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Abstract 

Newly formed memories aren’t quarantined one from another when first encoded; rather, they are 

interlinked with other memories that were encoded in temporal proximity or share semantic features. In 

this study, we selectively biased memory processing during sleep in humans to test the hypothesis that 

memories’ contexts influence their consolidation. Participants formed 18 idiosyncratic narratives, each 

linking four objects together. They then memorized random on-screen spatial positions assigned to each 

of the 72 objects. During sleep, 12 object-specific sounds were unobtrusively presented, thereby cuing 

the associated memories and improving spatial recall for those objects. As predicted, memory for 

uncued objects that were contextually linked with cued objects benefited as well. The correlational 

structure of spectral power for electrophysiological responses revealed that sleep spindles supported 

context reinstatement and predicted context-related memory benefits. Moreover, context-specific 

electrophysiological activity patterns emerged during sleep. We conclude that when an individual 

memory is reactivated during sleep, the corresponding encoding context is also reinstated, impacting 

consolidation and enhancing subsequent retrieval of associated knowledge. 
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Introduction 

Individual memories are supported by an intricate network of interconnections—not independent and 
detached from other memories. These connections are central to the organization of memories in the 
brain and impact subsequent retrieval. The term “context” has been used to describe the elements that 
surround a core memory, which share some features with it such as time, space, or semantic-
relatedness (Smith, 1994; Stark et al., 2018). Memories that are formed within temporal proximity of 
others are said to share a temporal context, whereas memories that share semantic relatedness are said 
to share a semantic context or be semantically clustered. Both types of contexts impact subsequent 
retrieval (Kahana, 1996; Howard and Kahana, 2002a, b; Polyn et al., 2009; Stark et al., 2018). When a 
specific memory learned in some context is retrieved (e.g., the decorations for a recent party), other 
contextually related memories may effortlessly come to mind as well (e.g., the guests attending the 
party). On the neural level, this process, termed contextual reinstatement, is manifested by increased 
similarity between the observed neural patterns during encoding and retrieval (Manning et al., 2011; 
Howard et al., 2012). In this study, we explored contextual reinstatement when memories were 
reactivated during sleep, as well as the consequences of reinstatement on later retrieval.  

Whereas the role of context at encoding and retrieval has been repeatedly demonstrated, its role in the 
intermediate period of time has not been systematically explored. During these offline periods, including 
sleep, memory traces are cemented in cortical networks through a set of processes collectively termed 
consolidation (Diekelmann and Born, 2010; Paller et al., 2021). The consolidation of declarative 
memories (i.e., explicit memories for facts and autobiographical events) is thought to primarily occur 
during non-rapid-eye-movement (NREM) sleep, which consists of the deepest stages of sleep (stages 2 
and 3). Consolidation is thought to rely on memory reactivation, which, like contextual reinstatement, 
involves the selective activation of memory-specific neural circuits (Cairney et al., 2018; Schreiner et al., 
2021). The extent to which contextually related memories are reinstated over the course of 
consolidation during sleep remains unclear. Recently, it has been hypothesized that the benefits of 
NREM to memory stem from it being a state devoid of context, thus preventing the damaging effects of 
contextual interference (Yonelinas et al., 2019; but see Antony and Schapiro, 2019). 

To explore context reinstatement during sleep, we biased memory processing during sleep using 
unobtrusive stimuli, a technique termed targeted memory reactivation (TMR; Oudiette and Paller, 
2013). TMR has been used to improve different forms of memory, including declarative and 
nondeclarative (see Hu et al., 2020 for a recent meta-analysis). In this study, participants created unique 
stories that each linked a place with four objects. The stories thus bound each set of objects together 
and served as semantic contexts. Next, participants studied the spatial positions of the objects on a 2D 
spatial grid. Later, during sleep, sounds related to some of the objects were presented during NREM 
sleep. Using this causal manipulation, we demonstrated that consolidation benefits were not limited to 
memories that were directly targeted, but extended to other memories that were contextually bound to 
them.  These results suggest that context plays a role in the process of memory consolidation during 
sleep. By examining electrophysiological waveforms following stimulus presentation during sleep, we 
demonstrated that spindles—which have been linked with memory consolidation (Antony et al., 2019; 
Fernandez and Luthi, 2020; Schechtman et al., 2021a)—reflect the process of contextual reinstatement 
during sleep and predict subsequent performance on a memory task. 
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Methods 

Participants 

We recruited participants from the local university community who claimed to be able to nap in the 
afternoon and reported not having a hearing impairment or a history of any neurological or sleep 
disorders. Participants were asked to go to bed later than usual on the night prior to the study and to 
wake up earlier than usual on the day of the study and to avoid caffeine. In total, 48 participants were 
recruited (14 identified as men, 33 identified as women, and one identified as gender queer; average 
age = 22.6 years). Data from 19 of these participants were excluded from the final analysis (16 who were 
not exposed to all stimuli during NREM sleep and three with poor recall of which objects were 
associated with each place, as described below). Including these 19 participants was deemed 
inappropriate because the logic of our manipulation relied on both reactivation during sleep and strong 
place-object learning. In total, 29 participants were included in the final analysis (8 identified as men, 20 
identified as women, and one identified as gender queer; average age = 22.8 years). The Northwestern 
University Institutional Review Board approved the procedure. 

Materials 

Visual stimuli were presented on a screen (1920 × 1080 pixels, P2418HT, Dell Inc., TX). Sounds were 
delivered over a pair of speakers (AX-210, Dell Inc., TX). Participants’ spoken responses were recorded 
using a Lavalier clip-on microphone (PoP voice Inc.). Stimulus presentation and participant responses 
were controlled by Presentation (v17.2, Neurobehavioral Systems, Inc.). 

Visual stimuli were used for both for the main task and for the functional localizer task. For the main 
task, visual stimuli consisted of 76 images of objects and 19 images of places. The object images were 
square and portrayed either inanimate objects (e.g., a telephone) or animals (e.g., a cat) on a white 
background. During the spatial task described below, they were each shown at 125 × 125 pixels 
(34.4 × 34.4 mm). Most images were taken from the BOSS corpus (Brodeur et al., 2010; Brodeur et al., 
2014), and some were taken from copyright-free online image databases (e.g., 
http://www.pixabay.com). Each object image was matched with a distinguishable, congruent sound 
with a maximal duration of 0.6 s (e.g., a ringing sound; a meow sound). The place images portrayed 
distinct real-life places (e.g., a movie theater; a desert) and were shown horizontally with a 1:2 aspect 
ratio. Images were taken from copyright-free online image databases (e.g., http://www.pixabay.com).  

