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Abstract:  30 

While humoral immune responses to infection or vaccination with ancestral SARS-CoV-2 have 31 

been well-characterized, responses elicited by infection with variants are less understood. Here 32 

we characterized the repertoire, epitope specificity, and cross-reactivity of antibodies elicited by 33 

Beta and Gamma variant infection compared to ancestral virus. We developed a high-throughput 34 

approach to obtain single-cell immunoglobulin sequences and isolate monoclonal antibodies for 35 

functional assessment. Spike-, RBD- and NTD-specific antibodies elicited by Beta- or Gamma-36 

infection exhibited a remarkably similar hierarchy of epitope immunodominance for RBD and 37 

convergent V gene usage when compared to ancestral virus infection. Additionally, similar public 38 

B cell clones were elicited regardless of infecting variant. These convergent responses may 39 

account for the broad cross-reactivity and continued efficacy of vaccines based on a single 40 

ancestral variant. 41 

 42 
One Sentence Summary: WA1, Beta and Gamma variants of SARS-CoV-2 all elicit antibody 43 
responses targeting similar RBD epitopes; public and cross-reactive clones are common. 44 
  45 
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Main Text: 46 

 47 

INTRODUCTION 48 

 49 

The sustained spread of SARS-CoV-2 infection has resulted in the emergence of virus 50 

variants characterized by the accumulation of multiple sequence mutations. Variants that acquired 51 

enhanced transmissibility, pathogenicity or a mechanism of immune escape are considered 52 

“variants of concern” (VOC), and include Alpha (PANGO lineage B.1.1.7), Beta (B.1.351), Gamma 53 

(P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) (1). Their ability to escape immune responses 54 

elicited by vaccines based on the first reported sequence from Wuhan (PANGO lineage B.1, here 55 

called “WA1”), or by previous infection with a different variant, is a major obstacle to efforts to 56 

control the pandemic. A better understanding of the similarities and differences in the immune 57 

responses induced by each variant will help guide vaccine design strategies to overcome immune 58 

evasion by the virus. 59 

Early in the pandemic, D614G was the first amino acid substitution in the Spike protein to 60 

become dominant, and it was shown to confer increased infectivity due to improved Spike stability, 61 

albeit with higher sensitivity to antibody neutralization (2, 3). Over the course of the pandemic, 62 

selective immune pressure is proposed to have led to the accumulation of changes in residues 63 

targeted for antibody recognition and neutralization, most importantly in the receptor binding 64 

domain (RBD) (4, 5). N501Y and other substitutions in RBD increase binding affinity to ACE2 and 65 

can compensate for affinity-lowering substitutions that are selected by immune pressure (6-9). 66 

The combination of K417N/T, E484K/A and N501Y substitutions arose independently in the Beta, 67 

Gamma and Omicron variants (10, 11), with N501Y also present in the Alpha, Theta, and Mu 68 

variants, showing convergent viral evolution along these pathways. Changes in the N-terminal 69 

domain (NTD), by contrast, are less often convergent across variants, but may also account for 70 

epitope disruption (12). Although neutralizing antibodies that recognize NTD are less frequent 71 

than those binding to RBD (13-15), this domain is a major target for non-neutralizing antibodies 72 

that can elicit Fc effector functions (16, 17). Therefore, neutralizing capacity and Fc-mediated 73 

functionality of antibodies induced by WA1 are significantly reduced against these variants. In 74 

addition, CD4 and CD8 T cell responses do not seem to be substantially impacted by variant 75 

substitutions (18-22). 76 

The epitopes on the ancestral virus targeted by the humoral response have been well 77 

characterized (15, 23-31) and conservation of these regions among VOCs and across a broad 78 

range of sarbecoviruses can be readily assessed. Previous studies of the SARS-CoV-2-specific 79 
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antibody repertoire have revealed polarization toward usage of specific VH genes including 80 

IGHV3-53, IGHV3-66, IGHV3-30 and IGHV1-2 (28, 32-36). In many cases, convergent V(D)J 81 

rearrangements (so-called “public clones”) have been found in multiple individuals and several 82 

structural classes have been identified (37) which comprise antibodies derived from the same 83 

genetic elements with a shared binding mode (13, 27, 30, 33, 38-41). Many of the most common 84 

neutralizing antibodies from these classes make contact with residues such as K417 and E484 85 

and thus lose potency against VOCs (6, 42), although some can maintain potency through specific 86 

substitutions that adjust the binding conformation to avoid variable residues (43, 44). However, 87 

neutralizing antibodies make up only a minority of the total binding repertoire, which has not been 88 

well characterized in VOC infections compared to WA1. 89 

In-depth characterization of antigen-specific B cell repertoires requires rapid, high-90 

throughput monoclonal antibody (mAb) discovery and functional testing. Further, high-resolution 91 

observations of differences in immune responses to SARS-CoV-2 variants can be leveraged to 92 

inform future rational vaccine design for boosters and an efficacious pan-coronavirus vaccine. 93 

Using a novel method for high-throughput, cloning-free recombinant mAb synthesis and 94 

sequencing, we investigated the differences in epitope targeting, VH gene usage, and B cell clonal 95 

repertoires from convalescent individuals infected with WA1, Beta, or Gamma variants. 96 

 97 

RESULTS 98 

 99 

Spike binding antibody titers in WA1-, Beta-, and Gamma-infected individuals  100 

We collected serum or plasma and PBMC from individuals infected with WA1, Beta, or 101 

Gamma variants at 17-38 days after symptom onset (Table S1) to compare antibody and B cell 102 

responses. The infecting variant for Beta and Gamma cases was confirmed by sequencing; WA1 103 

cases were from early in the pandemic, prior to the rise of VOCs. All individuals were previously 104 

naïve to SARS-CoV-2. As we were interested in studying the total antigen-specific B cell 105 

repertoire, we did not select individuals based solely on high neutralization titers, but rather 106 

focused on the time post-infection when frequencies of B and T cells are typically high. 107 

We measured serum binding titers to stabilized Spike trimer (S-2P) from WA1, Alpha, 108 

Beta, Gamma, and Delta variants, and to RBD from WA1, Alpha, Beta, and Gamma variants using 109 

a Meso Scale Discovery electrochemiluminescence immunoassay (MSD-ECLIA) (Fig. 1A). 110 

Additionally, we assessed binding titers to Spike from WA1 (with and without D614G), Alpha, 111 

Beta, Gamma, Delta, or Omicron variants expressed on the surface of HEK293T cells (Fig. S1A).  112 

  113 
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Figure 1: Homologous and cross-reactive antibodies induced by WA1 and variant infections. (A) Binding 114 
antibody titers to spike (top panels) and RBD (bottom panels) from different variants indicated on the x-115 
axis. (B) Heatmap showing neutralizing antibody titers (reciprocal 50% inhibitory dilution) for each individual 116 
labeled on the left against each variant indicated on the top. (C) Epitope mapping on homologous spike by 117 
competition assay using surface plasmon resonance. Antibodies CB6 (RBD-B epitope) and A19-30.1 118 
(RBD-I) do not bind to Beta and competition is not measured at these sites. (D) CD4 (left) and CD8 (right) 119 
T cell responses to WA1 spike peptide pools A+B, selected pools containing altered variant peptides and 120 
control pool containing correspondent peptides for each variant pool.  121 
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Both assays showed that all convalescent individuals had antibodies against the homologous 122 

