. [Software] https://github.com/sandialabs/omega_h. doi:10.11578/dc.
20180301.2

Ibrahim, K., Williams, S., and Oliker, L. (2018). Roofline scaling trajectories: a method for parallel application and
architectural performance analysis. In 2018 International Conference on High Performance Computing & Simulation
(HPCS) (IEEE), 350–358

Insel, T. R., Landis, S. C., and Collins, F. S. (2013). The nih brain initiative. Science 340, 687–688. doi:10.1126/
science.1239276

Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S., et al. (2011). Introducing the human
brain project. Procedia Computer Science 7, 39–42. doi:https://doi.org/10.1016/j.procs.2011.12.015. Proceedings of
the 2nd European Future Technologies Conference and Exhibition 2011 (FET 11)

Mohapatra, N., Tønnesen, J., Vlachos, A., Kuner, T., Deller, T., Nägerl, U. V., et al. (2016). Spines slow down dendritic
chloride diffusion and affect short-term ionic plasticity of gabaergic inhibition. Scientific reports 6, 23196–23196.
doi:10.1038/srep23196. 26987404[pmid]

Rodola, G. (2020). psutil. https://github.com/giampaolo/psutil. v5.8.0

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://github.com/sandialabs/omega_h
https://github.com/giampaolo/psutil
https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

STEPS 4.0: memory-efficient molecular simulator A PREPRINT

Schelker, M., Mair, C. M., Jolmes, F., Welke, R.-W., Klipp, E., Herrmann, A., et al. (2016). Viral rna degradation and
diffusion act as a bottleneck for the influenza a virus infection efficiency. PLOS Computational Biology 12, 1–23.
doi:10.1371/journal.pcbi.1005075

Slepoy, A., Thompson, A. P., and Plimpton, S. J. (2008). A constant-time kinetic Monte Carlo algorithm for simulation
of large biochemical reaction networks. J Chem Phys 128, 205101

Sodani, A., Gramunt, R., Corbal, J., Kim, H.-S., Vinod, K., Chinthamani, S., et al. (2016). Knights landing: Second-
generation intel xeon phi product. IEEE Micro 36, 34–46. doi:10.1109/MM.2016.25

Stillman, N. R., Balaz, I., Tsompanas, M.-A., Kovacevic, M., Azimi, S., Lafond, S., et al. (2021). Evolutionary
computational platform for the automatic discovery of nanocarriers for cancer treatment. NPJ Computational
Materials 7, 1–12

Treibig, J., Hager, G., and Wellein, G. (2010). LIKWID: A lightweight performance-oriented tool suite for x86
multicore environments. In Proceedings of PSTI2010, the First International Workshop on Parallel Software Tools
and Tool Infrastructures (San Diego CA)

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., et al. (2022). Kokkos 3: Programming
model extensions for the exascale era. IEEE Transactions on Parallel and Distributed Systems 33, 805–817.
doi:10.1109/TPDS.2021.3097283

Williams, S., Waterman, A., and Patterson, D. (2009). Roofline: An insightful visual performance model for floating-
point programs and multicore. ACM Communications

Wils, S. and De Schutter, E. (2009). Steps: modeling and simulating complex reaction-diffusion systems with python.
Frontiers in Neuroinformatics 3, 15. doi:10.3389/neuro.11.015.2009

Zamora Chimal, C. G. and De Schutter, E. (2018). Ca2+ requirements for long-term depression are frequency sensitive
in purkinje cells. Frontiers in Molecular Neuroscience 11, 438. doi:10.3389/fnmol.2018.00438

Zivanovic, D., Pavlovic, M., Radulovic, M., Shin, H., Son, J., Mckee, S. A., et al. (2017). Main memory in hpc: Do we
need more or could we live with less? ACM Trans. Archit. Code Optim. 14. doi:10.1145/3023362

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.485880doi: bioRxiv preprint

https://doi.org/10.1101/2022.03.28.485880
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	The STEPS project and its applications
	The need of a new parallel solver
	Naming conventions and the structure of the article

	Methods
	API improvements for a user-friendly modeling environment
	Code modernization and future-proofing
	Implementing a parallel solver with distributed mesh backend
	Implementation criteria
	Prototyping STEPS 4
	Solver components and the simulation core loop
	Optimization on kinetic process dependency graph
	EField solver improvements
	Mesh generation, partition and annotation
	Coupling with other STEPS components
	Python API changes due to the distributed nature

	Validation strategy
	Statistical analysis

	Results
	Validations
	Validations of the reaction-diffusion solver
	Validations of the EField solver
	Full validation

	Performance
	Benchmarking Setup
	The Simple Model
	The Calcium Burst Background Model
	Complete Calcium Burst Model
	Memory Footprint with Refined Mesh
	Single Node Roofline Analysis of STEPS 4

	Discussion
	Limitations and solutions
	Potential enhancements for STEPS 4
	Other current developments and future directions
	Vesicle modeling
	Coupling of STEPS with other simulator software

	Conclusion