Three of the 76 object images and one of 19 place images were used in a pre-task practice block. One 
additional object image was never displayed, but the sound associated with it was presented during 
sleep along with a subset of task-relevant sounds, as detailed below. The remaining 18 place images 
were each associated with four objects to create contextually bound sets. Object images were each 
assigned a random position on a 2D circular grid (radius – 540 pixels, 148.5 mm). The positions of the 72 
objects were set to be at least 50 pixels from the center and the perimeter of the grid and at least 55 
pixels from all other object positions. The positions of each set of four objects associated with the same 
place were at least 425 pixels one from the other. This allowed us to separately estimate errors that 
stem from confusion between the positions of two objects (swap errors) and errors that stem from 
imprecise object placement (accuracy errors; Schechtman et al., 2021a). 
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For the functional localizer, a total of 120 images were used, including 40 images belonging to each of 
three categories: faces, places, and abstract images. All images were cropped to be square and were 
presented on-screen at 450 x 450 pixels. The face images were taken from the Psychological Image 
Collection at Stirling (pics.stir.ac.uk). The place images consisted of the same images used for the main 
task, cropped, and supplemented by additional images taken from the BOLD5000 database (Chang et al., 
2019). The abstract images are scrambled place images, created by scrambling the Fourier transforms of 
place images from the same database. 

 
 
Figure 1: Experimental design. (a) Upon coming to the lab, participants underwent several tasks 
before and after a 90-minute afternoon nap. (b) In story building, participants constructed a story 
including the four objects and the locale pictured. The four objects, linked together by the story, 
formed a contextually bound set. Participants constructed 18 such stories. (c) In position learning, 
each of nine blocks featured two contextually bound sets. Participants learned the on-screen 
positions of the eight objects in conjunction with answering questions about their stories. (d) After a 
memory test for object positions, participants had a 90-minute nap opportunity. During their sleep, 
sounds associated with 12 objects were unobtrusively presented. These objects were systematically 
selected from only six of the nine blocks. In these six blocks, two objects from the same set were 
cued. The critical conditions were thus cued objects, non-cued objects from a set with cued objects 
(i.e., a cued set), and non-cued objects that do not belong to a cued set (either from a cued block or 
an uncued block). The panel shows an example of a cued block (top) and an outline of the two types 
of blocks (bottom). 
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Procedure 

After consenting to participate in the study, participants were fitted with an electroencephalography 
(EEG) cap. EEG data was collected continuously throughout all phases of the study (Figure 1a). Since 
data were collected during the COVID-19 pandemic, participants wore their masks throughout the study, 
except during the nap portion. After entering the experimental chamber, participants completed a task 
to measure their response times, as described elsewhere (e.g., Schechtman et al., 2021b) and rated their 
sleepiness level using the Stanford Sleepiness Scale (Hoddes et al., 1973).  

Next, participants conducted a functional localizer task (Supplementary Figure 1a). The task included 
150 trials, equally divided between three image categories, with an inter-trial interval ranging between 
2.5 and 3.5 s. Each trial included a 1 s exposure to an image of either a place or a face, or a scrambled, 
abstract image. Participants were instructed to left-click the mouse when an image was repeated; 20% 
of the images were identical to the previous image. The first two participants run did not undergo the 
functional localizer task, and their data was not used for analyses incorporating data from this task. 

Participants next began the main task, which consisted of three parts: story-building, position-learning 
and test. In the story-building part (Figure 1b), participants were instructed to build idiosyncratic stories, 
one for each contextually bound set (i.e., images of a place and four objects). Each set was presented 
together on the screen, and participants had to indicate when they have developed a story for it. Then, 
they recorded an audio rendition of the story. Finally, they were asked two questions about each object 
in each story: “Did the object appear throughout the whole story, start to end?" and "was the object in 
motion (not static) during the story?” These questions were chosen because they were applicable to all 
objects, yet the answers did not merely concern object attributes but rather required retrieving the 
constructed story. The answers for both questions with respect to all four objects were recorded before 
moving on to develop a story for the next contextually bound set. 

After completing this part of the task, participants started the position-learning part (Figure 1c). This 
part consisted of nine blocks, each including a pair of contextually bound sets and eight objects in total. 
Set pairings and block allocation were randomized. In this part of the task, participants had to encode 
the on-screen positions for the objects on a two-dimensional on-screen circular grid. Once all object 
positions were learned, as defined below, the next block commenced. At the start of each block, 
participants viewed the two places featured in the block and were given the option to listen to their 
recordings of the associated stories to refresh their memories. Before the first block commenced, 
participants engaged in a practice block which included four objects that were designated as practice 
objects. 

At the start of each block, the eight objects were presented in their positions sequentially. Each object 
was presented for 4.5 s, with its congruent sound presented twice, once at trial onset and again at the 
end of the trial (with sound offset synchronized to object offset). A 1-s inter-trial interval followed. After 
being exposed to the object positions, participants trained on placing them in the true positions. Each 
trial included a single object, and trials were presented in a pseudo-random order, such that objects 
linked to the same story were seldom presented sequentially.  

At the start of each trial, an object-specific contextual question was presented. These questions were 
the same ones presented in the story-building part. Participants had to get each question correct to 
proceed with the trial; answering incorrectly terminated the trial (Figure 1c, bottom). The purpose of 
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presenting these questions was to repeatedly reinstate the encoding context during the position-
learning part of the task. Overall, 88.92% ± 0.9% (mean ± SEM) of questions were answered correctly 
during training. Next, the object was presented at a random position on the grid, along with its 
associated sound. Participants used the computer mouse to attempt to drag the object to the position 
where it was initially seen on the grid. Trials with a Euclidean error of less than 100 pixels relative to the 
true position were considered correct. After correctly placing an object near its true position twice in a 
row, it was considered as learned and was dropped out from the block. On average, each object was 
presented in 3.52 ± 0.15 trials (mean ± SEM). Both correct and incorrect trials included feedback: the 
true object position was presented for 2 s along with the user-selected position. The sound was then 
presented again, co-terminating with the feedback display. A 1-s inter-trial interval followed. 

The last part of the main task including a test on object positions. In each trial, participants had to drag 
one of the objects to its true position. All 72 objects were presented in a pseudorandom order, 
preceded by the three practice objects. Objects were each presented in a random position on the grid, 
accompanied by their sounds. No context-related questions were presented, nor was feedback given. A 
1-s inter-trial interval was used. 

Following the test, participants’ pre-sleep error rates were calculated (i.e., the Euclidean distance 
between the chosen and true on-screen positions). Out of a total of 72 objects, 12 were designated to 
be cued during sleep. These objects were selected in a manner that obeyed the following logic: Six of 
the nine blocks included cued objects. Each of these blocks consisted of two contextually bound sets: 
one including cued objects; the other not. The six contextually bound sets which included cued objects 
each included two cued objects and two non-cued objects. Out of the nine blocks, the remaining three 
blocks did not include any cued objects. The condition designated to each object, set, and block were 
determined using an algorithm that minimized variability between the average error rates among 
conditions. In addition to the 12 object-related sounds designated for cuing, another sound which was 
not used during the wake portions of the task was presented during sleep as a control sound. 