Spike as well as cross-reactive antibodies to Spike from other variants. The WA1-infected 123 

individuals showed a significant reduction in antibody titers against beta RBD, but variant-infected 124 

individuals recognized WA1 RBD at similar levels as the homologous RBD (Fig. 1A), consistent 125 

with previous reports (45, 46). Individuals with the highest serum binding titers (SAV1, SAV3 and 126 

A49) could cross-neutralize WA1, Beta, Gamma, and, with lower potency, Delta variants, 127 

however, low levels of neutralization were detected in the other serum samples (Fig. 1B). 128 

 129 

VOC infection does not alter B or T cell immunodominance profiles 130 

We next used a surface plasmon resonance (SPR)-based competition assay (47, 48) to 131 

characterize epitopes targeted by serum antibodies. We individually blocked specific RBD 132 

epitopes on S-2P using structurally validated mAbs (Figure S1B) and measured the fraction of 133 

polyclonal serum binding activity remaining compared to unblocked trimer. Notably, when the 134 

binding activity of each serum was characterized against the homologous Spike, the patterns of 135 

reactivity were comparable between individuals infected either with WA1 or Beta (Fig 1C), 136 

revealing a similar immunodominance hierarchy across variants. Likewise, there were no 137 

differences in competition at each epitope when sera from Beta- or Gamma-infected individuals 138 

were mapped against WA1, Beta, or Delta Spike (Fig. S1, C and D). Only one of the WA1-infected 139 

individuals produced sufficiently high binding titers against variant Spike to enable epitope 140 

mapping by competition (Table S2). 141 

We evaluated the ability of T cells elicited by Beta and Gamma infections to recognize 142 

WA1 Spike peptides by measuring upregulation of CD69 and CD154 on CD4 T cells, and 143 

production of IFN-γ, TNF, or IL-2 by CD8 T cells (Fig. S1E). Due to PBMC availibility, the Beta-144 

infected individuals included in this analysis were from a different cohort. CD4 and CD8 T cell 145 

responses to WA1 Spike peptides were similar in Beta- and Gamma-infected individuals 146 

compared to WA1-infected individuals (Fig. 1D). When stimulated with selected peptides covering 147 

only regions containing substitutions in each variant, CD4 and CD8 T cell responses were 148 

minimal, suggesting that the substituted residues are not included within immunodominant T cell 149 

epitopes (Fig. 1D). 150 

 151 

High-throughput mAb production and repertoire characterization 152 

The three individuals in our cohort with the highest binding titers (Fig 1A) were selected 153 

for in-depth characterization of the antibody repertoire and identification of mAb binding patterns. 154 

Two individuals (SAV1 and SAV3) had been infected with the Beta variant, and the third (A49) 155 
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with Gamma (Fig S2A). To swiftly characterize antibodies from single B cells, we developed a 156 

method for rapid assembly, transfection, and production of immunoglobulins (abbreviated to 157 

RATP-Ig) that enables high-throughput discovery of mAbs from single-sorted B cells. RATP-Ig 158 

relies on 5’-RACE and high-fidelity DNA assembly to produce recombinant heavy and light chain-159 

expressing linear DNA cassettes. These cassettes can be synthesized within two days after 160 

single-cell sorting and can be directly transfected into 96-well microtiter mammalian cell cultures. 161 

Resulting culture supernatants containing the expressed mAbs can then be tested for functionality 162 

(Fig. 2). We sorted cross-reactive WA1+Beta+ B cells using S-2P, RBD, or NTD probes (Fig. S2B) 163 

from the three selected individuals, resulting in a total of 509 single cells for analysis (Fig. 3A). 164 

We recovered paired heavy and light chain sequences from 355 (70%) of cells (Fig. 3A). In 165 

parallel, we screened the RATP-Ig supernatants by ELISA for binding to Spike, RBD, and NTD 166 

derived from each of WA1, Beta, and Gamma variants. IgG binding at least one antigen was 167 

produced in 240 (47%) of wells with a single sorted B cell (Fig. 3, A and B). All three individuals 168 

yielded high levels of cross-reactive antibodies to Spike, NTD, and RBD (Fig. 3B and Tables S3-169 

S5). Antibodies isolated from Beta-infected individuals SAV1 and SAV3 showed similar binding 170 

profiles dominated by cross-reactive mAbs among WA1, Beta, and Gamma variants (Fig. 3B). 171 

While the majority of antibodies isolated from individuals A49 were also cross-reactive, we 172 

isolated a large population of Gamma-specific S-2P binding mAbs and another population whose 173 

epitope specificity was indeterminate and appeared to bind both RBD and NTD (Fig. 3B and Table 174 

S5), perhaps due to high background ELISA signal. 175 

We next performed D614G pseudovirus neutralization screening for all supernatants at a 176 

4-fold dilution. This assay identified 7, 6, and 1 neutralizing antibodies from individuals SAV1, 177 

SAV3, and A49, respectively (Fig. 3C). Neutralizing antibodies were predominately cross-reactive 178 

and RBD-specific, except for two which bound to S-2P only and a single NTD-specific antibody 179 

(Fig. 3C). RBD-specific neutralizing antibodies were also the most potent of those isolated, with 180 

6/12 neutralizing >90% of pseudovirus at 4-fold dilution. It is important to note that supernatant 181 

IgG titers were not calculated but were only verified to reach a minimum cutoff value for functional 182 

assays, limiting our ability to compare potency between antibodies. Overall, we found that 183 

infection with Beta or Gamma variants elicited robust B-cell responses with cross-reactive binding 184 

and neutralizing mAbs. 185 

To validate our results from supernatants produced by RATP-Ig, we selected seven 186 

antibodies for heavy and light chain synthesis and expression. After performing antigen-specific 187 

ELISA on the plasmid-transfected supernatants, we found RATP-Ig screening to be reliably  188 

  189 
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Figure 2: Rapid assembly, transfection and production of immunoglobulin (RATP-Ig) workflow. 5’-RACE is 190 
used to generate total cDNA. Full-length heavy and light chain immunoglobulin V genes are enriched by 191 
PCR and assembled into recombinant mAb linear expression cassettes. In parallel, V gene libraries are 192 
synthesized and sequenced by NGS. Final cassettes are transfected into 96-well Expi293 microtiter 193 
cultures, and culture supernatants are collected up to 7 days after initial sort for functional screening.  194 
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Figure 3: Functional Characterization of RATP-Ig Isolated mAbs. (A) RATP-Ig screening overviews for 195 
three individuals, represented as bullseyes. The area of each circle is proportional to the number of 196 
antibodies. (B) Supernatants were screened for antigen-specific binding by single-point ELISA for WA1, 197 
Beta, and Gamma S2P, RBD, and NTD. (C) Neutralization screening of isolated antibodies at 4-fold 198 
supernatant dilutions using a D614G pseudovirus luciferase reporter assay, reported as % virus neutralized 199 
derived from reduction in luminescence. Associated ELISA heatmap reported as absorbance at 450nm. (D) 200 
Validation of RATP-Ig screening with synthesized plasmids. (E) Clonal expansion in each individual. 201 
Expanded clones are colored by the number of cells in each clone as shown; singleton clones are shown 202 
in gray.  203 
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predictive of mAb functionality, with 59/63 (94%) of functional interactions being reproduced (Fig. 204 

3D).  205 

While all three individuals had polyclonal antigen-specific repertoires (Fig. 3E), SAV3 and 206 

A49 had highly expanded clones matching a widely reported public clone using IGHV1-69 and 207 

IGKV3-11 (28, 34, 49-53). Members of this public clone were also recovered from SAV1, although 208 

they were not greatly expanded. RATP-Ig ELISA data indicated that these antibodies bound a 209 

non-RBD, non-NTD epitope on Spike, consistent with available data for previously described 210 

members of this public clone. In addition, most antibodies from this public clone have been 211 

reported to bind SARS-CoV-1 (28, 34, 49, 50, 52), and one, mAb-123 (50), weakly binds endemic 212 

human coronaviruses HKU1 and 229E. 213 

We also found 2 antibodies, SAV1-109.1 and SAV1-168.1, with a YYDRxG motif that can 214 

target the epitope of mAb CR3022 on RBD and produce broad and potent neutralization of a 215 

variety of sarbecoviruses (54). While SAV1-168.1 was cross-reactive but non-neutralizing (Table 216 

S3), SAV1-109.1 showed good neutralization potency and bound to all three variants tested when 217 

expressed both via RATP-Ig and from a plasmid (Fig. 3, C and D). 218 

 219 

Sequence analysis of SARS-CoV-2 B cell repertoires elicited by different infecting 220 

variants 221 

To investigate possible differences in targeting of domains outside of RBD, we stained 222 

memory B cells with fluorescently labeled S-2P and individual RBD and NTD probes and 223 

examined the specificities by flow cytometry (Fig. S2B). Cells from WA1-infected individuals were 224 

stained separately with WA1-, Beta-, and Gamma-based probes, while Beta- and Gamma-225 

infected samples were stained for WA1 and the infecting variant probes (Fig. S2A). As expected, 226 

the frequency of antigen-specific cells was generally higher in individuals who had higher serum 227 

binding titers, and cells capable of binding to heterologous variants were typically less frequent 228 

than those binding the infecting variant (Fig. 4A). In addition, both Beta- and Gamma-infected 229 

individuals showed higher frequencies of NTD-binding B cells against the homologous virus when 230 

compared to WA1-infected individuals (Fig. 4B). 231 

To analyze the SARS-CoV-2 spike-specific B cell repertoire elicited by each variant in 232 

more depth, we generated libraries from sorted antigen-specific single cells using the 10x 233 

Genomics Chromium platform. After sequencing, we recovered a total of 162, 319, and 107 paired 234 

heavy and light chain sequences from WA1-, Beta-, and Gamma-infected groups, respectively 235 

(Table S6). As observed in the sequences isolated via RATP-Ig, all three SARS-CoV-2 infected  236 

  237 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.486152doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.28.486152
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

Figure 4: Anti-SARS-CoV-2 Ig repertoires. (A) Frequencies of probe+ B cells sorted for IG repertoire 238 
analysis. (B) Proportion of probe+ B cells binding to each domain. (C) SARS-CoV-2-specific VH repertoire 239 
analysis by infecting variant WA1, Beta and Gamma shown in grey, orange and blue, respectively, with 240 
data from pre-pandemic controls in yellow. X-axis shows all germline genes used; y-axis represents percent 241 
of individual gene usage. Stars indicate genes with at least one significant difference between groups; 242 
pairwise comparisons are in Table S4. (D) and (E) Combined frequency of VH genes capable of giving rise 243 
to stereotypical Y501-dependent antibodies (IGHV4-30, IGHV4-31, IGHV4-39, and IGHV4-61) in (D) Beta- 244 
or Gamma-binding B cells from individuals infected with each variant or (E) B cells from Beta-infected 245 
individuals sorted with either WA1- or Beta-derived probes.  246 
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IG repertoires showed little clonal expansion. We then combined these data with the sequences 247 

generated by RATP-Ig for downstream analysis. Antigen-specific V gene usage was highly similar 248 

across all three infection types (Figs. 4C and S3), with differences noted only for IGHV1-46 and 249 

IGLV1-47 (Table S7). However, when we compared these specific repertories to the total memory 250 

B cell repertoire in pre-pandemic controls (55), we observed significant enrichment for several 251 

genes (Figs. 4C and S3; Table S7). For example, IGHV1-46, IGHV5-51, and IGLV3-19 were all 252 

used at higher levels in both WA1- and Beta-elicited repertoires compared to the total memory 253 

pool, while IGHV3-30 was enriched in both WA1- and Gamma-infected individuals compared to 254 

controls (adjusted P-value ≤ 0.05, Table S7). This highlights the convergence in responses to all 255 

SARS-CoV-2 variants we investigated. 256 

Recent studies have shown that Y501-dependent mAbs derived from IGHV4-39 and 257 

related genes are overrepresented among neutralizing antibodies isolated from Beta-infected 258 

individuals (56, 57). Structural evidence suggests that bias toward these genes may in part be 259 

due to germline-encoded residues Y35 and Y54 in complementarity-determining region (CDR) 260 

H1 and H2, respectively (56). We therefore analyzed the observed frequency of germline genes 261 

encoding these residues (IGHV4-30, IGHV4-31, IGHV4-39, and IGHV4-61) among Beta- and 262 

Gamma-binding B cells but found no significant differences based on infecting variant (Fig. 4D). 263 

Furthermore, we compared the frequency of sequences using these germline genes for WA1- 264 

versus Beta-binding B cells among Beta-infected individuals (excluding cross-reactive B cells 265 

isolated by RATP-Ig), and again found no difference in usage (Fig 4E). In addition, in many of the 266 

sequences we observed from these germline genes, Y35 and/or Y54 had been substituted due 267 

to somatic hypermutation (SHM), indicating that they likely are not members of the neutralizing 268 

class. This suggests that differences in the neutralization sensitivity of variants are not reflected 269 

in the overall binding patterns or sequences of specific mAbs, which instead remain highly 270 

consistent among individuals infected with different variants. 271 

We next investigated SHM levels in these repertoires. The median VH SHM levels among 272 

individuals ranged between 0.3% to 6.6% in VH and 0.0 to 3.0% in VL, compared to 6.7% and 273 

2.4%, respectively, in the control repertoires. We then further examined SHM by both infecting 274 

variant and the probes used to isolate each cell. We found no differences in SHM in single probe-275 

binding repertoires for either WA1- or Gamma-infected individuals (Fig. 5). Surprisingly, cross-276 

reactive (WA1 and Beta) cells sorted for RATP-Ig had lower SHM than the single probe-binding 277 

repertoires sorted for 10x Genomics and sequencing. Moreover, single probe-binding Beta-278 

specific B cells from Beta-infected individuals had significantly higher SHM (median of 4.9% in VH   279 
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 280 
Figure 5: Somatic hypermutation (SHM) levels of SARS-CoV-2 specific B cells (unpaired sequences). SHM 281 
percent in variable heavy (VH) (A) or variable kappa/lambda (VK/VL) (B) regions. Error bars indicate the 282 
average number of nucleotide substitutions +/- standard deviation. Statistical significance was determined 283 
by the Mann-Whitney t-test.   284 
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and 2.7% in VL) compared to single probe WA1-binding cells from the same individuals (2.1% and 285 