Immediately after ending the test, participants were permitted to nap for 90 minutes with the lights out 
on a foldable futon in the same experimental room. Throughout their nap, white noise was presented 
(~47 dB). Sleep was monitored online by an experimenter skilled at sleep staging. Upon detection of 
stage 3 of NREM sleep, sounds were unobtrusively presented in the experimental room (<53 dB). EEG 
data was monitored continuously and sound presentation was terminated immediately upon signs of 
arousal or transition to REM sleep. The inter-stimulus interval (i.e., offset-to-onset) was randomly set to 
either 6, 6.5, or 7 s. If the participants did not reach NREM stage 3 after 45 minutes, sounds were 
presented in either stage 2 or 3 throughout the remainder of the nap. 

After the nap, participants were required to wait at least five minutes before resuming the task. After 
once again completing a task to measure their response times and after rating their sleepiness level, 
participants started the post-nap test, which was identical to the pre-nap test. Then, participants 
completed a self-paced recall test, in which they had to type in, for each picture of a place, which 
objects were linked with it. This part of the task was used as a manipulation check, since the expected 
effects of TMR critically depended on a strong, over-trained link between objects, stories, and places. 
Three participants who failed to recall at least 75% of the objects were excluded from analysis. Finally, 
participants were asked if they heard sounds presented during the nap. Out of the 29 participants used 
for analyses, seven reported hearing task-related sounds. These seven participants then underwent a 
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task in which they were required to indicate which sounds they remember hearing during sleep. Their 
responses indicated that they were not significantly different than chance at identifying which sounds 
were presented (p = 0.8, Sign Rank Test). Participants were then allowed to clean up, after which they 
were dismissed. 

Electrophysiological data collection and preprocessing 

EEG was recorded using Ag/AgCl active electrodes (Biosemi ActiveTwo, Amsterdam). In addition to the 
64 electrodes at 10-20 system scalp locations, contacts were placed on the mastoids, next to the eyes, 
and on the chin. Recordings were made at a sampling rate of 512 Hz. Analyses were conducted using the 
FieldTrip (Oostenveld et al., 2011) and sleepSMG (http://sleepsmg.sourceforge.net) packages for Matlab 
2018b (MathWorks Inc, Natick, MA). EEG channels were re-referenced offline to averaged mastoids and 
filtered using a two-way least-squares FIR highpass filter with a cutoff of 0.4 Hz. Additionally, a notch 
filter was used to remove noise at 60 Hz. Noisy channels were replaced with interpolated data from 
neighboring electrodes using the spherical interpolation method in FieldTrip, and noisy segments were 
detected manually and removed from further analyses. For the data collected during wake, ICA was 
used to detect and remove artifacts associated with eye blinks and horizontal eye movements. 

Sleep staging 

Sleep staging (i.e., determining the stage of sleep for each 30-s epoch) was based on the guidelines 
published by the American Academy of Sleep Medicine (Iber et al., 2007) and conducted by two 
independent raters, both of whom were not privy to when sounds were presented. Any discrepancies 
were subsequently reconciled by one of the two raters. Supplementary Table 1 shows the amount of 
time spent in each stage of sleep and number and percentage of cues presented in each stage. 

Statistical analyses of behavioral data 

For each trial in the tests conducted before and after sleep, the error was measured in pixels as the 
Euclidean distance between the true object’s position and the position indicated by the participant. For 
each trial, objects were flagged as “swapped” if they were placed closer to the position of another 
object belonging to the same contextually bound set. These gross errors, stemming from either pure 
guesses or confusion between objects, were omitted from further analysis (Schechtman et al., 2021a). 
Error rates for all the remaining trials were Z-scored within participants and used to evaluate the effects 
of cuing during sleep across participants using the following mixed linear model (fitglme function in 
Matlab): 

Error_post_sleep ~ 1 + Error_pre_sleep * Condition + (1+ Error_pre_sleep * Condition | Participant) 

For both errors, Z-scores were used. “Participant” is a categorical variable, denoting the participant 
number of each individual participant. Two different analyses were run, one focusing only on semantic 
context and one considering semantic and temporal context separately. For the former, “Condition” was 
a categorical variable with three possible values: (1) cued object ∈ cued set; (2) non-cued object ∈ cued 
set; (3) non-cued object ∉ cued set (Figure 1d). For the latter, “Condition” was a categorical variable 
with four possible values: (1) cued object ∈ cued set; (2) non-cued object ∈ cued set; (3) (non-cued 
object ∉ cued set) ∈ cued block; (4) non-cued object ∉ cued block (Figure 2d). An ANOVA was used to 
report the statistical significance of the components of the model, and dummy variables were used for 
comparisons between conditions. 
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In order to quantify the extent of the cuing effect on cued and non-cued objects within a contextually 
bound set for each participant (Figure 3e, Figure 4e), a similar model was run for each participant, 
omitting the random effects. 

Error_post_sleep ~ 1 + Error_pre_sleep * Condition 

The obtained coefficients for each condition [i.e., condition-specific forgetting slopes relative to the 
forgetting slope of the (non-cued object ∉ cued set) group] were then used to calculate correlations 
between behavior and physiology across participants, as outlined below. 

Spectral analysis 

Spectral analyses were run on data collected during sleep from electrode Cz and limited to epochs for 
task-related sounds presented during NREM sleep. Trials were segmented around sound onset (1.25 s 
before to 4.75 s after). For each trial, we first subtracted its overall mean and then calculated a 
spectrogram between 0.25 Hz and 25 Hz in 0.25 Hz intervals, using 0.5-s time windows with 87.5% 
overlap. For each participant, the average baseline (i.e., t < 0 s) activity was calculated per frequency 
band, and each trial’s spectrogram was converted to percent change by subtracting and dividing the 
activity during baseline for each frequency band. These trial-specific spectrograms were used to extract 
power in specific time-frequency clusters on the single trial level, as detailed below. 

To identify significant clusters of sound-related activity, we first averaged the trial-specific spectrograms 
within participant. Then, each point in the time-frequency representation was compared to zero, with 
an alpha level of 0.01 (corrected for the number of data-points). The results, shown in Figure 3b, 
indicated two significant clusters of activity. These clusters were used for further analyses. The higher-
frequency cluster, reflecting activity in the sigma range (see Figure 3b), putatively encapsulates sleep 
spindle activity which commonly commences approximately 1 s after sound onset (e.g., Cairney et al., 
2018; Schechtman et al., 2021a). We therefore considered both the full cluster, as well as the two 
putatively separate component comprising of it, in our analyses. 

Intraclass correlations of spectral power 

For each trial, we extracted and summated the values confined by each cluster from the spectrogram, 
resulting in a single scalar value per trial and cluster. We hypothesized that trials involving the same 
sounds within the same participants would have correlated power in certain clusters. To test this, we 
used intraclass correlation (Koo and Li, 2016). This metric, ICC, is symmetrical (i.e., whereas interclass 
correlations predict Y from X, ICCs predict how clustered together different values of X are) and can be 
used to calculate the correlation between more than two values. We calculated ICCs for each participant 
and cluster, and then ran a permutation test with mixed labels (n = 10,000) for each participant. Finally, 
we conducted a paired t-test between the true ICC and the average ICC value calculated using the 
permutation test. To ensure that we had sufficient data and to avoid biases due to a small number of 
trials, ICC analyses on spectral data were limited to participants who had at least five presentations for 
each sound (N = 16). 