0.8%, respectively) (Fig. 5). Overall, the low levels of SHM across all the SARS-CoV-2-specific B 286 

cells that we isolated is consistent with prior reports (32, 34, 36, 58-61). This further demonstrates 287 

that the human immune system can readily generate antibodies capable of cross-binding multiple 288 

variants, regardless of infecting variant. 289 

 290 

Identification of public clones 291 

We next identified public clones in the SARS-CoV-2-specific repertoires elicited after 292 

infection with different variants. We defined public clones as antibodies from multiple individuals 293 

using the same VH gene and having at least 80% amino acid sequence identity in CDR H3. In 294 

total, 16 public clones were identified from 11 of the 13 infected individuals distributed across 295 

infection with all three variants (Fig. 6A). Notably, the two people for whom we failed to observe 296 

public clones were the least sampled individuals, with only 10 and 16 cells recovered, respectively 297 

(Table S6). While light chain V genes and CDR3 were not used to define public clones, they are 298 

reported when we found a consistent signature within a public clone. 299 

One public clone, found in 5 individuals, uses IGHV4-59 with a short 6 amino acid CDR 300 

H3 and IGKV3-20. This public clone comprises B cells from a WA1-infected individual and 4 Beta-301 

infected individuals which bound to both WA1 and Beta probes (Fig. 6A) and has a strongly 302 

conserved CDR H3 (Fig. 6B). Antibodies matching the signature of public clone 1 have been 303 

previously published (28, 49, 59, 62-64); notably, they have been characterized as binding the S2 304 

domain of Spike and are generally cross-reactive with SARS-CoV-1. Indeed, one member of this 305 

public clone, H712427+K711927, was isolated from an individual who was infected with SARS-306 

CoV-1 (49). This suggests that the convergent immune responses we observe may not be limited 307 

only to variants of SARS-CoV-2 but may even extend to a broader range of sarbecoviruses. 308 

Public clone 2 contains the expanded clones identified by RATP-Ig in SAV3 and A49, 309 

discussed above, as well as cells from SAV12. Public clone 3 includes sequences from two 310 

individuals that bound to either Beta or Gamma probes. Notably, both public clones 2 and 3 use 311 

the same heavy and light chain germline genes with the same CDR H3 and L3 lengths, though 312 

they fall outside of the 80% amino acid identity threshold. Combining sequences from both public 313 

clones revealed a strongly conserved IGHD3-22-encoded YDSSGY motif at positions 6-11 of 314 

CDR H3 (Fig. 6C). Strikingly, this is the same D gene implicated in targeting a Class IV RBD 315 

epitope (54), although public clones 2 and 3 instead target an epitope in S2 and appear to be 316 

restricted to IGHV1-69 and IGKV3-11 V genes.  317 
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Figure 6: Public and cross-reactive clones. (A) Sixteen public clones were identified. Public clones are 318 
numbered 1-16 by row, as shown on the far left. Each column of boxes in the middle panel represents a 319 
single individual, as labeled at top, and is colored by probe(s) used, as shown at bottom. Right panel shows 320 
additional information about each public clone. Light chain ifnormation is provided after a colon if a 321 
consistent signature was found. Epitopes are inferred from ELISA of RATP-Ig supernatants of at least 1 322 
public clone member; nd, not determined. (B) CDR H3 logogram for the top public clone, found in 5 of 13 323 
individuals. (C)-(E) Combined CDR H3 logograms for (C) 2 public clones using IGHV1-69 and IGKV3-11 324 
with a 15 amino acid CDR H3 length. (D) 6 public clones using IGHV3-30 with a 14 amino acid CDR H3 325 
length. (E) 3 public clones using IGHV3-30 with a 10 amino acid CDR H3 length.   326 
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We also observed the repeated use of IGHV3-30 with a 14 amino acid CDR H3 in six 327 

public clones which together comprise 35 cells from 8 different individuals. Each of these public 328 

clones included cells that bound to at least two variants, and all six were identified in individuals 329 

from at least two of our three variant-infected cohorts, suggesting a common, cross-reactive 330 

binding mode. When we combined CDR H3 sequences from all 6 public clones in this group, we 331 

found a consistent small-G-polar-Y-aromatic motif spanning positions 5-9 of CDR H3 (Fig. 6D). A 332 

large number of antibodies matching this signature have been previously described (25, 28, 34, 333 

49-52, 59, 60, 62-66). Similar to the above public clones, the epitope targeted by these antibodies 334 

has generally been reported as being in the S2 domain of Spike, and approximately one third of 335 

them have been shown to also bind SARS-CoV-1. 336 

We identified only one public clone, 12, that we were able to verify bound to either RBD 337 

or NTD, although public clones 13 and 14 also have highly similar V genes and CDR lengths (Fig. 338 

6, A and E). These public clones were identified in both Beta- and Gamma-infected individuals 339 

from cells isolated with WA1 and/or Beta probes. Two previously reported antibodies, WRAIR-340 

2038 (16) and COV-2307 (34), match the signature of these public clones and are also confirmed 341 

to bind NTD. The identification of a cross-reactive public clone is remarkable given deletions in 342 

Beta that disrupt the main NTD supersite for neutralizing antibodies (12). This again highlights 343 

the discordance between neutralization, which is variant-restricted, and reproducible binding 344 

modes which show a consensus in the face of differences among variants. 345 

 346 

DISCUSSION 347 

The rise of novel, antigenically distinct SARS-CoV-2 variants both threatens the efficacy 348 

of lifesaving mAb therapies and emphasizes the need for continued therapeutic mAb discovery 349 

(67). Moreover, although T cell responses are predominantly directed toward conserved epitopes 350 

and hence are broadly cross-reactive (18-22), Spike-binding IgG antibodies and serum 351 

neutralization have been identified as key correlates of protection for SARS-CoV-2 infection (68-352 

70).  Thus, a deep understanding of the IG repertoires that generate these protective responses 353 

will be critical for predicting the impact of infections with different variants. 354 

In this study, we used rapid mAb production and functional analysis and single cell 355 

sequencing using the 10x Genomics platform to conduct an in-depth, unbiased characterization 356 

of total antigen-specific B cell repertoires from people infected with the ancestral WA1, Beta, or 357 

Gamma variants of SARS-CoV-2. Our principal findings were: 1) infection with any of these 358 

variants elicited antibodies targeting the same immunodominant epitopes in RBD; 2) antigen-359 

specific memory B cells elicited by SARS-CoV-2 are polyclonal and use similar patterns of heavy 360 
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and light chain V genes, irrespective of the infecting variant; and 3) public clones and other cross-361 

reactive antibodies are common among responses to all infecting variants. Our results 362 

demonstrate a fundamentally convergent humoral immune response across different SARS-CoV-363 

2 variants. 364 

To date, most analyses of SARS-CoV-2-specific B cells have focused on neutralizing 365 

antibodies with potential therapeutic applications. Those which have investigated the total binding 366 

repertoire have used samples from people infected with the ancestral WA1 variant (9, 25, 31); 367 

here we complement these studies with new data from Beta- and Gamma-infected individuals 368 

and show that the hierarchy of immunodominant epitopes remains unchanged. Indeed, while a 369 

recent report found that serum antibodies elicited by Beta infection were less likely to contact 370 

Spike residue F456 compared to antibodies elicited by WA1 infection (71), we found no changes 371 

in targeting of the RBD-A epitope, which includes this residue. Combined with the fact that Spike 372 

F456 is unchanged between WA1 and Beta, this suggests that the difference in escape is likely 373 

due to a shifted binding conformation (43, 44). Thus, just as binding epitope immunodominance 374 

is known to be consistent in response to WA1, Beta, or Omicron mRNA immunization (47, 48), 375 

we now demonstrate here similar immunodominance after variant infection. This insight will be 376 

helpful for understanding and predicting the burdens of serial infections with different variants. 377 

In addition to concordant epitope targeting, we also found consistent V gene usage in the 378 

antibody response to all three variants we investigated. Although some recent studies have noted 379 

enrichment for IGHV4-39 and closely related VH genes in Beta-infection (56, 57) we did not 380 

observe any differences in the usage of these genes. Our findings likely highlight the difference 381 

between the neutralizing antibody repertoires investigated in prior studies compared to the total 382 

binding repertoires examined here and emphasize the insights to be gleaned by taking a broader 383 

perspective. However, despite this consistent epitope immunodominance and convergent V gene 384 

usage, we observed an excess of SHM in homologous Beta-binding B cells isolated from Beta-385 

infected individuals, an effect we did not observe in WA1- or Gamma-infected individuals. This is 386 

even more unexpected in light of the lower overall SHM in cross-binding B cells sorted for mAb 387 

isolation by RATP-Ig. Other studies have also suggested the possibility that Beta may be 388 

somewhat distinct from other SARS-CoV-2 variants, inducing neutralization that appears to wane 389 

more slowly and that can be boosted to higher levels by additional vaccine doses (47, 48). In this 390 

light, it is perhaps even more important that we identified the same cross-reactive public clones 391 

induced by Beta infection as by WA1 and Gamma, suggesting that key elements for protection 392 

against other variants are likely to be maintained. 393 
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Furthermore, the genetic convergence among IG repertoires was not limited to V gene 394 

usage but extended to the public clones we identified. These were reliably observed irrespective 395 

of the infecting variant and were consistently identified as cross-reactive to multiple variants. 396 

Additionally, members of public clones 1 and 2 have been reported in the literature as having 397 

cross-reactivity extending to SARS-CoV-1. While they appear to be non-neutralizing and S2 398 

domain-binding, they may yet be important for Fc-dependent functions (16, 17) and thus their 399 

elicitation by different variants may contribute to protection from future infection with other 400 

variants. Overall, more than 8% of the cells that we sequenced belong to a public clone, 401 

highlighting again the extraordinary convergence of the antibody response across variants of 402 

SARS-CoV-2. 403 

Importantly, we also observed convergences that are not encompassed within the 404 

standard definition of a public clone, consistent with structural modeling and clustering 405 

demonstrating that high CDR H3 sequence similarity and even convergent V genes are not 406 

required for antibodies to target overlapping epitopes using comparable binding conformations 407 

(72).  As a specific example, we identified antibodies with a previously described IGHD3-22-408 

encoded YYDRxG motif that can result in broad neutralization of divergent sarbecoviruses (54). 409 

Furthermore, we also observed three sets of multiple public clones with overlapping gene usage 410 

and CDR H3 lengths. Despite the low CDR H3 sequence homology between public clones, we 411 

found conserved motifs which are likely to drive functional convergence. These findings further 412 

highlight the capability of the human immune system to respond to SARS-CoV-2 in a manner that 413 

is largely consistent yet tolerant of differences between variants. 414 

In summary, our data reveal marked convergence that defines multiple aspects of the 415 

humoral immune response to different SARS-CoV-2 variants. Despite the emergence of key 416 

escape mutations which have pronounced impact on neutralizing antibody function, first-417 

generation vaccine designs using the ancestral Spike protein sequence have demonstrated the 418 

capacity to generate a cross-reactive anamnestic response that can be mobilized upon infection 419 

with novel variants (47, 48, 73, 74). Our observations show that this phenomenon may be 420 

explained in part by convergent V-gene usage and epitope specificities elicited by primary 421 

exposure to SARS-CoV-2 variant Spikes. 422 

 423 

LIMITATIONS OF THE STUDY 424 

Our study is limited by sampling of paired heavy and light chain sequences from fewer 425 

than 1,000 SARS-CoV-2-specific B cells across 13 individuals. This scale is small in comparison 426 

to bulk IG sequencing studies (32, 61) and even a few single-cell studies (58, 60, 75). We are 427 
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also limited in our ability to make functional repertoire comparisons due to varied sorting strategies 428 

and differences in functional assays used to assess isolated mAbs. Moreover, our cohort was 429 

sampled only at a single time point early in convalescence and included only one individual with 430 

high serum neutralization titers. It will be important to verify that our findings extend to later time 431 

points when the antibody repertoire has matured. In addition, further studies are needed to 432 

examine the response elicited by more recent SARS-CoV-2 variants such as Delta and Omicron. 433 

 434 

MATERIALS AND METHODS 435 

Study design 436 

We selected 13 convalescent individuals that had experienced symptomatic Covid-19 437 

infection with either WA1 virus or the Beta or Gamma variants. Serum, plasma and PBMC were 438 

isolated at each respective clinical center. The selection of individuals was based on the 439 

availability of samples collected at similar time-points (between 17 and 38 days after symptoms 440 

onset), rather than the severity of disease or neutralizing antibody titers (Table S1). Seven 441 

individuals were infected with the Beta variant and recruited at the Sheba Medical Center, Tel 442 

HaShomer, Israel. Two individuals were infected with the Gamma variant and recruited at the 443 

University of Minnesota Hospital, USA. The samples from four WA1-infected individuals, collected 444 

early in the pandemic, as well as the two additional beta-infected individuals used for T cell 445 

analysis were collected under the Vaccine Research Center’s (VRC), National Institute of Allergy 446 

and Infectious Diseases (NIAID), National Institutes of Health protocol VRC 200 (NCT00067054) 447 

in compliance with the NIH Institutional Review Board (IRB) approved protocol and procedures. 448 

All subjects met protocol eligibility criteria and agreed to participate in the study by signing the 449 

NIH IRB approved informed consent. Research studies with these samples were conducted by 450 

protecting the rights and privacy of the study participants. All participants provided informed 451 

consent in accordance with protocols approved by the respective institutional review boards and 452 

the Helsinki Declaration. 453 

 454 

Serology 455 

Antibody binding was measured by 10-plex Meso Scale Discovery 456 

Electrochemiluminescence immunoassay (MSD-ECLIA) as previously described (76). Cell-457 

surface spike binding was assessed as previously described (76). Serum neutralization titers for 458 

either WA1-D614G, Beta, Gamma or Delta pseudotyped virus particles were obtained as 459 

previously described (76). 460 

 461 
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Antigen-specific ELISA 462 

Reacti-Bind 96-well polystyrene plates (Pierce) were coated with 100 μl of affinity purified 463 

goat anti-human IgG Fc (Rockland) at 1:20,000 in PBS, or 2 μg/ml SARS-CoV-2 recombinant 464 

protein in PBS overnight at 4°C. Plates were washed in PBS-T (500ml 10XPBS + 0.05% Tween-465 