Next, we hypothesized that contextually bound memories would elicit correlated spectral activity. We 
leveraged the fact that for each contextually bound set, two sounds were presented. We averaged the 
power per sound and per cluster, producing two values for each contextually bound set within 
participants. The ICC was then calculated within set for each cluster. Like before, we used a permutation 
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test (n = 10,000) and paired t-tests to consider evidence in support of our hypothesis. Finally, the true 
ICC values obtained for each participant and cluster were then correlated with the forgetting slopes 
calculated per participant. 

Classification analyses 

Using the data collected in the functional localizer task, a classifier was trained for each participant to 
distinguish faces, places, and abstract images (Supplementary Figure 1b). For each image, trials that 
were not contaminated with artifacts were segmented between 1.5 s before and 3.5 s after image 
onset. Classification was calculated for each time point independently using time-series data from the 
64 scalp electrodes as features. Data was smoothed using a 51.2-ms rectangular smoothing window. 
This data was used to train a support vector machine (SVM) classifier and tested using 5-fold cross-
validation protocol (Bae and Luck, 2018). This procedure was repeated for 20 iterations and averaged 
across iterations. To calculate the significance level, clusters of contiguous time points that were 
significantly higher than chance (p < 0.001) were identified, and each time point’s t-values were 
summed together to produce a cluster-level t mass. Then, a permutation test was initiated by 
reconducting the classification analysis and identifying significant clusters using shuffled labels. 
Significance for each true cluster-level t mass was evaluated relative to the random distribution of 
clusters generated based on 100,000 permutations, with an alpha of 0.001. 

Sleep-wake electrophysiological pattern correlations 

Using the Functional Localizer data and the data from the sleep phase, we correlated (1) place-image-
related and abstract-image-related wake EEG patterns with (2) patterns observed following sound 
presentation during sleep. First, time-series data were segmented around both the wake and sleep trial 
onsets, starting 1.5 s before and ending 3.5 s after stimulus onset. Trials containing artifacts were 
omitted. Only sleep trials that included task-related sounds were considered. Data was smoothed using 
a 51.2 ms smoothing window. Data from the 64 scalp electrodes at each time point during wake was 
correlated with data from the same electrodes at each time point during sleep, resulting in a time X time 
correlation matrix showing wake-sleep correlations across time points. Two matrices were created, one 
correlating place-image-related wake EEG patterns with sleep-related EEG patterns, and one correlating 
abstract-image-related wake EEG patterns with sleep-related EEG patterns. The subtraction between 
the two was used to assess evidence for place-specific activation patterns. The difference matrix was 
collapsed over the sleep-time axis to create a vector of correlation coefficients over the course of the 
wake trial, and the time period during which wake classification was significantly above chance was 
extracted. These values, across participants, were then correlated with the forgetting slopes calculated 
per participant. 

 

Results 

Participants (N=29) engaged in a single-session experiment that included an afternoon nap (Figure 1a). 
They first invented idiosyncratic stories involving a place (e.g., a movie theater) and four objects (Figure 
1b). Next, they encoded the positions of objects on a 2-d grid (Figure 1c). To keep the encoding context 
(i.e., the story) salient, this training also involved answering story-specific questions that required 
contextual reinstatement. Spatial recall was then tested for all object positions. The average positioning 
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error, calculated as the Euclidean distance between the true position and placed position, was 76.7 ± 1.9 
(mean ± SEM) pixels (see Methods). Next, participants were allowed to nap for up to 90 minutes. During 
NREM sleep, participants were exposed to sounds that had been associated with some of the objects. 
Finally, participants completed another recall test. 

Exposure to sounds during sleep benefited reactivated memories and contextually linked memories 

We hypothesized that biasing reactivation for certain memories would impact other memories that 
belonged to the same contextually bound set. To test this, we first divided objects for each participant 
into three groups (Figure 1d): (1) objects that were directly reactivated using sounds during sleep (cued 
objects ∈ cued set); (2) objects that were not directly reactivated, but were contextually linked with 
objects belonging to the previous group (non-cued objects ∈ cued set); (3) objects that were neither 
directly reactivated nor shared an encoding context with those that were (non-cued objects ∉ cued set) 
(Figure 1d, bottom). We hypothesized that the second group would show less forgetting during sleep 
relative to the third group. To test this hypothesis, we fitted a mixed linear model predicting how post-
sleep positioning errors would be modulated by experimental conditions (i.e., the three groups of 
objects), while accounting for pre-sleep positioning errors (Figure 2a, b). 

As expected, pre-sleep errors were positively correlated with post-sleep errors (F(1,1537) = 258.8, p < 
0.001). Although we did not find a main effect of condition (F(2,1537) = 0.28, p = 0.75), we found a 
significant interaction between condition and pre-sleep errors (F(2,1537) = 7.1, p < 0.001). This 
interaction reflects differences between conditions in forgetting slopes. Higher coefficients reflect 
steeper slopes between pre- and post-sleep errors (i.e., more forgetting). We therefore compared the 
slopes for the three conditions to unpack the interaction effect (Figure 2c). Directly reactivated 
memories (i.e., cued objects ∈ cued set) showed smaller forgetting slopes relative to memories that 
were neither reactivated nor contextually bound to reactivated memories (i.e., non-cued objects ∉ cued 
set; t(1537) = -3.1, p < 0.01).  Crucially, non-cued objects that were contextually bound with cued objects 
(i.e., non-cued objects ∈ cued set) showed smaller forgetting slopes relative to memories that were 
neither reactivated nor contextually bound to reactivated memories (i.e., non-cued objects ∉ cued set; 
t(1537) = -2.2, p < 0.05). Taken together, these results indicate that the benefits of memory reactivation 
during sleep extend beyond targeted memories, impacting other memories that were contextually 
linked with them. 

Using the same dataset, we next examined the differential roles of semantic context (i.e., conceptual 
links between objects, operationalized by the idiosyncratic story for each set) and temporal context (i.e., 
links between objects learned within temporal proximity, operationalized by our block design; Figure 
1c). Temporal encoding context has been shown to reinstate during wake, thereby impacting retrieval 
(Manning et al., 2011; Bornstein and Norman, 2017; Hoskin et al., 2019), and we hypothesized that it 
would similarly be reinstated and impact reactivation during sleep. However, our results did not support 
this hypothesis. For this analysis, we divided our data into four groups (Figure 2d). The first two were 
identical to those used for the previous analysis (cued objects ∈ cued set; non-cued objects ∈ cued set). 
Another group included objects that were not linked with a cued set, but were learned within the same 
block as cued objects [(non-cued objects ∉ cued set) ∈ cued block]. The final group included objects that 
were neither learned in the same block nor linked with the same set as the cued objects (non-cued 
objects ∉ cued block). The crucial difference between these last two groups is that objects in the former 
group – but not the latter group – share a temporal context with the cued objects. Like before, we found 
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main effects of pre-sleep errors (F(1,1535) = 150.2, p < 0.001) but not condition (F(3,1535) = 0.2, p = 
0.9), as well as a significant interaction (F(3,1535) = 4.6, p < 0.01; Figure 2e). Contrasting the forgetting 
slopes for the three groups revealed no significant difference between the [(non-cued objects ∉ cued 
set) ∈ cued block] and (non-cued objects ∉ cued block) groups, suggesting that temporal context, as 
operationalized by learning block, had no effect on performance (t(1535) = 0.03, p = 0.98; Figure 2f). We 
found significantly higher slopes for the (cued objects ∈ cued set) group relative to the (non-cued 
objects ∉ cued block) group (t(1535) = -2.89, p < 0.01), and a trend toward higher slopes for the (non-
cued objects ∈ cued set) group relative to the (non-cued objects ∉ cued block) group (t(1535) = -1.83, p 
= 0.07). 

Taken together, results suggest that semantic context – but not temporal context – is reinstated during 
sleep and guides memory consolidation. 

 
 
Figure 2: Targeted reactivation benefited recall for reactivated memories and for memories bound 
by semantic context but not temporal context. (a) Data for a single participant. Each dot represents 
error rates for objects positioned by the participant before and after sleep. Colors signify the 
condition for each object: cued objects ∈ cued set (yellow), non-cued objects ∈ cued set (red), non-
cued objects ∉ cued set (blue). Steeper slopes signify more forgetting between the pre- and post-
sleep tests. (b) Forgetting curves across all participants. Slopes and intersects were estimated using a 
mixed linear model. (c) Statistical comparison of forgetting slopes across conditions. The same data is 
reflected in panels b and c. (d) The same dataset was submitted to another analysis, which 
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distinguishes between two groups of objects: [(non-cued objects ∉ cued set) ∈ cued block] and (non-
cued objects ∉ cued block). For conciseness, the former group is designated as (non-cued objects ∈ 
cued block). Conventions follow Figure 1d, bottom. (e) Forgetting curves across all participants for the 
four conditions. (f) Statistical comparison of forgetting slopes across conditions. Error bars signify 
standard errors of the mean. ** - p < 0.01; * - p < 0.05; ~ - p < 0.1; n.s - p > 0.1. 

 

Sleep spindles reflect contextual reinstatement, predicting changes in performance 

Next, we explored the role of sleep EEG oscillations in the process of contextual reinstatement during 
sleep. First, we calculated the time-locked time-frequency response to sounds presented during sleep 
for all task-related sounds (Figure 3a). Across participants, we identified two clusters in the time-
frequency representation following sound onset (p < 0.01, corrected): one cluster at lower frequencies 
(<10 Hz) peaking around 0.5 s after sound onset, and another between 15-20 Hz, which involved two 
components peaking before and after the 1 s mark after sound onset (Figure 3b, left). The first cluster 
(i.e., cluster 1; Figure 3b, right), consisting of frequencies in the delta and theta range, putatively reflects 
activity related to slow oscillations and K-complexes, which are typical of NREM sleep. The second 
cluster (i.e., cluster 2), consisting of frequencies in the sigma range, may reflect the occurrence of sleep 
spindles, a sleep-specific waveform which has been linked to memory consolidation during sleep 
(Antony et al., 2019; Fernandez and Luthi, 2020). However, previous research has shown that spindles 
typically commence approximately 1 s after sound onset (Antony et al., 2018; Cairney et al., 2018; 
Schechtman et al., 2021a). Together with the conjoined pattern of the observed cluster, this may 
suggest that only the late component of the cluster (cluster 2B) truly reflects spindle activity, whereas 
the early component (cluster 2A) reflects some high-frequency component of the K-complex (Donoghue 
et al., 2021). Therefore, we conducted further analyses on the full high-frequency cluster, as well as on 
its two separable components.  

Throughout NREM sleep, sounds were often presented multiple times (Supplementary Table 1). We 
hypothesized that waveforms resulting from repeated presentations of the same sound would be more 
similar one to the other than those resulting from different sounds. To test this, we quantified power in 
each cluster on a trial-by-trial basis and submitting the results, per participant, to an intraclass 
correlation coefficient analysis (Figure 3c). For most clusters, results indeed indicated that coefficients 
were higher than those expected by chance, as assessed using a permutation test (cluster 1, p < 0.001; 
cluster 2, p < 0.01; cluster 2A, p < 0.01; cluster 2B, p = 0.15 ; see Figure 3b, right, for designations). These 
correlations may be the result of the memory content related to a sound being reactivated similarly 
across trials, but a more parsimonious explanation may be that they stem from the acoustic properties 
of the presented sounds creating similar electrophysiological responses. 

We then used a similar approach to test whether specific waveforms reflected contextual relationships 
between objects within the same set. We hypothesized that responses would be more similar across 
sounds if these sounds were linked within the same contextually bound set. Put differently, we 
predicted that if a specific waveform is involved in the process of contextual reinstatement, spectral 
power linked with that waveform would be more similar for two sounds that share a context and less 
similar for two sounds that do not share a context. To test this, we calculated the intraclass correlation 
coefficient across sounds for each cluster and each participant (Figure 3d). Results showed higher-than-
chance coefficients for cluster 2 (p < 0.05), and specifically for cluster 2B, putatively reflecting post-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.486140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.28.486140
http://creativecommons.org/licenses/by-nc-nd/4.0/


sound spindles (p < 0.001). Unlike the previous analysis conducted within sounds, this analysis 
considered similarity between sounds and therefore does not reflect trivial sources of correlation, such 
as the acoustic properties of sounds. These results suggest that sleep spindles may be involved in the 
process of context reinstatement during sleep. 

Finally, we explored a more direct connection between within-context spindle correlations and the 
aforementioned behavioral effects depicted in Figure 2c. For each participant, we calculated (a) the 
TMR-induced changes in forgetting slopes for cued objects and for non-cued objects within cued sets; 
and (b) the intraclass correlation coefficients between sounds belonging to the same contextually bound 
set. We then correlated these measures across participants and found that participants with more 
similar sigma power within sets also showed less forgetting for cued objects (r = -0.71, p < 0.01 for 
cluster 2; r = -0.62, p < 0.01 for cluster 2B; p > 0.18 for all other clusters; Figure 3e, left). The correlation 
for non-cued objects, which reflects the contextual effects of cuing on performance, was significant only 
for the late sigma cluster, putatively reflecting sleep spindles (r = -0.5, p < 0.05 for cluster 2B, p > 0.36 for 
all other clusters; Figure 3e, right). 