20 + 4.5L H2O) and blocked for 1 h at 37ºC with 200 μL/well of B3T buffer: 8.8 g/liter NaCl, 7.87 466 

g/liter Tris-HCl, 334.7 mg/liter EDTA, 20 g BSA Fraction V, 33.3 ml/liter fetal calf serum, 666 467 

ml/liter Tween-20, and 0.02% Thimerosal, pH 7.4). Diluted antibody samples were applied and 468 

incubated 1 hr at 37ºC followed by 6 washes with PBS-T; plates were the incubated with HRP-469 

conjugated anti-human IgG (Jackson ImmunoResearch) diluted 1:10,000 in B3T buffer for 1 h at 470 

37ºC. After 6 washes with PBS-T, SureBlue TMB Substrate (KPL) was added, incubated for 10 471 

min, and the reaction was stopped with 1N H2SO4 before measuring optical densities at 450nm 472 

(Molecular Devices, SpectraMax using SoftMax Pro 5 software). For single-point assays, 473 

supernatants from transfected cells were diluted 1:10 in B3T and added to the blocked plates. 474 

Purified monoclonal antibodies were assessed using 5-fold serial dilutions starting at 10ug/ml. To 475 

assess the levels of IgG in supernatants, standard curves were run on the same plates as 476 

supernatants, using threefold serial dilutions of human IgG (Sigma) starting at 100ng/ml IgG. 477 

 478 

Intracellular cytokine staining 479 

The T cell staining panel used in this study was modified from a panel developed by the 480 

laboratory of Dr. Steven De Rosa (Fred Hutchinson Cancer Research Center). Directly 481 

conjugated antibodies purchased from BD Biosciences include CD19 PE-Cy5 (Clone HIB19; cat. 482 

302210), CD14 BB660 (Clone M0P9; cat. 624925), CD3 BUV395 (Clone UCHT1; cat. 563546), 483 

CD4 BV480 (Clone SK3; cat. 566104), CD8a BUV805 (Clone SK1; cat. 612889), CD45RA 484 

BUV496 (Clone H100; cat. 750258), CD154 PE (Clone TRAP1; cat. 555700), IFNg V450 (Clone 485 

B27; cat. 560371 and IL-2 BB700 (Clone MQ1-17H12; cat. 566404).  Antibodies from Biolegend 486 

include CD16 BV570 (Clone 3G8; cat. 302036), CD56 BV750 (Clone 5.1H11; cat. 362556), CCR7 487 

BV605 (Clone G043H7; cat. 353244) and CD69 APC-Fire750 (Clone FN50; cat. 310946).  TNF 488 

FITC (Clone Mab11; cat. 11-7349-82) and the LIVE/DEAD Fixable Blue Dead Cell Stain (cat. 489 

L34962) were purchased from Invitrogen. 490 

Cryopreserved PBMC were thawed into pre-warmed R10 media (RPMI 1640, 10% FBS, 491 

2 mM L-glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin) containing DNase and rested 492 

for 1 hour at 37oC/5% CO2.  For stimulation, 1 – 1.5 million cells were plated into 96-well V-bottom 493 

plates in 200mL R10 and stimulated with SARS-CoV-2 peptide pools (2ug/mL for each peptide) 494 

for 6 hours at 37oC/5%CO2. A DMSO-only condition was used to determine background 495 
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responses.  Following stimulation samples were stained with LIVE/DEAD Fixable Blue Dead Cell 496 

Stain for 10 minutes at room temperature and surface stained with titrated amounts of anti-CD19, 497 

anti-CD14, anti-CD16, anti-CD56, anti-CD4, anti-CD8, anti-CCR7 and anti-CD45RA for 20 498 

minutes at room temperature. Cells were washed in FACS Buffer (PBS + 2% FBS), and fixed and 499 

permeabilized (Cytofix/Cytoperm, BD Biosciences) for 20 minutes at room temperature.  500 

Following fixation, cells were washed with Perm/Wash buffer (BD Biosciences) and stained 501 

intracellularly with anti-CD3, anti-CD154, anti-CD69, anti-IFNg, anti-IL-2 and anti-TNF for 20 502 

minutes at room temperature.  Cells were subsequently washed with Perm/Wash buffer and fixed 503 

with 1% paraformaldehyde.  Data were acquired on a modified BD FACSymphony and analyzed 504 

using FlowJo software (version 10.7.1). Cytokine frequencies were background subtracted and 505 

negative values were set to zero.   506 

Synthetic peptides (>75% purity by HPLC; 15 amino acids in length overlapping by 11 507 

amino acids) were synthesized by GenScript.  To measure T cell responses to the full-length WA-508 

1 Spike glycoprotein (YP_009724390.1), 2 peptide pools were utilized, Spike pool A (peptides 1-509 

160; residues 1-651) and Spike pool B (peptides 161-316; residues 641-1273) (Table S8).  510 

Peptides were 15 amino acids in length and overlapped by 11 amino acids.  Spike pool A 511 

contained peptides for both D614 and the G614 mutation.  Responses to full-length Spike were 512 

calculated by summing the responses to both pools after background subtraction.  Select peptide 513 

pools were used to measure T cell responses to mutated regions of the Spike glycoproteins of 514 

the Alpha, Beta and Gamma SARS-CoV-2 variants along with control pools corresponding to the 515 

same regions within the WA-1 Spike glycoprotein (Table S9).  516 

 517 

Epitope mapping by Surface Plasmon Resonance (SPR) 518 

Serum epitope mapping competition assays were performed, as previously described (47, 519 

48), using the Biacore 8K+ surface plasmon resonance system (Cytiva). Anti-histidine antibody 520 

was immobilized on Series S Sensor Chip CM5 (Cytiva) through primary amine coupling using a 521 

His capture kit (Cytiva). Following this, his-tagged SARS-CoV-2 S protein containing 2 proline 522 

stabilization mutations (S-2P) was captured on the active sensor surface. 523 

Human IgG monoclonal antibodies (mAb) used for these analyses include: B1-182, CB6, 524 

A20-29.1, A19-46.1, LY-COV555, A19-61.1, S309, A23-97.1, A19-30.1, A23-80.1, and CR3022. 525 

Either competitor or negative control mAb was injected over both active and reference surfaces. 526 

Human sera were then flowed over both active and reference sensor surfaces, at a dilution of 527 

1:50. Following the association phase, active and reference sensor surfaces were regenerated 528 

between each analysis cycle. 529 
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Prior to analysis, sensorgrams were aligned to Y (Response Units) = 0, using Biacore 8K 530 

Insights Evaluation Software (Cytiva), at the beginning of the serum association phase. Relative 531 

“analyte binding late” report points (RU) were collected and used to calculate percent competition 532 

(% C) using the following formula: % C = [1 – (100 * ( (RU in presence of competitor mAb) / (RU 533 

in presence of negative control mAb) )]. Results are reported as percent competition and statistical 534 

analysis was performed using unpaired, two-tailed t-test (Graphpad Prism v.8.3.1). All assays 535 

were performed in duplicate and averaged. 536 

 537 

Production of antigen-specific probes 538 

Biotinylated probes for S-2P, NTD and RBD were produced as described previously (77, 539 

78). Briefly, single-chain Fc and AVI-tagged proteins were expressed transiently for 6 days. After 540 

harvest, the soluble proteins were purified and biotinylated in a single protein A column followed 541 

by final purification on a Superdex 200 16/600 gel filtration column. Biotinylated proteins were 542 

then conjugated to fluorescent streptavidin. 543 

 544 

Antigen-specific B cell sorting 545 

PBMC vials containing approximately 107 cells were thawed and stained with Live/Dead 546 