Taken together, results demonstrate that post-cue spindle-band power is correlated within set and this 
correlation predicts contextually determined benefits. Our findings therefore support the hypothesis 
that power in the spindle band reflects contextual reinstatement during sleep.  

Figure 3: Post-cue spectral power is driven by context and predicts contextually driven changes in 
performance. (a) Time-frequency representation of the EEG activity in electrode Cz over the time 
period following cue onset during sleep. The pink line presents the average event-related response. 
(b) Left – map of the across-participant p-values for changes in spectral power. Right – identified 
clusters. (c) The similarity of induced power changes between different repetitions of the same sound 
was quantified using intraclass correlation coefficients for each cluster. Bar colors correspond to 
cluster outline colors in panel b. Results were evaluated using a permutation test. Real – values 
obtained for non-shuffled data. Shuf – values obtained for shuffled data. (d) The similarity of induced 
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power changes between different sounds belonging to the same contextually bound set. Designations 
follow those in panel c. (e) Correlations between intraclass correlation coefficients and condition-
specific changes in forgetting slopes across participants. Left – for cued objects ∈ cued sets. Right – 
for non-cued objects ∈ cued sets. Error bars and dashed lines signify standard errors of the mean. *** 
- p < 0.001; ** - p < 0.01; * - p < 0.05; ~ - p < 0.1; n.s - p > 0.1. 

 

Place-specific contextual reinstatement predicts consolidation benefits 

Previous studies operationalized contextual reinstatement during wake using measures of similarity 
between brain states during encoding and retrieval (Manning et al., 2011; e.g., Howard et al., 2012). To 
test whether place-specific wake-like activity is involved in sleep reactivation, we had participants 
observe consecutive images belonging to one of three categories: places, faces, or abstract images 
(Supplementary Figure 1). Using time-series data from all scalp electrodes to train a support-vector 
machine classifier, we identified clusters of time-points distinguishing places and abstract images (p < 
0.001). The largest cluster spanned between 0.28 and 0.73 s after image onset during wake (Figure 4a). 

Using place-related activity as a marker for context, we next correlated the sleep and wake EEG data 
from all scalp electrodes to reveal reinstatement of context-related activity. Averaging across wake trials 
(i.e., around image onset for place images in the functional localizer) and sleep trials (i.e., around sound 
onset for sleep-related sounds), we calculated the time-point-by-time-point correlation matrix. The 
result was a time X time matrix of correlation coefficients, with a peak in correlation around 0.5 s after 
place image onset during wake and 0.75 s after sound onset during sleep (Figure 4b, top). This increase 
in correlation may reflect genuine neural reactivation of place-related representations. However, it 
could be that the correlations are not place-specific, but rather reflect similarities between sleep and 
image-viewing during wake. Indeed, conducting the same correlation analysis between task-related 
sound presentation data and EEG data following the presentation of an abstract image revealed similar 
temporal dynamics (Figure 4b, bottom). 

We defined place-specific reactivation as the subtraction of the place and abstract related matrices 
(Figure 4c). The resulting matrix showed a peak in correlation around 0.6 s after place image onset 
during wake and 0.75 s after sound onset during sleep. Although correlations peaked following sound 
onset, we found that they persisted throughout the time course of reactivation during sleep (e.g., 
correlations are above baseline even before sound onset). This extended period of place-specific 
reactivation is likely due to the protocol used for cuing, which involved continuous, repetitive 
presentations of task-related sounds, all of which were part of contextually bound sets involving places. 
Therefore, we collapsed the place-specific reactivation matrix over the time course of sleep trials (Figure 
4d).  

To reveal whether place-specific reactivation predicts changes in performance, we focused on the 
period of time during which the classifier distinguished between places and abstract images (Figure 4a; 
gray dashed frame in Figure 4d). Average correlations during this time period were correlated with 
changes in performance for cued objects ∈ cued sets, indicating less forgetting for cued objects in 
participants who demonstrated higher wake-sleep place-specific correlations (r = -0.39, p < 0.05; Figure 
4e, left). However, reactivation patterns did not significantly correlate with non-cued objects ∈ cued sets 
(r = -0.05, p = 0.82; Figure 4e, right). Taken together, results show that place-specific neural 
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representations are reinstated by cues during sleep and this reinstatement predicts benefits for cued 
memories. 

 

 

Figure 4: Scene-specific neural reactivation predicts changes in performance for cued objects. (a) 
Classification accuracy for a classifier trained to distinguish images of places and abstract images. Gray 
lines denote significant classification above chance (p < 0.001). Gray dashed boxes in the following 
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panels signify the time period for the largest cluster of continuously significant classification. (b) 
Correlation patterns between EEG patterns following sound presentation during sleep (y-axis) and 
image presentation during wake (x-axis). Top – correlations for images of places. Bottom – 
correlations for abstract images. (c) The place-specific correlation patterns, defined as the subtraction 
between the upper and lower matrices shown in panel b. Note that place-related activity starts 
before sound onset during sleep and persists throughout most of the sound-locked time-course. (d) 
Place-specific correlation patterns collapsed over the sound-locked time-course during sleep. (e) 
Correlations between the place-specific patterns during the classifiable time period (gray dashed box 
in panel d) and changes in forgetting slopes across participants. Left – for cued objects ∈ cued sets. 
Right – for non-cued objects ∈ cued sets. Shaded areas and dashed lines signify standard errors of the 
mean. * - p < 0.05; n.s - p > 0.1. 

 

Discussion 

In this study, we tested whether the context in which memories are encoded impacts sleep-related 
consolidation. Participants first developed idiosyncratic stories linking different objects with a physical 
place, and then encoded on-screen positions for each object. By presenting object-specific sounds 
during NREM sleep, we selectively biased reactivation towards specific memories, thereby reducing 
forgetting for these memories. Crucially, this manipulation also reduced forgetting for contextually 
bound memories that were not cued directly. Spectral analyses revealed that EEG responses likely 
reflecting post-sound sleep spindles were correlated when sounds were linked to contextually bound 
objects. Furthermore, these correlations within contextually bound sets predicted changes in retrieval 
performance: with greater similarity there was less forgetting for both cued and non-cued objects within 
a set. Finally, our analyses revealed that neural representations related to places were reinstated 
following sound onset during sleep, and this reinstatement predicted changes in retrieval performance 
for cued objects. 

Our results reveal that context is reinstated during sleep in a manner that impacts memory processing. 
From a broader perspective, these findings fit with the growing literature linking context and memory. 
The notion of context-dependent memory pertains to improved retrieval in a context similar to the 
encoding context (Abernethy, 1940; Godden and Baddeley, 1975). The natural process of 
autobiographical retrieval involves the experience of mentally travelling back in time (Tulving, 1983; 
Tulving, 1993), which in itself involves contextual reinstatement (Howard and Kahana, 2002b), thereby 
improving retrieval by increasing the similarity between the neurocognitive states at encoding and 
retrieval. Contextual reinstatement through mental time travel results in the effortless retrieval of 
multiple intertwined memories that reside together in the same rich context.  