Fixable Blue Dead Cell Stain Kit (Invitrogen, cat# L23105) for 10 min at room temperature, 547 

followed by incubation for 20 min with the staining cocktail consisting of antibodies and probes. 548 

The antibodies used in the staining cocktail were: CD8-BV510 (Biolegend, clone RPA-T8, cat# 549 

301048), CD56-BV510 (Biolegend, clone HCD56, cat# 318340), CD14-BV510 (Biolegend, clone 550 

M5E2, cat# 301842), CD16-BUV496 (BD Biosciences, clone 3G8, cat# 612944), CD3-APC-Cy7 551 

(BD Biosciences, clone SP34-2, cat# 557757), CD19-PECy7 (Beckmann Coulter, clone J3-119, 552 

cat# IM36284), CD20 (BD Biosciences, clone 2H7, cat# 564917), IgG-FITC (BD Biosciences, 553 

clone G18-145, cat# 555786), IgA-FITC (Miltenyi Biotech, clone IS11-8E10, cat# 130-114-001) 554 

and IgM-PECF594 (BD Biosciences, clone G20-127, cat# 562539). For each variant, a set of two 555 

spike probes S-2P-APC and S-2P-BUV737, in addition to RBD-BV421 and NTD-BV711 were 556 

included in the staining cocktail for flow cytometry sorting.  557 

For RATP-Ig, single-cells were sorted in 96-well plates containing 5 µL of TCL buffer 558 

(Qiagen) with 1% β-mercaptoethanol according to the gating strategy shown in Fig. S2B. Samples 559 

sorted for 10x Genomics single-cell RNAseq were individually labelled with an oligonucleotide-560 

linked hashing antibody (Totalseq-C, Biolegend) in addition to the staining cocktail and sorted into 561 

a single tube according to the gating strategy shown in Fig. S2B. All cell sorts were performed 562 
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using a BD FACSAria II instrument (BD Biosciences).  Frequency of antigen-specific B cells were 563 

analyzed using FlowJo 10.8.1 (BD Biosciences). 564 

 565 

Monoclonal antibody isolation and characterization by RATP-Ig 566 

cDNA synthesis: Variable heavy and light chains were synthesized using a modified 567 

SMARTSeq-V4 protocol by 5’ RACE. Single-cell RNA was first purified with RNAclean beads 568 

(Beckman Coulter). cDNA was then synthesized using 5’ RACE reverse-transcription, adding 569 

distinct 3’ and 5’ template switch oligo adapters to total cDNA. cDNA was subsequently amplified 570 

with TSO_FWD and TS_Oligo_2_REV primers. Excess oligos and dNTPs were removed from 571 

amplified cDNA with EXO-CIP cleanup kit (New England BioLabs).  572 

Immunoglobulin enrichment and sequencing: Heavy and light chain variable regions were 573 

enriched by amplifying cDNA with TSO_FWD and IgA/IgG_REV or IgK/IgL_REV primer pools. An 574 

aliquot of enriched product was used to prepare Nextera libraries with Unique Dual Indices 575 

(Illumina) and sequenced using 2x150 paired-end reads on an Illumina MiSeq. Separate aliquots 576 

were used for IG production; RATP-Ig is a modular system and can produce single combined or 577 

separate HC/LC cassettes.  578 

Cassette fragment synthesis: Final cassettes include CMV, and HC/LC-TBGH polyA fragments. 579 

To isolate these fragments, amplicons were first synthesized by PCR. PCR products were run on 580 

a 1% agarose gel and fragments of the correct length were extracted with Thermo gel extraction 581 

and PCR cleanup kit (ThermoFisher Scientific). Gel-extracted products were digested with DpnI 582 

(New England Biolabs) to further remove any possible contaminating plasmid. These fragment 583 

templates were then further amplified to create final stocks of cassette fragments. 584 

Cassette assembly: Enriched variable regions were assembled into linear expression cassettes 585 

in two sequential ligation reactions. The first reaction assembles CMV-TSO, TSO-V-LC, and KC-586 

IRES fragments into part 1 and IRES-TSO, TSO-V-HC, and IgGC-TBGH fragments into part 2 587 

using NEBuilder HIFI DNA Assembly Mastermix (New England BioLabs). Following reaction 1, 588 

parts 1 and 2 were combined into a single reaction 2 and ligated into a single cassette.  589 

Separate cassettes: Enriched variable regions were assembled into linear expression 590 

cassettes by ligating CMV-TSO, TSO-V-C, and C-TBGH fragments using NEBuilder HIFI DNA 591 

Assembly Mastermix (New England BioLabs). Assembled cassettes were amplified using 592 

CMV_FWD and TBGH_REV primers. Amplified linear DNA cassettes encoding monoclonal heavy 593 

and light chain genes were co-transfected into Expi293 cells in 96-well deep-well plates using the 594 

Expi293 Transfection Kit (ThermoFisher Scientific) according to the manufacturer’s protocol. 595 
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Microtiter cultures were incubated at 37 degrees and 8% CO2 with shaking at 1100 RPM for 5-7 596 

days before supernatants were clarified by centrifugation and harvested.  597 

 598 

Droplet-based single cell isolation and sequencing 599 

Antigen-specific memory B cells were sorted as described above. Cells from two separate 600 

sorts were pooled in a single suspension and loaded on the 10x Genomics Chromium instrument 601 

with reagents from the Next GEM Single Cell 5’ Kit v1.1 following the manufacturer’s protocol to 602 

generate total cDNA. Heavy and light chains were amplified from the cDNA using custom  3’ 603 

primers specific for IgG, IgA, IgK or IgL with the addition of Illumina sequences (79). The Illumina-604 

ready libraries were sequenced using 2x300 paired-end reads on an Illumina MiSeq. Hashing 605 

oligonucleotides were amplified and sequenced from the total cDNA according to the 10x 606 

Genomics protocol. 607 

 608 

V(D)J sequence analysis 609 

For cells processed via RATP-Ig, reads were demultiplexed using a custom script and 610 

candidate V(D)J sequences were generated using BALDR (80) and filtered for quality using a 611 

custom script. The resulting sequences were annotated using SONAR v4.2 (81) in single-cell 612 

mode. 613 

For cells processed via the 10x Genomics Chromium device, reads from the hashing 614 

libraries were processed using cellranger (10x Genomics). The resulting count matrix was 615 

imported into Seurat (82) and the sample of origin called using the HTODemux function. Paired-616 

end reads from V(D)J libraries were merged and annotated using SONAR in single-cell mode with 617 

UMI detection and processing. 618 

For all datasets, nonproductive rearrangements were discarded, as were any cells with 619 

more than one productive heavy or light chain. Cells with an unpaired heavy or light chain were 620 

included in calculations of SHM and gene usage statistics, but were excluded from assessments 621 

of clonality and determination of public clones. Public clones were determined by using the 622 

clusterfast algorithm in vsearch (83) to cluster CDR H3 amino acid sequences at 80% identity. 623 

Where relevant, all clonally related B cells in a single individual were included in a public clone, 624 

even if not all were directly clustered together in the vsearch analysis. 625 

 626 

Supplementary Materials: 627 

Fig.  S1: Additional serology and epitope mapping data. A) Antibody binding titers against multiple 628 

variants assessed by cell surface binding assay; B) Structural schematic of spike protein showing 629 
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epitopes from monoclonal antibodies used for RBD epitope mapping by competition assay; C)  630 

Epitope mapping of Beta-infected individuals on WA1, Beta and Delta spike proteins; D) Epitope 631 

mapping of Gamma-infected individuals on WA1, Beta and Delta spike proteins; E) Gating 632 

strategy for T cell response analysis. 633 

Fig. S2: Antigen-specific B cell sorting. (A) Arrows indicate probes used for sorting antigen-634 

specific B cells from each group of convalescent individuals. The individual marked with a star 635 

was used for both RATP-Ig and total BCR repertoire sequencing. (B) Flow cytometry 636 

representative plots and gating strategies for B cell sorting and analysis; final sort gates are shown 637 

in blue. 638 

Fig. S3: SARS-CoV-2-specific light chain V gene usage frequencies. (A) Kappa and (B) Lambda 639 

chain V gene repertoire analysis by infecting variant, with WA1, Beta and Gamma shown in grey, 640 

orange and blue, respectively, and data from pre-pandemic controls in yellow. The x-axis shows 641 

all germline genes used; the y-axis represents the percent of individual gene usage. Stars indicate 642 

genes with at least one significant difference between groups; pairwise comparisons using the 643 

Dunn test are in Table S7. 644 

 645 

Table S1: Details of the study cohort. 646 

Table S2: Serum epitope competition 647 

Table S3: Heatmaps of complete RATP-Ig ELISA results for SAV1. Values are reported as 648 

absorbance at 450nm wavelength. 649 

Table S4: Heatmaps of complete RATP-Ig ELISA results for SAV3. Values are reported as 650 

absorbance at 450nm wavelength. 651 

Table S5: Heatmaps of complete RATP-Ig ELISA results for A49. Values are reported as 652 

absorbance at 450nm wavelength. 653 

Table S6: Sample recovery from 10x Genomics-based single cell isolation and sequencing. 654 

Table S7: Significant differences in gene-usage. For genes with a significant difference detected 655 

by the Kruskal-Wallis test (Figs. 4B and S3), the Dunn test was used to find significant pairwise 656 

difference. P values were adjusted for multiple testing using the Benjami-Hochberg procedure. 657 

Table S8: Sequences of peptides included in Spike pools A and B used for T cell stimulation. 658 

Highlighted peptides did not meet >75% purity and were not included in the pool. 659 

Table S9: Sequences of peptides included in selected peptide pools for each variant used for T 660 

cell stimulation.   661 

 662 

 663 
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  Infecting 
virus Days after 

symptoms Disease 
severity Date of 

collection Gender Age 
A02 WA1  28 Mild Mar-20 Male 39 
A06 WA1 34 Mild Apr-20 Female 59 
A10 WA1 33 Moderate Apr-20 Female 67 
A14 WA1 34 Mild Apr-20 Male 27 
SAV1 Beta 33 Severe Jan-21 Male 60 
SAV2 Beta 33 Mild Jan-21 Male 35 
SAV3 Beta 30 Mild Jan-21 Female 58 
SAV4 Beta 28 Mild Jan-21 Female 30 
SAV10 Beta 38 Mild Feb-21 Female 43 
SAV11 Beta 37 Mild Feb-21 Female 52 
SAV12 Beta 35 Mild Feb-21 Male 44 
A49 Gamma 24 Moderate Jan-21 Female 53 
A50 Gamma 17 Mild Jan-21 Male 32 

 1241 
Supplementary Table 1: Details of the study cohort. 1242 
  1243 
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Sample ID Infected with:  Spike variant 
WA1 Beta Delta 

A02 WA1  below LLOQ below LLOQ 
A06 WA1  below LLOQ below LLOQ 
A10 WA1  below LLOQ below LLOQ 
A14 WA1  below LLOQ  
SAV1 Beta    

SAV2 Beta below LLOQ  below LLOQ 
SAV3 Beta    

SAV4 Beta    

SAV10 Beta below LLOQ  below LLOQ 
SAV11 Beta    

SAV12 Beta    

A49 Gamma    

A50 Gamma    

 1244 

Supplementary Table 2: Serum epitope competition 1245 
  1246 
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  SARS-CoV-2 Probe:   

  
WA1 Beta Gamma 

Total paired 
sequences by 

subject: 

W
A1

-in
fe

ct
ed

 A02 3/23            (13%)  3/8          (28%)  4/13          (31%) 10 
A06 11/140        (8%)  4/74        (5%)   9/62          (15%) 24 
A10 9/87            (10%)  10/46      (22%)  11/34        (32%)  30 
A14 20/205        (10%)  14/76      (18%)  23/79        (29%) 57 

Be
ta

-In
fe

ct
ed

 SAV2 2/104          (2%)  14/214      (7%)  N/A 16 
SAV4 16/328        (5%)   40/630      (6%)  N/A 56 
SAV10 6/102          (6%)  12/131      (9%)   N/A 18 
SAV11 39/645        (6%)  125/2028  (6%)  N/A 164 
SAV12 32/306        (10%)  97/1318    (7%)  N/A 129 

G
am

m
a-

 
In

fe
ct

ed
  A49 10/129        (8%)     N/A  23/148      (16%) 33 

A50 14/89          (16%)   N/A  37/128      (29%) 51 
Total paired  
sequences by probe: 162 319 107  
 1247 

Supplementary Table 6: Sample recovery from 10x Genomics-based single cell isolation and 1248 
sequencing. 1249 
  1250 
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Gene Enriched 
Group Median usage 

frequency, 
enriched 

Depleted 
Group Median usage 

frequency, 
depleted 

Adjusted P- 
value 

IGHV1-46 Beta-infected 4.1% Gamma-infected 1.7% 0.037 
IGHV1-46 Beta-infected 4.1% Control 2.0% 0.045 
IGHV1-46 WA1-infected 7.1% Gamma-infected 1.7% 0.025 
IGHV1-46 WA1-infected 7.1% Control 2.0% 0.041 
IGHV3-30 Gamma-infected 29% Control 7.1% 0.021 
IGHV3-30 WA1-infected 18% Control 7.1% 0.026 
IGHV3-49 WA1-infected 6.0% Control 0.13% 0.021 
IGHV4-38-2 WA1-infected 3.1% Control 0.00% 0.020 
IGHV5-51 Beta-infected 4.8% Control 0.57% 0.021 
IGHV5-51 WA1-infected 6.2% Control 0.57% 0.046 
IGLV1-47 WA1-infected 8.5% Control 5.2% 0.027 
IGLV1-47 WA1-infected 8.5% Beta-infected 5.5% 0.041 
IGLV3-9 Beta-infected 3.1% Control 0.25% 0.050 
IGLV3-10 WA1-infected 8.6% Control 0.07% 0.016 
IGLV3-19 Beta-infected 4.3% Control 0.00% 0.021 
IGLV3-19 WA1-infected 5.7% Control 0.00% 0.036 

 1251 
Supplementary Table 7: Significant differences in gene-usage. For genes with a significant difference 1252 
detected by the Kruskal-Wallis test (Figs. 4B and S5), the Dunn test was used to find significant pairwise 1253 
difference. P values were adjusted for multiple testing using the Benjami-Hochberg procedure. 1254 
 1255 
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