Despite much theoretical and empirical research on how context bridges memory encoding and 
retrieval, the question of context’s role is memory consolidation during sleep has been scarcely 
addressed. Some evidence suggests that sleep serves to strengthen the links between memories and the 
contexts in which they are encoded (van der Helm et al., 2011; Kurinec et al., 2021). Indeed, 
consolidation over time seems to increase the similarity between neural representations of memories 
linked with the same context (Tompary and Davachi, 2017), although the specific role of sleep is yet to 
be explored. 
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The question of whether contexts are reinstated during sleep is separate from the question of sleep’s 
effects on context-item binding. Some consolidation theories assume that sleep is a context-less state, 
and this property of sleep shelters memories by preventing context-related interference (Yonelinas et 
al., 2019). However, to the best of our knowledge, the question of context reinstatement during sleep 
has not been systematically and empirically explored. Recently, we showed that the capacity for 
reactivation and consolidation during sleep is not limited to a single memory at any given time, 
suggesting that memories that are tightly and conceptually interlinked can be reactivated 
simultaneously (Schechtman et al., 2021a). Our current results suggest that this capacity for 
simultaneous reactivation extends beyond tightly interlinked memories (e.g., different memories related 
to cats) and also applied to contextually interlinked memories (e.g., memories that reside within the 
same narrative). These findings complement recent studies that have found that reactivating memories 
during wake has a retroactive beneficial impact on conceptually related memories that were not directly 
reactivated (Dunsmoor et al., 2015; Patil et al., 2017). Taken together, these findings show that 
consolidation during both wake and sleep involves contextual reinstatement and impacts memories that 
were not directly cued. 

Our design attempted to tease apart two interlinked forms of context – semantic context and temporal 
context. Results revealed that semantic context, operationalized using an idiosyncratically constructed 
narrative, impacted sleep-related effects on memory, whereas temporal context, operationalized using 
a temporally structured block design, did not (Figure 2). However, we acknowledge some limitations in 
our design that warrant a more nuanced interpretation of these results. First, it should be noted that the 
contextually bound sets, which were used to operationalize semantic context, in fact also share a 
temporal context; they not only shared a narrative, but were also learned in the same learning block. 
Second, temporal context is not impacted exclusively by the mere passage of time. Instead, salient 
events act as event boundaries, creating abrupt shifts in temporal context (Zacks et al., 2007; Clewett et 
al., 2019; Pu et al., 2022). It could be argued, therefore, that blocks in the position learning part of the 
task did not uniformly reflect temporal context, but rather that switches between trials within a block 
acted as event boundaries. Effectively, this framing, if correct, would mean that memories in our task 
never shared temporal context, providing an alternative explanation for our null findings. 

Despite the aforementioned limitations, the possible distinction between the roles of semantic and 
temporal context during sleep aligns with other experimental findings. In a recent study, we used the 
same task design to explore the role of context in undisturbed, overnight sleep (Schechtman et al., In 
Preparation). By considering the similarities between memory trajectories over a delay period within the 
same contextually bound sets, we found that semantic – but not temporal – context drives performance 
changes over a 10-hour period including sleep, but not over a 10-hour period that did not include sleep. 
In a separate study, Liu and Ranganath (2021) found the sleep is crucial for binding together memories 
that are semantically related but learned in different episodes. In contrast, they found that sleep did not 
impact binding between memories that were semantically unrelated but learned within temporal 
proximity one of the other. Taken together, these results suggest that there may be a qualitative 
difference between the roles semantic and temporal contexts play in memory processing during sleep. 

Over the last decades, sleep’s active role in memory consolidation has gradually been revealed and 
acknowledged. Our understanding of how memory representations are reactivated and evolve during 
sleep is still incomplete. Day-to-day memories are best understood when considering the connections 
amongst them, yet these connections are not accounted for in our models of memory processing during 
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sleep. Our demonstration of a role for context in sleep consolidation opens the door for further 
exploration of how memory interconnections impact consolidation during sleep. More generally, this 
study underscores the notion that memory processing orchestrated by the sleeping brain is as rich and 
complex as when we are awake.  
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Supplementary Table 1: Time asleep and cuing statistics in each sleep stage 

Sleep stage Wake Stage 1 Stage 2 Stage 3 REM 
Minutes in stage 

(mean ± SEM) 
20.67 ± 2 14.91 ± 1.4 33.55 ± 2.5 17.84 ± 2.3 5.86 ± 1.8 

% Time in stage 
(mean ± SEM) 

22.41 ±2.2 16.08 ± 1.6 36.11 ± 2.7 19.29 ± 2.5 6.11 ± 1.8 

# Cues in stage 
(mean ± SEM) 

0.41 ± 0.1 0.62 ± 0.3 19.03 ± 4.4 57.03 ± 9.4 0.28 ± 0.24 

 

 
 
Supplementary Figure 1: Functional localizer task and classification during wake. (a) Participants 
were presented with images and required to indicate when two successive images were identical (i.e., 
a 1-back task). (b) EEG data collected during the task was used to train an SVM classifier to distinguish 
between image categories. For all four comparisons, classification was significantly higher than 
chance. Yellow shades indicate the standard errors of measurement between participants. Blue lines 
indicate classification significantly above chance (p < 0.001). 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.486140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.28.486140
http://creativecommons.org/licenses/by-nc-nd/4.0/


• Reference List 
 

• Abernethy EM (1940) The Effect of Changed Environmental Conditions Upon the Results of 
College Examinations. The Journal of Psychology 10:293-301. 

• Antony JW, Schapiro AC (2019) Active and effective replay: systems consolidation reconsidered 
again. Nat Rev Neurosci 20:506-507. 

• Antony JW, Schonauer M, Staresina BP, Cairney SA (2019) Sleep Spindles and Memory 
Reprocessing. Trends in Neurosciences 42:1-3. 

• Antony JW, Piloto L, Wang M, Pacheco P, Norman KA, Paller KA (2018) Sleep Spindle 
Refractoriness Segregates Periods of Memory Reactivation. Current Biology 28:1736-1743 
e1734. 

• Bae GY, Luck SJ (2018) Dissociable Decoding of Spatial Attention and Working Memory from EEG 
Oscillations and Sustained Potentials. The Journal of Neuroscience 38:409-422. 

• Bornstein AM, Norman KA (2017) Reinstated episodic context guides sampling-based decisions 
for reward. Nat Neurosci 20:997-1003. 

• Brodeur MB, Guérard K, Bouras M (2014) Bank of Standardized Stimuli (BOSS) Phase II: 930 New 
Normative Photos. PLOS ONE 9:e106953. 

• Brodeur MB, Dionne-Dostie E, Montreuil T, Lepage M (2010) The Bank of Standardized Stimuli 
(BOSS), a new set of 480 normative photos of objects to be used as visual stimuli in cognitive 
research. PLoS One 5:e10773. 

• Cairney SA, Guttesen AAV, El Marj N, Staresina BP (2018) Memory Consolidation Is Linked to 
Spindle-Mediated Information Processing during Sleep. Current Biology 28:948-954.e944. 

• Chang N, Pyles JA, Marcus A, Gupta A, Tarr MJ, Aminoff EM (2019) BOLD5000, a public fMRI 
dataset while viewing 5000 visual images. Scientific data 6:49. 

• Clewett D, DuBrow S, Davachi L (2019) Transcending time in the brain: How event memories are 
constructed from experience. Hippocampus 29:162-183. 

• Diekelmann S, Born J (2010) The memory function of sleep. Nature Reviews Neuroscience 
11:114-126. 

• Donoghue T, Schaworonkow N, Voytek B (2021) Methodological considerations for studying 
neural oscillations. The European journal of neuroscience. 

• Dunsmoor JE, Murty VP, Davachi L, Phelps EA (2015) Emotional learning selectively and 
retroactively strengthens memories for related events. Nature 520:345-348. 

• Fernandez LMJ, Luthi A (2020) Sleep Spindles: Mechanisms and Functions. Physiological Reviews 
100:805-868. 

• Godden DR, Baddeley AD (1975) Context-Dependent Memory in Two Natural Environments: On 
Land and Underwater. British Journal of Psychology 66:325-331. 

• Hoddes E, Zarcone V, Smythe H, Phillips R, Dement WC (1973) Quantification of Sleepiness: A 
New Approach. Psychophysiology 10:431-436. 

• Hoskin AN, Bornstein AM, Norman KA, Cohen JD (2019) Refresh my memory: Episodic memory 
reinstatements intrude on working memory maintenance. Cogn Affect Behav Neurosci 19:338-
354. 

• Howard MW, Kahana MJ (2002a) When Does Semantic Similarity Help Episodic Retrieval? 
Journal of Memory and Language 46:85-98. 

• Howard MW, Kahana MJ (2002b) A Distributed Representation of Temporal Context. Journal of 
Mathematical Psychology 46:269-299. 

• Howard MW, Viskontas IV, Shankar KH, Fried I (2012) Ensembles of human MTL neurons "jump 
back in time" in response to a repeated stimulus. Hippocampus 22:1833-1847. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.486140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.28.486140
http://creativecommons.org/licenses/by-nc-nd/4.0/


• Hu X, Cheng LY, Chiu MH, Paller KA (2020) Promoting memory consolidation during sleep: A 
meta-analysis of targeted memory reactivation. Psychological bulletin 146:218-244. 

• Iber C, Ancoli-Israel S, Chesson A, Quan S (2007) AASM manual for scoring sleep. 
• Kahana MJ (1996) Associative retrieval processes in free recall. Memory & cognition 24:103-109. 
• Koo TK, Li MY (2016) A Guideline of Selecting and Reporting Intraclass Correlation Coefficients 

for Reliability Research. Journal of Chiropractic Medicine 15:155-163. 
• Kurinec CA, Whitney P, Hinson JM, Hansen DA, Van Dongen HPA (2021) Sleep Deprivation 

Impairs Binding of Information with Its Context. Sleep. 
• Liu XL, Ranganath C (2021) Resurrected memories: Sleep-dependent memory consolidation 

saves memories from competition induced by retrieval practice. Psychonomic bulletin & review. 
• Manning JR, Polyn SM, Baltuch GH, Litt B, Kahana MJ (2011) Oscillatory patterns in temporal 

lobe reveal context reinstatement during memory search. Proceedings of the National Academy 
of Sciences 108:12893-12897. 

• Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: Open source software for 
advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational 
intelligence and neuroscience 2011:156869. 

• Oudiette D, Paller KA (2013) Upgrading the sleeping brain with targeted memory reactivation. 
Trends in Cognitive Sciences 17:142-149. 

• Paller KA, Creery JD, Schechtman E (2021) Memory and Sleep: How Sleep Cognition Can Change 
the Waking Mind for the Better. Annual Review of Psychology:In Press. 

• Patil A, Murty VP, Dunsmoor JE, Phelps EA, Davachi L (2017) Reward retroactively enhances 
memory consolidation for related items. Learning & memory (Cold Spring Harbor, NY) 24:65-69. 

• Polyn SM, Norman KA, Kahana MJ (2009) A context maintenance and retrieval model of 
organizational processes in free recall. Psychological Review 116:129-156. 

• Pu Y, Kong X-Z, Ranganath C, Melloni L (2022) Event boundaries shape temporal organization of 
memory by resetting temporal context. Nature Communications 13:622. 

• Schechtman E, Heilberg J, Paller KA (In Preparation) Context matters: Changes in memory over a 
period of sleep are driven by context. 

• Schechtman E, Antony JW, Lampe A, Wilson BJ, Norman KA, Paller KA (2021a) Multiple 
memories can be simultaneously reactivated during sleep as effectively as a single memory. 
Communications Biology 4:25. 

• Schechtman E, Lampe A, Wilson BJ, Kwon E, Anderson MC, Paller KA (2021b) Sleep reactivation 
did not boost suppression-induced forgetting. Sci Rep 11:1383-1383. 

• Schreiner T, Petzka M, Staudigl T, Staresina BP (2021) Endogenous memory reactivation during 
sleep in humans is clocked by slow oscillation-spindle complexes. Nature Communications 
12:3112. 

• Smith SM (1994) Theoretical principles of context-dependent memory. Theoretical aspects of 
memory 2:168-195. 

• Stark SM, Reagh ZM, Yassa MA, Stark CEL (2018) What's in a context? Cautions, limitations, and 
potential paths forward. Neuroscience letters 680:77-87. 

• Tompary A, Davachi L (2017) Consolidation Promotes the Emergence of Representational 
Overlap in the Hippocampus and Medial Prefrontal Cortex. Neuron 96:228-241.e225. 

• Tulving E (1983) Elements of episodic memory. London: Oxford University Press. 
• Tulving E (1993) What Is Episodic Memory? Current Directions in Psychological Science 2:67-70. 
• van der Helm E, Gujar N, Nishida M, Walker MP (2011) Sleep-dependent facilitation of episodic 

memory details. PLoS One 6:e27421. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.486140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.28.486140
http://creativecommons.org/licenses/by-nc-nd/4.0/


• Yonelinas AP, Ranganath C, Ekstrom AD, Wiltgen BJ (2019) A contextual binding theory of 
episodic memory: systems consolidation reconsidered. Nature Reviews Neuroscience 20:364-
375. 

• Zacks JM, Speer NK, Swallow KM, Braver TS, Reynolds JR (2007) Event perception: a mind-brain 
perspective. Psychological bulletin 133:273-293. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.486140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.28.486140
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Made together, replayed together: Context reinstatement during sleep guides memory consolidation
	Eitan Schechtman*, Julia Heilberg, & Ken A. Paller

